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ABSTRACT: Maximizing the extraction of true, high-

quality, non-redundant features from biofluids analyzed via 

LC-MS systems is challenging. Here, the R packages IPO 

and AutoTuner were used to optimize XCMS parameter 

settings for the retrieval of metabolite or lipid features in 

both ionisation modes from either faecal or urine samples 

from two cohorts (n = 621). The feature lists obtained were 

compared with those where the parameter values were 

selected manually. Three categories were used to compare 

feature lists: 1) feature quality through removing false 

positives, 2) tentative metabolite identification using the 

Human Metabolome Database (HMDB) and 3) feature utility 

such as analyzing the proportion of features within intensity 

threshold bins. Furthermore, a PCA-based approach to 

feature filtering using QC samples and variable loadings was 

also explored under this category. Overall, more features 

were observed after automated selection of parameter values 

for all datasets (1.3- 3.7-fold), which propagated through 

comparative exercises. For example, a greater number of 

features (on average 51 vs. 45 %) had a coefficient of 

variation (CV) < 30 %. Additionally, there was a significant increase (7.6 – 10.4 %) in the number of faecal metabolites that 

could be tentatively annotated, and more features were present in higher intensity threshold bins. Considering the overlap 

across all three categories, a greater number of features were also retained. Automated approaches that guide selection of 

optimal parameter values for preprocessing are important to decrease the time invested for this step, whilst taking advantage of 

the wealth of data that LC-MS systems provide. 

Metabolomic analyses of biofluids can provide useful insights 

into the functioning of an organism’s metabolic pathways, 

helping to monitor physiological responses and phenotypes 

associated with health and disease states (1, 2). Ultra-high 

performance liquid chromatography coupled to high resolution 

mass spectrometry (UHPLC-HRMS) is regarded as one of the 

most superior LC-MS technologies, owing to its efficient 

separation and high sensitivity detection of metabolites, 

facilitating broad coverage of the metabolome (3, 4). 

Bioinformatic tools must be applied to the large datasets 

obtained from LC-MS systems upon metabolomic analyses. 

The aim is to extract a list of true, non-redundant features in 

tabular format containing the metabolic variable information 

m/z and retention time, and for each sample, a value for the 

peak area or maximum peak intensity, from the thousands of 

spectral peaks which are contained within the LC-MS raw 

datafiles (5). Noise from contaminants, unwanted signal spikes, 

false positive peaks, and redundant information in the form of 
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adducts, fragments and isotopes must be accounted for to 

maximize the extraction of high-quality features (1, 3). In turn, 

these features need to have a strong signal to aid downstream 

statistical analyses and biological interpretation (5, 6).  

The steps involved in data preprocessing include peak 

picking, retention time alignment, grouping and gap filling (7, 

8). Different software exists ranging from open source such as 

MZmine 3 (9), XCMS (10) and MS-DIAL (11), to commercial 

ones such as Compound Discoverer and MassLynx (7). Each 

software uses different algorithms for certain stages such as 

peak picking (12). Thus, dissimilar feature lists can be obtained. 

The factors implicated in the choice of application include cost, 

coding skills and algorithm transparency (7). Software where 

the latter applies would improve reproducibility of the 

preprocessing steps for untargeted metabolomic studies. 

For this study, XCMS was chosen as a free, widely used, 

open-source R package (8, 10), that has performed well in 

detecting true positive features relative to alternatives (13), and 

scored approximately 70 % when considering the FAIR 

research principles governing the use of software that is easy to 

find, accessible, interoperable and reusable/modifiable (14). 

Choosing data appropriate parameter settings for 

preprocessing is important to maximize the value of the raw 

metabolomic data and optimize the extraction of useful features 

(15). Whilst time-consuming, this can be done manually 

through e.g., visualizing the extracted ion chromatogram (EIC) 

of internal standards; however, it requires a high level of 

expertise. Alternatively, the process can be automated using 

software packages such as AutoTuner or IPO (16, 17). 

In this study, both packages were used to automate 

optimization of XCMS parameters. Whilst the most 

computationally intensive, IPO is more established and has 

been employed in multiple studies including e.g. characterizing 

metabolite alterations associated with bariatric surgery (18). 

