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 A B S T R A C T

Anatomical landmark localization in 2D/3D images is a critical task in medical imaging. Although many 
general-purpose tools exist for landmark localization in classical computer vision tasks, such as pose estimation, 
they lack the specialized features and modularity necessary for anatomical landmark localization applications in 
the medical domain. Therefore, we introduce landmarker, a Python package built on PyTorch. The package 
provides a comprehensive, flexible toolkit for developing and evaluating landmark localization algorithms, 
supporting a range of methodologies, including static and adaptive heatmap regression. landmarker
enhances the accuracy of landmark identification, streamlines research and development processes, and 
supports various image formats and preprocessing pipelines. Its modular design allows users to customize 
and extend the toolkit for specific datasets and applications, accelerating innovation in medical imaging.
landmarker addresses a critical need for precision and customization in landmark localization tasks not 
adequately met by existing general-purpose pose estimation tools.
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. Motivation and significance

Landmark (or keypoint) localization in 2D/3D images is a funda-
ental challenge in computer vision, crucial for tasks such as pose 
stimation [1–3], face alignment [4,5], robotic manipulation [6], surgi-
al procedures [7], image registration [8], various image-based medical 
iagnoses [9–13] and treatment response modeling in longitudinal im-
ges [14,15]. The effectiveness of different approaches is often domain 
nd task-dependent, necessitating extensive experimentation for new 
pplications. Popular methods, such as heatmap regression, involve 
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numerous preprocessing and post-processing steps. The latter, such 
as sub-pixel accuracy methods, can significantly improve the preci-
sion needed in medical applications but nevertheless are frequently 
overlooked.

As existing packages such as OpenPose [16] and Ultralytics [17] 
are primarily designed for pose estimation, they lack the modularity 
needed for medical applications. While MMPose [18] offers different 
components for various tasks, it is still tailored toward pose estimation 
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Table 1
Comparison of Python packages for keypoint/landmark localization.
 Package Custom 3D Medical

 Keypoints Images Modular Format Aug. 
 ultralytics [17] 7 7 7 7 7 7  
 MMPose [18] 3 3 7 7 7 7  
 landmarker 3 3 3 3 3 3  

Fig. 1. Taxonomy of (deep learning) landmark localization approaches. The frequently 
used taxonomy in the literature is highlighted in yellow, while our extended taxonomy 
of the problem is highlighted in blue. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

and does not easily integrate with other frameworks or handle spe-
cific medical imaging requirements. Although MMPose [18] supports 
3D landmark localization, it cannot process 3D input data, a critical 
requirement for medical imaging applications. Furthermore, while MM-
Pose offers some flexibility in model creation, its pipeline mandates 
the use of its framework for preprocessing, training, and evaluation, 
limiting compatibility with deep learning frameworks such as PyTorch 
Lightning [19]. Additionally, neither pose estimation library supports 
medical imaging formats (e.g., NIfTI and DICOM) or provides special-
ized data augmentation techniques to simulate common acquisition 
artifacts. Table  1 summarizes the key differences between these existing 
packages and the proposed landmark detection package within the 
medical imaging context.

Our Python package, landmarker, addresses the need for precise 
anatomical landmark localization in medical images, which is critical 
for diagnostics and therapeutic procedures in different specialties, such 
as orthodontics, maxillofacial surgery, and orthopedics. It is a flexible 
PyTorch-based toolkit designed explicitly for training, modeling, and 
evaluating anatomical landmark localization problems. This toolkit 
accelerates the development of algorithms and enhances the accu-
racy of landmark identification in medical images, thereby improving 
diagnostic and treatment outcomes. Its modular and adaptable frame-
work allows researchers and practitioners to implement state-of-the-art 
algorithms tailored to their specific datasets.

landmarker has a modular framework, which supports various 
landmark localization algorithms. This flexibility enables customization 
and extension according to specific needs. The package offers interfaces 
for data preprocessing, model training, evaluation, and visualization.

