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Abstract

This paper proposes two main contributions concerning the Föllmer-Schweizer decomposition
(called hereafter FS-decomposition). First we completely elaborate the relationship between this
decomposition and the Galtchouk-Kunita-Watanabe decomposition under the minimal martin-
gale measure. The difference between these two decompositions is highlighted on a very prac-
tical example, and the martingale tools that enhance this difference are illustrated in the semi-
martingale framework as well. The second main contribution focuses on the description of the
FS-decomposition using the predictable characteristics.
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1. Introduction

The quadratic criterion of local risk-minimization is among the earliest concepts of hedging in
incomplete markets. It is an extension -to the semimartingale framework- of the risk-minimization
concept discussed in [19]. This local risk-minimization concept was introduced in [27] and [28],
and is based essentially on the minimal martingale measure introduced in [18]. In later works, the
author realized that the local risk-minimization concept boils down to a decomposition which is
called the Föllmer-Schweizer decomposition (FS-decomposition hereafter), which was discussed in
many papers at different levels of generality and for different purposes, see for example [2], [8], [9],
[15], [29], [30], [31], and [32] and the references therein. When the price of the discounted risky asset
is a martingale, this decomposition coincides with the Galtchouk-Kunita-Watanabe decomposition
(GKW-decomposition hereafter).
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There has been an upsurge interest in the FS-decomposition (or equivalently the local risk-
minimization concept) since it was introduced. In fact, this technique has been used for hedging
risks in different types of incomplete markets, such as the (life or non-life) insurance markets see
for example [25] and [33] and the references therein, and defaultable markets see for example [5],
[6], and [7] and the reference therein. In most of these works, the authors formulate their local risk-
minimization results based on the key fact that the FS-decomposition and the GKW-decomposition
under the minimal martingale measure coincide. This fact remains true when the discounted price
process of the risky assets is continuous, while it breaks down in the case that involves jumps. Our
paper fills this gap by elaborating clearly the relationship between the two decompositions, and
highlights the difference on a simple market model with jumps.

This paper is organized in the following manner: The next section addresses the mathematical
model, notations, and recall the existing results (as well as add new results) that we will use
frequently throughout the paper. Then the third section presents our first main contribution that
deals with comparing the FS-decomposition and the GKW-decomposition. The description of the
FS-decomposition in terms of the predictable characteristics of the discounted stock price process
is illustrated in Section 4.

2. Preliminaries

In this section we will introduce the setting we work in, for all unexplained notations we refer
the reader to [22].
The market is represented by a filtered probability space (Ω,F , (Ft)0≤t≤T , P ). Here the filtration
is supposed to be right-continuous, complete and F0 is trivial. On this space, we consider a d-
dimensional semimartingale S = (St)0≤t≤T that represents the discounted price processes of d risky

assets. We assume that the nondecreasing process
(

sup
0≤s≤t

|Ss|
)

0≤t≤T

is locally square integrable,

and the Doob-Meyer decomposition of S is given by

S = S0 + M + B, (2.1)

where M is a locally square integrable local martingale, and B is a predictable process with finite
variation. No-arbitrage assumptions on the market model lead to the existence of a predictable
process λ̃ satisfying

dBt = −d〈M〉tλ̃t,

∫ T

0
λ̃∗ud〈M〉uλ̃u < +∞, P -a.s. (2.2)

This property is called Structure Condition (SC), was introduced in [29] and discussed in many
papers see for instance [2] and [9] and the references therein, while for arbitrage theory we refer
the reader to [16] and the references therein.

Now we recall the definition of the predictable characteristics of the semimartingale S (see
Section II.2 of [22]). The random measure µ associated to its jumps is defined by

µ(dt, dx) =
∑

I{∆Ss 6=0}δ(s, ∆Ss)(dt, dx),
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with δa the Dirac measure at point a. The continuous local martingale part of S is denoted by Sc

(it coincides with that of M , that is M c = Sc). This leads to the following decomposition, called
“the canonical representation” (see Theorem 2.34, Section II.2 of [22]):

S = S0 + Sc + x ? (µ− ν) + B, (2.3)

where the random measure ν is the compensator of the random measure µ, and C is the matrix
with entries Cij := 〈Sc,i, Sc,j〉. The triple (B, C, ν) is called predictable characteristics of S.
Furthermore, we can find a version of the characteristics triple satisfying

B = b ·A, C = c ·A, ν(ω, dt, dx) = dAt(ω)Ft(ω, dx). (2.4)

Here A is an increasing and predictable process which is continuous if and only if S is quasi-left
continuous, b and c are predictable processes, Ft(ω, dx) is a predictable kernel, bt(ω) is a vector
in IRd and ct(ω) is a symmetric d × d-matrix , ∀ (ω, t) ∈ Ω × [0, T ]. In the sequel we will often
drop ω and t and write, for instance, F (dx) as a shorthand for Ft(ω, dx).
These characteristics, B, C, and ν, satisfy

Ft(ω, {0}) = 0,

∫
(|x|2 ∧ 1)Ft(ω, dx) ≤ 1, ∆Bt =

∫
xν({t}, dx),

c = 0 on {∆A 6= 0}.
Set

νt(dx) := ν({t}, dx), at := νt(IRd) = ∆AtFt(IRd) ≤ 1.

The set of all probability measures that are absolutely continuous with respect to (respectively
equivalent to) P is denoted by Pa (respectively Pe). The set of martingales under the probability
Q is denoted byM(Q). Me(S) is the set of probabilities Q ∼ P such that S is a Q-local martingale.

If C is a class of processes, we denote by C0 the set of processes X with X0 = 0 and by Cloc the set
of processes X such that there exists a sequence of stopping times (τn) increasing stationarily to
T and the stopped process Xτn belongs to C. We put C0,loc = C0 ∩ Cloc.

As usual, A+ denotes the set of increasing, right-continuous, adapted and integrable processes.
On the set Ω×[0, T ], we define two σ-fields O and P generated by the adapted and càdlàg processes
and the adapted and continuous processes respectively. On the set Ω× [0, T ] × IRd, we consider
the σ-field P̃ = P ⊗ B(IRd) (resp. Õ = O ⊗ B(IRd)), where B(IRd) is the Borel σ-field for IRd.
For any process g, Õ-measurable (hereafter denoted by g ∈ Õ), we define MP

µ (g | P̃) the unique
P̃-measurable process, when it exists, such that for any bounded W ∈ P̃,

MP
µ (Wg) := E

(∫ T

0

∫
W (s, x)g(s, x)µ(ds, dx)

)
= MP

µ

(
WMP

µ (g | P̃)
)
.

