Hilbert Transformsin Clifford Analysis

Fred Brackx, Bram De Knock and Hennie De Schepper

Abstract The Hilbert transform on the real line has applications imyngéelds. In
particular in one—dimensional signal processing, theéttlbperator is used to ex-
tract global as well as instantaneous characteristic$y aadrequency, amplitude
and phase, from real signals. The multidimensional apréac¢he Hilbert trans-
form usually is a tensorial one, considering the so-callegRtransforms in each of
the cartesian variables separately. In this paper we giwvarview of generalized
Hilbert transforms in Euclidean space, developed withanftamework of Clifford
analysis. Roughly speaking, this is a function theory ohbkigdimensional holo-
morphic functions, which is particularly suited for a tre&nt of multidimensional
phenomena since all dimensions are encompassed at oncénasnesic feature.

1 Introduction: the Hilbert Transform on the Real Line

The Hilbert transform is named after D. Hilbert, who, in Hisdies of integral equa-
tions, was the first to observe what is nowadays known as theitransform pair.
However, the Hilbert transform theory was developed maly\E. C. Titchmarsh
and G. H. Hardy. It was Hardy who named it after Hilbert. ThébkElit transform
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is applied in the theoretical description of many deviced laas become an indis-
pensable tool for both global and local descriptions of aaliglt has been directly
implemented in the form of Hilbert analogue or digital fikewhich allow to dis-
tinguish different frequency components and thereforallpaefine the structure
analysis. Those filters are essentially based on the nofianalytic signal which
consists of the linear combination of a bandpass filterctielg a small part of the
spectral information, and its Hilbert transform, the lattasically being the result
of a phase shift by; on the original filter (see e.g. [41]).

For a real one-dimensional finite energy sighale. f € L(R), its Hilbert trans-
form on the real line is given by

(%) = %Pv/;mgdt,

1
where Pv denotes the Cauchy principal value, meaning thigimtegral the singu-
larity att = x is approached in a symmetrical way. Non-finite energy sgralch
as (piecewise) constant functions and sines and cosinesldshe interpreted as
tempered distributions for which the Hilbert transform éfided as the convolution

71109 = 1 (Pvg+10) . @

where Pvtl is the Principal Value distribution satisfying in distriimnal sense

d 1 1
— Injtj=Pv= and tPv-=1.
dt t t

In order to recall the fundamental properties of the Hilliemhsform on the real
line, we introduce the Cauchy integral of a functibe L,(RR):

1+ ()

%[f](x,y) = _ﬁ_,w (X—ti)—kiy

dt, y+#£0. 3)

This Cauchy integral is, as a function of the complex vagat x+ iy, holomor-
phic in the upper and the lower half of the complex plane archge to zero for
y — +oo. In other words, forf € L(R) its Cauchy integra#’[ f](x,y) belongs to the
Hardy spacesl,(C*), respectively defined by

+oo
H2(C*) = {F holomorphic inC* such that suyf IF(2)|°dx< 4o}. (4)
y20/ =

Proposition 1. The Hilbert operator? : Lo(R) — L2(R), (1), enjoys the following
properties:

P(1) . is translation invariant, i.e.

o[- [f]] = [l ],
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with 1a[f](t) = f(t —a).
P(2) . is dilation invariant, i.e.

dal-7[f]] = sgr(@). [dal f]],
with ca[f](t) = f(t/a)//[a].

P(3) .7 is a linear, bounded and norm-preserving operator.
P(4) .7 is invertible with.”7 1 = —.# and thus¥? = —1.
P(5) . is unitary, i.e.*. = ../ = 1.

P(6) . commutes with differentation, i.e.

d d

G (I0) = F [ ()]

P(7) .7 arises in a natural way by considering the non-tangentialiaary limits
(in Ly sense) of the Cauchy integral (3), i.e.

%i[f}(x):yggi%[f](x,y) - ﬂ:%f(x)—s—%iy[f](x), xeR. (5)

The operatorg’™ are usually called the Cauchy transforms and the formulgia (5
P(7) are the Plemelj-Sokhotzki formulae in Clifford anadys

Thus putting7# = i.¥ we obtain an involutive, norm-preserving, bounded linear
operatorsZ : L(R) — L2(R), which may be used to define the Hardy spHg€R)
as the closed subspacelgfR) consisting of functiong for which .2#’[g] = g. We
call those functiong € Hy(R) analytic signals inspired by the fact that the non-
tangential boundary limi’*[f] of the holomorphic (or analytic) Cauchy integral
¢'[f], (3), indeed belongs to the Hardy spatgRR). The real and imaginary parts
u = Re[g] andv = Im[g] of an analytic signad satisfy theHilbert formulae

AU =iv and JZiv]=u. (6)

It follows that
g=(14+2¢)[u and g=(1+.2)]iv], (7)

showing that an analytic signal contains redundant inféionasince it can be re-
covered from its real (or its imaginary) part solely. Notatthhe Hardy spaces
Hy(R) andHy(Ct), (4), are isomorphic, since the non-tangential boundamyt li
for y — 0+ of F(z) € H2(C™) existsa.e. and belongs td12(R), and the Cauchy
integral inC™ of F(x+i0) precisely isF (z).