2. Background: landmark localization

There are two primary methodologies in landmark localization 
(see Fig.  1): heatmap regression and coordinate regression. Coordi-
nate regression [20] involves learning a direct relationship between 
the image and the landmark locations. However, the introduction of 
heatmap regression [2], which generally yields better performance, 
has shifted the research focus. Heatmap regression predicts a heatmap 
that assigns a likelihood or probability to each (downsized) image 
pixel. Early heatmap regression methods, termed direct heatmap regres-
sion, assume a parametric distribution, typically a bivariate Gaussian 
2 
or Laplacian distribution. Direct heatmap regression can be further 
classified into static and adaptive approaches. In static heatmap regres-
sion, the heatmap distribution parameters are fixed hyperparameters 
during training. In adaptive heatmap regression, these parameters are 
adjusted during training, either by treating them as learnable model 
parameters [12,13,21] or by using scheduling methods that modify the 
parameters based on specific evaluation metrics [22]. Another variant 
of static heatmap regression involves training a model on one-hot 
heatmap images (masks), essentially parameterizing the heatmap as 
a categorical distribution and transforming the task into a multi-class 
classification problem where each pixel represents a class [23].

Recent advancements on heatmap regression have seen the rise of 
fully convolutional neural networks (CNNs) with differentiable decod-
ing operations, such as the soft-argmax operation [1]. These methods, 
prominent in facial landmark localization, use the heatmap generation 
layer as an intermediate layer and the decoding operation as the 
final layer, optimizing the network with a loss function that compares 
the decoded coordinates to the ground-truth coordinates. Some of 
these methods account for the ambiguity in landmark ground truth by 
incorporating uncertainty-aware loss functions, such as the Gaussian 
log-likelihood loss [5], or other custom loss functions [4,5,24].

In the medical field, landmark localization often utilizes two-stage 
approaches [25–28]. The first stage identifies landmarks on a low-
resolution image, while the second stage refines this localization using 
a high-resolution patch, which is a region of interest based on the 
initial predictions. One of the previously described approaches can 
be applied in both stages. Another technique, also used in medical 
imaging, involves segmenting or contouring specific anatomical struc-
tures and inferring the landmarks from the resulting masks or contours
[29,30].

The diversity of approaches in landmark localization, from ba-
sic coordinate regression to sophisticated uncertainty-aware heatmap 
methods, highlights the complexity of this field, particularly in medical 
imaging applications. While general-purpose tools like OpenPose and 
MMPose exist, they primarily focus on human pose estimation and lack 
the specialized features needed for medical imaging applications. These 
tools often do not support the full range of heatmap generation and de-
coding methods, uncertainty quantification, or medical image-specific 
preprocessing pipelines crucial for anatomical landmark localization. 
Additionally, existing tools typically do not provide the modularity 
required to implement and experiment with different approaches, such 
as two-stage refinement methods commonly used in medical applica-
tions. These limitations, combined with the need for high precision 
in medical contexts, underscore the need for a specialized toolkit 
to handle the unique challenges of anatomical landmark localization 
while supporting established and emerging methodologies.

3. Software description

landmarker is a Python package that leverages PyTorch [31] 
deep learning framework and MONAI [32], a PyTorch-based deep 
learning framework for healthcare imaging for handling medical image 
files and transformations.

Users can install landmarker via pip. After installation, our 
documentation and variety of examples will guide users in applying 
the toolkit for their specific needs.

3.1. Software architecture and functionalities

The landmarker package is structured into several key modules, 
each addressing specific aspects of the landmark localization pipeline, 
see Fig.  2.

https://pypi.org/project/landmarker/
https://predict-idlab.github.io/landmarker/
https://github.com/predict-idlab/landmarker/tree/main/examples
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Fig. 2. Flowchart of the different sub-packages of the landmarker package.
 

3.1.1. Data handling and preprocessing
The data module provides flexible ‘‘dataset’’ classes that inherit 

from PyTorch’s Dataset, ensuring compatibility with PyTorch Dat-
aLoaders. Four main dataset types are supported:

• LandmarkDataset: For images with corresponding landmark 
coordinates.

• HeatmapDataset: For images with corresponding static
heatmaps representing landmarks.

• MaskDataset: For images with binary segmentation masks in-
dicating landmark locations.

• PatchDataset: For image patches or regions of interest (ROI) 
with corresponding landmarks.

