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1. Introduction

Many signal processing applications involve noise suppression (colloquially known as
denoising). In this chapter we will focus on image denoising. There is a substantial amount
of literature on this topic. We will start by a short overview:

Many algorithms denoise data by using some transformation on the data, thereby
considering the signal (the image) as a linear combination of a number of atoms. For
denoising purposes, it is beneficial to use such transformations, where the noise-free image
can be accurately represented by only a limited number of these atoms. This property is
sometimes referred to as sparsity. The aim in denoising is to detect which of these atoms
represent significant signal energy from the large amount of possible atoms representing
noise.

A lot of research has been performed to find representations that are as sparse as possible
for ‘natural” images. Examples of such representations are the Fourier basis, the Discrete
Wavelet Transform (DWT) (Donoho, 1995), the Curvelet Transform (Starck, 2002), the
Shearlet transform (Easley, 2006), the dual-tree complex wavelet transform (Kingsbury,
2001; Selesnick, 2005), ... Many denoising techniques designed for one such representation
can be used in others, because the principles (exploiting sparsity) are the same. Without
exception, these denoising methods try to preserve the small amount of significant
transform coefficients, i.e the ones carrying the information, while suppressing the large
amount of transform coefficients that only represent noise. The sparsity property of natural
images (in its proper transform domain) ensures that there will be only a very small amount
of significant transform coefficients, which allows to suppress a large amount of the noise
energy in the insignificant transform coefficients. Multiresolution denoising techniques
range from rudimentary approaches such as hard or soft thresholding of coefficients
(Donoho, 1995) to more advanced approaches that try to capture some statistical
significance behind atom coefficients by imposing appropriate prior models (Malfait, 1997;
Romberg, 2001; Portilla, 2003; Pizurica, 2006; Guerrero-Colon, 2008; Goossens, 2009;).
Another class of algorithms try to exploit image (self-) similarity. It has been noted that
many images have repetitive features on the level of pixel blocks. This was exploited in
recent literature through the use of statistical averaging schemes of similar blocks (Buades
2005; Buades, 2008; Goossens, 2008) or grouping of similar blocks and 3d transform domain
denoising (Dabov, 2007).
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In practice, processes that corrupt data can often not be described using a simple additive
white gaussian noise (AWGN) model. Many of these processes can be modelled as linear
filtering process of a white Gaussian noise source, which results into correlated noise. Some
correlated noise generating processes are described in section 2. The majority of the
mentioned denoising techniques are only designed for white noise and relatively few
techniques have been reported that are capable of suppressing correlated noise. In this
chapter, we present some techniques for noise estimation in section 4 and image modelling
in section 3, which form the theoretical basis for the (correlated) noise removal techniques
explained in section 5. Section 6 contains demonstration denoising experiments, using the
explained denoising algorithms, and presents a conclusion.

2. Sources of Correlated Noise

2.1 From white noise to correlated noise

In this section, the aim is to find a proper description of correlated noise. Once established,
we will use it to describe several correlated noise processes in the remainder of this section.
Since the spatial correlation is of interest, rather than time/spatially-varying noise statistics,
we will assume stationarity throughout this chapter. Stationarity means that the
autocorrelation function only depends on the relative displacement between two pixels,
rather than their absolute positions. This is evident from (1), a random process generating
samples f(n) is called white if it has zero mean and a delta function as autocorrelation

function r¢(n):
E[f(m]=0
rp(n)=E[f(m) f(n+m)]=0(n)

The Wiener-Khinchin theorem states that the power spectral density (PSD) of a (wide-sense

stationary) random signal f(n) is the Fourier transform of the corresponding autocorrelation
function r(n):

1)

R(o)= D r(n)e ™ 2
n=—00
This means that for white noise, the PSD is equal to a constant value, hence the name white
(white light has a flat spectrum). When a linear filter h(n), with Discrete Time Fourier
Transform (DTFT) H(w) is applied (often inadvertently) to the white noise random signal,

the resulting effect on the autocorrelation function and PSD of f"(n) = f(n) * h(n)s:

r'(n)=ELf'(m) f'(n+m)]= ih(m)h(n +m)

=, ©)
R'(w)= H(o)H (o) = |H (o)

This result shows that the correlated noise PSD R’(®) is the squared magnitude response of
the linear filter DTFT, hence one can think of correlated noise as white noise subjected to
linear filtering. In analogy with the term ‘white noise’” this is sometimes referred to as
‘colored noise’. In the following sections, some real world technologies will be explained
from the perspective of noise correlation.
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2.2 Phase Alternating Line (PAL) Television

PAL is a transmission standard used in colour analogue broadcast television systems.
Dating back to the 1950s, there are several bandwidth saving techniques that are very nice in
their own right, but are responsible for the noise in PAL television. One is the deinterlacing
mechanism (Kwon, 2003). Another is the use of a different modulation and filtering
schemes. We will restrict us here to show the PSD of a patch of noise from a PAL signal
broadcast:
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Fig. 1. noisy PAL broadcast of a sports event and PSD of noise in a green color channel of
the PAL broadcast.