In frequency space the Hilbert transform, which is convohadl in nature, takes
the form of a multiplication operator. Denoting b¥ the usual Fourier transform,
there holds for a functioffi € Lo(R):

FAf|(w) =sgrwZ[fl(w) and #[F[f]|(w) = —F[sgrtf(t)|(w). (8)
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In particular the Fourier spectrum of an analytic signal H>(R) is a causal func-
tion with only positive frequencies, and conversely; motglieitly, it reads:

Z9l(w) = .7 (1+7)|u](w) = (1+sgnw).7 [u](w)
B {Zﬁ[u](w), w>0
o 0, w<0"

(9)

2 Hilbert Transformsin Euclidean Space

The Hilbert transform was first generalizedrtedimensional Euclidean space by
means of the Riesz transfornig in each of the cartesian co-ordinatesj =
1,...,m, given by

Rilf]x) = fim —2— X —Yi

-0+ amy1 JRMB(x.£) W f(X) dV(X), (10)

wheream,1 = % denotes the area of the unit sph&®in R™1, It was
Horvath who, already in his 1953 paper [36], introduced the @idfvector valued
Hilbert operator

m
=Y gR;. (11)
]Zl iRj

The multidimensional Hilbert transform was taken up agaithie 1980's and fur-
ther studied in e.g. [28, 29, 35,40, 47] in the Clifford arsédysetting.

Clifford analysis is a function theory which offers an elegand powerful gener-
alization to higher dimension of the theory of holomorphindtions in the complex
plane. In its most simple but still useful setting, fiadimensional Euclidean space,
Clifford analysis focusses on so-called monogenic fumatipi.e. null solutions of
the Clifford vector valued Dirac operator

m
=1

where(ey,...,en) forms an orthonormal basis for the quadratic spRteunderly-
ing the construction of the Clifford algebBy m, and where the basis vectors satisfy
the multiplication rules

€ &+ ee = —20jk, j,k=1...,m. (13)

Monogenic functions have a special relationship with hariméunctions of several
variables: they are refining their properties, since tha®aperator factorizes thma
dimensional Laplaciard? = —An,. Euclidean spac®™ is embedded in the Clifford
algebraRo m by identifying the pointxy, .. ., Xm) € R™ with the vector variable
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m

X= ) €Xj. (14)
2

For more details on Clifford analysis and its applicatioresrefer to e.g. [15,27,30].

2.1 Definition and properties

In the framework of Euclidean Clifford analysis, the (Gbiffl-)Hilbert transform for
a suitable function or distributiof is given by

2 : X—y
H[f](x) = @eo PV. Rmm f(y)dv(y) (15)
& im [ AT aviy
=" g lim = .
aerleO'SH0+ x—y|>¢€ ‘¥_¥|m+l Y Y

In the above expressiay is an additional basis vector for which there also holds
&=-1 and ee+eep=-28&; j=1,....m (16)

Furthermore stands for the usual conjugation in the Clifford algeRegn 1, i.€. the
main anti—involution for whictej = —e;, j = 0,...,m. As in the one-dimensional
case there is a strong relationship between the Hilbersfioam and the Cauchy
integral of a functionf € Lo(R™). The functions considered here take their values in
the Clifford algebraRom1. The spacéd,(R™) is equipped with th&®q m,1 valued
inner product and corresponding normsquared:

(9= [ T e aveg, [IfI2=[(f. Do, (17)

where[A]o denotes the scalar part of the Clifford numBefThe Cauchy integral of
f € Lo(R™) is defined by

L[ et tyavly,  x0#0. (8)

¢[f](x) =[] (%0, X) = ama Jam o T x—ypd T Y AVlY

Observe the formal similarity with the Cauchy integral (8)foe L2(R), Xo taking
the dle ofy and the vectoy taking the dle oft. Itis a (left-)ymonogenic function in

the upper and lower half spac@§ ™ = {xoep+x: x € R™, %o = 0}. By a monogenic
function inR™ 1 is meant a function annihilated by the Cauchy-Riemann apera

DxZ%t?x:E(eoﬁon&):@onr%d& (19)

which decomposes the Laplace operatdRit': DyDy = Ay 1.
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Moreover the Cauchy integral decays to zeroxgr— +c. Summarizing, for
a functionf € Lp(R™), its Cauchy integra¥’[f](xo,X), (18), belongs to the Hardy
spacesH,(RTH1), respectively defined by

~+00
Ha(RT) = {DyF = 0in RT*! such that i%’?/ |F (%0 +x)[2dx < 400} . (20)
X200/~

The properties of the multidimensional Hilbert transforne aummarized in the
following proposition; they show a remarkable similaritythvthose of the one—
dimensional Hilbert transform listed in Proposition 1.

Proposition 2. The Hilbert transforms7 : Lo(R™) — L2(R™) enjoys the following
properties:

P(1) s is translation invariant, i.e.

with 15[ f](x) = f(x—b),b e R™
P(2) o is dilation invariant, i.e.

da[ [ f]] = [ f]],

with dy[f](x) = aTl/zf(x/a), a>0.

P(3) 27 is a norm-preserving, bounded, linear operator.

P(4) 2 is an involution and thus invertible with—! = 7.

P(5) 4 is unitary withoz* = 7.

P(6) 2 anticommutes with the Dirac operator (12).

