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Abstract: This work considers the Minkowski sum of an N-dimensional ellipsoid and
hyperrectangle, a combination that is extremely relevant due to the usage of ellipsoid-
adjacent primitives in computer graphics for work such as 3D Gaussian splatting. While
parametric representations of this Minkowski sum are available, they are often difficult or
too computationally intensive to work with when, for example, performing an inclusion
test. For performance-critical applications, a lightweight approximation of this Minkowski
sum is preferred over its exact form. To this end, we propose a fast, computationally
lightweight, non-iterative algorithm that approximates the Minkowski sum through the
intersection of two carefully constructed bounding boxes. Our approximation is a super-
set that completely envelops the exact Minkowski sum. This approach yields an implicit
representation that is defined by a logical conjunction of linear inequalities. For applications
where a tight super-set of the Minkowski sum is acceptable, the proposed algorithm can
substantially improve the performance of common operations such as intersection testing.

Keywords: Minkowski sum; ellipsoid; hyperrectangle; box; algorithm; approximation;
Gaussian splatting; implicit representation; Mahalanobis distance; bounding boxes

MSC: 52A27

1. Introduction
The Minkowski sum, a binary operation in geometry, combines two subsets of a

Euclidean space to form a new set. Formally, the Minkowski sum A ⊕ B of two sets of
vectors A and B is defined as follows:

A ⊕ B = {⃗a + b⃗ | a⃗ ∈ A, b⃗ ∈ B}.

Additionally, the Minkowski difference A ⊖ B of two sets of vectors A and B is defined
as follows:

A ⊖ B = A ⊕ (−B) = {⃗a − b⃗ | a⃗ ∈ A, b⃗ ∈ B}.

The Minkowski sum and difference play a critical role in both theoretical research and
practical applications across a diverse range of fields, including robotics [1,2], energy [3–5],
algebraic geometry [6], and computational biology [7], to name a few. In mathematical
morphology, the Minkowski sum is better known as dilation, one of the four basic op-
erations. Mathematical morphology has its roots in 2D image processing but has since
expanded to related fields, such as computer graphics [8]. The Minkowski sum is also used
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more broadly in computer graphics for tasks such as constraint enforcement for vector
graphics [9] and collision detection [10]. These works typically focus on traditional repre-
sentations, e.g., vector graphics [9] and meshes [10], with little attention being paid to newer
representations. One class of non-traditional representations that has become popular is
those based on multivariate Gaussian primitives, e.g., the Steered Mixture of Experts [11]
and 2D/3D/4D Gaussian splatting [12–14]. Multivariate normal distributions are closely
related to ellipsoids, as the level sets of their probability density function (or Mahalanobis
distance) form concentric ellipsoids, which are uniformly scaled versions of one another.
Ellipsoids have therefore become of more and more interest within computer graphics.

When an origin-centered ellipsoid is the second operand in a Minkowski difference, it
becomes equivalent to a Minkowski sum due to the point symmetry of ellipsoids. Numerous
methods for computing the boundary of a Minkowski sum involving ellipsoids exist, but most
are parametric [15–18]. Although parametric representations provide precise solutions, they
fall short in their applicability in tests that must be run extremely quickly. This is especially
relevant in computer graphics applications, where we want to conduct millions to billions
of tests every second [19]. To achieve such speeds, we are willing to accept a more crude
approximation of the Minkowski sum, given that the approximation is guaranteed to envelop
the entire Minkowski sum. Furthermore, we are especially interested in the Minkowski sum
of an ellipsoid and hyperrectangle (commonly referred to as a box), as this operation naturally
occurs during common computer graphics operations, such as during the frustum culling and
block-based rasterization of 3D Gaussian splatting [13]. The construction of the exact Minkowski
sum used in this scenario is visualized in Figure 1. An ellipsoid and a box only intersect when
the origin (i.e., zero vector) lies within their Minkowski difference. Note that this is true for any
pair of shapes [20]. More intuitively, taking advantage of the ellipsoid’s point symmetry, the
ellipsoid intersects with the box only if its center lies within the Minkowski sum of the box and
its origin-centered counterpart. An example of how this overlap is detected when relying on the
Minkowski sum is demonstrated in Figure 2.
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Figure 1. Illustration of the construction of the exact Minkowski sum boundary (shown in solid
green) constructed for a rectangle (shown in blue) and an ellipse. For visual clarity, only ellipses
positioned at the rectangle’s corner points (shown as dashed green outlines) are shown as they define
the boundary’s extremes.
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Figure 2. Illustration showing how the Minkowski sum of an ellipse and a rectangle can be used
to determine their intersection. When the center point of the ellipse (shown in gray) lies within the
Minkowski sum (depicted in green), it indicates that the ellipse intersects or touches the rectangle
(shown in blue).
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To this end, we propose a non-iterative, fast, and computationally lightweight test
to determine whether an N-dimensional ellipsoid overlaps with an N-dimensional box’s
domain. Our method creates an implicit representation by defining the approximated sum
as a logical conjunction of 2N linear inequalities. This approach not only guarantees a
‘tightly fitted’ approximation that fully contains the exact solution, but it also offers a simple-
to-evaluate and computationally efficient solution. One significant practical implication of
this method is its efficiency in identifying, within a specified tolerance, the multivariate
normal distributions that intersect a given hyperrectangular subdomain from a large set.