It is clear that the noise here is almost cut off horizontally, leading to stripe like artifacts and
there is significant energy in the lower vertical frequencies, leading to vertical streaks. It is
therefore naive to assume noise in PAL/NTSC television to be white.

2.3 Demosaicing

Modern digital cameras use a rectangular arrangement of photosensitive elements. This
matrix arrangement allows the interleaving of photosensitive elements of different color
sensitivity. This interleaving allows sampling of full color images without the use of three
matrices of photosensitive elements. One very popular arrangement is the Bayer pattern
(Bayer, 1976), shown in figure 2.

Fig. 2. Bayer mosaic pattern of photosensitive elements in a camera sensor

There exist a wide range of techniques for reconstructing the full color image from mosaiced
image data. A thorough study of these techniques is beyond the scope of this chapter.
Instead, we compare the simplest approach with one state of the art technique, from the
viewpoint of noise correlation.
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Since all of these techniques perform interpolation in some way, we are confident that the
conclusion will be similar for all demosaicing techniques. When using patches of white
noise as input data for an image mosaic sensor, the PSD of the demosaicing noise is shown
in figure (3)-(4). Because white noise is used as input for a demosaicing system, the
reconstruction will be a color image of correlated noise. Since we are assuming additive
noise, this will be a good model for type of noise that is encountered in color digital camera
images. In figure (3), we compared the simplest demosaicing approach, bilinear
demosaicing, for both the green and the red color plane. Since the red data is subsampled
more, the demosaicing treats both color planes differently, explaining the difference in PSD
bandwidth. Figure (4) shows the result using a state-of-the-art demosaicing technique
(Aelterman, 2009). There is no visible difference between the green and blue plane PSD here,
because the algorithm works in a luminance/chrominance approximation rather than
red/green/blue space.

FIHz] F[Hz]
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Fig. 3. PSD of the green channel (left) and a red/blue channel(right) from the demosaiced
white noise patch using bilinear demosaicing.
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Fig. 4. PSD of the green channel (left) and a red/blue channel(right) from the demosaiced
white noise patch using the technique described in (Aelterman, 2009)

The demosaicing experiments in figure 4 and 5 also show that the low pass part of the PSD
is brighter, meaning it represents more noise energy. This is explained through the tendency
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of demosaicing algorithms to favour smooth color patches, as this is an accurate model for
natural images.

Fig. 5. The full color 11ghthouse image (left) corrupted w1th whlte noise (mlddle) and with
correlated noise due to bilinear demosaicing (right)

2.3 Thermal Camera’s

Many thermal cameras are based on the push broom or whisk broom principle. Only very
few infrared sensors are used, which have to be reused through an optics system in order to
scan the different pixels positions, creating the complete image. This raster scan principle is
illustrated in figure 6.

Line 1 .
Line 2
Line 3

Last line — |

Fig. 6. Example of a raster scanned image pattern (whisk broom imaging)

The downside of such imaging principles is that they sometimes exhibit streaking noise
artifacts, which can be attributed to the sensor and sampling circuitry. Since pixel intensities
at different spatial positions are acquired using the same sensor, temporal correlation in the
noisy sensor data results in spatial noise correlation in the acquired image. For thermal
cameras, noise can be approximated using a 1/f frequency dependency of the noise (Borel,
1996). This type of ‘pink’ noise is very common in electronic devices and becomes apparent
when reusing image sensors for different pixels in the image at high sample rates.
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Fig. 7. PSD of ‘pink noise’, an approximate model of noise in some types of electronic
devices through time

Pink noise can easily be simulated, by filtering a time sequence of white pseudorandom
numbers with a 1/f filter characteristic and then adding those noise samples to the signal
values in a raster scan pattern. Figure 8 shows this type of noise on the Einstein image.

Fig. 8. The Einstein image with simulated whisk broom imaging 1/f noise.

The streaking noise artifacts are clearly visible.

2.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging is a non-invasive imaging technique. The Signal to Noise ratio
(SNR) is heavily dependent on scan time. Longer scans are not only less comfortable for the
patient, it is also less economical for the scanner operator and it increases the chance of
involuntary patient movement. Because MRI technology acquires a Fourier transformed
version of the image, rather than the image itself, patient movement during a scan translates
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to “echo’-like artifacts in the image, which is much more detrimental to the diagnostic image
quality than simple blurring in conventional photography.

These facts are a major motivation for scanner manufacturers, who have created a wide
range of tricks and technologies that allow an MRI scan to be made faster or less susceptible
to motion artifacts. Noise in MRI is traditionally considered white (e.g. Nowak, 1999;
Pizurica, 2003), and this is indeed a good noise model for theoretical MRI, but in practice,
almost all clinical MRI acquisition devices use one or more acceleration techniques. As an
illustration we now explain a few:

In K-space subsampling, bands of the spectrum of the signal are simply not scanned.
Elliptical filtering is similar, where only elliptical area around the K-space center is sampled.
Anillustration and example of this principe is shown in figure 9.