Few attempts have been made to compare LC-MS feature lists 

obtained from manual vs. automated selection of XCMS 

parameters (19, 20). One study used Kruskal-Wallis tests to 

compare the features in plasma and liver that were significantly 

different between groups of piglets that were either newborn, 

neonates, or infants (19). Whilst the other used machine 

learning approaches such as random forest to compare how 

well the features obtained from fingerprints could classify 

between males and females or time points (20). Thus, both 

studies have made the manual vs. automated XCMS parameter 

selection comparison through the ability of the features 

obtained to discriminate between different groups.  

To the best of our knowledge, no approach has been 

reported that compares preprocessing of both metabolomic and 

lipidomic features in an unsupervised manner, i.e. in the 

absence of a defined endpoint. Two different complex human 

biofluids (n = 621 in total) collected from two Flemish 

prospective cohorts were utilized; faecal samples obtained from 

the longitudinal Flemish Gut Flora Project (FGFP) (21) and 

urine samples from children of the Environmental Influence on 

Early Ageing (ENVIRonAGE) cohort (22). The aim was to 

compare feature lists through methods assigned to one of three 

categories 1) feature quality (removal of false positives), 2) 

tentative metabolite identification using the HMDB and 3) 

feature utility/filtering through e.g. comparing how features 

were distributed across intensity threshold bins and evaluating 

the usefulness of a novel PCA-based approach to feature 

selection/filtering. The number of features that overlapped 

across methods and categories was also evaluated for each 

dataset and compared between workflows.  

 

Methodology 
Reagents The analytical standards and reagents used are 

documented by Vangeenderhuysen et al (23). 

Samples A total of 292 faecal samples were collected from 

the FGFP participants, as detailed by Falony et al (21). Urine 

samples from 329 children (aged 4-10 years) from the 

ENVIRonAGE cohort were obtained as described by Janssen et 

al (22). Upon collection of samples, cold chain monitoring was 

implemented for transport (21). Upon arrival, urine samples 

were frozen (-80 °C), whilst faecal samples were freeze-dried, 

ground, and sieved, then stored at -80 °C. Quality control (QC) 

samples were formed by pooling the biological samples 

together (n= 58 for faecal and n = 66 for urine). Two QCs were 

injected at regular intervals after 10 proceeding biological 

randomized samples to monitor the stability of the LC-MS 

system and provide a measure of repeatability and signal 

correction within and between each batch (5, 24). 

Sample Extraction The protocol for dual faecal 

metabolome and lipidome extraction is described in detail by 

Vangeenderhuysen et al (23). Briefly, for the faecal 

metabolome, 100 mg of faeces was added to 2 mL of ultra-pure 

water (UPW), followed by 12.5 µl of a 100 ng/µl mixture of 6 

internal standards (ISTDS: l-tyrosine-d2, indole 3-acetic acid-

d5, dopamine-d4, deoxycholic acid-d4, l-phenylalanine-d2 and 

alanine-d3). 0.5 mL of a 75:25 v/v mixture of ice-cold methanol 

and UPW was then added. Thereafter, the solution was vortexed 

(1 min), rotated (10 mins) and centrifuged (10 min at 10,000 x 

g). The supernatant was collected and passed through a 

polyamide filter (25 mm diameter, 0.45 µm pore size, 

Macherey-Nagel, Germany). 500 µl of this diluted extract was 

transferred to a glass LC vial. To extract the faecal lipidome, 

the residual fraction of the stool sample following faecal 

metabolome extraction was subjected to the protocol outlined in 

Supplementary Text 2.  Urine sample extraction is detailed by 

De Paepe et al (25). In short, 300 µL of urine was added to a 

1.5 mL Eppendorf tube, together with 30 µL of 6 ISTDs. Next, 

samples were centrifuged for 8 minutes at 1000 x g at 4°C. 100 

µL of supernatant was collected and diluted (1:10) with UPW, 

and then transferred to a glass LC vial. 