2. Background and Related Work
In this section, we provide an overview of the fundamental mathematical concepts that

underlie our work and review relevant existing methods for computing Minkowski sums.
The Minkowski sum, named after Hermann Minkowski, is a binary operation that

combines two subsets of a Euclidean space by adding each vector in the first set to each
vector in the second set. While this operation has closed-form solutions for certain combi-
nations of shapes, some are non-trivial. Examples of cases where the Minkowski sum has
straightforward solutions and for which algorithms are available include the following:

• Convex polygons [21];
• Non-convex polygons (through their decomposition into convex polygons) [21,22];
• Three-dimensional triangle meshes [21];
• Algebraic planar curves [23].

Existing methods for computing Minkowski sums often involve complex mathematical
procedures or algorithms. Some methods yield results in a parametric form [15–17,23–25], while
others result in a set of vertices with connectivity information [21,22]. While these solutions are
mathematically precise, their form or algorithmic complexity limits their practical application.
In general, implicit formulations are preferred for tasks such as intersection testing.

This work focuses on the Minkowski sum of a box and an ellipsoid. To our knowledge,
there is no prior work directly addressing this specific combination that has led to a practi-
cally efficient and implicit representation.A key insight involves leveraging the properties
of zonohedra. A box is a zonohedron and can be expressed as the Minkowski sum of its N
orthogonal generator line segments, where N is the dimensionality of the space. Let the
i-th generator line segment, centered at the origin, be aligned with the i-th axis and have
a half-length of si. We can represent this line segment as a ‘collapsed’ ellipsoid Ei whose
covariance matrix Ri has exactly one non-zero eigenvalue:

Ri = e⃗i e⃗i
T s2

i , i = 1, . . . , N, (1)

where e⃗i is the i-th standard basis vector. This transforms the problem of computing the
Minkowski sum of an ellipsoid E (with covariance matrix R) and a box into computing the
Minkowski sum of m = N + 1 ellipsoids: E ⊕ E1 ⊕ · · · ⊕ EN .

The boundary of the Minkowski sum of m ellipsoids Ei (defined by the covariance
matrices Ri) can be parameterized exactly [15] as follows:

S⃗(⃗n) =
m

∑
i=1

Ri⃗n√
n⃗T Ri⃗n

, ∀⃗n : ∥⃗n∥ = 1, (2)

where parameter n⃗ represents the normal vector to the boundary surface pointing out-
ward [15]. However, this parametric form is generally impractical for efficiently determin-
ing point containment (i.e., whether a point lies inside the sum). Furthermore, the presence
of collapsed ellipsoids (with rank-deficient Ri) requires careful handling, as n⃗T Ri⃗n can be
zero for normals that are orthogonal to the i-th standard basis vector.
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Given the limitations of the exact parametric form, approximation techniques are often
employed, particularly for constructing an outer ellipsoidal bound. A fundamental tool for
constructing the outer bound of a Minkowski sum of convex shapes is the support function
hK of the convex body K:

hK(u⃗) = sup
x⃗∈K

x⃗ · u⃗ , u⃗ ∈ RN . (3)