F.[Hz]

Fig. 9. (left) PSD of K-space subsampled and elliptically filtered noise (right) Brain MRI with
simulated K-space subsampled and elliptically filtered MRI noise

It is clearly visible that for this situation, the noise creates stripe-like artifacts rather than
being statistically independent from one pixel to another.

3. Describing natural images

3.1 Sparsity

When generating an image using purely random generators, chances are it will look like
random noise. To the authors” knowledge, nobody ever succeeded in generating an image
this way that looks like a ‘natural” picture, which could have come from a camera. This is
because what people consider ‘natural” images is a very small subset of all possible images.
Natural images have specific properties. These properties have been the object of intensive
study throughout the years and are of interest here, as it is what will enable the statistical
separation of noise from signal in images.

An easily verifiable, intuitive, property of natural images is that they are smoothly varying
signals, which give low frequency responses, delineated by lines (edges). This is somewhat
quantified by the inverse power scaling law, natural image PSD’s are inversely proportional
in magnitude to the squared modulus of the spatial frequency variable (Ruderman, 1994;
Field, 1987):
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Where 1) is a small number (|n|<1). This observation, coupled with the mathematical
elegance of the Gaussian distribution, motivated early image processing engineers to model
both image and noise as Gaussian distributed, in some transform domain. The Minimization
of the Mean Squared Error Bayesian risk estimator (MMSE) denoising solution is the well
known Wiener filter. However, the Gaussian distribution does not account for the relatively
large number of outliers when considering e.g. wavelet filter responses. In fact, as a
consequence of thinking of images as smooth regions delineated by edges, most coefficients
will be far smaller than predicted by the Gaussian model and a small number will be really
big.

Fig. 10. Comparison of a Gaussian distribution (full line) with a more heavily tailed
distribution, which is a better model for the transform coefficient distribution of natural
images

This property, sometimes referred to as sparsity, is better modeled by a more heavily tailed
distribution model, a comparison between both types of prior distributions is shown in
figure 11. The next section gives some examples.

3.2 Marginal statistics of multiresolution image transformation coefficients

It is clearly visible in multiresolution decompositions that marginals distributions of
coefficients exhibit highly non Gaussian behaviour. In fact, more leptokurtic distributions
account better for the heavy tailed marginal distributions that one encounters in practice.
For this reason, other distributions, such as the Laplacian (also known as the exponential
power distribution) or Generalized Laplacian (Mallat, 1989; Pizurica, 2006) have been
applied in more effective techniques. The Generalized Laplacian distribution is described in
(5), with X and v called the scale and shape parameter and I'() the gamma function.

p(p) =" expl- i) 5
ar(!)

L
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The Gaussian Scale Mixtures (GSM) (Wainwright, 2000) is a more elegant alternative,
because it can be extended more easily to the multivariate situation, which is advantageous
when considering spatial noise correlation. A random vector B is a GSM when it can be
written as:

d

U ©

Where U is a Normally distributed random vector with mean 0 and covariance matrix C,
z>0 is a random scalar variable, independent of U and superscript d means ‘equal in
distribution’. The marginal distribution of  can then be written as:

1 'c
PP = [ ————prexp| -L L | ?
“ 20"z ¢ 2z

Both the Generalized Laplacian and the GSM model are parameterized, which means that
some (often empirical) parameter estimation is required for the parameters. For the
Generalized Laplacian, this can be done by fitting the sample kurtosis and variance, while
for the GSM covariance matrix and hidden multiplier z distribution, there exist an
expectation maximization (EM) solution (Portilla, 2003). It is also possible to assume a fixed
distribution for the hidden multiplier z, which will enhance the kurtosis of the marginal
distribution p(p) in order to have a more heavily tailed distribution that corresponds more
to the model from section 3.1 e.g. Jeffey’s prior (p(z)=1/z).

3.2 Selfsimilarity

Another property of natural images is that they often contain a lot of redundant
information. Natural images contain a lot of repeating structures and texture. Often,
similarity can also be encountered at different scales. Some images of plants or art can be
surprisingly well described using fractals, meaning that they can be described as built up of
downscaled copies of themselves. This suggests that there is a lot of similarity in an image, a
property called selfsimilarity. Since noise is typically more spatially independent, it is a
good idea to find a description for self similarity, which can then be exploited in a denoising
algorithm. This is done by finding similar image patches for every pixel in the image.
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Fig. 11. Several natural images (top), with a similarity map (MSE) for the cyan pixel
(bottom). Note how there is a large number of similar pixels for natural images.

Finding similar patches in an image can be done by block matching: For some neighborhood
window size L, the mean squared error is taken between every neighborhood in the image
and the neighborhood around the current pixel. Similar pixels exhibit a low MSE and the
selfsimilarity property ensures that there will be plenty of such similar patches in a natural
image. Figure 11 shows the similarity values for every pixel in the image, with respect to
the image indicated by the arrow for a neighborhood size of 3x3. Black means a high
similarity (low MSE). Note that for the cactus image, all the needles are found to be similar,
even though the perspective causes the needles on the top of the image to be smaller
versions of the needles at the bottom, which is an example of where similarity can be found
at different scales.