P(7) 27 arises in a natural way by considering the non-tangentialfaary limits
in L, sense of the Cauchy integral (18):

. 1 1 "
9 = Jm “(00.9 = 23109+ 3 (109, xeR™. @)

In distributional sense this boundary behaviour is exi@itby

E(0+,x) = X()ImiE(xmx) = i% 3(x) +% H (%), (22)

where E(xp,X) is the fundamental solution of the Cauchy-Riemann oper@sor
(29):

1 Xo —€p X
amt1 [Xo+ €opx|™t
and.# is the Hilbert convolution kernel:

D0 = O ) = 8009 (23)

X

2 _ X

1
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As each function in the Hardy spaki(RT*1), (20), possesses a non-tangential
L, boundary limit forxg — 0+, one is lead to the introduction of the Hardy space
H»(R™) as the closure ihy(R™) of the non-tangential boundary limikgx+ 0) for
Xo — 0+ of the functions= (xo,X) in Hz(RT“). As moreover the Cauchy integral
of F(x-+0) is preciselyF (xo,x), we may conclude that the Hardy spategR™"?)
andHz(R™) are isomorphic.

As the Hardy spackly(R™) is, by definition, a closed subspace of the space of
Lo(R™), the latter space may be decomposed as the orthogonal sliract

L2(R™) = Ha(R™) @ Hp(R™M) L. (25)

The corresponding projection operators are precisely tighy transforms=¢'*
since it can be directly verified that

f =@t [f]—¢[f];
crEet[f] = ¢F[];

The analytic signalé™[f] € Ho(R™) and the anti-analytic signal&[f]) €
Ho(R™M) ! thus possess a monogenic extensioRlZRT1) respectively. Note that
the Hardy spacél,(R™) and its orthogonal complemehb(R™)* are nicely char-
acterized by means of the Hilbert and Cauchy transforms:

Lemma 1. A function ge Lo(R™) belongs to H(R™) if and only if ##°[g] = g, or
g =g,0r¢"[g=0.

Lemma 2. A function he Lp(R™) belongs to H(R™)+ if and only if 5#’[g] = —g,
or¢*t[h=0,or¢ [h=—h.

2.2 Analytic signals

Because of the properties mentioned in the preceding stitasethe functions in
H,(R™) already deserve to be callemhalytic signalsin R™. But then their fre-
quency contents should show a property similar to one-déioeal causality (9),
thus involving a multidimensional analogue of the Heawasstep function. As in
the one-dimensional case the Hilbert transform (15) indesgy space takes the
form of a multiplication operator; for a functiohe Lo(R™) there holds:

FIHY) =ei §Z[f](y) and A[F[T]](y) =& Z[ @f ()](y), (26)

where.Z denotes the standard Fourier transfornRifhigiven by
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FIHEIY = [ 0 exr-i(xy) V(). @7

andw = x/|x| and& =y/|y| may be interpreted as the multidimensional analogues
of the signum-function sgm) = x/|x| on the real line. As an aside these formulae
allow the practical computation of the Hilbert transform fmgans of the Fourier
transform:

Hf)(x) =7 e i EF[T](y)]. (28)

The Fourier spectrum of the Cauchy transfor#is[f] (21) of a functionf
Lo(R™M) then read

FlHf)] =+ 5 Fl1)+ 5 i € 2]

=+ g F[f], (29)

where we have introduced the mutually annihilating ideraptst

N

bo=3 Areie) and ¢ = (1-8iw), (30

2

satisfying the following properties:
() W2 = u;

(i) Yrp-=y_y. =0

(i) ¢y +y_ =1,

V) Y-y =&iw

(V) ieowys = £ ().

The functionsy., (30), thus are the Clifford algebra valued multidimension
analogues to the Heaviside step function. They were inttedindependently by
Sommen [46] and Mclintosh [40]. They allow for the practicahputation of the
Cauchy transforms of a functiohe Ly(R™) through

¢ = F 1 E e ZIH] (31)

which will be used in the next subsection. Now take an amakitinalg € Hz(R™),
then, in accordance with Lemmad.= 5#[g] or g= 3 (g+.[g]) = ¢*[g] and
¢~ [g] = 0 from which it follows that

Fld = Z¢7 9] = vy Zdl, (32

whereas, trivially,
FZ¢ gl =-y- Flg =0, (33)

which is the multidimensional counterpart to the “vanighimegative frequencies”
in one dimension.
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We now show that, similarly to the splitting of a complex sgimto its real
and imaginary parts, see (6), a Clifford algebra valuedyditasignal can be split
into two components satisfying multidimensiodilbert formulae To that end we
observe that, by the introduction of the additional bastaes, the Clifford alge-
braRom1 may be decomposed, using two copies of the Clifford alg&ya, as
follows:

Roms1 = Rom® & Rom. (34)

Thus ifgis aRom1 valued analytic signal, it can be written @s= u+&v, where
u andv areRg m valued functions satisfying, in view of Lemma 1,

AU =gV and J[eV]=u. (35)

This means that an analytic sigrtpils completely determined by one of its compo-
nentsu orv:
9= 1+72)u = (1+7)[&V], (36)

and moreover shows a Fourier spectrum only contaigingfrequencies and dou-
bling those ofu or v:

Flol=(1+&i§) Fu = (1+&i§) FleV] =2y, F[u =2y, F[&V|. (37)

Similar considerations hold for anti-analytic signalg4s(R™)*.