For the following representation theorem which is a key tool for our analysis, we refer to [21]
(Theorem 3.75, page 103) and to [22] (Lemma 4.24, page 185).

Theorem 2.1. Let N ∈ M0,loc. Then there exist a predictable and Sc-integrable process φ, N ′ ∈
M0,loc with [N ′, S] = 0 and functionals f ∈ P̃ and g ∈ Õ such that

∫ T

0

∫

IRd\{0}
|f | ∧ |f |2ν(dt, dx) < +∞,

( t∑

s=0

g(s,∆Ss)2I{∆Ss 6=0}
)1/2

∈ A+
loc,
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MP
µ (g | P̃) = 0,

N = φ · Sc + W ? (µ− ν) + g ? µ + N ′, W = f +
f̂

1− a
I{a<1} (2.5)

where f̂ =
∫

f(x)ν({t}, dx) and f has a version such that {a = 1} ⊂ {f̂ = 0}. Moreover

∆Nt =
(
ft(∆St) + gt(∆St)

)
I{∆St 6=0} −

f̂t

1− at
I{∆St=0} + ∆N ′

t . (2.6)

The following lemma sounds new to us and is dealing with the uniqueness of the decomposition of
Theorem 2.1.

Lemma 2.2. The decomposition in (2.5) is unique (up to indistinguishability) in the following
sense: If there exists a quadruplet (φ, f, g,N ′) as in Theorem 2.1 satisfying

0 = φ · Sc + W ? (µ− ν) + g ? µ + N ′, (2.7)

then
cφ = 0 dP ⊗ dA− a.e., f(x) = g(x) = 0 µ− a.e., N ′ = 0.

Proof: If N ′c denotes the continuous local martingale part of N ′, then from (2.7) we deduce that

φ · Sc + N ′c ≡ 0.

Due to [S,N ′] = 0, the orthogonality of φ · Sc and N ′c follows. This combined with the above
equation implies that

φ · Sc = 0, N ′c = 0. (2.8)

Thus, the first equation above is equivalent to cφ = 0 dP ⊗ dA− a.e.

On {∆S 6= 0}, ∆N ′ = 0 and hence (2.6) leads to f(∆S) + g(∆S) = 0, which is equivalent to

f(x) + g(x) = 0 µ− a.e.

By taking conditional expectation under MP
µ , and using MP

µ

(
g|P̃

)
= 0 we conclude that

f = g = 0 MP
µ − a.e. (2.9)

This implies that f̂ = 0, hence due to (2.6) again we get ∆N ′ = 0. This together with the second
equation in (2.8) leads to N ′ = 0. This completes the proof of the lemma. ¤

Now we define a set of strategies that we will consider throughout the paper:

Θ :=

{
θ ∈ L(S) | ‖θ · S‖2

H2(P ) := E

(∫ T

0
θ∗ud〈M〉uθu +

[∫ T

0
|θ∗udBu|

]2
)

< +∞
}

.
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Definitions 2.3.
1) Two local martingales K and L are said to be orthogonal under a probability measure if the
process [L,K] is a local martingale under that probability measure.
2) A contingent claim is any FT -measurable and P -square integrable random variable.
3) Let H be a contingent claim. Then H is said to have the Föllmer-Schweizer decomposition if
there exist a constant, H0, a S-integrable process ξH ∈ Θ, and a square integrable martingale LH

such that [LH , M ] is a local martingale, and

H = H0 +
(
ξH · S)

T
+ LH

T . (2.10)

Throughout the paper, the triplet
(
H0, ξ

H , LH
)

will be called the FS-decomposition components.

3. The FS-decomposition versus the GKW-decomposition

This section addresses the relationship between the Galtchouk-Kunita-Watanabe decomposition
under the minimal martingale measure and the Föllmer-Schweizer decomposition. The minimal
martingale measure Q̃ is the martingale measure such that any P -local martingale which is orthog-
onal to M , as defined in (2.1), under P remains a local martingale under Q̃. We start by stating
the assumption under which we elaborate our results and which guarantees the existence of the
FS-decomposition. See Section 4 for a further discussion about the existence of this decomposition.
Throughout the rest of the paper, Ñ denotes λ̃ ·M with λ̃ given by (2.2).

Assumptions 3.1. We assume that E(Ñ) > 0, and there exists a constant C > 0 such that for
any stopping time σ,

E

[(
ET

(
Ñ − Ñσ

))2
| Fσ

]
≤ C, P − a.s. (3.11)

Remark: Thanks to Theorem 5.5 in [8], the Föllmer-Schweizer decomposition of any contingent
claim exists under Assumptions 3.1.

From [30] and the references therein, we know that E(λ̃ ·M) is the density of the signed minimal
martingale measure for S. It is clear that the assumption (3.11) implies that E(Ñ) is a true
martingale, and the minimal martingale measure that we denote throughout this section by

Q̃ := ET (Ñ) · P, (3.12)

really exists. When S is a continuous process, it is generally known that the two decompositions
coincide see e.g. [32]. However this fact is no longer true in the general framework due to the pres-
ence of jumps in S. The correct relationship between the two decompositions will be completely
determined in the following theorem.

Theorem 3.2. Suppose that Assumptions 3.1 are satisfied. Let H be a contingent claim whose
FS-decomposition components are denoted by

(
H0, ξ

H , LH
)
. Suppose that the Q̃-martingale, Ṽt =

EQ̃ (H| Ft), admits the Galtchouk-Kunita-Watanabe decomposition which is given by

Ṽ = Ṽ0 + ξ̃ · S + L̃, (3.13)

where ξ̃ ∈ L(S) (i.e. S-integrable), ξ̃ · S and L̃ are Q̃-local martingales, and L̃ is Q̃-orthogonal to
S. Then the following holds:
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(i) If
(
β̃, f̃ , g̃, L̃′

)
denotes the quadruplet associated with L̃ under Q̃ through Theorem 2.1, then

Φ̃ := Σinv

∫
xf̃(x)

[
λ̃∗x + λ̃∗∆〈M〉λ̃

]
F (dx), (3.14)

is a well defined predictable process, S-integrable, and satisfies

ξH = ξ̃ − Φ̃, LH = L̃ + Φ̃ · S. (3.15)

Here, Σinv denotes the Moore-Penrose pseudoinverse of the matrix Σ given by

Σ := c +
∫

xx∗F (dx) :=
d〈S〉
dA

. (3.16)

(ii) If there exists a sequence of stopping times (Tn)n increasing stationarily to T such that
ξ̃I[0,Tn] ∈ Θ, then the process 〈Ñ , [L̃, S]〉 exists, and is absolutely continuous with respect
to 〈S〉 of which the Radon-Nikodym derivative is a version of Φ̃. Furthermore Φ̃I[0,Tn] ∈ Θ.