Instrumentation The UHPLC used for the faecal 

metabolome was the Vanquish Horizon with an Acquity high 

strength silica (HSS) T3 column (detailed by De Paepe et al 

(25)) coupled to the Orbitrap Exploris 120 MS (Thermo Fisher 

Scientific, San José, CA, USA) (23). MS detection was 

preceded by heated electrospray ionisation (HESI) in polarity 

switching mode and the following instrument parameters were 

used: sheath gas flow rate (55 arbitrary units, au), auxiliary gas 

flow rate (25 au) and sweep gas flow rate (3 au), heater and 

capillary temperature (both 300 °C), S-lens RF level 50 V, 

spray voltage of 2.9 kV for both ionisations modes,  m/z scan 

range of 53 to 800 Da, maximum injection time of 70 ms, with 

automatic gain control target of 1e6 ions and  mass resolution of 

120,000 full width at half-maximum (FWHM, 1 Hz) (23). Van 

Meulebroek et al (26) details the instrumentation used for 

faecal lipidome separation and detection, also present in 

Supplementary Text 2. The UHPLC for urine metabolites was 

the Vanquish Flex (HSS T3 column), coupled to the Orbitrap Q- 

Exactive MS (Thermo Fisher Scientific, San José, CA, USA) 

(25). The MS detection was preceded by HESI in polarity 

switching mode. Some instrument parameters remained the 

same as the faecal metabolome; those that differed were a 

sheath gas flow of 50 au, a heater and capillary temperature 
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Table 1: Preprocessing parameters used for each workflow*. 

*Supplementary Table 2A contains definitions of each 

parameter.  

 

of 350 °C and 250 °C, a spray voltage of ± 4.0 kV, and mass 

resolution of 140 000 FWHM (25). The sample injection 

volume for both faeces and urine was 10 μl.   
Data Conversion and Preprocessing  Raw Thermo Fisher 

files were converted into mzML formats using default settings 

of Proteowizard MS convert prior to preprocessing (27). 

Centroiding was applied to each data file, in each ionisation 

mode. R Studio (version 4.2.2.) was used for data analysis and 

plots. The R package XCMS (version 3.2.0) was used for 

preprocessing (10).  

After peak picking using the “centWave” algorithm (8, 28), 

low quality, false positive peaks were filtered with the 

comprehensive peak characterization (CPC) algorithm (version 

0.1) (29) and any incorrectly split peaks were detected and 

merged ((30). Retention time alignment was performed using 

the “obiwarp” method (31), to ensure the same peak m/z across 

different samples had the same retention time (8). 

Subsequently, peaks that clustered closely around a retention 

time were grouped into a feature (8). Gap filling was then used 

to account for missing peaks that were not initially detected or 

aligned correctly (7, 8, 10). The feature lists consisting of m/z-

retention time pairs, with corresponding peak area/height 

information for each sample were then annotated by CAMERA 

(version 1.54), where possible isotopes, fragments and adducts 

were identified (32).   

Manual Selection of XCMS Parameters Manual selection 

was conducted by a scientist in the field with expert knowledge. 

Initially, scientific articles which utilized the same or very 

similar UHPLC-HRMS instruments and had used XCMS for 

preprocessing were reviewed for their parameters e.g., (33) , in 

conjunction with tutorials on XCMS parameter selection. Next, 

the selected parameters were fine-tuned based on manual 

inspection of EICs of known compounds in biological faecal 

samples, QCs, and analytical standards (Supplementary Table 

1) from a subset of samples collected from the Rombouts et al 

study (34).  

Automated Selection of XCMS Parameters For each 

sample type (faeces/urine), each ionisation mode (+/-) and each 

category (metabolites/lipids), IPO was run in R using all QC 

samples (version 1.24). This took between 6 – 17 hours 

depending upon the dataset. AutoTuner was run using 15 

randomly selected QC samples (version 1.3). Whilst more 

interactive, AutoTuner took on average < 1 hour per dataset.  

Both outputs were considered and some parameter values such 

as ppm were further refined in line with the high resolution of 

the equipment used. The definitions of the parameters altered, 

and the settings used to run IPO/Autotuner are shown in 

Supplementary Table 2A and B respectively. 

Comparative Analyses For each dataset comparison either 

all features were used, or those with a CV < 30 % in the QC 

samples. Peak height was the chosen metric. 

Here within, workflow 1 refers to the manual selection of 

parameters, whilst workflow 2 refers to the automation. 

Preprocessing parameters were kept the same for both 

ionisation modes, particularly as the outcomes from 

IPO/Autotuner were remarkably similar for both (Table 1). 

