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Abstract 
Background. Neurofeedback and meditation practices are techniques aimed at enhancing awareness and self-
regulation. Training of alpha power has been found to increase mindfulness outcomes, and increases in alpha 
power seem relatively consistent during focused attention meditation practices. Considering the commonalities 
between these self-regulation techniques, we here examined the trainability of alpha power while engaging in a 
focused attention meditation, allowing novice practitioners to attain self-regulation with an integrated training. In a 
within-subject design, 31 participants (25 women, 6 men, aged 23.16, range 18–30) engaged in two types of 
alpha neurofeedback training conditions, one aimed at upregulating alpha, the other aimed at downregulating 
global alpha absolute power. Results. Linear mixed-effect analyses showed a differential effect of the two 
neurofeedback training conditions, indicating that alpha power was overall higher during upregulation compared 
to downregulation training. While differential alpha power was evident “online” during training, there appeared to 
be no “offline” transfer, as measured during a resting-state recording posttraining. Conclusion. These results 
provide relevant insights into the applicability of alpha neurofeedback combined with focused attention meditation 
instructions that may guide future work into the application of neurofeedback approaches for supporting 
meditation practice.  
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Background 

 
Mindfulness entails the enactment of an attitudinal 
quality characterized by a state of complete 
presence in the ongoing moment, further 
distinguished by a nonjudgmental and accepting 
stance towards the instant emerging experience 
(Kabat-Zinn, 2013). This quality can be 
dispositional—a stable idiosyncratic tendency to be 
mindful—and can also be cultivated further with 

training (Burzler & Tran, 2022). In recent years, 
there has been a medical and popular increasing 
recognition of the relevance of mindfulness to 
mental health, leading to a growing focus on 
promoting and enhancing skills such as  
self-regulation as a fundamental component of 
overall well-being (Heatherton, 2011). The interest in 
improving individuals’ abilities to cope with stressors 
and regulate one’s own emotional state has further 
given rise to the appearance of a vast number of 
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mindfulness-related media, such as free guided 
meditations on media platforms, and mobile apps 
(Mani et al., 2015; Plaza et al., 2013). Altogether, 
these tools have facilitated the integration of 
mindfulness practices into daily routines, providing 
individuals with accessible options to reap 
mindfulness’s positive effects independently 
(Cavanagh et al., 2014). The effects of regular 
mindfulness practice arise through processes of 
attention regulation, body awareness, emotion 
regulation, and a shift in one's perspective of the self 
(Hölzel et al., 2011). Moreover, evidence has 
demonstrated that mindfulness practices exert a 
beneficial influence on individuals' physical  
well-being, as evidenced by its ability to improve 
stress resilience (Creswell et al., 2019), mitigate 
stress reactivity (Goldin & Gross, 2010; Gotink et al., 
2016; Kral et al., 2018), and lower levels of 
physiological stress markers (Bortolla et al., 2022; 
Heckenberg et al., 2018; Ooishi et al., 2021; Sun et 
al., 2019). 
 
The integration of technology into mindfulness 
practices presents a promising avenue for 
enhancing the level of guidance available to 
individuals during meditation. Furthermore, it has the 
potential to enhance engagement, ultimately yielding 
more favorable outcomes derived from the practice. 
Biometric sensors and wearable devices can track 
physiological signals providing users with valuable 
insights about their physiological state during the 
practice. For example, electroencephalographic 
(EEG) sensors can detect neural patterns that 
indicate whether individuals find themselves in the 
desired meditative brain state, or whether their mind 
has wandered off in self-generated thoughts 
(Pandey et al., 2022). Through the utilization of 
neurofeedback training, which involves continuously 
monitoring and presenting changes in neural activity 
to the mindfulness practitioner, awareness of the 
neurally reflected characteristics of the mindfulness 
session can be expanded. Individuals can thus gain 
insights about the adequacy and necessary 
adjustments to their practice (e.g., redirecting the 
attention towards the intended object of focus in 
focused attention meditations [FAM]) and improve 
the quality of the mindfulness session. 
 