Before proving this theorem, we would like to discuss briefly the existence of the GKW-
decomposition for two local martingales, and provide some conditions that guarantee the inte-
grability assumption on ξ̃ in Theorem 3.2 assertion (ii).

Remarks:

1) Let X and Y be two local martingales (for simplicity we suppose that both processes are real-
valued) such that Y is locally square integrable. Then X admits the GKW-decomposition with
respect to Y if the process 〈X,Y 〉 exists, λt := d〈X,Y 〉t

d〈Y,Y 〉t is Y -integrable, and λ · Y is a local mar-
tingale. These three conditions are fulfilled when X and Y are both locally square integrable local
martingales, or when Y is a continuous process. For more details about the GKW-decomposition
and related subject, we refer the reader to [3] and the references therein.
2) Suppose that there exists a sequence of stopping times Tn increasing stationarily to T , and a
sequence of positive numbers, δn, such that 1 ≥ δn > 0 and

δn ≤ 1 + ∆ÑTn ≤ δ−1
n . (3.17)

Then, under Assumptions 3.1, for any contingent claim H the process Ṽt = EQ̃(H|Ft) admits
the GKW-decomposition under Q̃ described in (3.13), and there exists a sequence of stopping
times (σn) increasing stationarily to T such that σn ≤ Tn and ξ̃I[0,σn] ∈ Θ. In other words, the
assumption in assertion (ii) of Theorem 3.2 is fulfilled. To prove this fact, we proceed into two
steps: In the first step we will prove that Ṽ is a Q̃-locally square integrable martingale, while the
second step will deal with ξ̃I[0,σn] ∈ Θ. Indeed, due to Assumptions 3.1 and Theorem 4.9 in [8]
we deduce that E[Ṽ , Ṽ ]T < +∞ in one hand. On the other hand, due to the RHS inequality in
(3.17), we get

E
[
(1 + ∆Ñ) · [Ṽ , Ṽ ]Tn

]
≤ δ−1

n E[Ṽ , Ṽ ]Tn < +∞.

This proves that the compensator of (1 + ∆Ñ) · [Ṽ , Ṽ ]Tn exists and is integrable, which coincides
with the Q̃-compensator of [Ṽ , Ṽ ]Tn . This proves that Ṽ Tn is a Q̃-square integrable martingale.
This ends the first step. Then it is obvious that the GKW-decomposition under Q̃ for Ṽ described
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in (3.13) exists (see Remark 1 above). Furthermore, since Ṽ Tn is a Q̃-square integrable (the first
step), the process ξ̃ · STn is a Q̃-square integrable martingale. Notice that the Q̃-compensator of
[ξ̃ ·S, ξ̃ ·S] coincides with the P -compensator of (1+∆Ñ) · [ξ̃ ·S, ξ̃ ·S]. Hence there exists a sequence
of stopping times (τn) increasing stationarily to T , such that the latter process stopped at τn is
P -integrable. Then, due to δn ≤ 1 + ∆ÑTn , we get

E[ξ̃ · S, ξ̃ · S]τn∧Tn ≤ δ−1
n E

[
(1 + ∆Ñ) · [ξ̃ · S, ξ̃ · S]τn∧Tn

]
< +∞.

By combining this with Theorem 4.9 in [8], we conclude that ξ̃I[0,τn∧Tn] ∈ Θ, and the proof of the
claim is achieved.
3) If we consider the condition of δn ≤ 1 + ∆ÑTn instead of (3.17), then the results in the above
remark (Remark 2) are still valid for contingent claims that are Q̃-square integrable. In fact, for a
contingent claim H that is Q̃-square integrable, the process Ṽ is a Q̃-square integrable martingale.
Hence, the remaining part of the proof follows exactly the second step in the proof of Remark 2.
4) The integrability of ξ̃ described in Theorem 3.2 assertion (i) is enough to achieve our goal and
to prove the main idea of the theorem which lies in describing the difference between the two
decompositions. This remark was noticed by an anonymous referee, who also suggested that ξ̃ may
belong to Θ. We are doubtful about this latter fact, due to the fact that the process [L̃, M ] may
not be a P -local martingale (L̃ is given by (3.13)), nor even a special semimartingale under P .

Proof of Theorem 3.2. (i) A key tool in this proof is Theorem 2.1 applied under the probability
measure Q̃. To this end, we start with describing the representation of S under this measure. First,
the compensator of the random measure µ under Q̃ will be denoted by νQ̃ and is given by

νQ̃(dt, dx) =
(
1 + λ̃∗x + λ̃∗∆〈M〉λ̃

)
ν(dt, dx). (3.18)

Then, the process S takes the following canonical decomposition under Q̃,

S = S0 + Sc,Q̃ + x ? (µ− νQ̃), Sc,Q̃ := Sc − cλ̃ ·A. (3.19)

We remark that the P -local martingale LH is also a Q̃-local martingale by definition of the minimal
martingale measure. Applying Theorem 2.1 to the Q̃-local martingale LH , provides

LH = θH · Sc,Q̃ + WH ? (µ− νQ̃) + gH ? µ + L
H

, [LH
, S] = 0, M Q̃

µ (gH |P̃) = 0, (3.20)

where WH(x) = fH(x) +
(
1− νQ̃({t}, IRd)

)−1
∫

fH(x)νQ̃({t}, dx). Analogously, we find for the

Q̃-local martingale L̃

L̃ = θ̃ · Sc,Q̃ + W̃ ? (µ− νQ̃) + g̃ ? µ + L̃′, [L̃′, S] = 0, M Q̃
µ (g̃|P̃) = 0, (3.21)

with W̃ (x) = f̃(x) +
(
1− νQ̃({t}, IRd)

)−1
∫

f̃(x)νQ̃({t}, dx).