4. Estimating noise Correlation

4.1 Signal-free data

In many applications, noise can be considered additive. Additive noise means that even
after linear image transformations, the noise remains additive. In this case, the noise
statistics are not signal dependent, and could just as well be estimated from signal-free data.
In fact, this is easier, because the estimation will not be hindered by the signal. Many
applications allow for the acquisition of signal-free data. This is the case for MRI images,
where physical limitations ensure the existence of signal-free regions next to the scanned
subject in the MRI image. For an unknown thermal camera type, one could photograph a
surface of even temperature. Similar techniques can be used for optical photography and
many other imaging modalities. When presented with such signal-free, noisy data, the
autocorrelation function can be calculated in a straightforward way.

Since the Discrete Fourier Transform (DFT) can be used as a good approximation for the
Discrete Time Fourier Transform (DTFT) in (2) for finite data, it is possible to obtain the
autocorrelation function from the power spectral density, which can be estimated from the
finite noisy, signal-free input data f(n):
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This way of using the DTFT to estimate the autocorrelation function of a stationary process
is computationally more efficient than calculating the autocorrelation function or covariance
matrix explicitly through e.g. convolution in the image domain.

4.3 Estimating correlated noise in transform domains

Calculating the pixel (voxel) autocorrelation function / covariance matrix is just part of the
solution. Since many denoising algorithms operate in a transform domain, it is necessary to
transform the autocorrelation function / covariance matrix as well. A transformed
covariance matrix enables the whitening of transform coefficients, which allows the use of a
white noise denoising algorithm.

One obvious way to obtain the transformed covariance matrices, is through Monte Carlo
simulations. First patches of noise are generated, then transformed into the transform
domain and then the noise covariance matrix are calculated for every obtained subband.
Doing this for multiresolution transforms with a lot of scales either results in heavy memory
requirements or high computational requirements, in order to get meaningful results.

In (Goossens, 2009), a different approach is presented. Many transformations can be viewed
as banks of linear filters. Applying a transform filter G(®) to the signal f'(n) from (3), the
PSD R”(w) becomes:

R'(@)=G@R @)G(@)

When also taking the subsampling step from many shift-variant transformations (such as
the discrete wavelet transform) into account, the transform becomes less trivial:

R"(2w)= (G(w)P (@)+G(w+7)F '((0+7Z'))(G(60)F (0)+G(@+7)F (0+7))

(10)

In (10) we see the appearance of crosscorrelation terms F'(@)F"'(@ + 7r) which seem to

indicate that it is not possible to simply filter the autocorrelation function such as in (9).
However, considering the stationarity assumption, the following should also hold:

R"Qw)= (G(a))F'(a)) -G(w+n)F'(w+ ﬂ))(G(a))F'(a)) -G(wo+n)F'(w+ )
(11)
The minus sign is caused by a one sample shift prior to subsampling. Now the
crosscorrelation terms appear with an inverted sign with respect to (10). Since the
stationarity assumption implies equality between (11) en (10) it follows that the
crosscorrelation are zero. This means that the calculation of the transform autocorrelation
function simplifies to:

R"(2w) = G(@)R'(0)G(w)+ G(w+ 7)R (0 + 7)G(w+ 1)

(12)



222 Recent Advances in Signal Processing

Again, the transform autocorrelation functions are simply filtered and subsampled versions
of the original autocorrelation function. Noise covariance in subbands of a separable,
decimated wavelet transform with an arbitrary number of scales can hence be calculated.

4.4 Full Blind GSM estimation

Many scenarios exist where there is no (sufficient) signal-free data. For this situation, the
problem of obtaining accurate noise covariance estimations is not so trivial. The median
absolute deviation (MAD) of the image transform coefficients in the finest scale (Donoho,
1994) is a robust estimator for the noise variance for white noise. The reason for using the
finest resolution scale is that it contains the smallest signal contribution, which is in turn
explained by the tendency of natural images to contain predominantly low frequency
content. However, correlated noise is by its very definition frequency dependent, which
means an estimate from a high frequency subband cannot be used for other transform
subbands. Lower frequency subbands have a larger signal contribution, making noise
covariance estimations less accurate.

Since the mentioned image transformations are designed to yield sparse responses for
natural images, there are still substantial signal-free regions inside each subband. From
these areas, an estimate for the noise covariance could be made in the respective transform
subband.