We restrict ourselves to normalized vectors, i.e., u⃗ ∈ SN−1. As a result, the support function
describes the signed distance from the origin to the supporting hyperplane of K with
outward normal u⃗, i.e., the farthest extent of K in direction u⃗. It possesses the additivity
property for Minkowski sums [26,27]:

hK1⊕K2 = hK1 + hK2 . (4)

For an ellipsoid E defined by a positive definite covariance matrix R, the support function
is [15] as follows:

hE(u⃗) =
√

u⃗T R u⃗ . (5)

As for the origin-centered collapsed ellipsoid Ei with the covariance matrix from
Equation (1), we interpret it as an origin-centered line segment extending from −si⃗ei to si⃗ei

to allow us to apply the known support function for a line segment [28]:

hEi (u⃗) = max{(−si⃗ei) · u⃗, (si⃗ei) · u⃗} = |siui| . (6)

Leveraging the additivity of support functions, a commonly studied family of ellip-
soids guaranteed to contain the Minkowski sum of a collection of ellipsoids with covariance
matrices R1, . . . , Rm can be constructed. An ellipsoid within this family E(γ) is parameter-
ized by a vector γ = (γ1, . . . , γm) ∈ Rm

>0, with its covariance matrix R(γ) given by [29–31]:

R(γ) =
m

∑
i=1

γiRi (7)

where the parameters must satisfy

m

∑
i=1

1
γi

= 1 . (8)

Note that this constraint implies that γi ≥ 1. Durie et al. [31] show that this en-
sures that the support function of the resulting ellipsoid hE(γ)(u⃗) =

√
u⃗T R(γ)u⃗ bounds

the sum of the individual support functions ∑ hEi (u⃗), thus guaranteeing containment:
E1 ⊕ · · · ⊕ Em ⊆ E(γ) [31].

The primary objective is often to find the tightest bound within this family, specifically
the Minimum-Volume Outer Ellipsoid (MVOE), which is obtained by minimizing the
determinant of R(γ):

γMVOE = arg minγ det(R(γ)) subject to (8) . (9)

While this is a convex optimization problem [31], γMVOE generally lacks a closed-form
solution. It can be found using numerical optimization algorithms, such as Sequential
Least Squares Programming (SLSQP) [32], but this can be computationally demanding. For
the specific case of m = 2, a fast fixed-point algorithm exists [33]. Halder proposed using
this fixed-point algorithm as the basis for a heuristic for m > 2 by recursively applying
this pairwise optimal algorithm to achieve an outer ellipsoid bound (γhalder) [33]. While
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this fixed-point algorithm simplifies for collapsed ellipsoids, the recursive nature of the
heuristic means that it remains iterative.

An alternative approach involves minimizing the trace of the covariance matrix,
tr(R(γ)), instead of its determinant. This alternative optimization problem does have a
known closed-form solution for the m = 2 case [30]:

γ1 = 1 +

√
tr(R2)

tr(R1)
and γ2 = 1 +

√
tr(R1)

tr(R2)
(10)

Inspired by this, a computationally tractable heuristic choice for the general m case is as
follows [15]:

γchirikjian,i =
∑m

j=1

√
tr(Rj)√

tr(Ri)
, i ∈ {1, . . . , m} (11)

This provides a non-iterative method for obtaining the γ of an outer ellipsoid, potentially
sacrificing tightness compared to the MVOE in exchange for computational speed.

3. Proposed Approximation Algorithm
This section details our proposed algorithm for efficiently approximating the Minkowski

sum of an N-dimensional ellipsoid and an axis-aligned box, ΩM = Ωellipsoid ⊕ Ωbox. The core
strategy of this algorithm is to construct two distinct oriented bounding boxes, ΩbbA and ΩbbB,
which are each guaranteed to contain the Minkowski sum ΩM. The intersection of these two
boxes, Ω∼M = ΩbbA ∩ ΩbbB, yields a tighter approximation of ΩM than either box alone while
retaining a simple implicit representation suitable for efficient queries.

We begin by formally defining the input shapes, which are centered at the origin.
We assume, without a loss of generality, that the box is axis-aligned. If the initial box
were arbitrarily oriented using an invertible linear transformation B ∈ RN×N , the problem
could be transformed to the axis-aligned case by applying an inverse transformation to the
ellipsoid, resulting in a modified covariance matrix R′ = B−1R(B−1)T .