Due to the integrability conditions, we deduce that ξH · S and LH are martingales under Q̃, and

H0 + ξH · S + LH = Ṽ0 + ξ̃ · S + L̃. (3.22)

7



Notice that using (3.19), we get ξH · S = ξH · Sc,Q̃ + x∗ξH ? (µ − νQ̃) and ξ̃ · S = ξ̃ · Sc,Q̃ +
x∗ξ̃ ? (µ − νQ̃). By plugging these two equations together with (3.20) and (3.21) into (3.22), we
conclude that the two processes H0 +(ξH + θH) ·Sc,Q̃ +(x∗ξH +WH) ? (µ− νQ̃)+ gH ?µ+L

H and
Ṽ0 +(ξ̃ + θ̃) ·Sc,Q̃ +(x∗ξ̃ + W̃ )? (µ−νQ̃)+ g̃ ?µ+ L̃′ are identical. Therefore, due to the uniqueness
of Jacod’s decomposition (see Lemma 2.2), we derive H0 = Ṽ0, gH(x) = g̃(x), L

H = L̃′, and

cξ̃ + cθ̃ = cξH + cθH P ⊗ dA-a.e., x∗ξ̃ + f̃(x) = x∗ξH + fH(x), F (dx)⊗ dA-a.e. (3.23)

Since LH is a P -local martingale orthogonal to M (〈LH , M〉 = 〈LH , S〉 = 0) and L̃ is a Q̃-local
martingale orthogonal to S (〈L̃, S〉Q̃ = 0), we deduce that dA-a.e.,

cθH +
∫

xfH(x)F (dx) = 0, cθ̃ +
∫

xf̃(x)
[
1 + λ̃∗x + λ̃∗∆〈M〉λ̃

]
F (dx) = 0. (3.24)

The second equation in (3.23) leads to
∫

xx∗ξ̃F (dx)+
∫

xf̃F (dx) =
∫

xx∗ξHF (dx)+
∫

xfH(x)F (dx).
By adding this to the first equation of (3.23), taking into account the first equation in (3.24), and
using Σt := ct +

∫
xx∗Ft(dx), we obtain

ΣξH = Σξ̃ −
∫

xf̃(x)
[
λ̃∗x + λ̃∗∆〈M〉λ̃

]
F (dx).

Therefore, we conclude that the process Φ̃ defined in (3.14) is a well defined predictable process,
S-integrable (since ξH and ξ̃ are S-integrable), and satisfies the first equation in (3.15) (this follows
from the above equation). The second equation in (3.15) result from inserting this first equation
of (3.15) in (3.22). This ends the proof of assertion (i).

(ii) Since ξ̃I[0,Tn] ∈ Θ, and sup
t≤·

|Ṽt|2 ∈ A+(P ) (due to Theorem 4.9 in [9]), we deduce that the process

sup
s≤·

|L̃s|2 ∈ A+
loc(P ). Thus, the process [L̃, S] has a P -locally integrable variation, and hence the

process [Ñ , [L̃, S]] has a P -locally integrable variation (since [L̃, S] is a Q̃-local martingale which
is equivalent to [L̃, S] + [Ñ , [L̃, S]] is a P -local martingale). Therefore its compensator, 〈Ñ , [L̃, S]〉,
exists. Furthermore, we calculate

〈Ñ , [L̃, S]〉 =
{∫

xf̃(x)
[
λ̃∗x + λ̃∗∆〈M〉λ̃

]
F (dx)

}
·A.

Thus, Φ̃ is a version of the Radon-Nikodym derivative, Ψ̃, of 〈Ñ , [L̃, S]〉 with respect to 〈S〉 (here
by version, we mean ΣΨ̃ = ΣΦ̃ or equivalently Φ̃ − Ψ̃ ∈ kernel(Σ)). This completes the proof of
the theorem. ¤

Remarks:

(i) The process Φ̃ can also be explained as the Radon-Nikodym derivative of Σinvd〈[L̃, S], Ñ〉
with respect to dA, that is

Φ̃ = Σinv d〈[L̃, S], Ñ〉
dA

.
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(ii) Through Theorem 3.2, we can easily claim that the two decompositions – FS-decomposition
and GKW-decomposition – are equivalent when S is a continuous process. Indeed, in this
case, both processes [L̃, S] and Φ̃ vanish, implying that L̃ = LH and ξ̃ = ξH .

(iii) This theorem also allows us to decide whether the two decompositions coincide or differ for
any FT -measurable random variable and market model through the following statement: The
two decompositions coincide if and only if

E

[∫ T

0
I{

(ω,t) : Σinv
t (ω)Λt(ω)6∈ kernel(Σt(ω))

}dAt

]
= 0, Λ :=

∫
xf̃(x)

[
λ̃∗x+λ̃∗∆〈M〉λ̃

]
F (dx).

3.1. A practical counterexample
Consider the following one-dimensional discounted process

St := S0Et(X), Xt := σWt + γp̃t + µt, 0 ≤ t ≤ T, (3.25)

where (pt)t≥0 is the standard Poisson process with intensity 1, p̃t = pt − t is the compensated
Poisson process, Wt is the standard Brownian motion, S0 > 0, σ > 0, and γ and µ are real
numbers such that

γ > −1, 0 6= µγ < σ2 + γ2. (3.26)

The process S represents the discounted stock price process that constitutes the market model.
Then, the processes M , B, and A (defined in (2.1) and (2.4) respectively) for this model are given
by

dMt = St− (σdWt + γdp̃t) , dBt = µSt−dt, At = t.

Hence, we deduce that

λ̃t =
1

St−
−µ

σ2 + γ2
, Ñt = σ1Wt + γ1p̃t, σ1 :=

−µσ

σ2 + γ2
, γ1 :=

−µγ

σ2 + γ2
.

Thus if (3.26) holds, then Et(Ñ) is a square integrable and positive martingale, and the minimal
martingale measure exists and is given by Q̃ := E(Ñ)T · P .
Now consider the European put option with strike price K whose payoff is given by H = (K − ST )+.
In the following we will calculate the processes Ṽ , ξ̃, Φ̃ and L̃. Due to the independent increments
of X, we deduce that Ṽt = f(t, St), where

f(t, x) = EQ̃

[(
K − x

ST

St

)+
]

. (3.27)

Consider the – in the variable y – strictly increasing distribution function

F (s, y) := Q̃ (σWs + log(1 + γ)p̃s + µs ≤ y) , µ := µ− 1
2
σ2 +log(1+γ)−γ, y ∈ IR, s ∈ [0, T ].

(3.28)
Thanks to the stationary property of X and the notation in (3.28), the function f(t, x) in (3.27)
takes the following form

f(t, x) = KF
(
T − t, log(K/x)

)
− x

∫ log(K
x

)

−∞
eyFy(T − t, y)dy, x > 0, t ∈ [0, T ]. (3.29)
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As a result, f(t, x) ∈ C1,2((0, T )× (0, +∞)), and by applying Itô’s formula to f(t, St) we derive

Ṽt = Ṽ0 +
∫ t

0
ft(u, Su−)du +

∫ t

0
fx(u, Su−)dSu +

1
2

∫ t

0
fxx(u, Su−)S2

uσ2du+

+
∑

0<u≤t

[f(u, Su)− f(u, Su−)− fx(u, Su)∆Su] .