Regarding candidate neural signal parameters 
reflecting aspects related to mindfulness practices, 
the neural alpha band, comprehended between 8 
and 14 Hz, has been extensively studied and its 
changes are proposed as relevant for the 
development of meditative skills during early stages 
of learning (Cahn et al., 2013; Fell et al., 2010). 
Alpha synchronization, the increase in alpha band 

activity, has been found to reflect internally directed 
attention during processes such as mental imagery 
as opposed to externally perceived stimuli (Cooper 
et al., 2003). This phenomenon has been robustly 
observed in the context of mindfulness meditation 
practices (Brandmeyer & Delorme, 2018; Lee et al., 
2018) which are also commonly associated in the 
literature with increases in relaxed alertness (Britton 
et al., 2014; Lomas et al., 2015). Indeed, numerous 
studies have consistently found mindfulness 
meditation to be reflected by an increase in alpha 
power when compared to rest, in both novices 
(Ahani et al., 2014; Dunn et al., 1999; Milz et al., 
2014) and experienced meditators (Cahn et al., 
2013; Lagopoulos et al., 2009). 
 
Several previous studies have demonstrated 
increases in alpha power upon neurofeedback  
upregulation training (Brickwedde et al., 2019; 
Chikhi et al., 2023; Escolano et al., 2011, 2014; 
Hanslmayr et al., 2005; Nan et al., 2012; Navarro Gil 
et al., 2018; Nicholson et al., 2023; Radüntz et al., 
2017; Su et al., 2021; Uslu & Vögele, 2023; Zoefel et 
al., 2011). Interestingly, some studies have targeted 
alpha power regulation in relation to mindfulness 
practices. For example, Stieger et al. (2021) 
investigated the effects of mindfulness-based stress 
reduction (MBSR) training on the volitional 
upregulation of alpha power with a brain computer 
interface (BCI). The authors found that, compared to 
controls, participants receiving the MBSR training 
learned to control the BCI faster and exhibited 
increased upregulation of alpha power (Cohen’s  
d = 0.68) when in rest (Stieger et al., 2021). In a 
further exploration of the same dataset, Jiang et al. 
(2021) expanded upon this finding and showed that 
the association between those receiving a 
mindfulness training and achieving better BCI 
control was not evident at first but instead gradually 
increased over the course of the BCI task, and that 
with more meditation practice outside of the formal 
training, the better the BCI control. Along the same 
line, da Costa et al. (2021) primed participants with 
mindfulness meditation prior to an alpha 
neurofeedback training and found an enhanced 
ability to regulate when compared to those not 
primed. Furthermore, Navarro Gil et al. (2018) found 
alpha power neurofeedback to increase  
self-reported mindfulness scores. Taken together, 
the literature indicates a reciprocal relationship 
between mindfulness and alpha neurofeedback 
training, wherein the effects of one positively 
influence the other. 
 
In light of the parallels between mindfulness training 
and alpha neurofeedback training, both of which 
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involve an enhanced self-regulation of alpha power, 
we set up a study combining both approaches. 
Specifically, to offer participants an integrative 
approach to improve their self-regulation skills, we 
examined the feasibility of combining alpha power 
upregulation neurofeedback training with a FAM 
practice. Additionally, we included an active control 
condition aimed at alpha power downregulation. The 
following hypotheses are hereby tested: 
upregulation training runs will be characterized by 
“online” trial-by-trial increases in global alpha power 
as compared to the active control downregulation 
training runs, where trial-by-trial decreases in alpha 
power are expected. Furthermore, in order to test 
whether the effects of training are maintained 
“offline” outside of the training context, we measured 
alpha activity during resting periods before and after 
the training, whereby the following hypotheses are 
tested: comparison between the rest period after 
training and before training will reflect a differential 
increase in alpha power during upregulation runs 
and a decrease during downregulation runs.  
 

Methods 
 
Participants 
Thirty-one healthy participants (25 women, 6 men, 
aged 23.16, range 18–30 years) with no prior 
experience in meditation practices participated in 
this study. They were recruited via flyers on social 
media and using personal communication. Written 
informed consent was obtained from all participants 
prior to the start of the study. Consent forms and 
study design were approved by the Social and 
Societal Ethics Committee (SMEC) of the KU 
Leuven university (G-2018 12 1,463), in accordance 
with the World Medical Association Declaration of 
Helsinki. Participants were compensated for their 
participation at a rate of 10€ per hour. 
 