Workflow 1 settings were used for both metabolite and lipid 

preprocessing. Noise (15,000) and S/N threshold (10) were kept 

the same for both workflows. IPO/Autotuner gave low noise 

(~5000) and too high ppm values. The use of a ppm that is 

close to the mass accuracy of the mass spectrometer is usually 

advised, thus 5 ppm was chosen for workflow 2. When 

grouping peaks into features, the minimum sample fraction was 

set to 0.2 (20 %) for both workflows.  

PCA The normalization, scaling and transformations 

applied to data before principal component analysis (PCA) 

were determined through a combination of visualizing how well 

QCs clustered, assessing the number of outliers, the % of 

variation explained by PC1 and 2 and the number of 

metabolites with normal distributions as determined by 

Shapiro-Wilk tests. In addition, a k-nearest neighbors’ approach 

(k=3) was used to calculate an accuracy score based on the 

confusion matrix from classifying samples as either QC or 

biological sample. From each cross-validation (n=7), the 

average score was calculated (35) . The same combination was 

used for each workflow for fair comparison. Normalization 

methods tested included total ion current (TIC) normalization, 

locally estimated scatter plot smoother (LOESS) and QC 

normalization (24, 36). Transformations assessed included 

logarithmic, inverse hyperbolic sine and Yeo-Johnson, whilst 

scaling methods included range, auto and pareto.  

EVA EVA (PyCharm version 2.5.0 in Anaconda 3 

environment (37)), is a deep learning neural network approach 

which has been trained on over 25,000 manually recognized 

EIC peaks from data of various sample types, LC-MS 

configurations and spectra acquisition rates, was utilized to 

estimate the number of true and false positive peaks from each 

workflow (37) based on good or poor quality EIC shape 

respectively. A feature was deemed true if it had at least one 

peak with a good EIC shape.  A two proportion Z-test was used 

to compare workflow 1 vs. 2, considering the proportion of true 

or false metabolic features for each category 

(metabolites/lipids) and ionisation mode (+/-).  

HMDB Tentative annotation (level 4 as proposed by 

Schymanski et al (38)), was carried out using the different 

adduct m/z’s for each entity/accession in the HMDB.  Ppm 

values were calculated for all features of each workflow with 

Setting Faecal 

Metabolites 

+ Lipids   

Faecal 

Metabolites   

Faecal 

Lipids  

 

Urinary 

Metabolites  

 

Work-

flow  

1 2 2 2 

PEAK PICKING SETTINGS   

ppm 6 5 5 5 

peak 

width 

(min, 

max) 

5, 45 3, 50 20, 65 4, 55 

prefilter 3, 1000 3, 100 3, 100 3, 100 

mzdiff 0.0500 -0.0065 0.0450 0.0050 

fitgauss TRUE FALSE FALSE FALSE 

RETENTION TIME 

ALIGNMENT 

  

binSize  1 (Default) 0.79 0.79 0.53 

gap 

Init 

0.30 

(Default) 

0.67 0.42 0.81 

gap 

Extend 

2.40 

(Default) 

2.34 2.50 2.00 

GROUPING   

bw 30.00 

(Default) 

0.88 0.88 0.88 

mzwid  0.050 0.010 0.010 0.015 

https://www.sciencedirect.com/topics/chemistry/spraying-apparatus
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each adduct in separate ionisation modes. To mitigate unlikely 

adduct matches, we prioritized [M + H]+ and [M − H]− adduct 

matching over others if the ppm < 5, given their higher 

likelihood of formation during electrospray ionisation (7). For 

features with multiple HMDB accession matches, the lowest 

ppm was used to annotate, with prioritization given to [M + H]+ 

and [M − H]- adducts. In cases where multiple matches shared 

the same molecular formula, ppm difference, and adduct type, 

annotations could not be further refined due to the absence of 

fragmentation data and the lack of universal retention times in 

HMDB. As these annotations were intended only for comparing 

numbers across workflows and not for biological interpretation, 

the first HMDB accession within the group of matches sharing 

the same molecular formula was selected. This approach 

ensured consistency and avoided over-inflating annotation 

counts. To elucidate proportion of metabolites annotated per 

workflow, a < 1 ppm for metabolites and < 10 ppm for lipids 

cut-off was utilised. Proportion Z-tests were used for 

comparisons. 