2.3 Monogenic extensions of analytic signals

For anyf € Lo(R™) the Cauchy transforms%=[f], (21), are (anti-)analytic sig-
nals, thus showing monogenic extension®h A first possibility to construct these
monogenic extensions is by using the Cauchy integral, tepthh the monogenic
functions

a1 ={ g g 8)
-6 111={ 1) i (39)

which moreover tend to zero fog — +o. However there is also another way to
construct monogenic extensionsR8*1! of functions inR™, albeit that they have to
be real-analytic. This method, the so-called Cauchy-Kewakaia extension prin-
ciple, is a typical construct of Clifford analyis; for a giveeal-analytic functiorp

in R™, a monogenic extension in an open neighbourhod&h! of R™ is given by

CKlg] = exp(-x0&0y) (0] = X (@) (@] (40)
pa
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In particular the scalar valued, and real-analytic, Faukénel exgi(x,y)) in R™
is monogenically extended to the wholeRf1 by

400 1\ . i
CRlenpltey)] = 5 1 ey o) = exp(-iramy x5
" (41)
which takes its values in spafege, . .., &emn).
In view of (31), i.e.
¢ =7y, ZFf], (42)

we thus obtain, following an idea of [43] and [38], as a monogextension of
¢r(f]:

CK[& " [f]](x0.%) = (2m) ™ /R _exp(i(x,y)) exp(—ixogoy) Y. F [f](y) AV (y).
(43)
A direct computation yields
CK[%"[f]](x0,X)

=@ [ explitey) exp(—xap) . Z1](y)dVIY)

—@m " [ edsE) [ el ) —x0p)p™ LF(1l(pE)dp, (44)

since
exp(—ixo&y) W, = exp(—Xop) Y. , (45)

where we have once more used spherical co-ordinatesywittpé. This further
leads to N

oK 100 = (2™ [ 0 dSE) 2| L7 111(p8)| 00106,

(46)
where.Z denotes the Laplace transform. It is clear that this monicgextension
tends to zero only whexy — +oo. Thus, with restriction t&®'T' we obtain:

“[f]00.0 = @0 " [ 048 2 o™ F 10| o 1(x8)), 0> 0.

(47)
In a similar way we obtain ifR™:

GUICR R DR INRCET) z[p%lﬂ[f](ps)] (—Xo—i(x,€)), %< 0.
(48)
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2.4 Example 1

The direct sum decomposition of finite energy signals goesutih for tempered
distributions and even more so for compactly supportedidigtons. Let us illus-
trate this by the case of the delta- or Dirac-distributidix) in R™. Its Cauchy
integral is given by

1  X-&X
ami1 |[Xoo+ XML’

%[8](%0,X) = E(x0,X) * 6(X) = E(X0,X) = (49)

which is monogenic irRT*! and even inR™ ™\ {0} w.r.t. the Cauchy-Riemann
operatorDy (19). This implies that as long as#£ 0 there is a continuous transition
of this Cauchy integral oveR™ as the common boundary Bf"** andR™ 1. Thus
the “jump” overR™ of €[3](Xo, x) will occur atx =0, and indeed

CHO) =% 5 80+ 5 H (), (50

with ¢ the Hilbert kernel (24), since

(51)
The direct sum decomposition of the Dirac-distributi@ix) now follows readily:

1 1 1 1
&m=(2&@+2%WO+(2&w—2%UO. (52)
The Cauchy integral of the first component is given by

— i 1
%[%Jr[é]} — {(05[5] - E(X07),() II: ﬁgl (53)

while the Cauchy integral of the second component is given by

0 inRT

e =4 5= e B 549

As the Hilbert transform is involutive we obtain for the tsform of the Hilbert
kernel itself:
HH)(X) = A2[5](x) = 5(X), (55)

which is confirmed by the convolution

4 X X
%[%]—%*%—aﬁ‘wlPle|m+1*PV|l(|m+l—

5(x). (56)

This leads to the direct sum decomposition of the Hilberhker? (x):
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#09=(3400+509)+ (3H0-360) 67

where both components may be monogenically extended thrthgir Cauchy in-
tegral to respectivelR T by the functionstE (x,x). Note in this connection that
(£%)[8] = ¢+[A].

As the delta-distributiod(x) is Rom valued — in fact real valued — and its
Hilbert transform.# (x) is & Rom valued, they sum up to algm1 valued ana-
Iytic signal &(x) 4+ .7 (x) which has its frequencies supported ¢oy and doubling
those ofd(x). This is confirmed by the following results in frequency spdeor the
standard Fourier transform (27) we ha#dd] = 1 and thus

F|H) = F|— PVW] =i, (58)

and thus also
FI8(x)+ 7 (0] =1+ 851 & =24, . (59)

As already mentioned the (anti-)analytic signafg™[8](x) = 1 (x) + 3 7 (x) =
€+ (x) may be monogenically extended®&{"* by the functionstE(xo,x) €
Ho(RTH1) respectively, defined in (23). Alternatively the Cauchywbewskaia
technique (40) leads to

CK#*(8l) = 2™ [ 9.d8) ZIp™ 00-i(x&)). >0 (60)
and

CKl=% (o]l = 2™ [ w-dS&) ZIp™ Y(~xa—i (x.£)). %0 <0. (61)