Design and Task 
EEG recordings were obtained while participants sat 
in a comfortable chair, facing the computer screen, 
and were taking part in four experimental runs in 
pseudorandomized order. Each run comprised an 
initial “pre” 3-min resting-state period, followed by six 
individual 2-min neurofeedback training trials and a 
final “post” 3-min resting-state period. A constant 
auditory background stimulus (the echo of a bell 
sound) was provided during all rest and training 
trials via earpods, and an additional continuous and 
varying feedback sound (cascade water running) 
was provided during neurofeedback training trials. 
The start and end of each rest period and training 
trial were indicated by a start/stop sound, prompting 
the participants to either close their eyes or open 

them and to follow instructions on the computer 
screen.  
 
Prior to the start of the experiment, a short, 
standardized introduction was provided to the 
participants to familiarize them with the  
concept of neurofeedback and self-regulation of 
neurophysiological signals. This introduction 
included a brief explanation of autonomic nervous 
system activity and the objective to upregulate 
parasympathetic activity. Also, more detailed 
information regarding the specific instructions during 
the neurofeedback training and the structure and 
duration of the experiment was explained. Lastly, a 
volume adjustment on the to-be-presented auditory 
stimuli was performed individually per participant to 
ensure that all sounds were audible but not 
distracting. 
 
Throughout the duration of the experiment, stimuli 
were presented to participants using PsychToolbox 
(Brainard, 1997). During the 3-min resting-state 
period (pre- and postneurofeedback training), 
participants were instructed to keep their eyes 
closed and sit comfortably while avoiding movement. 
During the neurofeedback training trials, and in line 
with FAM practices, participants were again asked to 
sit comfortably with eyes closed and, in addition, to 
focus their attention on top of the crown of their head 
while perceiving the feedback sound (running water) 
related to their brain activity. Importantly, participants 
were indicated not to try to influence the feedback 
sound directly but were informed that, by engaging 
in the focused attention on the crown of their head,  
self-regulatory processes would allow attaining the 
highest level of positive feedback (i.e., increasing 
volume of the running water sound).  
 
In two of the four neurofeedback training runs, the 
running water feedback sound increased in volume 
with increasing global (average scalp) alpha power 
(alpha upregulation condition). In the other two 
training runs, the feedback sound increased with 
decreasing global alpha power (alpha 
downregulation condition). In every run, after each 
block of three training trials, participants were asked 
to report via a numerical keyboard their levels of 
tiredness, pleasantness, and calmness and the 
degree of focus on the crown of the head, as well as 
focus on the auditory stimuli.  
 
The five questions were as follows, on a scale of 1 
to 9:  

(a) how tired are you?  
(b) how pleasant are you feeling? 
(c) how agitated are you?  
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(d) how well did you focus on the crown of your 
head? 
(e) how well did you focus on the sounds?  
 

For all questions, the response scale contained 
visual or textual cues. Since the study was not 
specifically designed to assess training-induced 
changes in the behavioral scores, results from these 
behavioral assessments are reported in 
supplementary information (Appendix Figure A1). In 
short, no significant training-specific changes were 
noted in any of the behavioral scores. 
 
EEG Recordings 
The Nexus-32 system (version 2015a, Mind Media, 
The Netherlands) was used for EEG recordings. 
Data was streamed to MATLAB (2019a) and 
recorded through the software Lab Stream Layer 
(LSL). The OpenVibe software was used for data 
quality checks during sensor placement and for data 
monitoring during the experiment. Continuous EEG 
was recorded with a 22-electrode cap (one ground 
electrode and two on the mastoids for reference) 
positioned according to the 10–20 system 
(MediFactory). Electrode paste (Nuprep) was used 
to reduce the electrode impedances during the 
recordings. The EEG signal was amplified using a 
unipolar amplifier with a sampling rate of 1024 Hz. 
EEG recordings were synchronized to the presented 
task using Matlab and Lab Stream Layer. 
 
EEG Online Preprocessing, Feature Extraction, 
and Feedback 
EEG preprocessing was performed through custom 
MATLAB scripts and EEGlab functions (Delorme & 
Makeig, 2004). After collection of the initial 3-min 
resting state at the beginning of each run, data was 
filtered between 1 Hz and 40 Hz to attenuate 
nonphysiological EEG artifacts (function 
pop_eegfiltnew). Subsequently, artifact subspace 
reconstruction was used with the function 
asr_calibrate_r (Chang et al., 2020) with a cutoff of 
20, for further cleaning of the baseline. Lastly, points 
with absolute amplitudes exceeding 100 μV were set 
to 0. Then, short-term fast Fourier transformation 
(STFFT) was performed on the clean data in  
1-s windows, with 90% overlap between 8 and 14 
Hz (in steps of 1 Hz) per electrode. Then the 
absolute alpha power was averaged across 
electrodes and the time domain deriving a single 
initial resting-state alpha absolute power value. 
Subsequently, during each of the 2-min 
neurofeedback training trials, incoming data in 
chunks of 1 s were preprocessed with the same 
steps as the baseline, and resulting average 
absolute alpha power was used to calculate a  