The axis-aligned box is defined by its per-dimension half-sizes, s⃗box ∈ RN
>0. The region

Ωbox can then be defined as

Ωbox =

{
x⃗ ∈ RN :

N∧
i=1

(
|xi| ≤ sbox,i

)}
. (12)

The ellipsoid, defined by its covariance matrix R, occupies the region Ωellipsoid:

Ωellipsoid =
{

x⃗ ∈ RN : x⃗T R−1 x⃗ ≤ 1
}

. (13)

Our approximation ΩM relies on constructing two tight bounding boxes, ΩbbA and
ΩbbB. The key tool for determining the minimal size of a bounding box that encloses
ΩM in any given direction is the support function of the Minkowski sum hΩM . Using the
additivity property (Equation (4)), the support function of the ellipsoid (Equation (5)), and
the support function of the box (Equation (6)), we derive the following:

hΩM (u⃗) = hΩellipsoid(u⃗) + hΩbox(u⃗)
= hΩellipsoid(u⃗) + ∑N

i=1 hEi (u⃗)
=

√
u⃗T R u⃗ + ∑N

i=1 |sbox,i ui|
=

√
u⃗T R u⃗ + s⃗box · |u⃗| .

(14)

where |u⃗| denotes the element-wise absolute value of u⃗.
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An oriented bounding box Ωbb, aligned with an orthonormal basis {⃗b1, . . . , b⃗N} and
tightly enclosing ΩM, can be constructed using the support function hΩM . Recall that
hΩM (u⃗) gives us the maximum projection of ΩM onto the u⃗ direction. For the box to tightly
contain ΩM, its boundary planes orthogonal to b⃗i must align with the maximum extents of
ΩM in the ±⃗bi directions, which are given by hΩM (⃗bi) and hΩM (−⃗bi). Thus, the smallest
bounding box Ωbb is given by

Ωbb =

{
x⃗ ∈ RN :

N∧
i=1

((⃗
bi · x⃗ ≤ hΩM (⃗bi)

)
∧
(
(−⃗bi) · x⃗ ≤ hΩM (−⃗bi)

))}

=

{
x⃗ ∈ RN :

N∧
i=1

(
|⃗bi · x⃗| ≤ hΩM (⃗bi)

)} (15)

since hΩM (u⃗) = hΩM (−u⃗) due to the symmetry of the box and ellipsoid about the origin.
We choose two specific orientations for the basis vectors b⃗i to construct ΩbbA and ΩbbB,
aiming to capture different geometric features of ΩM.

3.1. The Axis-Aligned Bounding Box (bbA)

The first bounding box, ΩbbA, is aligned with the standard coordinate axes, meaning
that its basis vectors are b⃗i = e⃗i. Its half-sizes, s⃗bbA, are determined by evaluating the
support function (Equation (14)) along these axes:

sbbA,i = hΩM (⃗ei) =
√

Rii + sbox,i, i = 1, . . . , N. (16)

Intuitively, the half-size along the i-th axis is the sum of the ellipsoid’s projected extent
onto that axis (

√
Rii) and the box’s half-size along that axis (sbox,i). The region ΩbbA is then

implicitly defined according to Equation (15):

ΩbbA =

{
x⃗ ∈ RN :

N∧
i=1

(
|xi| ≤ sbbA,i

)}
. (17)

This construction is illustrated for N = 2 in Figure 3.
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Figure 3. Example construction of the 2D axis-aligned bounding box ΩbbA.

3.2. The Covariance-Oriented Bounding Box (bbB)

The second bounding box, ΩbbB, is aligned with the principal axes of the ellipsoid.
These axes are defined by the normalized eigenvectors {v⃗1, . . . , v⃗N} of the ellipsoid’s
covariance matrix R and correspond to the eigenvalues {λ1, . . . , λN}. These are obtained
via an eigendecomposition: R = VΛVT , where V = [⃗v1| . . . |⃗vN ] and Λ = diag(λ1, . . . , λN).
(We note that in applications like 3D Gaussian splatting [13], R is often stored in terms of
its eigensystem, avoiding the need for explicit decomposition).

