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Abstract—The exponential growth in Artificial Intelligence
(AI) adoption presents unique challenges and opportunities for
deploying AI workloads in modern Data Center (DC) networks,
particularly in terms of performance, scalability, and reliability.
AI workloads, such as inference and distributed training, impose
different network demands: inference is primarily compute-
bound and typically requires low network latency, while dis-
tributed training is network-bound and requires high bandwidth,
placing significant strain on the network. This paper focuses
on the network requirements of widely known AI commu-
nication patterns, and studies their impact on modern DC
architectures by analyzing the effects of different orchestration
strategies—specifically packing and spreading—on throughput,
response time, and network congestion. The results show that
packing strategies generally deliver higher performance for most
covered AI collectives. However, spreading strategies can be
beneficial in certain scenarios, such as when larger workloads
span across higher number of racks, as they can help mitigate
network congestion between the switches of leaf-spine network
configurations. This paper offers valuable insights into optimiz-
ing the orchestration of popular AI collectives in data center
networks, presenting informed strategies to improve performance
in response to growing AI demands, with findings demonstrating
completion time reductions of up to 30%.

Index Terms—Artificial Intelligence, Data Center, Orchestra-
tion, Performance, Simulation

I. INTRODUCTION

The rapid growth of Artificial Intelligence (AI) applications
has fundamentally transformed the demands on modern Data
Center (DC) networks [1]. From autonomous systems to large-
scale natural language processing models, AI workloads are
becoming increasingly diverse and complex, presenting unique
challenges and opportunities for modern DCs [2]. These work-
loads impose strict requirements for performance, scalability,
and reliability, necessitating innovative strategies to optimize
their orchestration within DC environments [3].

Recent advances in AI have led to an increased interest
in Generative Artificial Intelligence (GenAI) systems, such as
Foundation Models (FMs) [4] and Large Language Models
(LLMs) [5]. This has driven exponential growth in both the
size of training datasets and the number of model parameters,
as illustrated in Fig. 1. Industry best practices now commonly
involve models with millions to billions of parameters [6], [7],
with recent breakthroughs extending into the trillion-parameter
range [8]. As a result, highly parallelized AI training has
become standard practice, involving a plethora of bandwidth-
hungry tasks operating in synchrony, which demand high-

speed networks to efficiently interconnect the constantly in-
creasing number of computing chips [9].

AI workloads can be broadly classified into inference and
training tasks [10]. Inference tasks are typically compute-
bound, requiring efficient processing capabilities and low
latency networks to deliver real-time predictions. In contrast,
training tasks are mostly network-bound, depending on high
bandwidth links and switches to facilitate the exchange of
model parameters across multiple servers. These requirements
present significant challenges in efficient orchestration in
modern DC environments, as a mix of both AI and non-AI
applications is run by multiple users. On one hand, network-
bound workloads, such as distributed training for LLMs [11],
require Remote Direct Memory Access (RDMA) networks
and network locality to meet their requirements, while other
reliability-focused workloads, such as storage, can function
more effectively over Transmission Control Protocol (TCP)
and more diverse orchestration strategies [12]. This trade-off
complicates orchestration decisions, making it challenging to
identify the most appropriate strategy each time.

This paper studies the impact of widely used AI communi-
cation patterns, such as those from all-to-all and all-gather
operations, on modern DC architectures [13], providing a
comprehensive analysis of their performance characteristics.
We explore the trade-offs between packing and spreading
orchestration strategies, highlighting scenarios where each ap-
proach proves advantageous. This work builds on our previous
work [14], where we introduced Chic-sched, a placement-
group scheduler designed for distributed workloads on hier-
archical topologies. Chic-sched operates with loosely defined
constraints, such as packing and spreading, and avoids retries
by offering suboptimal orchestration strategies that reduce
placement failures. In this work, we evaluate the impact
of Chic-sched strategies on the communication overhead of
common collective operations used in modern AI workloads.