As Z[p™ Y] = %’“) for Re(z) > 0 we arrive at

cKieal= (?;;>1r2! o (xO—i(Z;,é%mdS@ A
and
CK[-¢"[8]] = (m— 1)t / L dS¢§), % <0.  (63)
(27T)m gn-1 (_XO_ i <X7§>)m =7 '

Butig, = —& Y, andiy_ =eé Y- from which it follows that

L Yy
o= (xEN™  (o+(x&)&E)m 64)

and
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Y- _ Y- (65)

(xO+i<>,<,§>)’“ (X0+<),(7§>%§)m.
Moreover theCK-extensions under considerati@K[¢ " [J]] = E(Xo,X), Xo > 0

andCK[—-%¢"[d]] = —E(xo,X), X0 < 0 both areRgom1 valued, so their complex-
imaginary parts should vanish, which implies that
¢

/S“’l (XO+<X,E>%E)”‘dS(E) - )

finally leading to

1 (m-1) 1
E00%) = 5 o s o <X,E>eﬁé)mds<f)7xO>o (67)
and
C(~1p™ 1 (m—1)! 1
E00%) = 5tz Jons o <x,5>§£)md35)’xo<o' (68)
2.5 Example 2

Again we start with a scalar valued tempered distribution
u(x) = exp(i (a,x)) = cos(a,x) +i sin(a,x) (69)
with a a non-zero constant Clifford vector, for which we put= a/|al.

From one-dimensional theory it is known that the Hilberngform 7z =i.
acts as aotator, mapping coax and sirax on i sgna) sinax and —i sgna) cosax
respectively. Itis now shown that the Clifford-Hilberttigform (15) enjoys a similar
property in higher dimension. We have successively

FuX)(y) = (2m™é(y-a), (70)
and thus

FAUXY) =&i £ FUX)(y) = (2m)"&i £ d(y—a) = (2m)iema 5(!—(3)1,)

from which it follows that
HAU|(x) =iga exp(i(a,x) =&a (—sin(ax)+icosax),  (72)

and thus
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A'[cos(a,x)] = —(&a) sin(a, x) (73)

and
H[sin(a, x)] = (& a) cos(a,x) . (74)

Note thata = a/|a| is the multidimensional counterpart to the one-dimendiona
sgn(a) and that(gga)? = —1.

We also obtain the following analytic signals:
(i) cos(a,x) — (& a) sin(a,x) = exp(— (& a) (a,x));

(i) sin(a,x) + (& a) cos(a,x) = (&) exp(—(&a) (& X));
(ii) (1+i(ea))exp(i(ax) = (1+i(ea))exp(—(&@a)(a x)).

3 Generalized Hilbert Transformsin Euclidean space

In the early 2000’s, four broad famili€§ ,, U, o, V) p, andW, ,, with A € C and
p € Ny, of specific distributions in Clifford analysis were intromkd and studied
by Brackx, Delanghe and Sommen (see [16, 17]) and it was siiostrthe Hilbert
kernel#", introduced in the preceding section, is one of those Oigfions acting
as a convolution operator (see e.g. [18]). Later on, thastgilolitions were normal-
ized and thoroughly discussed in a series of papers [4—6,84]. We recall the
definitions of those normalized distributions, whereNy:

m T
Ty, =metP— Ay mo2p-2
’ r )\+m+
(z( 1';’2“ . (75)
—L)fimz 2p+2l
T'moo2p = Py(X) 0P 5(x),
m-2p-2l,p 22p+2|(p+|)”— (%1er+|) P(f) X (7)
% A4+m+1 U)\_p
Ujp=m 2 P— P At-m-2p-2-
r (g +p) (76)
(—=1)PH 12!

* _ 2p+21+1
—m-2p-2-1p = 2Z0v A+ (p L IF (34 pri+d) (05 5(%)) Po(X),

V.
Vi = Mptap AP A2 mo2p-2-1
, r (A+m+l+p>
(77)
( )p+1|

Py (x) (012p+2l+16()7())

m
Tz —
my
2

|
V*
TM2p-2-Lp T 20324 (p I (T4 p+1+1)



Hilbert Transforms in Clifford Analysis 15

A#-—-m-2p-—2
(78)

1P 17 D

W* =
—m-2p-2.p 22p+2|+2(p+|+1)!,’ (T+p+1+1)

the action of the original distributior®; , U, ,, V) , andWj , on atesting function
¢ being given by

(Tip. 9) =am (Fprt*™ 5%[g] ) (79)
(Unp. 9) =an ( Fprt*® 5[g] ) (80)
(Vap. @) =an (Fprt*®, =%q] ) (82)
(Wip, @) =am (Fpri*®, 570 ) (82)

We explain the notations in the above expressions. FirstsyimbolF p stands for
the well-known distribution "finite parts” on the real linfeythermoreyt = A +m—1
and pe denotes the "even part @', defined bype = pif pis even andoe=p—1

if pis odd. FinaIIy,Zé,O), Zé,l), Zé,z) and Zé,3) are the generalized spherical mean
operators defined on scalar valued testing functipby

2Pl = O @] = T [ R@endse) @9

Wy — (P—Pe5(0) _ rp be

2flgl = P 2OwR@ o] = - [ oRw) e dse) (@4

20lg] = 1 2OwRy(w) o] = g Jon 2 ©Po(@) @) dS(w(85)

5] = rPPe 5OPy () ()] = v Po(@) w0(x)dSw)  (86)
an Jona PEEETETEE

wherePy(w) is an inner spherical monogenic of degngei.e. a restriction to the
unit sphereS8™ 1 of a monogenic homogeneous polynomiaRifi.