z-score dependent on the resting-state period 
absolute power. With a table of matching z-score 
alpha power values and corresponding auditory 
feedback volumes, the feedback was delivered to 
participants by changing the volume of the sound 
(i.e., with continuously increasing volume in the case 
of alpha upregulation training trials upon increasing 
alpha absolute power and increasing volume upon 
decreasing alpha absolute power during 
downregulation training trials). A dynamic smoothing 
over time was introduced to maintain smooth 
feedback transitions for enhancing or diminishing the 
feedback sound volume. 
 
EEG Offline Preprocessing and Analysis 
Offline preprocessing was performed through 
custom MATLAB scripts (MATLAB version r2020b) 
and EEGlab functions (Delorme & Makeig, 2004). 
After removal of the first 3 s of the recording, raw 
EEG data were filtered with the eegfiltnew function 
first with a high-pass filter over the 1 Hz frequency to 
suppress the low-frequency noise, then with a notch 
filter on 50 Hz, used to remove the line noise (5th 
order butterworth filter with cutoff frequencies on  
49–51 Hz) and lastly with a low-pass filter (40 Hz). 
Flat channels were detected and removed (function 
clean_flatlines) and reconstructed using spherical 
interpolation. The remaining epochs were then 
concatenated, and the continuous signals were 
mathematically rereferenced offline to common 
average. Subsequently, Independent Component 
Analysis (ICA) was performed (using the function 
pop_runica), to automatically reject components in 
the data associated with muscle, heart, or channel 
noise artifacts. Then data was downsampled from 
1024 Hz to 256 Hz and epoched into 1-s segments. 
 
The time-frequency representation of the EEG data 
was obtained using STFFT computed through the 
MATLAB spectrogram function (Hanning window 
length of 1 s; 90 % overlap, 1 Hz resolution between 
1 and 40 Hz. A total of 29 relative amplitudes (% of 
overall power, in μV) within the alpha (8–14 Hz) 
band were estimated per participant, electrode, 
resting-state recording (prerest and postrest), 
neurofeedback training trial (trial 1 to 6) and run (run 
1 and 2). 
 
Statistical Analyses 
All statistical analyses were executed with Statistica 
version 14 (Tibco Software Inc.). Linear mixed-effect 
models were used to test the training intervention 
effect on alpha absolute power (8–14 Hz), with the 
random factor participant, and fixed factors training 
condition (up- vs. downregulation), run (first vs. 
second), training trial (1, 2, 3, 4, 5, and 6) and 
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electrode (19 scalp electrodes), as well as 
interactions amongst all fixed factors.  
 
To explore whether training-induced up- or  
downregulation of alpha power would persist outside 
the explicit training context (i.e., to the resting-state 
period recorded posttraining), the 3-min pre- and 
post-resting-state period recordings were subjected 
to a linear mixed-effect model with the random factor 
participant, and the fixed factors training condition 
(up- vs. downregulation), run (first vs. second), rest 
period (pre- vs. posttraining period) and electrode 
(19 scalp electrodes), as well as interactions 
amongst all fixed factors. These analyses allowed 
examining whether the up- and downregulation of 
alpha power upon the experimental training session 
were transferable to the subsequent resting-state 
recording, indicating transfer of the trained neural 
parameter outside the explicit training context. 
 

Results 
 
Alpha Up- and Downregulation Across 
Neurofeedback Training Trials 
The linear mixed-effect model revealed a significant 
main effect of training, F(1, 30) = 10.49, p < .001,  
η² < .001. This indicated an overall higher alpha 
power for the upregulation (mean up = 4.14x10+6 µV,  
SD = 2.25x10+5) compared to the downregulation 
training condition (mean down = 3.96x10+6 µV,  
SD = 2.32x10+5). In addition, as visualized in Figure 
1, a tentative but nonsignificant trial by training 
interaction effect was found, F(18, 30) = 2.05,  
p = .07, η² < .001. This suggested a differential 
effect of training across trials. Post hoc analyses 
confirmed that only at the last, sixth trial (pBonferroni 
= .007) but not at the first training trial (pBonferroni = 
1.00), alpha power was significantly higher in the 
upregulation when compared to the downregulation 
training condition.  
 