There has been some research to put this principle in practice, through a maximum
likelihood formulation of the signal estimation problem (Portilla, 2004). The algorithm relies
on the different statistical properties of (correlated) Gaussian noise and natural image signal,
which is modelled as a GSM (section 3.2). Considering the signal as a series of
neighbourhood vectors of arbitrary size, the vector of noisy coefficients is then written as

y=x+w. Considering the GSM model, one can also write: y=\/; .U+w. Using conditional
distributions on the hidden GSM multiplier z, these observed vectors can be written as:

p=][ p.lz)p () 13

Now consider, without loss of generality, E[z]=1. This means that the underlying signal
covariance C_ = C, . Note that the Gaussianity of the scale mixture components and of the

noise means it is very easy to write the conditional probability of the observed vector on the
hidden GSM multiplier z:

exp(— y'(zC, +C, )_1y/2) (14)
ez, +C,|”

From this model, we need to obtain the noise covariance matrix. Note that CX can be

p,.(yl2)=

estimated as I_C y T CWL where the ‘+” sign signifies an operation to only preserve positive

eigenvalues since covariance matrices need to be positive semidefinite in order to keep the
marginal probability values lower than 1. Consider the case for small values of z in equation

(17), then p,. (¥|0<z<dz)dz approaches the Gaussian noise distribution. The
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conditional p_ | (0<z<dz| y)dz can then be considered the conditional probability that

an observed vector y was generated by this noise process. Then, the weighted sample
covariance calculation (15) will automatically exclude neighborhoods which are likely to
contain signal contributions.

M
2P, (0<z<dz]y,;C)y, ) dz (15)
cr =
sz‘y(O <z<dz|y,;C")dz
m=1

Note that the calculation of the conditionals on z requires knowledge of C, . This equation

needs to be iterated in an Generalized Expectation Maximization (GEM) (Hastie, 2001) style
until convergence to reach the ML estimate for the noise covariance matrix. The weights in
(15) are Vlsuahzed in figure 12 for one subband of a noisy version of the Einstein image.

i*
h ‘

Fig. 12. Nmsy subband of the Einstein i 1mage (left) weight map for the noise covariance
estimation (right) Black corresponds to low weights, note how all the visible image features
are detected and excluded from the covariance estimation.

Where the hidden multiplier distribution p_(z)is unknown, i.e. when a fixed prior
distribution, such as Jeffrey’s prior or others are not assumed, it is also necessary to estimate

p.(z ) . Here the choice is to use the classical EM solution for Gaussian scale mixtures:

pr(2) sz\y( 3,302 (2)) (16)

M

old 1 pylz(ym |Z)
: (Z)—E
mlfpy\z ym|a) Old( )da

The combination of (15) and (16) allows to estimate the noise covariance matrices for the
subband representations of an image in a transform domain. These can be combined into the
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pixel domain covariance matrix or autocorrelation functions using the filter bank technique
from section 4.3 and (18) and subsequently be used in correlated noise denoising algorithms.

5. Denoising Algorithms

In this section, some state-of-the-art denoising algorithms are presented. It should be noted
that the all of them, except for the NLMS algorithm are designed for use in a multiresolution
transform domain. These are often presented in an implementation using one type of
multiresolution transform. The basic principles however, are general enough to allow the
techniques to be used with any multiresolution image decomposition. That is why it was
chosen to explain the algorithms for a general image transformation and refer to the
multiresolution image decomposition transform coefficients as ‘transform coefficients’ or
just simply ‘coefficients’. Examples of possible image transforms are the Discrete Wavelet
Transform (DWT) (Donoho, 1995), the Curvelet Transform (Starck, 2002), the Shearlet
transform (Easley, 2006), the dual-tree complex wavelet transform (Kingsbury, 2001;
Selesnick, 2005), Steerable pyramids (Simoncelli, 1992), ... Since this chapter deals with the
difficulties of handling correlated noise, an investigation into the differences between the
mentioned image transforms is beyond the scope of this work.

5.1 Noise Whitening

A convenient way to deal with the problem of correlated noise is to start from existing
denoising techniques. Most existing denoising techniques assume that noise is uncorrelated.
One way to be able to reuse existing denoising techniques is to use a prewhitening
transform that decorrelates the image noise. Arranging the noise measurements in a vector
f, the decorrelating transform matrix W needs to satisfy the whiteness property:

Ely.r]=c
EW.f.f wil=1I

WCW*=1]
C=wW"w)"'
W = C—l/z (17)

The result from (17) shows that the decorrelating transform can be calculated as the matrix
square root of the matrix inverse of the covariance matrix C. The covariance matrix C and
the autocorrelation function r(n) are closely related through their respective definitions
(again, a zero mean noise process f() is assumed):

(n) = ELf (m) /()] o)
C=E[ff']
The ability to whiten transform coefficients with respect to the noise indicates it is possible

to use the techniques for covariance estimation from section 4 and the whitening
transformation in combination white noise denoising algorithms.
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In practice, for many types of correlated noise, it is not necessary to take correlation between
samples across the entire image into account. In fact, this would make the whitening
procedure (17) intractable. When considering a size N for the neighbourhood vector f, it
means that the noise covariance matrix C is of size N2 That is why in practice, the
neighbourhood size N is kept low, often just 9=3x3 or 25=5x5. The approximation means
that all correlation with pixels not included in the neighbourhood window is set to zero, but
this is usually not problematic in practice.