Making use of those Clifford distributions, we have then staucted two pos-
sible generalizations of the Hilbert transform (15), aignat preserving as much
as possible of its traditional properties P(1)-P(7) listeéroposition 2 (see also
[5, 8]). It is shown that in each case some of the propertiesferent ones — are
inevitably lost. Nevertheless we will obtain in Section a.bounded singular inte-
gral operator orhy(R™) and in Section 3.2 a bounded singular integral operator on
appropriate Sobolev spaces.
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3.1 First generalization

In the first approach the Hilbert transform is generalizedising other kernels for
the convolution, stemming from the families of distributsomentioned above. They
constitute a refinement of the generalized Hilbert kermal®duced by Hor&th in
[37], who considered convolution kernels, homogeneousegfrek(—m), of the
form

Pv@ x=rw, r=[x, wes"t (87)

whereS(w) is a surface spherical harmonic. We investigate genechtitert con-
volution kernels which are homogeneous of dedrem) as well, however involv-

ing inner and outer spherical monogenics. We already haveiomed that an inner
spherical monogenic is the restriction to the unit spt&te! of a monogenic ho-
mogeneous polynomial iiR™. An outer spherical monogenic is the restriction to
the unit spher&™ ! of a monogenic homogeneous function in the complement of
the origin; an example of an outer spherical monogenic issigmum” functionw
since it is the restriction t&™ ! of the functionx/|x/™* which is monogenic in

R™{0}.

We consider the following specific distributions

1

Umpp= FprimQPp(Q) = Pv%ﬂfg)

Vom-pp = Fprim Po(w) w = Pv Pp(r%) w
Wom-pp= Fprim@Pp(Q)Q = PVQPpr(mQ) w (88)

Pv Sp+r1n$6£) _ _2(p1+ 5 (UmoptVom po)

PvQSprTnl(Q) _ _2(p]4.— 5 Wompp—Tomopp)

wherePy(x) = xSp11(X), Sp1(X) being a scalar valued solid spherical harmonic
and hencéPy(x) being a vector valued solid spherical monogenic. Theseilalist
tions are homogeneous of degfean) and the functions occurring in the numerator
satisfy the cancellation condition

Q(w)dw =0, (89)
gn-1

Q(w) being either 0Py (w), w Py(w), Po(w) w or w Pp(w) w.

Their Fourier symbols, given by (see [10])
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T[T p) =i Pm? ED) Po(w) (90)
o ()
FU_mp| =1 P12 - (””5“) w Py(w) (91)
. (%)
— 1 i
FN-mp=i"P"m - <m+§+1) Po(w) w (92)

. m r(2 —
FW i p] =i P2m? p(Z)) (w Po(w) w— mTZ Pp(w)> (93)

are homogeneous of degree 0 and moreover are bounded fig)atibence
Tomepp*f, U_mpp*f, Vomoppxf, W_gp_ppx*f (94)

are bounded Singular Integral OperatorslaiR™) which are direct generaliza-
tions of the Hilbert transforny?’ (15), preserving (properly adapted analogues of
the) properties P(1)—P(3).

We now investigate whether the new operators (94) will fglfime appropriate
analogues of the remaining properties P(4)-P(7) as welthifoend we closely
examine the kernéll__p, p. First we observe that

Tomopp* Tomepp = "5 T2 )

2
)] T-mp Pp(d%), (95)
which directly implies that the generalized Hilbert traorsh T_m_p p + f does not
satisfy an analogue of property P(4). Next, as it can easilghlown that the con-
sidered operator coincides with its adjoint — up to a mings svhenp is even —
we may also conclude, in view of (95), that it will not be umjtaneither does it
commute with the Dirac operator.

Finally, the most important drawback of this first generatiian is undoubtedly
the fact that we cannot establish an analogue of property, Biffte it turned out
impossible to find a generalized Cauchy kerneRifi1 \ {0}, for which a part of
the boundary values is precisely the generalized HilbemeeT_p,_, ,. Similar
conclusions hold for the other generalized kernels use88h (
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3.2 Second generalization

Subsequent to the observations made in the previous sidisest now want to
find a type of generalized Hilbert kernel which actually prees property P(7). To
that end, we define the function

1 X€& 1 Xo +- €pX

Ep(X) = Ep(X0,X) = ————— Py(x) = Po(X),
p( ) P(XO 7) am+1,p ‘X‘m+1+2p P(f) am+1,p ‘X0e0+X|m+l+2p P(J
(96)
where
(-yP  on'
, 97
MO o7

involving a homogeneous polynomid(x) of degreep which we take once more to
be vector valued and monogenic. It is stated in the next @mitipo that these func-
tions Ep, are good candidates for generalized Cauchy kernels. Natddhp = 1
and takingPy(x) = 1, the standard Cauchy kernel, i.e. the fundamental solatio
the Cauchy—Riemann opera®y in R™1 is reobtained.

For the proofs of all results mentioned in the remainder of $lection, we refer
the reader to [8].