In addition to the main effect of training, a main 
effect of electrode was also found, F(18, 30) = 
591.97, p < .001, η² = .44. This indicated overall 
higher levels of absolute alpha power at occipital 
and temporal electrodes (O1, O2, T5, and T6), as 
well as a main effect of run, F(1, 30) = 34.36,  
p < .001, η² = .002. This indicated an overall higher 
alpha power during the second run when compared 
to the first run (mean run 1 = 3.89x10+6 µV, SD =  
1.48x10+5; mean run 2 = 4.20x10+6 µV, SD = 
2.15x10+5). However, these factors did not yield any 
significant interactions with the factor training (all  
p > .05), indicating that training effects were not 
significantly different between conditions, with 
respect to electrode effects and for the first 

compared to the second training run (see Appendix 
Figure A2 for a visualization of the training effects 
over trials, separately for the first and second 
training runs). Lastly, for the trial factor, a trend but 
nonsignificant main effect was found, F(5, 30) = 
2.16, p = .06, η² < .001.  
 
 
Figure 1. Change in Alpha Absolute Power During 
Neurofeedback Training. 

Note. Average global alpha absolute power recorded 
during neurofeedback training is visualized separately for 
each of the six training trials, across the two runs, and 
separately per training condition (white: downregulation 
training; black: upregulation training). Vertical bars denote 
± standard errors. 
 
 
Further, to specifically explore the change in alpha 
power over trials for each training condition,  
mixed-effect models testing the main effect of trial 
were employed separately per condition. For the 
downregulation condition, a significant main effect of 
trial was present, F(5, 30) = 2.46, p = .03,  
η² = .002. This indicated a reduction in alpha 
absolute power across trials (mean trial 1 = 
4.14x10+6, SD = 5.16x10+6; mean trial 6 = 3.79x10+6, 
SD = 4.76x10+6). For the uptraining condition, 
however, no significant main effect of trial was 
identified, F(5, 30) = 1.77, p = .12, η² = .002. This 
indicated a nonsignificant increase in alpha absolute 
power over trials (mean trial 1 = 4.17x10+6, SD = 
5.18x10+6; mean trial 6 = 4.29x10+6, SD = 
5.51x10+6). 
 
Transfer of Alpha Up- and Downregulation 
Training Effects Outside of the Training Context 
To examine whether the induced up- or  
downregulation of alpha power was transferable to 
the subsequent resting-state recording, we 
investigated differences in alpha power from pre- to 
posttraining rest periods (see Figure 2). A significant 
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main effect of rest period was identified, indicating 
an overall lower alpha power at the post- compared 
to the pre-resting-state recording, F(1, 30) = 6.70,  
p = .01, η² = .1, mean pre = 4.63x10+6, SD = 
5.65x10+6, mean post = 4.17x10+6, SD = 5.08x10+6). 
No significant rest period x training condition 
interaction effect was identified, F(1, 30) = 1.11,  
p = .29, η² < .001. This indicated that the pre-to-post 
decrease in resting period alpha power was evident 
for both the up- and downregulation training 
condition. Additionally, no significant main effect of 
run, F(1, 30) = 2.78, p =.09, η² < 0.001, or any 
interactions with this factor were identified (all  
p > .05). See Appendix Figure A3 for a visualization 
of the training effects over rest periods, separately 
for the first and second training runs.  
 
 
Figure 2. Alpha Absolute Power Recorded During a 
Resting-State Period, Pre- and Postneurofeedback 
Training. 

Note. Average global alpha absolute power is visualized 
separately for the resting state period recorded pre- and 
postneurofeedback training, across the two runs, and 
separately per training condition (white: downregulation 
training; black: upregulation training). Vertical bars denote 
± standard errors. 
 