The whitening operation in (17) can become quite computationally expensive, as a naive
implementation would mean vectorizing an image into a one neighbourhood vector per
pixel, causing huge memory requirements and then one matrix multiplication per pixel.
Since the interest is in decorrelating the center pixel in the neighbourhood vector from its
neighbours, actually only the corresponding row w of the decorrelating transform matrix W
is of interest. The image now just needs to be filtered by this linear filter w, which has an

interpretation as a prewhitening linear filter. In fact, given the PSD R(a)), the

prewhitening filter w(a)) can also be obtained as:

max(g,\/ R(a))) (19)

Where e is a small constant to enforce stability against small values of the PSD R(a)) . Note

that the prewhitening filter (19) can be different when compared to the one derived from the
autocovariance matrix C. The definition of C does not assume stationarity of the noise,
which means that e.g. the diagonal elements can differ from each other. In this case the PSD

R (a)) does not exist and (19) and (17) are not equivalent. In this chapter, we avoided that
situation by assuming noise stationarity.

5.2 Bayesian Least Squares — GSM

The BLS-GSM denoising algorithm, proposed in (Portilla, 2005), is a multiresolution
minimum mean square error estimator under multivariate GSM prior, explained in section
4. This makes it very suitable for correlated noise. It starts from the very generic Bayesian
Least Squares (or MMSE) estimate for a noise free vector of transform coefficients:

Elx|y]= J.‘xpx|y (x| y)dx (20)

The conditional probability can be quite hard to calculate, but since the algorithm works in
the multiresolution transform domain, it is possible to use the GSM prior model to simplify
the calculation:
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E[x|y]= [x [Py, (x| 2,9)p., (2] y)dzdx

= [Elx| 2,y1p., (2] y)dz

Under the assumption of (multivariate) Gaussian noise, the expectations in (21) reduce to
the Wiener estimate:

(21)

Elx|z,y]1=2C,(zC,+C, )"y )

In order to evaluate (21), it is also necessary to estimate the conditional probability of the
hidden GSM multiplier z on the observed coefficient vector y where C, is estimated as
explained in section 4 and Cu =F [Z ]_1 [C y T CWL . With knowledge of the hidden
multiplier pdf p(z), as explained in section 4, this is possible:
r(y12)p2) _ p(y|2)p(2)

p(y) Ip(y | z)dz

z

pz\y(zly): (23)

where p(y|z) is the multivariate Gaussian distribution, given by (14). Implementation of
these equations for the subbands of a multiresolution decomposition constitutes a BLS-GSM
denoising algorithm.

5.3 Probshrink

Probshrink was first developed in (Pizurica, 2006), for white noise. In a more recent work
(Aelterman, 2008) it has been extended to 3D correlated noise for denoising noise volumes.
In section 3, it was explained how natural images consist of edges and smooth areas, giving
rise to the heavy-tailed transform coefficient distributions. This model led to the idea of
classifying transform coefficients into two classes. Transform coefficients are either large,
meaning they represent an edge and arose from the tail of the distribution, or they are small,
meaning they represent a smooth area (or the noise floor) and arose from the main body of
the distribution:

H = y>T
Hy=yl<T

with T a threshold value. T is often chosen to comply with the noise floor, related to the
noise variance. In fact, this noise variance is often simply equal to the noise variance in the
image, because some wavelet transforms are unitary with respect to white Gaussian noise.
Conditioned on these two classes, the MMSE estimator becomes:

(24)

E[x|y]=Elx| y,H 1P, (H, | y)+ E[x| y,H 1P, (H, | ») @)

Probshrink handles the transform coefficients coefficient-wise. It does not handle
neighbourhood vectors of transform coefficients, as BLS-GSM does. In fact, this is not a
problem for the decimated wavelet transform, as one can prove that the noise in the wavelet
domain is white when the input noise was white. For redundant image transforms, this is
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not the case, and an approach as in section 4.3 would show that the noise is in fact correlated
in the transform domain. A proper approach for correlated noise is then needed, using a
whitening transform to whiten coefficients to obtain better results.

The calculation of (25) is facilitated through some simplifying assumptions: It is assumed

that E[x | y,H,]=0 because the model suggests that small transform coefficients,

corresponding to hypothesis Hy, are attributed to noise. Similarly, large wavelet coefficients
are attributed to the signal with very high SNR, and since this corresponds to hypothesis Hj,

the assumption E[x|y,H 1] = yis made. This leads to the Probshrink denoising
estimator:

Elx|y]=PF,,(H |y)y 26)

The Probshrink estimator can be seen as a soft shrinkage wavelet denoising operator, where
the shrinkage factor is determined as PH‘ B (H 1 | ¥) through the Bayesian interpretation
(25). Evaluation is done by rewriting:

Elx|y]= py|H(y|H1)PH(Hl) v
py|H(y | H))P,;(H,) +py\H(y | Hy) P, (H,)

Assuming additive noise (with distribution p | (w)), this expression can be evaluated quite

(27)

easily. With knowledge of the prior model p (x), the conditional probabilities in (27) are

written as in (28).