Proposition 3. The function E, (96), satisfies the following properties:

(i) Ep € LP°(R™1) andlim ., Ep(X) =0, Vp € N;
(if) Dx Ep(X) = Py(dx) 6(x) in distributional senseyp € N;

Here, L°¢(R™1) stands for the locally integrable functions &f*.

Next we calculate their non-tangential distributional bdary values foxg —
O+. To that end we first formulate an interesting auxiliary tesuthe following
lemma.

Lemma 3. For p € Np one has

XO _ 2p
XOILT(]H ‘X0+x|m+l+2p - 2p+1p! am+1.de 6(),() (98)
amt1,p being given by (97).
Proposition 4. For each pe Ng one has
. 1 1
Ep(O+%) = lim Ep(0,) = 5 Po(d)8(X) + 5 Hp(x), (99)

Ea(0-%) = lim Exa.X) = 5 o059 + 5 A9, (100

where
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2 _ . wh(w 2
«%(x)zam_’peon TP T aman

®U M opp.  (101)

The distribution7}, (101) arising in the previous proposition allows for the defi
nition of a generalized Hilbert transforg#;, , given by

Ho[f] = Hp . (102)

Because the Fourier symbol

T = - &i P Ug, (103)

Am+1,p
of the kernel.7, is not a bounded function, the operatéf,, (102), will also not
be bounded oh,(R™). However, the Fourier symbol (103) is polynomial of degree
p, implying that.’7;, is a bounded operator between the Sobolev spAggR™) —

W, ~P(R™), for n > p. It can indeed be proved that

Proposition 5. The generalized Cauchy integréj, given byé,[f] = Ep* f, maps
the Sobolev space {R™) into the Hardy space H{RT"?), for each natural num-
ber n> p.

Corollary 1. The generalized Hilbert transforg#;, (102), is a bounded linear op-

erator between the Sobolev spacegW") and W'~ P(R™), for each natural num-
ber n> p.

Comparing further the properties ¢, with those of the standard Hilbert trans-
form 27 in Clifford analysis shows that the main objective for théxend gener-
alization is fulfilled on account of Proposition 4: the kdrog, arises as a part of
the boundary values of a generalized Cauchy kefgelwhich constitutes an ana-
logue of the “classical” property P(7). However, the kerrg] is a homogeneous
distribution of degre¢—m— p), meaning that#; is not dilation invariant.

4 The Anisotropic Hilbert Transform

The (generalized) multidimensional Hilbert transformsRih considered in Sec-
tions 2 and 3 might be characterized as isotropic, since tatienin the un-
derlying space is the standard Euclidean one. In this secti® adopt the idea
of an anisotropic (also calledmetric dependenvr metrodynamicgl Clifford set-
ting, which offers the possibility of adjusting the co-ardte system to preferen-
tial, not necessarily mutually orthogonal, directiongimgtically present in then-
dimensional structures or signals to be analyzed. In thisarea of Clifford analysis
(see e.g. [22, 31]), we have constructed the so-called taofso (Clifford-)Hilbert
transform (see [7,11]), a special case of which was alreatigduced and used for
two—dimensional image processing in [34].



20 Fred Brackx, Bram De Knock and Hennie De Schepper

4.1 Definition of the anisotropic Hilbert transform

For the basic language of anisotropic Clifford analysis, fikgt present the no-
tion of metric tensor, namely a real, symmetric and positieéinite tensoiG =

(G )k1=0,...m Of order(m+ 1) which gives rise to two bases ™1 3 covariant
basis(ey, ...,em) and a contravariant basie’, . ..,e™) corresponding to each other
through the metric tensor, viz

m m

&= SYoe and € = Yg*e, with G1=(g")—0.m (104)
2, 2 "

Then, a Clifford algebra is constructed, depending on th&ieminsor involved,
and all necessary definitions and results of Euclideandztifnalysis are adapted
to this metric dependent setting. We mention e.g. that thesatal scalar product is
replaced by the symmetric bilinear form

m m
(%Y)g = g XY (105)
IO
The anisotropic Dirac and Cauchy-Riemann operatorR"h! take the form
m
Is=Y o (106)
K=0
and
Dg =&0dg =00 +&0dg. (107)

where G = (Qki)ki=1,...m in R™M is the subtensor of the metric tensGr in
RMDx(m+1) The fundamental solution of the latter operator,

1 xe

Es(x) = ams1 (<X7X>é)(m+1)/2’

(108)

is now used as the kernel in the definition of the metrodynah@auchy integral
given, for a functionf € Lo(R™) or a tempered distribution, by
Clf]=Eg*f, (109)

which is monogenic il’RTrl (and inR™Y). Taking limits inL, or distributional
sense fox? — 0+ gives, through careful calculation (see [11]):

1 1 1
lim €x[f] = _ <f+ OHani*f>, (110)
0ot © VdetG \2 2

with
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— ) X
Hani(X) = V detG (am+1 PV((X,X}g)(mD/Z) , (111)
Similarly, forx® — 0—, we obtain
1 1 1
lim €af] = ——— (—f+e0Hani*f> . (112)
00— © Vaetg \ 2 2

The above results are the anisotropic Plemelj—-Sokhotskidtae and they give rise
to the definition of the anisotropic Hilbert transform:

Hani[ T :éoHanP’< f. (113)

As already mentioned in the introduction of this sectior, fio= 2, such an
anisotropic Hilbert transform was considered in [34], hegrefor the special case
where thegy—direction inR3 is chosen perpendicular to ti#—plane spanned by
(e1,€). This corresponds to@—matrix of order 3 in whiclgo; = go2 = 0.