Remark that
∑

0<u≤t

[f(u, Su)− f(u, Su−)− fx(u, Su)∆Su] = Γ · p, where

Γu := f(u, Su−(1 + γ))− f(u, Su−)− fx(u, Su)γSu−. (3.30)

Thus, since Ṽ is a Q̃-martingale, we deduce that the function f(t, x) satisfies a PDE equation (a
fact that can be verified directly since the function f(t, x) is explicitly calculated in (3.29)), and

Ṽt = Ṽ0 +
∫ t

0
fx(u, Su−)dSu +

(
Γ · p̃Q̃

)
t
, pQ̃

t := pt − (1 + γ1)t. (3.31)

Here p̃Q̃ is the compensated Poisson process under Q̃. Now we will focus on calculating ξ̃ as follows

d[Ṽ , S]t = σ2S2
t−fx(t, St−)dt +

(
S2

t−γ2fx(t, St−) + ΓtSt−γ
)
dpt.

Recall that the compensator of pt under Q̃ coincides with (1 + γ1)t, thus using the fact that

ξ̃t = d〈Ṽ ,S〉Q̃t
d〈S〉Q̃t

, we derive the components of the GKW-decomposition under Q̃ for Ṽ as follows

ξ̃t = fx(t, St−) +
Γtγ(1 + γ1)

σ2St− + St−γ2(1 + γ1)
, L̃ = Γ · p̃Q̃ − γΓ(1 + γ1)

S−[σ2 + γ2(1 + γ1)]
· S. (3.32)

This allows us to state the following.

Corollary 3.3. Consider the model described by (3.25)-(3.26). Then the following assertions hold.

(i) The GKW-decomposition of Ṽ under Q̃ is given by

Ṽ = Ṽ0 + ξ̃ · S + L̃,

where ξ̃ and L̃ are given by (3.32).
(ii) The FS-decomposition of H and the GKW-decomposition under Q̃ for Ṽ differ.

Proof. The first assertion is already proved, while the second assertion will follow after proving
that the process Φ̃ defined in Theorem 3.2 for this model never vanishes. The calculation of this
process requires the calculation of [[L̃, S], Ñ ], and [L̃, S]. Due to (3.32), these processes are given
by

d[L̃, S]t =
St−γΓtσ

2

σ2 + γ2(1 + γ1)
dpt − γΓtSt−σ2(1 + γ1)

σ2 + γ2(1 + γ1)
dt, [[L̃, S], Ñ ] =

γ1S−γΓσ2

σ2 + γ2(1 + γ1)
· p.

As a result, we derive

Φ̃t =
−µγσ2

(γ2 + σ2)2(σ2 + γ2(1 + γ1))
γΓt

St−
. (3.33)
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Then, by putting s1(t) := log( K
St− ) and s2(t) := log( K

St−(1+γ)), and using

fx(t, x) = −
∫ log(K/x)

−∞
eyFy(T − t, y)dy,

we obtain

Γt = f(t, St−(1 + γ))− f(t, St−)− fx(t, St−)St−γ

= KF (T − t, s2(t))−KF (T − t, s1(t))− St−(1 + γ)
∫ s2(t)

−∞
eyFy(T − t, y)dy+

+St−
∫ s1(t)

−∞
eyFy(T − t, y)dy + St−γ

∫ s1(t)

−∞
eyFy(T − t, y)dy

=
∫ s2(t)

s1(t)

[
K − St−(1 + γ)ey

]
Fy(T − t, y)dy.

This proves that Γt is a positive process if γ 6= 0. By (3.33) the process Φ̃ then also has a con-
stant sign and never vanishes if (3.26) holds. Therefore, ξ̃ and ξH (see the FS-decomposition of H
in (2.10)) never coincide and hence the FS-decomposition and the GKW-decomposition under Q̃
differ for this model. ¤

Through this practical example, we proved that Riesner’s results in [25] (which are based on the fact
that the FS-decomposition and the GKW-decomposition under the minimal martingale measure
coincide) as well as Cont-Tankov’s result in [14], Section 10.4, are wrong (this fact was noticed in
[33] without any proof).
In the following subsection, we will detail the difference between the two decompositions.

3.2. Martingales under Q̃ versus P -martingales
The main difference between the FS-decomposition and the GKW-decomposition consists of

two facts: The first one deals with the inheritance of the P -orthogonality to M from the Q̃-
orthogonality to S for a Q̃-local martingale (see the definition below for the orthogonality of
semimartingales). The second fact is concerned with the characterization of Q̃-local martingales
that are P -local martingales. Both facts are intimately related to each other, while the first fact
can be incorporated into the second fact through the definition below. Thus, due to the use of
predictable characteristics of S and Theorem 2.1, we will identify the Q̃-local martingales parts
that preserve the local martingale property under P .

Definitions 3.4. Let Q be a probability measure, and K and L be two Q-semimartingales.
1) K is said to be orthogonal to L under Q if the process [L,K] is a Q-local martingale.
2) K is said to be Q-locally integrable if the nondecreasing process, sup

s≤·
|Ks|, is Q-locally integrable

(i.e. it belongs to A+
loc(Q), or in other words K is a special semimartingale under Q).

It is obvious that, through this extension of the definition of the orthogonality to semimartin-
gales, the preservation of the orthogonality when switching from Q̃ to P reduces to the preservation
of the martingale property under the same change of measures, and this enhances our focus on
characterizing the preservation of the martingale property only (Proposition 3.6). However, due
to the specificity of the measure Q̃, in the following we will show that also the preservation of the
orthogonality implies the preservation of the martingale property.
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Proposition 3.5. Let L be a Q̃-local martingale. Then, L is P -locally integrable and is P -
orthogonal to M if and only if L is a P -local martingale that is orthogonal to M .

Proof. L is P -locally integrable if and only if there exist a P -local martingale, L, and a predictable
process with finite variation, B, such that

L = L + B.

Then, due to 〈L,M〉 = 〈L,M〉, we deduce that L is P -orthogonal to M if and only if L is P -
orthogonal to M in one hand. On the other hand, L is a Q̃-local martingale if and only if

B = −〈L, Ñ〉 = −〈L,M〉 · λ̃.

Thus we deduce that if L is a Q̃-local martingale and is P -orthogonal to M , then B = 0. This
ends the proof of the lemma. ¤

In the following we will elaborate our main results in this subsection.

Proposition 3.6. The following assertions hold:
(i) Let X and Y be two Q̃-local martingales such that [S,X] = 0, and there exists an Õ-measurable

functional, g, such that Y = g ? µ (with M Q̃
µ (g|P̃) = 0). Then X (respectively Y ) is a P -local

martingale if and only if X (respectively Y ) is P -locally integrable.
(ii) Let Z be a Q̃-local martingale whose decomposition through Theorem 2.1 is given by

Z = Z0 + β · Sc,Q̃ + W ? (µ− νQ̃) + g ? µ + Z ′, Wt(x) := ft(x) +
∫

ft(y)νQ̃({t}, dy)

1− νQ̃({t}, IRd)
.