Discussion 
 
In this study we developed and implemented an 
EEG neurofeedback protocol to train alpha power in 
the context of a FAM practice. In a single training 
session, 31 young adults took part in two runs aimed 
at training alpha power upregulation, and an 
additional two runs aimed at alpha power 
downregulation, serving as an active control 
condition. We hypothesized that upregulation 
training runs would induce “online”  
trial-by-trial increments in global alpha power in 
contrast to the active control downregulation training 
runs, which were anticipated to induce  

trial-by-trial reductions in alpha power. Moreover, to 
assess the “offline” persistence of training effects 
beyond the training environment, we examined 
alpha activity during periods of rest prior to and 
following the training. We hypothesized that the 
comparison between the rest period after training 
and the rest period before training would reveal a 
distinct increase in alpha power during upregulation 
runs and a decrease during downregulation runs. 
 
With respect to online neurofeedback training 
effects, we revealed a significant difference between 
the up- and down-training condition, indicating 
higher alpha power levels during the upregulation, 
compared to the downregulation neurofeedback 
training. Particularly for the alpha power  
downregulation, significant alpha power decreases 
were evident from the first to the last training trial.  
 
Previous studies have consistently found increases 
in alpha power upon upregulation training 
(Brickwedde et al., 2019; Chikhi et al., 2023; 
Escolano et al., 2011, 2014; Hanslmayr et al., 2005; 
Nan et al., 2012; Navarro Gil et al., 2018; Nicholson 
et al., 2023; Radüntz et al., 2017; Su et al., 2021; 
Uslu & Vögele, 2023; Zoefel et al., 2011). Similarly, 
other studies have found successful downregulation 
of alpha power during training (Brickwedde et al., 
2019; Deiber et al., 2020; Kluetsch et al., 2014; Ros 
et al., 2010, 2013). Similar to our study, Kluetsch 
and colleagues (2014) succeeded to reduce alpha 
amplitude during a single 30-min session 
desynchronization neurofeedback when comparing 
training to baseline.  
 
As indicated, our design included bidirectional alpha 
power up- and downregulation. Although literature 
about training bidirectional regulation of alpha power 
is scarce, Brickwedde et al., (2019) successfully 
trained somatosensory alpha power and found 
facilitation of tactile perceptual learning upon alpha 
upregulation and hindering of learning upon alpha 
downregulation. In this study, they also showed that 
higher baseline alpha activity was required to 
achieve the behavioral learning outcome. This is in 
line with other studies predicting trainability of alpha 
based on baseline alpha activity (Chikhi et al., 2023; 
Nan et al., 2018; Su et al., 2021; Wan et al., 2014). 
 
Regarding the retention of ‘offline’ training effects, as 
measured comparing pre- to post-rest periods, our 
analyses revealed that, for both conditions, a 
significant overall reduction of alpha power was 
evident following the training. Although this transfer 
effect was expected for the downregulation 
condition, it contrasted with our hypothesis regarding 
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upregulation training. Previous studies investigating 
the offline transferability of upregulation alpha power 
training to subsequent rest recordings have found 
increases in alpha power (Escolano et al., 2011; 
Nicholson et al., 2023; Zoefel et al., 2011) as 
compared to the control group, whereas others have 
not (Escolano et al., 2014; Nan et al., 2012; Navarro 
Gil et al., 2018; Uslu & Vögele, 2023). With respect 
to downregulation trainings, other studies have 
demonstrated that downregulation of alpha can lead 
to decreases in the resting alpha power level (Ros et 
al., 2010, 2013). However, other studies have found 
no influence of downregulation on the alpha power 
on subsequent recordings of resting periods (Nan et 
al., 2018; Ros et al., 2017). It might be the case that, 
for neurofeedback effects to be maintained, the 
intervention requires several training sessions, in 
particular when addressing clinical as opposed to 
nonclinical populations (Dekker et al., 2014; 
Nicholson et al., 2023). Interestingly, regarding 
nonclinical populations, Uslu and Vögele (2023) 
argue that instead of the number of sessions, self-
paced neurofeedback, providing participants with the 
possibility to arrange the timing of their training, has 
a positive impact on cognitive performance changes 
upon neurofeedback.  
 
While our work adds new insights into the 
application of alpha neurofeedback during FAM, the 
following limitations and directions for future 
research are highlighted.  
 