The main contributions of this paper are twofold:

• Performance Evaluation with Popular AI Communi-
cation Patterns: We study the performance of various
orchestration strategies based on packing and spreading.
The study considers a model of a modern DC infras-
tructure inspired by IBM Vela [13], a supercomputing
platform integrated into the IBM Cloud and optimized
for AI workloads. Vela provides scalable, dynamic, multi-
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Fig. 1: The evolution of GenAI workloads over recent years,
showing the increase in model sizes measured by the number
of parameters (in billions) [15].

tenant, and geographically distributed infrastructure for
large-scale model training and other AI workflow pro-
cesses. The results indicate that packing workloads within
a single rack generally leads to higher performance, es-
pecially in terms of completion/execution time. However,
spreading workloads across multiple racks can be advan-
tageous in certain scenarios as it can help mitigate net-
work congestion between switches of leaf-spine network
configurations. In many cases, the proper orchestration
strategy can reduce the execution time of AI collectives
by up to 30%.

• Valuable Insights for Developers and DC Architects:
By exploring diverse orchestration strategies, this paper
highlights key factors that influence the performance and
efficiency of DC networks in supporting demanding AI
workloads. These insights are valuable in understanding
how DCs can be adapted to handle the growing demands
of future workloads, ensuring that the infrastructure is
scalable, efficient, and robust for a wide variety of de-
ployment environments.

The remainder of this paper is organized as follows: Sec-
tion II reviews prior studies on AI and DC design, focusing on
the performance impact of these highly demanding workloads.
Section III details the methodology used, including the sim-
ulation framework and the associated parameters. Section IV
describes the experimental setup, while Section V presents the
results, discusses the main findings, and highlights the trade-
offs between various placement strategies. Finally, Section VI
concludes the paper and suggests directions for future research.

II. RELATED WORK

Data Center (DC) Networking has evolved to meet the
growing demands of AI workloads, particularly those requir-
ing high bandwidth and low latency. Previous studies [16],
[17], [18] have highlighted the role of advanced interconnect
technologies, such as RDMA and InfiniBand, in facilitating
efficient communication between servers. These technologies
are crucial for network-bound workloads, such as distributed

AI training, where timely exchange of model parameters
is essential. Efforts to optimize network architectures have
focused on mitigating congestion and ensuring predictable
latency [19], [20], [21]. In addition, other studies have shown
that topology-aware routing and load balancing mechanisms
can significantly improve network performance [22], [23],
[24]. More recently, disaggregated DCs, combined with optical
connections, have been proposed to improve scalability and
reduce power consumption [25], [26].

AI Application Modeling is essential for understanding the
unique demands that AI applications place on DC networks.
Recent studies [27], [28], [29], [30] have investigated the
impact of AI communication patterns on network performance.
However, such studies often rely on simplified formulations
for the networking component and offer limited support for
integrating more advanced network simulators, such as ns-3
[31] and OMNeT++ [32]. To analyze the orchestration of AI
applications efficiently, both their communication patterns and
the DC topology must be considered, as understanding them is
key to reducing network overhead and minimizing workload
execution time.

This paper builds upon prior studies by analyzing the
interplay between common AI communication patterns and
widely used orchestration strategies in modern DC infras-
tructures, evaluating their impact on application performance.
These insights can help optimize AI workload orchestration in
current and next-generation cloud environments.

III. METHODOLOGY

This section presents the methodology used to assess the
performance of AI workloads using a discrete-event network
simulator. The simulation parameters employed in the experi-
ments are detailed in Section IV.

A. Discrete-Event Simulator Overview

In our experiments, we use the Venus discrete-event network
simulator [33], which is developed on top of the queue-
based OMNEST simulation framework [34]. Venus, developed
within IBM Research, has been widely utilized in various
projects over the years [35], [36]. This study leverages Venus
to evaluate the performance of various collective operations
under different orchestration strategies, focusing on packing
and spreading approaches. The considered collectives exhibit
communication patterns commonly encountered in both AI
workloads and other scientific parallel applications, and they
are described in the next section in detail. The analysis covers
both fixed- and varying-sized collectives, executed across
different number of racks and under different orchestration
schemes. This includes scenarios in which combinations of
two AI collective operations are executed simultaneously.
The goal is to identify optimal orchestration strategies that
maximize throughput and minimize completion time.