Then Z is a P -local martingale if and only if
(a) The processes (|f | ∧ |f |2) ? µ, g ? µ and Z ′ are P -locally integrable, and
(b) For P (dω)dAt(ω)-almost all (t, ω), we have

λ̃∗t ctβt +
∫ [

λ̃∗t x + λ̃∗t ∆〈M〉tλ̃t

]
Wt(x)Ft(dx) = 0. (3.34)

Proof. (i) Suppose that X and Y are P -locally integrable. Notice that for any Q̃-local martingale,
L, we have the following: L is a P -local martingale if and only if [L, X̃] is a Q̃-local martingale,
where

X̃ := −Ñ +
1

1 + ∆Ñ
· [Ñ , Ñ ] (3.35)

describes the change of measure from Q̃ to P and follows from 1/E(Ñ) = E(X̃). For any semi-
martingale X, we calculate

[X, X̃] = −
(
1 + ∆Ñ

)−1
· [X, Ñ ]

= −λ̃
(
1 + ∆Ñ

)−1
· [X, S]−

∑
λ̃∗∆〈M〉λ̃

[
1 + λ̃∗∆S + λ̃∗∆〈M〉λ̃

]−1
∆X.

(3.36)

Now suppose that X satisfies [X, S] = 0, then in particular, we have ∆S = 0 on the set {∆X 6= 0},
and (3.36) becomes

[X, X̃] = −
∑ λ̃∗∆〈M〉λ̃

1 + λ̃∗∆〈M〉λ̃
∆X = − λ̃∗∆〈M〉λ̃

1 + λ̃∗∆〈M〉λ̃
·X.
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The last equality is due to the fact that the process λ̃∗∆〈M〉λ̃
1+λ̃∗∆〈M〉λ̃ is thin and is bounded.

Hence the process [X, X̃] is a Q̃-local martingale when X is a Q̃-local martingale with [X,S] = 0.

Now suppose that X = g ? µ with M Q̃
µ

(
g | P̃

)
= 0. Then we get

[X, X̃] = −
∑

g(∆S)
λ̃∗∆S + λ̃∗∆〈M〉λ̃

1 + λ̃∗∆S + λ̃∗∆〈M〉λ̃
I{∆S 6=0} = G ? µ,

Gt(x) := −gt(x)
λ̃∗x + λ̃∗∆〈M〉λ̃

1 + λ̃∗x + λ̃∗∆〈M〉λ̃
.

Then, it is obvious that

M Q̃
µ

(
G | P̃

)
(t, x) =

λ̃∗x + λ̃∗∆〈M〉λ̃
1 + λ̃∗x + λ̃∗∆〈M〉λ̃

M Q̃
µ

(
g | P̃

)
(t, x) = 0.

Thus, X = g ? µ is a P -local martingale.

(ii) The proof of this assertion will be outlined in two steps. The first step (parts 1), 2), and 3)
below) will show that Z is P -locally integrable if and only if the assertion (ii)-(a) holds, while the
second step (part 4)) will prove that under the P -local integrability of Z, the P -compensator of Z
is zero if and only if the assertion (ii)-(b) is satisfied.

1) We start the first step by noticing that |f | ∧ |f |2 ? µ is a process with finite variation, since

its Q̃-compensator exists (|f | ∧ |f |2 ? νQ̃
T < +∞, P − a.s.). Therefore, |f | ∧ |f |2 ? µ is P -locally

integrable if and only if |f |I{|f |>1} ? µ is P -locally integrable, since the process |f |2I{|f |≤1} ? µ is a
locally bounded process. We also recall a result that constitutes a crucial tool in proving the first
step, which is Theorem 25 (Chapter VII) in [17]. Thanks to this theorem, a semimartingale K is
P -locally integrable if and only if the nondecreasing process sup

s≤·
|∆Ks| is P -locally integrable (i.e.

it belongs to A+
loc(P )). This is also equivalent to the fact that both processes sup

s≤·

[|∆Ks|I{∆Ss 6=0}
]

and sup
s≤·

[|∆Ks|I{∆Ss=0}
]

are P -locally integrable.

2) Due to (2.6) and the fact that [Z ′, S] = 0, the process

sup
s≤t

[
|∆Zs|I{∆Ss 6=0}

]
= sup

s≤t

[
|Ws(∆Ss)−Ŵ Q̃

s +gs(∆Ss)|I{∆Ss 6=0}
]

= sup
s≤t

|fs(∆Ss)+gs(∆Ss)|I{∆Ss 6=0},

is P -locally integrable if and only if the two processes sup
s≤t

|fs(∆Ss) + gs(∆Ss)|I{|fs(∆Ss)|>1, ∆Ss 6=0}

and sup
s≤t

|fs(∆Ss) + gs(∆Ss)|I{|fs(∆Ss)|≤1, ∆Ss 6=0} are P -locally integrable.

It is obvious that sup
s≤t

|fs(∆Ss) + gs(∆Ss)|I{|fs(∆Ss)|≤1, ∆Ss 6=0} is P -integrable if and only if the

process, sup
s≤t

|gs(∆Ss)|I{|fs(∆Ss)|≤1, ∆Ss 6=0}, is P -locally integrable or equivalently gI{|f |≤1} ? µ is

P -locally integrable since the latter process exists as semimartingale. Again, since the two pro-
cesses fI{|f |>1} ? µ and gI{|f |>1,} ? µ exist as semimartingales, then we deduce that sup

s≤t
|fs(∆Ss) +

gs(∆Ss)|I{|fs(∆Ss)|>1, ∆Ss 6=0} is P -locally integrable if and only if (f + g)I{|f |>1} ? µ is P -locally
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integrable. It is easy to verify that the P -compensator of K := (f + g)I{|f |>1} ? µ coincides with
the Q̃-compensator of

(
1 + ∆Ñ

)−1
·K =

f + g

1 + λ̃∗x + λ̃∗∆〈M〉λ̃
I{|f |>1} ? µ,

which is given by

M Q̃
µ

(
f + g

1 + λ̃∗x + λ̃∗∆〈M〉λ̃
| P̃

)
I{|f |>1} ? νQ̃ =

f

1 + λ̃∗x + λ̃∗∆〈M〉λ̃
I{|f |>1} ? νQ̃ = fI{|f |>1} ? ν.