ICC To estimate the biological variation in the features that 

would remain after CV filtering and to compare these between 

workflows, the intra-class correlation coefficient (ICC) was 

calculated using the method outlined in Schifmann et al (39). 

Only the features left after CV filtering were used, because 

there was too much multi-collinearity using some of the full 

feature lists. Since ICC considers both biological and technical 

sources of variation, a feature with a high ICC is indicative of 

one that may have higher biological variation compared to one 

with a low ICC (39). 

Signal Strength Intensity threshold bins were created for 

each category (metabolites/lipids) and ionisation mode (+/-).  

QC samples were used to determine the number of features per 

bin, where the average number of features across all QCs for 

each intensity bin were calculated. Proportion Z-tests were used 

to compare workflow 1 vs. 2 at each threshold.  

Feature Selection PCA was used to test an alternative 

feature filtering approach to using CV < 30 %. A combination 

of QC normalization, log transformation and pareto scaling was 

applied to the QC data, as it caused the QC samples to cluster 

best. The number of PCs to retain was determined through 

permutation testing (n=1000), keeping only the PCs which were 

significant (p < 0.05). For each feature, the sum of loadings 

across those PCs was then calculated. The threshold was 

determined arbitrarily at half the maximum summed loading 

value. Cut-offs were unique for each category/ionisation mode 

and workflow. It was assumed that features with a small loading 

would show low variation across QCs and not drive any 

separation; thus, the CV of features below this threshold was 

also checked for congruency.  

All statistical tests (except permutation testing) were 

adjusted for multiple comparison via the Benjamini-Hochberg 

procedure (false discovery rate, FDR), with an FDR q value < 

0.01 deemed significant.  

Based on these approaches, we assigned methods to 

compare workflows to one of three categories: 

• Feature Quality (EVA and CV calculations checking 

false positives) 

• Metabolite Identification (tentative based on HMDB 

annotations).  

• Feature Utility / Filtering for Downstream Analyses 

(Intensity thresholds, ICC calculations, PCA filtering 

method).  

 

The comparisons between workflows were initially evaluated 

using each method singularly and then examined via the 

overlap of features across categories that matched criteria. For 

example, examining the overlap between features that were 

recognized as true by EVA, had a CV < 30 %, could be 

tentatively annotated by HMDB at the respective ppm, were in 

the top 3 or 4 intensity bins with signal exceeding 2 million, 

and were retained after filtering using PCA loadings. To include 

the ICC results in the evaluations, the overlap was also 

examined using only features remaining after CV filtering. 

UpSet plots were used to visualize the overlaps for each dataset 

and workflow (40, 41). 

 

Results and Discussion 
Impact of parameter selection on feature numbers More 

features were present in workflow 2 (fold change ranging from 

1.3 for metabolites to 3.7 for lipids) (Table 2). Decreasing peak 

width and increasing band width were found to be the most 

influential parameters driving the difference in feature  

number between workflow 1 vs. 2 (discussed in Supplementary 

Text 1). Similarly, the use of IPO increased the number of 

features observed compared to manually chosen XCMS settings 

in both liver and plasma tissue in positive and negative mode 

respectively, whilst AutoTuner led to the biggest increase in 

features detected in human fingerprints (19, 20).  

Overlap between feature lists The m/z values for each 

workflow, category and ionisation mode, were rounded to 3 

decimals prior to assessing common features among workflows. 

Urinary metabolites had greater overlap, with 69 and 65 % 

commonality in positive and negative mode, respectively 

(Supplementary Fig. 1). Faecal lipids showed the least overlap 

(22 % for both ion modes, Supplementary Fig. 1). The scale of 

the continuous wavelet transform applied to the ROI during 

peak picking is influenced by peak width (28), which could 

lead to retention time deviations. The latter affects peak 

grouping and the feature m/z values that those groups become; 

hence, the observed dissimilarity and less overlap for those 

datasets (10).  

       Considering variability across the QCs as technical 

replicates, on average 45 and 51 % remained after removing 

features with CV ≥ 30 % for workflow 1 and 2, respectively 

(Table 2). A similar % of overlap between workflows was also 

observed when only using these CV-filtered features 

(Supplementary Fig. 2). 