B. AI Communication Patterns

The communication patterns of collective operations play a
significant role in the performance of AI and scientific work-
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Fig. 2: A schematic overview of the evaluated AI communication patterns for 4 communicating nodes.

loads, especially in large-scale data exchange and synchroniza-
tion scenarios. This study considers three popular collective
operations, as illustrated in Fig. 2. These patterns represent
both single- and multi-phased operations and include All-to-
All (Fig. 2a), All-Gather (Fig. 2b), and All-Reduce (Fig. 2c).
It is important to note that the exact network footprint of each
operation is highly dependent on the specific implementation
of the collective communication library. The examples shown
in Fig. 2 are used solely for the purposes of this analysis and
are not intended to represent a one-to-one correspondence with
any specific library implementation.

All-to-All involves every node in the application exchanging
data with all other nodes. This pattern is commonly used in
distributed training and data-parallel computations where inter-
mediate results need to be shared among all participants. The
communication overhead grows with the number of participat-
ing nodes, making it particularly sensitive to network topology
and orchestration strategies. From a single-node perspective,
All-to-All follows a deterministic sequence of N − 1 phases,
where N represents the total number of participating nodes.
Each successive phase involves communication between each
node and a different destination node, resulting in a total of
N × (N − 1) messages exchanged.

All-Gather involves each node collecting data from all other
nodes, so that after the operation, each node has the full
dataset. This pattern is frequently found in AI workloads,
such as parameter synchronization in distributed deep learning
after gradient updates, and is used in popular Deep Learning
(DL) frameworks like TensorFlow and PyTorch [37]. The
performance of this operation is highly dependent on the
efficiency of multiple parallel data transfers between nodes.

All-Reduce consists of two distinct phases: reduction and
broadcast. In the reduction phase, each node contributes its
data for a specified reduction operation (e.g., sum, min, max),
after which the result is broadcast to all nodes. The reduction
phase typically occurs at a central point, but it may also be
performed in a distributed manner across all nodes. In this
study, from a communication patterns perspective, we consider
the combination of All-to-All followed by All-Gather as a
method for approximating the data flow of All-Reduce. By
first simulating the All-to-All pattern, we distribute the data
across the system, simulating a distributed reduction. Then,
by simulating All-Gather, we effectively collect the distributed
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Fig. 3: An overview of the DC architecture modeled in the
Venus simulator [13].

data at each node, ultimately providing the final aggregated
result [38]. This communication pattern is critical for tasks
such as gradient synchronization in distributed model training,
data aggregation in distributed databases, and the efficient
combination and analysis of data in big data analytics.

These communication patterns are essential for understand-
ing the impact of different orchestration strategies on work-
load performance. By analyzing them in conjunction with a
detailed DC infractucture model, we aim to identify efficient
orchestration methods that minimize communication overhead
and optimize the performance of distributed AI and scientific
workloads.

IV. EVALUATION SETUP

This section provides an overview of the modeled DC
infrastructure, along with the evaluated scenarios and orches-
tration strategies.

A. Data Center (DC) Infrastructure Model

Fig. 3 provides an overview of the DC infrastructure mod-
eled in the Venus simulator, inspired by Vela, a horizontally
scalable DC supercomputer built by IBM that incorporates a
two-layer leaf-spine network. In 2023, IBM released archi-
tectural details and design principles behind Vela, which is
the first cloud-native AI supercomputer seamlessly integrated
into IBM Cloud [39]. Vela is designed with flexibility and
scalability at its core and is capable of training today’s large-
scale GenAI models while remaining adaptable to future



demands [13]. As shown in Fig. 3, each compute node in
our model is connected to two leaf switches via four 100G
network interfaces. The network comprises eight leaf switches
and four spine switches, arranged in a two-level Clos topology
with Equal-Cost Multi-Path routing (ECMP) routing. Each leaf
switch has a 2:3 oversubscription ratio and is connected to
each spine via two 100G links. This results in a total rack
bandwidth of 1.6 Tbps per direction as there are two leaf
switches per rack. This configuration ensures uninterrupted
operation in the event of Network Interface Card (NIC), leaf,
or spine switch failures. The model consists of a total of 24
servers, arranged in four racks of six servers in each. It should
be noted that while our model is inspired by Vela, it is not
intended to be a one-to-one representation, as Vela is a larger
system, and not all of its components are modeled in Venus,
such as the Graphics Processing Units (GPUs) and the full
Software-Defined Networking (SDN) stack.