These datasets support various image formats (NIfTI, DICOM, PNG, 
JPG, BMP, NPY/NPZ) through integration with the MONAI library [32].
The module can handle single-class, multi-class single-instance, and 
multi-class multi-instance landmark problems. Utility functions are 
provided to transform common annotation formats (e.g., labelme [33]) 
into the required format.

The package also includes the datasets module, which contains 
functions to import benchmark datasets, such as the ISBI2015 [34] 
dataset directly. Preprocessing and data augmentation capabilities are 
available, leveraging MONAI’s transformations for 2D and 3D data. 
The package handles affine landmarks transformations through the
transforms module.

3.1.2. Heatmap generation and decoding
The heatmap module provides functionality for generating target 

heatmaps and decoding predicted heatmaps, which is essential for 
heatmap regression approaches.
3.1.2.1. Heatmap generation. The HeatmapGenerator class and its 
subclasses support various parametric distributions (e.g., multivariate 
Gaussian and Laplace). The design allows easy implementation of 
custom distributions. The parameters of the parametric distribution can 
be set on initialization. Still, they can also be changed during training, 
for example, for adaptive heatmap regression approaches that rely on a 
scheduler, such as Adaloss scheduler [22]. Additionally, the parameters 
could also be learnable parameters during a training procedure.
3 
3.1.2.2. Heatmap decoding. While heatmap generation is only needed 
for direct approaches, decoding heatmaps is needed for all heatmap 
regression approaches, with the caveat that the indirect approaches 
need differentiable decoding operations. Multiple decoding methods 
are implemented:

The argmax operation is the simplest decoder operation [2]. The 
operation takes the maximum value of the heatmap 𝐻𝑖, 
�̂�𝑖 = argmax𝐻𝑖, (1)

to get the coordinate �̂�𝑖 of landmark 𝑖. The major downside of this 
approach is that it introduces a discretization error by only choosing 
a pixel as the predicted landmark.

The weighted spatial mean [1,5,24,35] is the approach for indirect 
heatmap generation. The operation calculates the landmark location �̂�𝑖
by first post-processing the heatmap 𝐻𝑖 with an activation function 𝜎, 
typically a type of normalization operation, and afterward taking the 
weighted spatial mean, e.g., the two-dimensional case: 

�̂�𝑖 =

( 𝑊
∑

𝑐=0

𝐻
∑

𝑙=0

𝑐
𝑊

𝜎(𝐻𝑖)𝑙,𝑐 ,
𝑊
∑

𝑐=0

𝐻
∑

𝑙=0

𝑙
𝐻

𝜎(𝐻𝑖)𝑙,𝑐

)

(2)

where 𝑊  and 𝐻 are, respectively, the heatmap’s width and height. 
Frequently used activation functions 𝜎 are a ReLU activation combined 
with a normalization procedure and the softmax operation on the 
heatmap, which is in the literature often referred to as soft-argmax 
operation [1,35,36].

A significant issue of taking the weighted spatial mean is that it can 
globally lead to semantically unstructured outputs and thus decrease 
performance [36]. In [36], they propose to apply soft-argmax operation 
locally, i.e., a small window, around the heatmap location with a 
maximum heatmap value. We implement this method and extend it to 
be used with any post-processing function, i.e., local weight spatial mean
operation.

3.1.3. Models and losses
While landmarker is compatible with any PyTorch model or loss 

function, it includes implementations of successful approaches from 
the literature, such as the spatial configuration network [12], which is 
effective for positionally consistent medical images like cephalograms. 
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1 from landmarker.data import LandmarkDataset
2

3 image_paths = ... # list of paths of images
4 landmarks = ... # numpy array or torch tensor provided
5 pixel_spacing = ... # pixel spacing of the images
6 class_names = ... # names of the landmarks
7 compose_transform = ... # MONAI compose transform
8

9 ds = LandmarkDataset(
0 imgs=image_paths ,
1 landmarks=landmarks ,
2 spatial_dims=2,
3 transform=compose_transform ,
4 dim_img=(512,512) # dimension to resize to
5 class_names=class_names)

Listing 1 Loading data into a LandmarkDataset
1 from landmarker.dataset import get_cepha_landmark_datasets
2

3 data_dir = ...
4 ds_train, ds_test1, ds_test2 = get_cepha_landmark_datasets(data_dir)

Listing 2 Loading data into a LandmarkDataset through the dataset module.
1 from landmarker.heatmap import GaussianHeatmapGenerator
2

3 generator = GaussianHeatmapGenerator(
4 nb_landmarks=19, # number of landmarks
5 sigmas=3, # sd. value of the Gaussian heatmap function
6 learnable=True, # make the covariance matrix learnable parameters
7 heatmap_size=(512,512))

Listing 3 Setting up Gaussian heatmap generator.
Also, multiple heatmap regression loss functions are implemented from 
successful approaches [4,5,13,37–39].