Contrary to this, Alboniga et al showed that alternative 

methods of selecting XCMS parameters had minimal effect on 

the number of features left after CV filtering, although they 

used a lower CV threshold of 20 % (19). Furthermore, whilst 

features are expected to exert low variation across technical 

replicates like pooled sample QCs, they should also exhibit 

high variability across biological samples (39), which can be 

assessed through ICC. The distribution and density of the ICC 

values per workflow were compared for each dataset using 

violin plots (Supplementary Fig. 3). Notably, for lipids in 

negative mode, workflow 1 had a larger number of features 

with a lower ICC, whilst workflow 2 demonstrated a greater 

number with larger ICC values. Only faecal metabolites in 

positive mode and lipids in negative mode had significantly 

different proportions of features with an ICC > 0.5 

(Supplementary Table 3).  
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 Table 2: Number and percentage of features for each workflow before and after CV filtering.

 

Multivariate analysis of sample clustering PCA score 

plots were used to compare workflows based on the number of 

outliers outside of Hotelling’s T2 ellipse, and on how well QCs 

clustered together as an indicator of the LC-MS system stability 

(5). Normalization, transformation, and scaling reduced the 

number of outliers and improved clustering among QCs for all 

workflows, categories (metabolites and lipids) and ionisation 

modes. Whilst workflow 2 had on average 2.9 % greater 

variation explained by PC1 compared to workflow 1 (Fig. 1 and 

Supplementary Fig. 4), all plots indicated that irrespective of 

the method of parameter selection, the UHPLC-HRMS data 

acquisition and XCMS preprocessing ensured high quality data, 

and the success of data pretreatment strategies in reducing any 

unwanted variation (42). 

FEATURE QUALITY: Comparing true and negative 

metabolic features based on EIC EVA, a  

convolutional neural based network approach trained to 

recognise true and false metabolic features based on EICs, was 

chosen to efficiently evaluate whether manual or automated 

selection of XCMS parameters could affect peak quality (37). 

Whilst different selection methods for the preprocessing 

parameters affected feature number, it did not affect the 

percentage of true metabolic features for faecal and urinary  

metabolites in positive mode and faecal lipids in negative mode 

when comparing workflow 1 vs. 2. The same was observed by 

Guo et al (37). Here however, individual proportion tests 

showed a significant (q < 0.01) difference for metabolites in  

negative mode (both faecal and urinary) and faecal lipids in 

positive mode (Supplementary Fig. 5). If considering the total 

number of features from these datasets, which are both 

estimated as being true as determined by EVA with a CV < 30 

%, workflow 2 is better (Supplementary Table 4). Whilst EVA 

was used here to evaluate feature quality because it 

circumvented the need to train machine learning models (43) 

and was quick to implement for 12 datasets, it only evaluates 

whether a feature is true/false based on EICs from one 

representative sample, not across all samples. Depending upon 

time constraints, number and size of datasets and hardware 

limitations, future research could explore how other feature 

quality metrics focused on peak shape that take into 

consideration multiple samples per feature compare to EVA 

(44). Currently, there is no standard definition of feature quality 

and measurements range from considering EIC shape like EVA 

to checking for retention time misalignment (45). To enhance 

reproducibility, a standardised definition of feature quality with 

software to assess this efficiently in large datasets is also 

warranted. 

METABOLITE INDENTIFICATION: Assessing the 

number of tentative HMDB annotations per workflow There  

 

 

 

were 32 and 15 positively and negatively ionized HMDB 

adducts respectively, used to tentatively annotate features from  

each workflow (annotation level 4). The [M+H]+ adduct usage 

ranged from 20 – 45 %, whilst the [M-H]- ranged from 35 – 70 

%. Interestingly, more faecal metabolites could be identified at 

1 ppm compared to urine, which is consistent with studies 

where more faecal metabolites could be identified relative to 

urine and plasma (46, 47). Considering significant proportion (p 

< 0.05) test results, a higher % of features could be annotated 

by HMDB based on adduct matching for faecal metabolites for 

workflow 2 (both ionisation modes), whilst workflow 1 had a 

higher % of features when comparing positively ionized lipids 

(Supplementary Table 5A). This was confirmed when using the 

features that remained after CV filtering. Considering unique 

HMDB features only, a significant difference was also observed 

(Supplementary Table 5B). Although, when considering 

number of features rather than proportions, workflow 2 had a 

higher number of features tentatively annotated by HMDB for 

all datasets and thus more unique compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Exemplar PCA plots to compare QC clustering and 

number of outliers. Faecal metabolites in negative mode for 

workflow 1 (A) and 2 (B) following QC normalization, Yeo-

Johnson transformation and pareto scaling. 