B. AI Collective Scenarios

TABLE I: Evaluated AI collectives based on their size.

Name
Message

Size (MB)
AI

pattern Description
4n

[1.0,
10.0,
100.0]

[All-to-All,
All-Gather,
All-Reduce]

The operation runs on 4 nodes.
6n The operation runs on 6 nodes.
8n The operation runs on 8 nodes.

12n The operation runs on 12 nodes.

4n 6n Two operations simultaneously:
1st on 4 nodes and 2nd on 6.

6n 8n Two operations simultaneously:
1st on 6 nodes and 2nd on 8.

TABLE II: Evaluated orchestration strategies for the AI col-
lectives presented in Table I.

Orch. Strategy Node Identifiers (Ids)
4n 1r [1, 2, 3, 4]
4n 2r [1, 2, 7, 8]
4n 3r [1, 2, 7, 8]
4n 4r [1, 7, 13, 19]
6n 1r [1, 2, 3, 4, 5, 6]
6n 2r [1, 2, 3, 7, 8, 9]
6n 3r [1, 2, 7, 8, 13, 14]
6n 4r [1, 2, 7, 8, 13, 19]
8n 2r [1, 2, 3, 4, 7, 8, 9, 10]
8n 3r [1, 2, 3, 7, 8, 9, 13, 14]
8n 4r [1, 2, 7, 8, 13, 14, 19, 20]
12n 2r [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
12n 3r [1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16]
12n 4r [1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21]

4n 1r 6n 1r [1, 2, 3, 4] & [7, 8, 9, 10, 11, 12]
4n 2r 6n 2r [1, 2, 7, 8] & [13, 14, 15, 19, 20, 21]
4n 3r 6n 3r [1, 2, 7, 13] & [8, 9, 14, 15, 19, 20]
4n 4r 6n 4r [1, 7, 13, 19] & [2, 3, 8, 9, 14, 20]
6n 1r 8n 2r [1, 2, 3, 4, 5, 6] & [7, 8, 9, 10, 13, 14, 15, 16]
6n 2r 8n 2r [1, 2, 3, 7, 8, 9] & [13, 14, 15, 16, 19, 20, 21, 22]
6n 3r 8n 3r [1, 2, 7, 8, 13, 14] & [9, 10, 11, 15, 16, 17, 19, 20]
6n 4r 8n 4r [1, 2, 7, 8, 13, 19] & [3, 4, 9, 10, 14, 15, 20, 21]

Table I summarizes the scenarios evaluated in this work.
Each scenario is characterized by the number of nodes in-
volved in the operation, the message size exchanged, and
the communication pattern. These collective operations are
designed to represent a broad spectrum of scenarios com-
monly encountered in distributed AI workloads. Each pattern

is simulated using message sizes of 1 MB, 10 MB, and
100 MB to represent varying data transfer requirements. In
all scenarios, the packet size is fixed at 1 KiB, meaning
that larger messages are segmented into multiple contiguous
packets. These scenarios provide a comprehensive analysis
of the interaction between different communication patterns,
message sizes, and node counts, offering valuable insights
into the performance of typical AI collectives under various
orchestration strategies.

C. Orchestration Strategies

Table II summarizes the orchestration strategies used in
our evaluation. These strategies vary based on how the work-
loads are distributed across racks, simulating a wide range
of deployment scenarios in modern DC environments. The
placement strategies are categorized based on the number of
nodes involved in the operations (i.e., 4, 6, 8, or 12 nodes)
and their distribution across one or more racks. For example,
the 4n 1r strategy uses four nodes co-located within a single
rack, minimizing communication overhead and simulating a
compact deployment. In contrast, the 6n 3r strategy distributes
six nodes across three distinct racks, increasing inter-rack
communication and mimicking a more dispersed workload.
The last group of strategies represents scenarios in which
two collectives run concurrently. For instance, 6n 1r 8n 2r
represents one collective executing on six nodes within a
single rack, while the second collective operates across eight
nodes distributed over two racks. It should be noted that the
term node does not refer to a server, but rather to a virtual
entity with a single or multiple network interfaces, such as a
container or Virtual Machine (VM), executing the workload
on a physical server. Thus, each server may use one or
more network interfaces during the simulation of an operation,
depending on the type or number of nodes placed on it, a
detail that is described further on a per-scenario basis. Each
strategy is designed to assess the communication overhead,
which directly affects overall workload performance:

• Single-Rack Placement: All nodes are placed in a single
rack, ensuring that only intra-rack communication takes
place. For example, the 4n 1r strategy places all four
nodes on separate servers within the same rack.