The half-sizes of ΩbbB, denoted as s⃗bbB, are determined by evaluating the support
function (Equation (14)) along the eigenvectors b⃗i = v⃗i:

sbbB,i = hΩM (⃗vi) =
√

λi + s⃗box · |⃗vi|, i = 1, . . . , N , (18)
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for which we used the definition of an eigenvector: R v⃗i = λi v⃗i. Intuitively, this is the sum
of the ellipsoid’s semi-axis length along v⃗i and the maximal extent of the box projected onto
the direction v⃗i. The region ΩbbB is implicitly defined by using the basis V according to
Equation (15):

ΩbbB =

{
x⃗ ∈ RN :

N∧
i=1

(
|(VT x⃗)i| ≤ sbbB,i

)}
. (19)

The construction of this bounding box is visualized in Figure 4.
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Figure 4. Example construction of the 2D eigenvector-aligned bounding box ΩbbB.

3.3. Intersecting the Bounding Boxes

To compute the approximated Minkowski sum Ω∼M, we intersect the two bound-
ing boxes:

Ω∼M = ΩbbA ∩ ΩbbB

=
{

x⃗ ∈ RN :
∧N

i=1
(
(|xi| ≤ sbbA,i) ∧ (|(VT x⃗)i| ≤ sbbB,i)

)}
.

(20)

The resulting intersection is illustrated in Figure 5.
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Figure 5. Example construction of the 2D intersection of ΩbbA and ΩbbB.

Testing whether a point lies within the approximated Minkowski sum region, as
shown in Equation (20), is straightforward and computationally efficient. Specifically, the
required operations are as follows:

• 1 eigendecomposition (*);
• 2N square root computations (*);
• 1 matrix–vector multiplication;
• 2N absolute value computations;
• 2N comparisons.
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Operations marked with (*) can be precomputed when the box and ellipsoid are static.
Additionally, depending on the use case, the eigenvectors and corresponding eigenvalues
might already be known, making the eigendecomposition unnecessary.

In NumPy [34], this logic can be implemented as in Listing 1:

Listing 1. Reference implementation of our proposed algorithm in Python 3 using NumPy 2.

1 import numpy as np

2

3 # Input definitions

4 cov = np.array([\dots]) # NxN matrix

5 half_block_size = np.array([\dots]) # N-vector

6 x = np.array([\dots]) # point to test, N-vector

7

8 # Compute bounding box sizes (precomputable):

9 evals , evecs = np.linalg.eigh(cov)

10 bbA = np.sqrt(np.diag(cov)) + half_block_size

11 bbB = np.sqrt(evals) + np.sum(half_block_size[:,None] * np.abs(evecs), axis=0)

12

13 # Testing the point:

14 in_bbA = np.all(np.abs(x) <= bbA)

15 in_bbB = np.all(np.abs(np.dot(evecs.T, x)) <= bbB)

16 in_minkowski_approx = np.logical_and(in_bbA , in_bbB)

The above implementation can be trivially extended to efficiently test an array of points.

4. Results and Discussion
This section uses a Monte Carlo estimation to evaluate the performance of the proposed

Minkowski sum approximation, Ω∼M = ΩbbA ∩ ΩbbB, and compare it with alternative
approaches. It also discusses the approximation’s characteristics and identifies areas for
future investigation.

4.1. Evaluation Methodology

To quantify the tightness of the approximation, we use the Volume Ratio (VR), which
is defined as VR(A) = Vol(A)/Vol(ΩM), where A is a fully encompassing approximation
of the exact Minkowski sum ΩM. A perfect approximation has a VR of 1.

A direct comparison with prior work is challenging due to the lack of specific methods
for approximating the box–ellipsoid Minkowski sum. To address this, we establish compar-
isons by viewing the box as a sum of degenerate ellipsoids (as discussed in Section 2) and
by comparing it against approximations from the literature on multi-ellipsoid summation.
Here, we note that the computational complexity of the point containment tests for a single
box is roughly comparable to that of a single ellipsoid. Therefore, we report VR values not
only for the proposed intersection Ω∼M but also for its components, ΩbbA and ΩbbB.

The evaluation was performed via Monte Carlo simulations with the dimensions
N = 2 to N = 6. In each trial, the lengths of the ellipsoid semi-axes (

√
λi) and the half-sizes

of the box (sbox,i) were independently sampled from U (0.2, 1.8), simulating a balanced
scenario. The ellipsoids were also given a random orientation. All VRs were computed
using 100,000 trials.