 

Dataset  Workflow 1 CV < 30 % Workflow 2  CV < 30 % 

Positively ionized faecal metabolites (FGFP) 8732 2682 (31 %) 15343 6324 (41%) 

Negatively ionized faecal metabolites (FGFP) 4445 1884 (42 %) 7610 4779 (63 %) 

Positively ionized faecal lipids (FGFP) 2351 1361 (58 %) 7983 4693 (59 %) 

Negatively ionized faecal lipids (FGFP) 1470 795 (54 %)  5435 2680 (49 %) 

Positively ionized urinary metabolites (ENVIRonAGE) 1157 427 (37 %) 1543 640 (41 %) 

Negatively ionized urinary metabolites (ENVIRonAGE) 1442 670 (46 %) 2103 1072 (51 %) 
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It is acknowledged that using solely MS1 data for annotation is 

limiting and thus, retention time and MS2 data would be 

needed to accurately determine whether the automated 

parameter selection method increased metabolite identification.  

FEATURE UTLITY: Comparing strength of feature 

signals Features with the highest captured intensity signal were  

present in the lipids category in negative mode, whereas faecal 

metabolites in this mode exhibited the lowest intensity signals 

(Supplementary Fig. 6). There was no significant difference 

between workflows when comparing the proportion of features 

within each intensity threshold bin using urinary metabolites 

(Supplementary Fig.6). Faecal metabolites showed significant  

differences when comparing proportions of features within 

lower to median intensity thresholds. Instead, faecal lipids, 

particularly in the positive ionization mode, showed significant 

differences when considering the upper intensities (Fig. 2).  

These observations held when using only features with CV < 30 

% (Supplementary Fig. 6). If considering number of features 

(rather than proportion or percentage of total) present in higher  

intensity threshold bins, which could be useful for downstream 

analyses, then workflow 2 would be the best to proceed with. 

FEATURE FILTERING: Using PCA loadings as a 

potential approach to filtering features Filtering features  

obtained from preprocessing software such as XCMS is 

important to maximize the retention of true positive features 

and remove noise (39). Approaches used include calculating  

CVs for features using QC samples and removing those 

exceeding a certain threshold, typically 25-30 % for untargeted 

LC-MS data, as used here, or only keeping features present in 

at least 80 % of biological samples (39). However, without 

considering data adaptive thresholds for these filtering methods 

or data-centric approaches, inevitably some true positive 

features would be lost. PCA is typically used for feature 

extraction, where a number of PCs are retained rather than the 

original high dimensional dataset, which differs from feature 

selection methods used to select a subset of original features 

(48). The use of loadings from PCA to rank variables of interest 

has been explored as a possible unsupervised feature selection 

method, where after determining a threshold for the loadings, 

the original features within this limit are retained for 

downstream analyses (49, 50). Whilst there is no clear 

consensus how best to rank variables using loadings, previous 

attempts have used a weighted technique through e.g., 

multiplying the loading by the proportion of variance explained 

by the PC and then adding these values across a pre-selected 

number of PCs (49, 50).  

Here, QCs were used to assess the ability of PCA for 

unsupervised feature selection. Workflow 2 across all modes 

and categories had greater variation explained in PC1 compared 

to workflow 1 and fewer PCs were significant from 

permutation testing (proportion of variance explained by them 

ranged from 65 to 79 %). The loadings were then added across 

these PCs. Notably, a weighted approach was not used here, 

particularly as the sum of the squared loadings equals the 

proportion of variance explained, thus, it avoided altering what 

the original loading represented. 