PV Hy) = [P, (v =) p s (x| Hy )b .
Pun (W H) = [p,(y=2)pyy (x| H,)dx

Hence, the conditional probabilities of p,, in (28) are the convolved prior conditional

probabilities Py Wwith the noise distribution p, . This is illustrated in figure 13.

plw)
,B(XlH") a\ ply[Hy)

J 1

Fig. 13. Example of the estimation of the conditional probabilities p,,,; from the prior

probabilities p,;; and noise distribution p,,
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Note how the conditional prior probability distributions p, can easily be calculated by
imposing (24) and renormalizing the prior, also illustrated in figure 13. Again using (24), it is

possible to estimate p,, through integrating this function over the threshold interval:
T
Pu(Hy) = [P (x)dx 29)
-T

py(H)=1-p,(H))

With knowledge of the exact prior model, it becomes possible to evaluate the Probshrink
equations numerically (Pizurica, 2006), it is even possible to calculate (27) empirically, from
the data (Pizurica, 2003) or analytically, for the Laplacian Prior (Pizurica, 2007). Together,
these equations constitute the white noise Probshrink denoising method.

5.4 3D Probshrink for correlated noise

There exist several adaptations for the Probshrink estimator with the aim of handling
correlated noise. In (Goossens, 2007; Goossens, 2009), such methods were proposed, which
use a prewhitening filter before the classification step (24). In (Aelterman, 2008) the
approach was extended to 3D, with the practical application of MRI denoising in mind. As
both approaches are extensions of the Probshrink estimator, both approaches make use of
multiresolution image decompositions (in this case, the dualtree complex wavelet transform
(Kingsbury, 2001)). Instead of the classification (24), (30) is used:

H =|wx,|>T

(30)

Hy =[x <7

With W the whitening transform matrix (8) and y_n the neighborhood coefficient vector of

the coefficient at spatial location n. This will ensure that only coefficients are selected that
are sufficiently distant from the noise in the succeeding Probshrink steps.

Multiresolution decompositions do not decorrelate the image features through the scales, a
large transform coefficient in one scale increases the possibility of finding another in the
subsequent scales. These interscale dependencies have been studied thoroughly for the
wavelet transform. In (Mallat, 1998), it is shown that the wavelet coefficient magnitude
increases with increasing scale (i.e. decreases with increasing spatial frequency) for natural,
sufficiently regular signals, like natural images. Improvements to the Probshrink approach
are made by exploiting this. In (Goossens, 2007), this is exploiting by fitting a Hidden
Markov Tree model to the interscale dependencies of complex wavelet coefficients. In
(Aelterman, 2008), this has been exploited by changing (30) by its interscale product:

H =W\, HWJT >T (31)

Hy =03,

‘ij <T
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With j the scale indicator. This way, a coefficient is only selected as significant coefficient if
both it is large, as well as its whitened ‘parent’ coefficient, in compliance with the interscale
dependency model.

These adaptations will make sure that only significant (with respect to the noise covariance)
transform coefficients are selected, which will in the end lead to a better Probshrink
denoising.

5.5 Non Local Means

The Non Local Means Algorithm (NLMS) is an algorithm that tries to exploit the self-
similarity (section 3.2) in images. An overview is given in (Buades, 2008). A very intuitive
way to look at this algorithm is through its relationship with the simpler Bilateral Filtering
scheme (Tomasi, 1998). The simplest image denoising algorithms apply some kind of linear
filter. The Bilateral Filtering modifies this principle by making the filter data-adaptive:

x(n) =" h(m,n)c(y(m), y(n))y(n) (32)

In short, noise-free pixel estimate X is a linear combination of noisy pixel values y with the

weights depending on both the spatial position of the pixels (most of the time just the
relative distance), and the actual value of the pixel. This way, through a clever choice of the
weighing function, it is possible to reinforce statistical averaging of only similar pixel values,
avoiding blurring of image edges.

The NLMS algorithm improves on this concept, by performing block matching on blocks
(neighbourhoods) of pixels. Block matching uses the Euclidian distance between two vectors

y, and y -, containing the neighbourhood pixel values of a region around a

pixels y(n)and y(m) . It essentially compares image patches instead of pixels. This allows
to find similar pixel values more accurately:

2
x(n)= kn’lZeXp —M y(n) (33)
~ 2h

With k, a normalization constant. An important difference with the bilateral filter is that the
NLMS theory allows to look beyond the linear filter mask for similar image patches. The
block matching concept will ensure that similar pixels are found from a similar textured
patch or image structure, even when the blocks come from the other side of the image. In
practice this search space size condition will often be relaxed for computational reasons. The
NLMS algorithm can hence be seen as an algorithm that exploits the self-similarity in an
image.

The block matching approach means that the weights are calculated on neighbourhood
vectors. From this it is conceptually a small step to do it on whitened neighbourhood
vectors, using the noise whitening procedures from section 5.1. This decreases the influence
of spatial noise correlation on the distance/similarity measure. The Euclidian distance in
(33) is transformed into what is known as the Mahalanobis distance. This was one
improvement over the classical NLMS scheme proposed in (Goossens, 2008).
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I R o o o y
x(n)zknlzexp _ Vn = Vm v\; Vi = Vm y(n) ( )
- 2h
Using the Mahalanobis distance, the measure will actually take the correlation structure of
the noise into account when calculating the distance between two image patches.

6. Results

The next few figures show a comparison of the two classes of algorithms, with different
types of noise. Peak signal to noise ratio (PSNR) comparisons are given in table 1.