3.1.4. Evaluation and visualization
The visualize module allows inspecting constructed datasets and 

trained models. Additionally, it enables the generation of detection 
reports that output several metrics from the metrics module, such as 
point error and success detection rate (SDR), which is the percentage of 
predicted landmarks with a point error smaller or equal to a specified 
radius.

4. Illustrative examples

In this section, we illustrate the use of landmarker. We will 
perform adaptive heatmap regression with the ISBI2015 cephalometric 
landmark dataset, showcasing most functionality.

We start by loading the data into a LandmarkDataset by pro-
viding a list of paths to images, a NumPy array of the shape (𝑁,𝐶,𝐷)
where 𝑁 is the number of samples, 𝐶 is the number of landmark 
classes, and 𝐷 represents the spatial dimension which can be 2 or 3, 
see Lising 1. 

Alternatively, one can also use the dataset module, which in-
cludes everything to import the ISBI2015 dataset directly, see Lising 2. 

Once the data is loaded in the proper format, we can set up the 
heatmap generator to generate a heatmap from landmarks, see Lising 3. 

After this, the user can visually inspect if everything is initialized 
as expected by using the inspection_plot function (Listing 4 and 
Fig.  3). 

With the LandmarkDataset and HeatmapGenerator ade-
quately set up, we can now train a model to output likelihood heatmaps.
 

4 
In Listing 5, we train a SpatialConfigurationNetwork [12,13] and 
parameterization of the Gaussian heatmap [13,21]. 

After the training procedure, one can visually evaluate the results 
by using the prediction_inspect_plot function (see Listing 6 
and Fig.  4) or by creating a detection report. 

4.1. Benchmarks

To evaluate our package capabilities and its model’s landmark 
localization precision quantitatively, we conducted two benchmark 
experiments on relatively recent datasets that showcase its performance 
on both 2D and 3D medical imaging tasks. For the 2D benchmark, 
we used pelvis x-ray images from the Osteoarthritis Initiative [11]. In 
this experiment, our spatial configuration network (SCN) with adap-
tive heatmaps—implemented in landmarker, was compared against 
a state-of-the-art U-Net with Attention approach [11]. As shown in 
Table  2, our method achieved a lower average position error (PE) and 
higher success detection rates (SDR) across multiple thresholds, clearly 
demonstrating the capabilities of the package as a benchmarking tool.

In addition to the 2D evaluation, we benchmarked our model on 
3D images using CT scans of the skull [40], where the task was to 
annotate mandibular landmarks automatically. The results, presented 
in Table  3, include both validation and test metrics, with our one-
hot ensemble [41] method outperforming the competitive baseline 
regarding PE and SDR. These results confirm our model’s precision 
and highlight its flexibility in handling diverse anatomical landmarking 
applications across different imaging modalities.

5. Impact and conclusions

The development and release of the landmarker Python pack-
age offer significant advancements in anatomical landmark localiza-
tion, particularly within medical imaging. By providing a flexible and 
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1 from landmarker.visualize import inspection_plot
2

3 inspection_plot(ds_train , range(3), heatmap_generator=heatmap_generator)

Listing 4 Loading data into a LandmarkDataset

1 import torch
2

3 from landmarker.models import OriginalSpatialConfigurationNet
4 from landmarker.losses import GaussianHeatmapL2Loss
5

6 model = OriginalSpatialConfigurationNet(in_channels=1, out_channels=19)
7 optimizer = torch.optim.SGD([
8 {’params’: model.parameters(), " weight_decay " :1e-3},
9 {’params’: heatmap_generator.sigmas},
10 {’params’: heatmap_generator.rotation}]
11 , lr=1e-6, momentum=0.99, nesterov=True)
12