• Multi-Rack Placement: Nodes are distributed across
two, three, or four racks, introducing varying levels of
inter-rack communication overhead. For example, in the
4n 4r strategy, the four nodes are placed on separate
servers in distinct racks, maximizing inter-rack commu-
nication.

• Concurrent Collectives: Some strategies involve running
two collectives simultaneously, each with a different node
count and placement configuration. For example, the
4n 1r 6n 1r strategy runs a 4-node collective on four
servers in one rack and a 6-node collective on six servers
in another rack.

Each strategy is simulated 30 times to ensure statistical
significance, with the results presented with a confidence



interval of 95%. The entire simulation process, which includes
all strategies and collectives, was fully automated using custom
shell scripts.

D. Performance Metrics

In modern DC networks, the performance of collective oper-
ations is strongly influenced by the underlying communication
patterns and orchestration strategies. In this study, we evaluate
performance using the following key metrics:

• Throughput (in Gbit/s): Measures the rate at which
packets are transmitted across the network, expressed in
gigabits per second. The throughput per interface (i.e.,
determined by the number of network endpoints involved
in the collective operation) is also provided.

• Completion Time (in ms): Measures the time required
for the collective operation to complete, expressed in
milliseconds. This includes all communication delays,
such as queuing, transmission, and propagation delays.

• Number of Hops: Used to evaluate the distribution of
packets based on the number of hops they traverse across
the network. A hop refers to the transmission of a packet
through a network switch. The analysis differentiates
between packets that travel:

- 1 hop : Communication within the same rack, i.e.,
intra-rack communication

- 3 hops : Communication between different racks, i.e.,
inter-rack communication.

These metrics provide valuable insights into the network’s
ability to handle the demands of the simulated operations,
helping to identify potential bottlenecks or inefficiencies
caused by the chosen orchestration strategy.

V. RESULTS

A. All-to-All

Fig. 4 shows the completion time, i.e., execution time, of
the All-to-All operation and demonstrates its sensitivity to
message size, orchestration strategy, and number of nodes,
with each participating node using a single server network
interface. For a message size of 1 MB, the collective’s exe-
cution time remains relatively bounded, even as the number
of nodes and racks increases. However, configurations with
more racks consistently exhibit higher execution times due to
network contention for the shared link resources required for
inter-rack communication, highlighting the importance of an
optimized placement strategy. In contrast, for a message size of
10 MB, the execution times increase significantly, particularly
in configurations with more nodes and racks. This increase is
driven by the larger data volumes that are exchanged between
the nodes, which contribute to greater network congestion
and communication overhead. For larger collectives that do
not fit within a single rack (assuming one node per server),
such as those with eight or twelve nodes, distributing them
across multiple racks appears advantageous. Considering the
oversubscription ratio at the leaf layer, distributing the nodes
across multiple racks provides higher inter-node bandwidth

overall, which helps better balance the traffic toward the spines
and reduces congestion and delays compared to scenarios
with fewer racks. Fig. 5 shows the measured throughput
during the execution of the operation for a message size of
10 MB, revealing a trend similar to that of the execution
time. When the job does not fit within a single rack, strategies
that effectively distribute the workload across multiple racks
perform slightly better.