As a result, this proves that (f +g)I{|f |>1}?µ is P -locally integrable if and only if both |f |I{|f |>1}?µ
and gI{|f |>1} ? µ are P -locally integrable. By combining all these conclusions we deduce that
|f |I{|f |>1} ? µ and g ? µ are P -locally integrable.

3) Now consider the following process

sup
s≤t

[
|∆Zs|I{∆Ss=0}

]
= sup

s≤t

[
| − Ŵ Q̃

s + ∆Z ′s|I{∆Ss=0}
]
. (3.37)

Thanks to [17] (Chapter VIII, Section 11), the process sup
s≤t

|Ŵ Q̃
s | is locally bounded, and as a result

the P -local integrability of sup
s≤t

[
|Ŵ Q̃

s |I{∆Ss=0}
]

follows. This implies that the process in (3.37) is

P -locally integrable if and only if sup
s≤t

|∆Z ′s| is P -locally integrable, or equivalently Z ′ is P -locally

integrable. Thus, by combining parts 1), 2), and 3), we conclude that the first step of our proof
for assertion (ii) is achieved.

4) Thanks to assertion (i) and the first step, we deduce that -under assertion (ii)(a)- Z is a P -local
martingale if and only if

Z(1) := β · Sc,Q̃ + W ? (µ− νQ̃),

has a null P -compensator. As a consequence the process Z(1) is P -locally integrable or equivalently
the process W ?(ν−νQ̃) makes sense. Hence, since β is Sc-integrable (in the semimartingale sense),
we obtain

W ? (µ− νQ̃) = W ? (µ− ν) + W ? (ν − νQ̃), β · Sc,Q̃ = β · Sc − λ̃∗cβ ·A.

Then, these equations imply that Z(1) is a P -local martingale if and only if

0 = W ? (ν − νQ̃)− λ̃∗cβ ·A = −
[
λ̃∗x + λ̃∗∆〈M〉λ̃

]
W ? ν − λ̃∗cβ ·A.

Therefore, (3.34) follows. This ends the proof of the proposition. ¤

Remarks: 1) A particular case of the first assertion in Proposition 3.6 is the case when X is a
continuous Q̃-local martingale that is orthogonal to S under Q̃, then X is a P -local martingale
orthogonal to M .
2) As a consequence of the assertion (ii) of the proposition, we can immediately characterize the
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Q̃-local martingales that are orthogonal to S under Q̃ and remain P -local martingales by combining
equation (3.34) and the equation related to the orthogonality with S.
3) We conclude this section by illustrating the results of this subsection on those of Theorem 3.2
as follows. It can be shown that Φ̃ is a null process if and only if L̃ (the martingale component
in the GKW-decomposition of Ṽ H under Q̃) is P -orthogonal to M . Indeed, notice that [L̃, S] is a
Q̃-local martingale if and only if [L̃,M ] is a Q̃-local martingale if and only if

0 = 〈L̃, M〉+ 〈Ñ , [L̃,M ]〉. (3.38)

Now we calculate

〈S〉 · Φ̃ = 〈Ñ , [L̃, S]〉 = 〈Ñ , [L̃,M ]〉 − λ̃∗∆〈M〉λ̃ · 〈M, L̃〉.

Therefore by inserting this equation into (3.38), we obtain

0 =
(
1 + λ̃∗∆〈M〉λ̃

)
· 〈L̃,M〉+ 〈S〉 · Φ̃.

Thus, Φ̃ is a null process if and only if 〈L̃,M〉 ≡ 0. This ends the proof of the claim.

4. The FS-decomposition via the predictable characteristics

This section proposes a description of the FS-decomposition – under some integrability condi-
tions that guarantee the existence of this decomposition – in terms of the predictable characteristics
of S. The following assumptions hold throughout the whole section.

Assumptions 4.1. We assume that there exists a constant C > 0 such that (3.11) holds.

Remarks:
(1) It is obvious that Assumptions 4.1 is weaker than Assumptions 3.1. That is in this section,
the minimal martingale measure may not exist as a measure, and/or its density may vanish. This
is an interesting generalization, especially when one is working with models that involve jumps
such as Lévy market models. In our view, the integrability condition of (3.11) is less restrictive
than the positivity of E(Ñ), since in many models considered in the literature the authors (see for
instance [6], and [7]) assume that

∫ T
0 λ̃∗sd〈M〉sλ̃s is bounded. Thanks to Proposition 3.7 in [8], this

condition implies (3.11).
(2) Due to Doob’s inequality, we deduce that for any n, TnE(Ñ) := E

(
Ñ − ÑTn

)
is a true martin-

gale, where
T0 = 0, Tn+1 := inf{t > Tn : ∆Ñt = −1} ∧ T, n ≥ 0.

In [8], we refer to this property by saying that E(Ñ) is regular. Therefore, Assumptions 4.1
guarantees for us the existence of the FS-decomposition for any square integrable FT -measurable
H (see Theorem 5.5 in [8] for details).
(3) Throughout this section, for any square integrable FT -measurable H we denote

Ṽ H
t :=

[
TnE(Ñ)t

]−1
E

(
TnE(Ñ)T H | Ft

)
, Tn ≤ t < Tn+1. (4.39)

Proposition 4.2. The following assertions hold.
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(1) The process
K̃t := Ṽ H

t − Ṽ H
0 + 〈Ṽ H , Ñ〉t, (4.40)

is a P -local martingale.
(2) If (H0, ξ

H , LH) are the FS-decomposition components of H, then

Ṽ H
t = H0 +

(
ξH · S)

t
+ LH

t . (4.41)

Proof:
(1) This assertion follows from a combination of Proposition 3.12-(iii), and Corollary 3.16 of [8].
(2) Since S + [S, Ñ ] and [LH , Ñ ] are P -local martingales, it is easy to check that for any n ≥ 0,
the processes TnE(Ñ)

[
(ξH · S)− (ξH · S)Tn

]
and TnE(Ñ)

[
LH − LH

Tn∧·
]

are P -local martingales.
Furthermore, these processes are uniformly integrable due to (3.11) and the integrability of ξH · S
and LH . Then, for t ≥ Tn we derive

E
[
TnET (Ñ)

(
(ξH · S)T − (ξH · S)Tn

)
|Ft

]
= TnEt(Ñ)

(
(ξH · S)t − (ξH · S)Tn

)
,

E
[
TnET (Ñ)

(
LH

T − LH
Tn

)
|Ft

]
= TnEt(Ñ)

(
LH

t − LH
Tn

)
.

As a result, due to TnEt(Ñ) 6= 0 on {Tn ≤ t < Tn+1}, we deduce that

Ṽ H
t = H0 + (ξH · S)t + LH

t .

This ends the proof of the second assertion. ¤

Now we will state the main result in this section.