13 criterion = GaussianHeatmapL2Loss(alpha=5)
14

15 train_loader = DataLoader(ds_train , batch_size=1, shuffle=True, num_workers=0)
16

17 # Start training
18 for epoch in range(100):
19 model.train()
20 for batch in train_loader:
21 images = batch[ " image " ].to(device)
22 landmarks = batch[ " landmark " ].to(device)
23 optimizer.zero_grad()
24 outputs = model(images)
25 heatmaps = heatmap_generator(landmarks)
26 loss = criterion(outputs, heatmap_generator.sigmas, heatmaps)
27 loss.backward()
28 optimizer.step()

Listing 5 Training adaptive heatmap regression model.

1 from landmarker.visualize import prediction_inspect_plot
2

3 prediction_inspect_plot(ds_test1, model, ds_test1.indices[:3])

Listing 6 Prediction inspection plot.

Fig. 3. Example of results of running the inspection_plot on the ISBI2015 dataset.

SoftwareX 30 (2025) 102165 
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Fig. 4. Examples of landmark predictions using the prediction_inspection_plot tool for different datasets: (a) Endoscopic images, (b) ISBI2015, and (c) Pelvis X-rays.
Table 2
Landmark localization results of spatial configuration network (SCN) with adaptive 
heatmaps [13,21] (implemented in landmarker) on the pelvis x-rays (2D) of the 
osteoarthritis initiative dataset [11] compared against the literature. The best results 
are highlighted in bold. A 5-fold validation approach, as suggested by Pei et al. [11], 
obtains the results.
 Model name PE (mm) SDR (%)
 1 mm 2 mm 3 mm 4 mm  
 U-Net w/ Attention 
[11]

3.14 8.65% 33.89% 59.25% 78.61%  

 SCN [13,21] 
(landmarker)

1.61 33.25% 74.38% 90.96% 95.85% 
  

modular toolkit tailored explicitly for medical imaging applications,
landmarker addresses a critical need for precision and customization 
in landmark localization tasks that are not adequately met by existing 
general-purpose pose estimation tools like OpenPose or MMPose.
6 
One of the key impacts of landmarker is its ability to streamline 
the research and development process for researchers and develop-
ers working on image-based diagnostic and therapeutic deep learning 
applications. The package’s integration with PyTorch and MONAI en-
sures compatibility with various medical image formats and processing 
pipelines, facilitating easy adoption in research environments. More-
over, the extensive support for different landmark localization method-
ologies, including static and adaptive heatmap regression, allows users 
to implement state-of-the-art algorithms with minimal overhead.

Including customizable modules for data handling, preprocessing, 
heatmap generation, and model evaluation further enhances the utility 
of landmarker. These features enable users to quickly adapt the pack-
age to their specific use cases, whether they involve 2D or 3D images, 
single-class or multi-class landmark localization, or static versus adap-
tive methodologies. The ability to implement and test novel approaches 
within a unified framework accelerates innovation in computer-aided 
diagnosis through medical imaging, potentially leading to more accu-
rate diagnoses and better patient outcomes.
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Table 3
Landmark localization results of one hot ensemble [41] (implemented in landmarker) on the MML (3D) dataset compared against 
the literature. This benchmark dataset is the same as the data subset, only with complete landmarks, used as a benchmark in He et al. 
[40]. The best results are highlighted in bold.
 Model name Validation Test

 PE (mm) SDR (%) PE (mm) SDR (%)
 2 mm 2.5 mm 3 mm 4 mm 2 mm 2.5 mm 3 mm 4 mm  
 Pruning-ResUNet3D 
[40]

1.82 73.21% 82.14% 88.93% 94.76% 1.96 70.03% 79.97% 86.10% 92.73%  

 One hot ensemble
[41] (landmarker)

1.60 77.81% 87.76% 89.92% 93.37% 1.39 81.67% 91.31% 93.33% 96.31% 
  
In conclusion, landmarker represents a powerful tool for advanc-
ing the field of anatomical landmark localization in medical imaging. 
Its flexibility and ease of use make it a helpful resource for researchers 
and engineers. We plan to incorporate future developments and im-
provements, particularly in uncertainty quantification, which is critical 
for enhancing the reliability and robustness of landmark localization in 
medical applications.
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