With respect to the control condition choice in 
neurofeedback experiments, there is a plethora of 
options (Sorger et al., 2019), and the optimal one 
depends on the objectives of the experiment. In this 
study, we found significant differences between the 
active alpha up- and alpha downtraining condition. 
Although an active control condition allowed for 
assessing the specificity of our training with respect 
to regulation direction, future studies should address 
whether training-specific effects are also evident in 
comparison to a sham control condition. Further, 
neurofeedback studies frequently encounter 
subgroups of participants that are not able to control 
the target parameter (i.e., nonresponders or BCI 
illiterates). Future studies should warrant the 
assessment of predictors of individual trainability as 
recommended in previous literature (Alkoby et al., 
2018). For example, there is growing evidence that 
alpha power levels at baseline predict the ability to 
further self-regulate alpha during a neurofeedback 
protocol (Chikhi et al., 2023; Nan et al., 2018; Su et 
al., 2021; Wan et al., 2014). Additionally, mindful 
skills and their priming have also been regarded as 
a possible predictors and facilitators for 

neurofeedback training (da Costa et al., 2021; 
Stieger et al., 2021). 
 
Finally, the observation that particularly alpha 
downtraining was successful indicates that 
upregulation of alpha might require more training 
trials and/or sessions. Indeed, it can be anticipated 
that particularly for individuals who are new to the 
practice of mediation and/or self-regulatory 
neurofeedback, establishing a parallel relationship 
between the targeted upregulation of alpha power 
during neurofeedback and meditation expertise 
might necessitate a higher intensity or longer 
duration of the training.  
 

Conclusion 
 
The present study provides initial evidence that  
up- versus down-training of global alpha power 
during a focused attention meditation practice 
yielded a significant differential pattern, particularly 
indicating a significant decrease in alpha power 
upon downregulation. Training effects did however 
not sustain during a subsequent resting-state 
recording, indicating no transfer of upregulated 
alpha power outside the active training context. 
Together, these results provide important insights 
into the applicability of alpha neurofeedback training 
as an adjunct to and in support of meditation 
practice. 
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Appendix A 
 
Changes in Self-Reported Measures Across Neurofeedback Training Trials 
On an exploratory basis, differential changes in levels of self-reported measures of tiredness, pleasantness, 
calmness, focus on the crown of the head, and focus on the sounds upon receiving alpha up- or downregulation 
feedback were assessed. To do so, change scores were calculated for each self-reported measure (change from 
mid [after Trial 3] to end reports [after Trial 6] within each run) and subjected to a linear mixed-effect model with 
the random factor participant, and fixed factors training condition (up vs. downregulation) and run (first vs. 
second), as well as interactions amongst the fixed factors. 
 
Analyses revealed no significant main effects of training for self-reported tiredness, F(1, 30) = .1, p = .76, η2 < .01; 
calmness, F(1, 30) = 2.01, p = .16, η2 = .02; focus on the crown, F(1, 30) < .01, p = .94, η2 < 0.01; or focus on the 
feedback sound, F(1, 30) = .23, p = .63, η2 < .01. For self-reported pleasantness, a trend but nonsignificant main 
effect of training, F(1, 30) = 3.13, p = .08, η2 = .03, indicated tentative increases in reports of pleasantness over 
trials during alpha upregulation compared to downregulation. None of the remaining main or interaction effects 
were significant (all p > .05). 
 
 

Figure A1. Changes in Self-Reported Measures Across 
Neurofeedback Training Trials. 

 
 
Note. Changes in self-reported scores (change from mid [after Trial 3] 
to end [after Trial 6] are depicted across runs, separately per training 
condition (white: downregulation training; black: upregulation training). 
Vertical bars denote ± standard errors; “ns” indicates nonsignificant 
effects (p > .05). 
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Alpha Absolute Power Recorded During Neurofeedback Training Trials in Run 1 and Run 2  
 

Figure A2. Alpha Absolute Power Recorded During Neurofeedback Training Trials in Run 1 and Run 2. 

 
 
Note. Average global alpha absolute power recorded during neurofeedback training is visualized separately for 
each of the six training trials, separately for each run and training condition (white: downregulation training; black: 
upregulation training). Vertical bars denote ± standard errors. 

 
 
Alpha Absolute Power Recorded During a Resting-State Period, Pre- and Postneurofeedback Training 
During Run 1 and Run 2 
 

Figure A3. Alpha Absolute Power Recorded During a Resting-State Period, Pre- and Postneurofeedback Training 
During Run 1 and Run 2. 

 
 
Note. Average global alpha absolute power is visualized separately for the resting-state period recorded pre- and 
postneurofeedback training, separately for each run and training condition (white: downregulation training; black: 
upregulation training). Vertical bars denote ± standard errors. 
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