Theorem 4.3. Consider a square integrable FT -measurable random variable H, and denote by(
H0, ξ

H , LH
)

its FS-decomposition components. Then the following holds

ξH = Σinv

{
cφ̃ +

∫
xf̃(x)F (dx)

}
, LH = Ṽ H − ξH · S. (4.42)

Here (φ̃, f̃ , g̃, K̃ ′) is the quadruplet associated to K̃ through Theorem 2.1, and Σ is a random
symmetric matrix defined in (3.16).

Proof. By applying Jacod’s Theorem (Theorem 2.1) to the P -local martingale K̃, we obtain

K̃ = φ̃ · Sc + W̃ ? (µ− ν) + g̃ ? µ + K̃ ′,

W̃t(x) := f̃t(x) +
1

1− at

∫
f̃t(y)ν({t}, dy).

(4.43)

Another application of Theorem 2.1 now to LH leads to

LH = φ⊥ · Sc + W⊥ ? (µ− ν) + g⊥ ? µ + LH ,

W⊥
t (x) := f⊥t (x) +

1
1− at

∫
f⊥t (y)ν({t}, dy).

(4.44)

Since 〈Ṽ H , Ñ〉 = λ̃ · 〈Ṽ H ,M〉, then thanks to (4.40) we calculate

〈Ṽ H ,M〉 = 〈K̃,M〉 = 〈K̃, S〉 =
{

cφ̃ +
∫

xf̃(x)F (dx)
}
·A,

16



and by plugging this resulting quantity into (4.40) while taking into account (4.43), we get on one
hand

Ṽ H = Ṽ H
0 + φ̃ · Sc + W̃ ? (µ− ν) + g̃ ? µ + K̃ ′ −

(
λ̃∗cφ̃ +

∫
λ̃∗xf̃(x)F (dx)

)
·A.

On the other hand, by using (4.41), (4.44), and 〈M〉+
∑(

∆〈M〉λ̃
)(

∆〈M〉λ̃
)∗

= 〈S〉, we obtain

Ṽ H = H0 +
(
ξH +φ⊥

)
·Sc +

(
W⊥+x∗ξH

)
? (µ−ν)+g⊥ ?µ+LH − λ̃∗cξH +

∫
λ̃∗xx∗ξHF (dx)

1 + λ̃∗∆〈M〉λ̃
·A.

Therefore, due to the uniqueness of Jacod’s decomposition (Lemma 2.2) and that of the Doob-
Meyer decomposition, we conclude that

cφ̃ = cξH + cφ⊥, f̃(x) = x∗ξH + f⊥(x) g̃(x) = g⊥(x), LH = K̃ ′. (4.45)

Thus by transforming the first two equations above, we derive

cφ̃ +
∫

xf̃(x)F (dx) = cξH + cφ⊥ +
∫

xx∗ξHF (dx) +
∫

xf⊥(x)F (dx)

= ΣξH + cφ⊥ +
∫

xf⊥(x)F (dx).
(4.46)

Since LH satisfies

〈LH ,M〉 = 〈LH , S〉 =
(

cφ⊥ +
∫

xf⊥(x)F (dx)
)
·A = 0,

then the equation (4.46) reduces to

ΣξH = cφ̃ +
∫

xf̃(x)F (dx),

and the first equation in (4.42) follows immediately. This ends the proof of the theorem. ¤

Remark When the FS-decomposition exists, it is clear that the ingredient ξH can be obtained
as the Radon-Nikodym derivative of d〈Ṽ H ,M〉 with respect to d〈M〉. However, our description of
this ingredient using the predictable characteristics has other impacts:

(1) Through the use of the predictable characteristics, the variation of the FS-decomposition with
additional jumps and/or uncertainty will be easy to handle. Furthermore, this illustration
using the predictable characteristics is helpful in avoiding pitfalls and misleading generaliza-
tions of results such as those of [25] and [14] (Section 10.4). Many practical market models are
described using the predictable characteristics such as Barndorff-Nielsen-Shephard models,
see [4] and [26] and the reference therein about these models and related subjects. Hence,
we think that our description of the FS-decomposition will be useful for those models.

(2) Recently, the more explicitly characterized optimal martingale measures in the literature are
expressed in terms of the predictable characteristics, see [10], [11], and [12] for semimartingale
framework, and [4], [20], [23], and [24] for models driven by Lévy processes. Thus, we believe
that our current description of the FS-decomposition is suitable for those contexts.
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(3) Finally, as it will be illustrated in the following example, our description generalizes the
approach of [13] and [33] to the semimartingale context where the predictable martingale
representation may be violated in one hand. On the other hand the predictable characteristics
are the extension of Lévy characteristics for models driven by semimartingales.

A Practical Example: Consider a market model for which At = t and Assumption 4.1 holds.
Let H be a FT -measurable random variable such that the process Ṽ H satisfies

Ṽ H
t = EQ̃(H|Ft) = f(t, St), (4.47)

where f(t, x) is a C1,2((0, T )×Rd)-function. This case generalizes the examples that are frequently
used in the literature, such as those treated in [13] and [33]. By applying Itô’s formula, we find

Ṽ H
t = Ṽ H

0 +
∫ t

0
fx(s, Ss−)dSs +

∫ t

0
[ft(s, Ss) +

1
2
csfxx(s, Ss−)]ds

+
∑

0<s≤t
[f(s, Ss)− f(s, Ss−)− fx(s, Ss−)∆Ss].

Since Ṽ H is a special semimartingale, then by compensating the last term in the RHS of the above
equation and simplifying the resulting equation, we obtain

Ṽ H = Ṽ H
0 + fx(·, S−) · Sc +

[
f(·, S− + x)− f(·, S−)

]
? (µ− ν) + B̃,

where B̃ is a predictable process with finite variation. Therefore, this leads to the description of
the process K̃ defined in (4.40), and hence to the FS-decomposition of H as follows.

Corollary 4.4. The following assertions hold:

(1) The process K̃ is given by

K̃ = fx(·, S−) · Sc +
[
f(·, S− + x)− f(·, S−)

]
? (µ− ν). (4.48)

(2) The FS-decomposition of H is given by

ξH = Σinv

[
cfx(·, S−) +

∫

Rd

x[f(·, S− + x)− f(·, S−)]F (dx)
]

, LH = Ṽ H − Ṽ H
0 − ξH · S.

Proof. The proof of the first assertion is obvious from the previous calculation, while the second
assertion is an immediate application of Theorem 2.1 and the fact that the quadruplet of L̃ through
Theorem 4.3 is (fx(·, S−), [f(·, S− + x)− f(·, S−)], 0, 0). ¤
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