When the nodes are located within a single rack, execution
times are significantly lower and more consistent, even for
larger message sizes. This is shown in the results of Fig. 6,
which considers the additional scenarios in Table III. In
contrast to the scenarios of Fig. 4, these scenarios utilize
multiple interfaces per server, as multiple single-interface
nodes are co-located on the same server. For example, in the
4n 3 1 strategy, there are three network interfaces used on
server 1, and one network interface used on server 2. For four-
node scenarios without spine-crossing, execution times remain
uniform across runs, as traffic avoids the variability introduced
by network contention for shared resources. In other words,
ECMP collisions are eliminated since no traffic crosses the
spines. In cases where spine crossing occurs—i.e., when traffic
moves between switches within the same rack—execution time
increases slightly and varies across runs, as network contention
cannot be completely eliminated. Increasing to six nodes
within the same rack results in further increase in execution
time, mainly due to the higher volume of data that needs to
be exchanged. Compared to multi-rack strategies, performance
remains constantly better.

When multiple collectives run concurrently, packing each
collective into a dedicated rack proves beneficial, as illustrated
in Fig. 7. This strategy reduces interference between AI
collectives, allowing each to take advantage of localized com-
munication. These findings suggest that a balanced placement
strategy—whether spreading or packing—tailored to job size
and the characteristics of concurrent collectives is essential for
optimizing performance.

B. All-Gather

The All-Gather communication pattern has been evaluated
for two cases: one where each participating node uses a single
server network interface (Figures 8a - 8d), and another where
each node uses all four server network interfaces (Figures 8e
- 8h). These scenarios are run for a message size of 100 MB
(injected per interface). In the single-interface case, the results
show minimal variation across different placement strategies
and collective sizes. This suggests that, in this configuration,
placement strategies have a minimal impact on the operation’s
performance. Whether the nodes are packed within a single
rack or spread across multiple racks, execution time remains
relatively consistent. In contrast, when all four interfaces are
used by the nodes, significant differences are observed, mir-
roring the trends seen in the All-to-All pattern. For smaller col-
lective operations (i.e., 4- and 6-node configurations), packing
within a single rack minimizes the execution time, resulting in
execution time reductions of 10% to 30%. However, as the size
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Fig. 4: Execution time and standard deviation (in ms) for the All-to-All pattern.
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Fig. 5: Total throughput (in Gbit/s) for the All-to-All pattern for a message size of 10 MB.
TABLE III: Additional strategies for workload placement within a single rack.

Placement Strategy Node Identifiers (Ids) Description
4n 1 1 1 1 [1, 2, 3, 4] Four nodes spread on separate servers.
4n 2 1 1 [1, 1, 2, 3] Two nodes placed on server 1 and two nodes spread on separate servers.
4n 2 2 [1, 1, 2, 2] Two nodes places on server 1 and two nodes placed on server 2.
4n 3 1 [1, 1, 1, 2] Three nodes placed on server 1 and one node plaed on server 2.
4n 4 [1, 1, 1, 1] Four nodes placed on server 1.
6n 1 1 1 1 1 1 [1, 2, 3, 4, 5, 6] Six nodes spread on separate servers.
6n 1 1 1 1 2 [1, 1, 2, 3, 4, 5] Two nodes placed on server 1 and four nodes spread on separate servers.
6n 1 1 2 2 [1, 1, 2, 2, 3, 4] Two nodes placed on server 1, two nodes on placed on server 2, and two spread on separate servers.
6n 2 2 2 [1, 1, 2, 2, 3, 3] Two nodes placed on server 1, two nodes placed on server 2, and two nodes placed on server 3.
6n 3 3 [1, 1, 1, 2, 2, 2] Three nodes placed on server 1, and three nodes placed on server 2.
6n 4 1 1 [1, 1, 1, 1, 2, 3] Four nodes placed on server 1, one node placed on server 2, and one node placed on server 3.
6n 4 2 [1, 1, 1, 1, 2, 2] Four nodes placed on server 1, and two nodes placed on server 2.

of the operation increases (i.e., 8- and 12-node configurations),
spreading across multiple racks becomes advantageous, yield-
ing execution time reductions of 13% to 20%. Furthermore,
when two collectives are executed concurrently, placing each

collective in its own dedicated rack improves performance. For
brevity, the graphs illustrating these results are omitted. This
strategy minimizes inter-workload interference, enabling each
collective to take advantage of the network isolation.
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Fig. 6: Execution time (in ms) for the All-to-All pattern when
all nodes are placed within a single rack.
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Fig. 7: Execution time (in ms) for the All-to-All pattern when
two collectives are executed simultaneously.