On average, this approach retained 52 % of features for 

both workflows, performing better for faecal features compared 

to urine. Nevertheless, excluding faecal lipids in the negative 

mode, workflow 2 for each mode and category had a higher 

number of filtered features that also had a CV < 30 % 

(Supplementary Table 6), on average 70.6 vs. 62.0 %. One 

would expect a higher % to have a low CV for both workflows 

if low loadings might reflect features with low variation across 

QCs. Different combinations of transformations and scaling 

methods were also tested; however, all performed similarly, 

albeit the features that were retained were different. Van den 

Berge et al (50) also found that different data pretreatment 

methods affected the rank of the metabolite based on the 

cumulative contribution of the weighted loading values across 

the first three PCs. Nevertheless, the PCA based approach 

outlined here highlights a data centric approach to filtering, 

which could be useful in conjunction with established methods 

(e.g. CV calculation).  

 

 

Figure 2: Bar plot showing the mean proportion of features +/- 

SD in intensity threshold bins using all features for faecal lipids 

in positive mode. *represents FDR q value < 0.01 for 

comparing proportions between workflows.  

 

Overlap between categories  

For each dataset (metabolites/lipids and positive/negative ion 

mode), when comparing workflows, the number of features 

unique to the 2-, 3-, 4-, and 5-set overlap were examined. When 

using all features, the ranking of the overlaps and the method 

used was the same for each workflow for 9/12 datasets 

(Supplementary Fig. S7). For example, considering a 2-set 

overlap for urine metabolites in positive mode, the EVA-

Intensity overlap had the most features (213 and 219 features in 

workflow 1 and 2 respectively). This pattern held for the other 

3-, 4- and 5- set overlaps even though the feature counts varied 

between workflows. The dataset that had the most features 

across all categories/methods (5-set overlap) was faecal lipids 

in positive mode for both workflows (Fig. 3). As workflow 2 

had more features, a greater number was still found consistently 

in the 5-set overlaps across all datasets. Similar observations 

were also made when using the features that remained after CV 

filtering. The ICC distributions across intersections were also 

comparable for these datasets and workflows, except for faecal 

lipids in negative mode when comparing workflow 1 vs 2 

(Supplementary Fig. S8). Finally, it was expected that methods 

within categories such as feature quality (EVA true and CV < 

30 %) would have had strong overlaps. However, using all 

features, the EVA-CV was only the largest 2-set overlap for 

urinary metabolites in negative mode (13 % and 19 % of total 

features for workflow 1 and 2 respectively). 
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Figure 3: UpSet plots showing the overlap between different 

methods/categories for faecal lipids in positive mode using all 

features for workflow 1 (A) and 2 (B).  

 

 

Similarly, features with low loadings retained through PCA 

filtering (likely true positives), were expected to have large 

overlaps with the EVA and/or CV category. Here, the EVA-CV-

PCA 3-set overlap was the largest for only faecal metabolites in 

positive and negative mode (6 and 10 % respectively, both 

workflow 1) and urinary metabolites in negative mode (13 and 

11 % for workflow 1 and 2). Future research understanding the 

discrepancy between feature quality metrics assessing the same 

criteria (e.g. true positives) will be important for method 

refinement or development.  
 

Conclusions  
A crucial part of any metabolomics study is to obtain a high-

quality feature list that will be useful and informative for 

downstream statistical analyses. Therefore, an important step is 

not only selecting which preprocessing software to employ, but 

also the parameter values governing the algorithms used. 

Manual selection can be more time-intensive, compared to 

automated selection based on packages such as IPO and 

AutoTuner for XCMS software. However, some of the 

parameter values of the automatic approaches are likely to need 

finetuning based on knowledge of equipment used. This paper 

highlights some approaches to compare feature lists in an 

untargeted approach, where parameter values were either 

selected manually or where more > 75 % were chosen 

automatically. Considering the actual number of features, not 

proportions, the feature lists obtained from automated selection 

of parameter values performed better for each comparison than 

manual selection and a greater number of features were also 

found across all categories/methods of feature evaluation as 

identified using UpSet plots. It is noteworthy that features were 

present in at least 40 % of samples and therefore it remains 

unclear how the approaches used here to compare parameter 

selection methods would have affected the removal of 

potentially useful, but low abundant metabolites. Future 

exploration is warranted, given that some important metabolites 

may only appear in a small subset of samples due to dietary 

habits or gut microbiome composition. Nonetheless, this work 

underscores the importance of exploring these automatic 

parameter optimization packages to optimize preprocessing and 

capitalize on the plethora of data obtained by LC-MS from 

human biofluids.  
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