4.2. Results and Analysis

The estimated average VRs are presented in Table 1. The results clearly show that the
proposed intersection Ω∼M yields the lowest average VR across the tested dimensionalities
in this balanced scenario, outperforming all discussed outer ellipsoid bounds (even without
considering ΩbbB), validating this intersection approach.
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Table 1. Monte Carlo estimates (100,000 samples per N) of the average Volume Ratio (VR), with
99.9% confidence intervals, for N = 2 to 6 dimensions. The proposed intersection method (Ω∼M) and
its components (ΩbbA and ΩbbB) are compared against several of the outer ellipsoid approximations
discussed in Section 2. Lower VR values indicate tighter approximations.

Method Iterative
Creation?

Number of Dimensions (N)
2 3 4 5 6

Ellipsoid
bounds E(γ)

γMVOE Yes (Slow) 1.231 ± 0.001 1.597 ± 0.002 2.134 ± 0.003 2.913 ± 0.005 4.034 ± 0.008
γhalder Yes (Fast) 1.255 ± 0.001 1.684 ± 0.002 2.350 ± 0.005 3.382 ± 0.009 4.972 ± 0.015

γchirikjian No 1.256 ± 0.001 1.656 ± 0.002 2.250 ± 0.003 3.126 ± 0.006 4.413 ± 0.009

Ours
ΩbbA No 1.094 ± 0.001 1.261 ± 0.001 1.513 ± 0.002 1.872 ± 0.003 2.371 ± 0.005
ΩbbB No 1.390 ± 0.002 2.362 ± 0.004 4.669 ± 0.010 10.40 ± 0.025 25.54 ± 0.068
Ω∼M No 1.028 ± 0.000 1.160 ± 0.001 1.388 ± 0.001 1.725 ± 0.002 2.205 ± 0.004

While generally effective, the performance of Ω∼M exhibits sensitivity to the specific
geometric configuration considered. Firstly, if the ellipsoid’s principal axes align closely
with the coordinate axes, ΩbbA and ΩbbB become similar, reducing the benefit gained
from their intersection. Secondly, their relative scales matter. If the size of the ellipsoid is
negligible compared to that of the box, ΩbbA is a near-perfect bound by itself. Conversely,
if the size of the box is negligible, the true sum is nearly an ellipsoid, and single-ellipsoid
approximations, such as E(γhalder) and E(γchirikjian), will offer a tighter fit than our box-
based intersection.

Furthermore, Table 1 reveals that the VR tends to increase with the number of di-
mensions N. We hypothesize that this trend arises from two main factors. First, as N
increases, a larger portion of the Minkowski sum’s volume lies near the edges, where
approximations introduce errors. Second, the boundary of the Minkowski sum involves
interactions between the ellipsoid and all k-faces of the N-dimensional box. Since the
number of these faces grows exponentially with N, this significantly increases geometric
complexity. Our approximation only accounts for the box’s vertices (0-faces) and facets
((N − 1)-faces), intentionally simplifying the structure to maintain computational efficiency.
This simplification becomes increasingly limiting in higher dimensions, where intermediate
k-faces contribute more substantially to the true boundary.

4.3. Future Directions

The observed performance characteristics of our method, and particularly its degra-
dation in higher dimensions, suggest avenues for future work. A promising direction
would be to enhance the approximation by intersecting more than two bounding volumes.
Investigating systematic methods for selecting additional oriented bounding boxes, po-
tentially targeting different k-faces or even incorporating other shapes like ellipsoids into
the intersection, could yield tighter bounds. The challenge lies in balancing the improved
accuracy with the added computational cost of constructing and querying a more complex
intersection region.

5. Conclusions
This paper presents a novel, non-iterative, computationally efficient algorithm for

approximating the Minkowski sum of an N-dimensional ellipsoid and box. The proposed
method defines the approximate sum as the logical conjunction of the conditions defining
two carefully constructed bounding boxes: one axis-aligned and the other oriented along
the ellipsoid’s eigenvectors. These bounding boxes are designed to each fully contain
the exact Minkowski sum, ensuring that the approximation fully envelopes the exact
solution. By considering the overlap between the bounding boxes, the algorithm provides
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an approximation that is closely fitted to the exact solution. Its computational simplicity
and non-iterative nature make it suitable for performance-critical applications, such as the
efficient culling of multivariate normal distributions in computer graphics.
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