C. All-Reduce

The performance of the All-Reduce communication pattern
has been evaluated for various node counts and orchestration
strategies, as shown in Table IV. In this set of experiments,
each participating node uses a single server network interface.
The results indicate that the orchestration strategy significantly
influences execution time, similar to the All-to-All pattern,
which is simulated as a core component of the operation
during the distributed reduction phase. For smaller collectives,
packing within a single rack consistently results in the lowest
execution time. For instance, the 4-node collective achieves
an execution time of 5.04 ms when packed within a single
rack, compared to 5.67 ms when distributed across two racks.
Similarly, the 6-node configuration shows an execution time of
8.39 ms in a single rack, compared to 10.58 ms and 10.72 ms
when distributed across two and three racks, respectively. This
represents a reduction in execution time of 26% and 27%,
respectively, when using a single-rack orchestration strategy
compared to a multi-rack strategy. Packet-level insights further
explain these performance differences. In single-rack configu-
rations, packets traverse only one hop, eliminating contention
from ECMP collisions. In contrast, multi-rack deployments
introduce multi-hop packets, which place additional stress
on the network fabric and lead to higher communication
overhead. For example, in the 6-node collective, the number
of 3-hop packets increases significantly with rack count—from
0.37M in the 2-rack case to 0.53M in the 4-rack configura-
tion—highlighting the greater burden on the network fabric.

As the collective size increases, the advantages of spreading
workloads across multiple racks become more apparent. For
example, the 8-node collective experiences a time reduction of
approximately 4% when deployed across four racks, compared
to being distributed across two or three racks. Considering the
oversubscription ratio at the leaf layer, distributing the nodes

across multiple racks provides higher inter-node bandwidth
overall, which helps better balance the traffic toward the spines
and reduces congestion and delays compared to scenarios with
fewer racks. Moreover, when running concurrent collectives,
isolating each collective within a dedicated rack leads to
significant performance gains, as this strategy minimizes inter-
workload interference.

Overall, the All-Reduce pattern highlights the importance
of efficient workload orchestration and the strategic utilization
of available network resources to minimize execution times.
These findings align with trends observed in the other pat-
terns, highlighting the critical role of informed orchestration
strategies in high-performance computing environments.

D. Summary

Packing collectives within a single rack typically results in
higher performance, especially in reducing the collective’s ex-
ecution time. This is attributed to the elimination of cross-rack
traffic, which benefits from reduced communication overhead
and lower packet delays. In contrast, spreading collectives
across racks introduces additional communication overhead
and congestion within the fabric. However, spreading collec-
tives across racks can be advantageous in specific scenarios.
For instance, when a job cannot fit within a single rack (e.g.,
an 8- or 12-node collective, assuming one node per server),
distributing nodes across multiple racks improves performance
and reduces execution times. This approach helps balance traf-
fic toward the spines more effectively, reducing congestion and
delays compared to scenarios with fewer racks, particularly
when the network is oversubscribed. Similarly, isolating appli-
cations in separate racks reduces network contention for shared
resources, further enhancing performance. These strategies
highlight the importance of tailoring placement approaches
to align with workload and infrastructure characteristics for
optimal results.

VI. CONCLUSIONS

This paper investigated the dynamics of deploying AI work-
loads in modern DC networks, focusing on the communication
impact of commonly used AI collective operations and orches-
tration strategies. By modeling a state-of-the-art DC infrastruc-
ture inspired by IBM Vela, this study demonstrates the impact
of different placement strategies on key performance metrics,
including throughput, latency, and network congestion. The
findings emphasize the importance of tailoring orchestration
strategies to the specific characteristics of workloads. While
packing strategies typically offer higher performance for most
operations, spreading strategies effectively mitigate contention
for larger-scale jobs that cannot fit within a single rack. These
insights are valuable for developers and DC architects looking
to optimize AI workload orchestration in increasingly complex
cloud environments. This work contributes to the development
of more efficient and robust placement strategies that can meet
the evolving demands of AI applications. In multiple cases,
the execution time of the collective operation can be reduced
by up to 30% with the right orchestration approach. Future
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Fig. 8: Execution time (in ms) for the All-Gather pattern for a message size of 100 MB.
TABLE IV: The performance of the All-Reduce pattern in terms of execution time, throughput, and number of hops.