Figure 14 shows the result of white noise denoising on the Einstein image. For white noise it
can be seen that the denoising algorithms perform similar with only a relatively small
difference in PSNR. A visible difference is that the NLMS algorithm suffers less from the
typical wavelet artifacts (smal ocal oscillations in image intensi

Fig. 14. Denoising results of Einstein image corrupted by simulated white noise (top left): by
NLMS denoising (top right), by BLS-GSM denoising (bottom left), by Probshrink for white
noise (bottom right)

In a second experiment, thermal noise was simulated on the House image. This is correlated
noise, which behaves as stripes. It can be seen that an algorithm for correlated noise
denoising has some advantage in PSNR. A qualitative comparison can be made in figure 15.
Clearly, the Probshrink algorithm, which has very good results for white noise, has
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problems with properly discerning image details from the noise structure. Even though the
correlated noise algorithms succeed in preserving the horizontal brick structure of the house
to some degree, the white noise Probshrink algorithm completely suppresses those details
while preserving the vertical strlpes noise pattern

1
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Fig. 15. Denoising results of House image corrup-téd by simulated thermal noise (top left): by
NLMS denoising (top right), by BLS-GSM denoising (bottom left), by Probshrink for white
noise (bottom right)

In a third denoising experiment, a fictional type of correlated noise was used, high
frequency noise, combined with diagonal streaks. It is referred to as ‘streak’ noise in Table 1.
The qualitative comparison can be seen in figure 16. As expected, the white noise denoising
algorithm Probshrink does not succeed in suppressing the diagonal streak noise structures.
It does succeed in suppressing the high frequency noise, because even for white noise the
high frequency parts of the noisy image PSD typically have a very low SNR, because of the
fact that natural images predominantly have energy in low frequency parts of the PSD, as
explained in section 3.
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Fig. 16. Denoising results of Goldhill image corrupted by heavily correlated streak noise (top
left): by NLMS denoising (top right), by BLS-GSM denoising (bottom left), by Probshrink
denoising for white noise (bottom right)

In a fourth denoising experiment, the Stonehenge image was used. It was treated as a color
image, and used as input for a mosaicing/demosaicing experiment using the bilinear
demosaicing algorithm. This results in low frequency noise structures. Then the red channel
of the resulting color image was used as input for the denoising experiment. Again, it is
visible that the white noise denoising algorithm Probshrink does not succeed in suppressing
the noise artifacts, while the algorithms for correlated noise do. It is also visible that the BLS-
GSM algorithm suffers from ringing near the top edge of the Stonehenge structure. This type
of artifacts is common in wavelet-base denoising experiments and is a result from
incorrectly suppressing the small coefficients that make up the edge in higher frequency
scales, while keeping their respective counterparts in lower frequency scales.
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Fig. 17. Denoising results of Stonehenge image corrupted by simulated red channel
demosaicing noise (top left): by NLMS denoising (top right), by BLS-GSM denoising (bottom
left), by Probshrink denoising for white noise (bottom right)

From the experiments, some conclusions can be made. White noise denoising algorithms,
such as Probshrink, work well enough as long as the image is corrupted by white noise. It
fails when presented with correlated noise. One reason is that the Donoho MAD estimator is
often a very bad choice, leading to underestimated noise power (for low frequency noise) or
severely overestimated noise power (for high frequency noise). Because of this failure of the
MAD estimator, the choice was made to choose the noise variance parameter heuristically
for the white noise Probshrink algorithm, in order to obtain the highest possible PSNR. It
can be concluded from figures 14-17 and table 1, that for situations where image noise is
correlated, a simple white noise denoising algorithm will not perform optimally and there is
need for the techniques and ideas explained in this chapter.

Noisy ProbShrink BLS-GSM NLMS
White 22dB 29.22dB 29.76dB 29.88dB
Demosaicing 27.9dB 29.8dB 32.6dB 31.4dB
Thermal 24.5dB 26.0dB 31.6dB 31.5dB
Streaks 16.1dB 22.8dB 25.7dB 25.9dB

Table 1. PSNR table for the different denoising experiments
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In a last experiment, we used the 3D dual tree complex wavelet denoising algorithm for MRI
(Aelterman, 2008) to illustrate the denoising performance on practical MRI images. A
qualitative comparison can be seen in figure 18.
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Fig. 18. Denoising results of noisy MRI data. (left) noisy 3D MRI sequence (middle) denoised
by 2D per-slice Probshrink (right) denoised by 3D correlated noise Probshrink for MRI

7. Conclusion

From the results in the previous section, it is clear that one needs to make use of specialized
denoising algorithms for situations in which one encounters correlated noise in images. The
short overview in section 2 shows that there are many such situations in practice. Correlated
noise manifests itself as stripes, blobs or other image structures that cannot be modelled as
spatially independent. Several useful noise estimation techniques were presented that can
be used when creating or adapting a white noise denoising algorithm for use with
correlated noise. To illustrate this, some state-of-the-art techniques were explained and
compared with techniques designed for white noise.
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