4.2 Properties of the anisotropic Hilbert transform

In order to study the properties of the linear operaté,, (113), we will also
have to pass to frequency space, so we need to introduce ermtejnition for the
anisotropic Fourier transform dd™ in the present metric dependent setting:

Felf)(9 = [ ex-2niteye) fy)aV(y) = [ exp(-2nixTGy) f(y)dv(y).
(114)
Due to the assumed symmetric character of the te@dbis found that

Zalf](x) = Z[1)(Gx). (115)

The following properties 0873, may then be proved (see [11]):

(P1) %y is translation invariant.

(P2) %y is dilation invariant, which is equivalent to its kerriél,;, (111), being a
homogeneous distribution of degreen.

(P3) i is a bounded operator dz(R™), which is equivalent to its Fourier symbol

ol =\ Gog ! T (116)

being a bounded function.
(P4) Up to a metric related constanitan squares to unity, more explicitly

(Hani)2 = o 1. (117)
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(P5) ##n is selfadjoint.
(P6) s#n; arises in a natural way by considering non-tangential bagngalues of
the Cauchy integrakz, (109), inR™"*.

Note that the anisotropic Hilbert transform shows the infeeeof the underlying
metric in two different ways: (1) the determinant of the "iet’ metricG on R™*1
arises as an explicit factor in the expression for the keared (2) the induced met-
ric G on R™ comes into play explicitly through the denominator of thenled, but
also implicitly through its numerator since the veckocontains the (skew) basis
vectors(e)p ;.-

The particularity of this metric dependence may also be sefrquency space,
where the metrids not only arises in the Fourier symbol (116) &f3,, but is
also hidden in the definition of the anisotropic Fourier sfanm itself, while the
"mother” metricG again only is seen to arise through its determinant.

The above observations do raise the question whether tkists a one—to—one
correspondence between a given Hilbert transforn{®f, G) and the associated
Cauchy integral orﬁR””l,é) from which it originates, or in other words: does the
Hilbert transform contain enough geometrical informatiowompletely determine
the "mother” metricG? The answer is negative. It turns out that, given a Hilbert

kernel 5
X
Mani = ¢ <am+1 PV((X,X>)<”‘+1V2) ’ (118)

being dependent on time-dimensional metriG and on the strictly positive constant
¢, it is part of the boundary value of a Cauchy kerne(li*™1, G), with

. T
G= (980%5) , (119)

where(goo, u") are characterized, but not uniquely determined, by thetequa

1 C

U ly= -
Goo—U G -u JeiG (120)

4.3 Example

Itis interesting to demonstrate the difference betweeCtttord-Hilbert transform
of Section 2 and its anisotropic counterpart. So consid&"again the scalar val-
ued tempered distribution(x) = exp(i(a,x)), wherea is a constant, non-zero
Clifford vector.

In the isotropic case we found (see Section 2.4)
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Af)(x) = ia%expa@,x». (121)

In the anisotropic case we successively obtain

Zelflly) = Z[fl(Gy) = 6(Gy-a), (122)
and thus _
Falradfly = 9y e 2 sey-a. a2
with )
Gt = [(G‘lgl)TG(G‘lg)}2 ~ @G e’ (124)

Subsequent calculations reveal that

75t [s(Gy-a)] () = | exp(ix'Gy)s(Gy-a)av(y

Rm

1 , 1 .
= m/ﬂwexp(lg!) oy —a)dv(ly) = 53 (G exp(i (a,x)) (125)
Hence
_ ~ G!
Hanlfl(x) = i€ (E:Q(GG))) 3G 1:| exp(i(ax)) . (126)
5 Conclusion

The concept ohnalytic signalon the real time-axis is fundamental in signal process-

ing. It contains the original signal as well as its Hilbeartsform, and allows for the
decomposition of a finite energy signal into its analytic amdi-analytic compo-
nents. In mathematical terms this is rephrased as the diveetdecomposition of
L2(R) into the Hardy spackl>(R) and its orthogonal complement, and the analytic
signals are precisely the functionsHia(R). In this paper we have presented several
generalizations of the Hilbert transform and the corredpman analytic signal to
Euclidean space of arbitrary dimension and we have indicdie properties which
are characteristic in the one-dimensional case and pansésich of those general-
izations. It becomes apparent, also from the given examblasthe Clifford analy-
sis framework is most appropriate to develop these multdisional Hilbert trans-
forms. That Clifford analysis could be a powerful tool in igdiimensional signal
analysis became already clear during the last decade fresetreral constructions
of multidimensional Fourier transforms with quaternionicClifford algebra val-
ued kernels with direct applications in signal analysis patlern recognition, see
[20,21,24,32-34,39] and also the review paper [23] whettedrrelations between
the different approaches are established. In view of thetfat in the underly-
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ing paper the interaction of the Clifford-Hilbert trangfos with only the standard
Fourier transform was considered, their interplay with\ihgous Clifford-Fourier
transforms remains an intriguing and promising topic fattar research.
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