Nodes
Placement
Strategy

Message
Size (in MB)

AI
Collective

Execution
Time (in ms)

Throughput
(in Gb/s)

Throughput
interf. (in Gb/s)

1-hop
packets (in M)

3-hop
packets (in M)

4

4n 1r

10.0 All-Reduce

5.04 ± 0.00 399.82 ± 0.00 99.96 ± 0.00 0.25 ± 0.00 −
4n 2r 5.67 ± 0.28 360.61 ± 16.84 90.15 ± 4.21 0.08 ± 0.00 0.16 ± 0.00
4n 3r 5.17 ± 0.14 390.82 ± 8.86 97.71 ± 2.21 0.04 ± 0.00 0.20 ± 0.00
4n 4r 5.04 ± 0.00 399.69 ± 0.00 99.92 ± 0.00 − 0.25 ± 0.00

6

6n 1r

10.0 All-Reduce

8.39 ± 0.00 599.83 ± 0.00 99.97 ± 0.00 0.61 ± 0.00 −
6n 2r 10.58 ± 0.45 481.79 ± 21.60 80.30 ± 3.60 0.25 ± 0.00 0.37 ± 0.00
6n 3r 10.72 ± 0.46 476.42 ± 22.72 79.40 ± 3.79 0.12 ± 0.00 0.49 ± 0.00
6n 4r 9.84 ± 0.41 517.88 ± 21.28 86.31 ± 3.55 0.08 ± 0.00 0.53 ± 0.00

8
8n 2r

10.0 All-Reduce
17.50 ± 0.42 539.13 ± 13.41 67.39 ± 1.68 0.49 ± 0.00 0.66 ± 0.00

8n 3r 17.20 ± 0.50 549.73 ± 18.01 68.72 ± 2.25 0.29 ± 0.00 0.86 ± 0.00
8n 4r 16.58 ± 0.40 569.13 ± 14.93 71.14 ± 1.87 0.16 ± 0.00 0.98 ± 0.00

12
12n 2r

10.0 All-Reduce
30.35 ± 0.36 730.41 ± 8.76 60.87 ± 0.73 1.23 ± 0.00 1.47 ± 0.00

12n 3r 30.38 ± 0.36 729.66 ± 8.71 60.80 ± 0.73 0.74 ± 0.00 1.97 ± 0.00
12n 4r 29.92 ± 0.33 740.78 ± 8.15 61.73 ± 0.68 0.49 ± 0.00 2.21 ± 0.00

4 & 6

4n 1r 6n 1r

10.0 All-Reduce

8.89 ± 0.00 745.61 ± 0.00 74.56 ± 0.00 0.81 ± 0.00 −
4n 2r 6n 2r 9.58 ± 0.26 695.40 ± 19.01 69.54 ± 1.90 0.29 ± 0.00 0.52 ± 0.00
4n 3r 6n 3r 10.38 ± 0.29 641.94 ± 18.22 64.19 ± 1.82 0.13 ± 0.00 0.68 ± 0.00
4n 4r 6n 4r 10.40 ± 0.30 640.74 ± 17.93 64.07 ± 1.79 0.06 ± 0.00 0.75 ± 0.00

6 & 8

6n 1r 8n 2r

10.0 All-Reduce

15.96 ± 0.40 870.67 ± 21.13 62.19 ± 1.51 1.04 ± 0.00 0.65 ± 0.00
6n 2r 8n 2r 15.84 ± 0.39 877.66 ± 21.99 62.69 ± 1.57 0.68 ± 0.00 1.01 ± 0.00
6n 3r 8n 3r 17.18 ± 0.31 807.37 ± 14.07 57.67 ± 1.01 0.36 ± 0.00 1.33 ± 0.00
6n 4r 8n 4r 17.31 ± 0.28 801.16 ± 13.11 57.23 ± 0.94 0.20 ± 0.00 1.48 ± 0.00

research will build on these findings by exploring additional
DC infrastructures and a broader range of AI communication
patterns. Furthermore, a novel scheduler will be designed and
implemented to leverage these insights, further optimizing AI
workload orchestration.
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