
Low-Latency Volumetric Video Conferencing in Congested
Networks Through L4S

Matthias De Fré
1
, Jeroen van der Hooft

1
, Chia-Yu Chang

2
, Koen De Schepper

2
, Patrice Rondao

Alface
2
, Danny De Vleeschauwer

2
, Tim Wauters

1
, Peter Steenkiste

3
, Filip De Turck

1

1
IDLab, Ghent University - imec, Ghent, Belgium

2
Nokia Bell Labs, Antwerp, Belgium

3
Carnegie Mellon University, Pittsburg, United States of America

ABSTRACT
Current networking solutions are unable to satisfy the low-latency

requirements of real-time volumetric video conferencing when

faced with heavy congestion scenarios. Traditional congestion con-

trollers use packet loss or the change in round-trip time (RTT) to

estimate the bandwidth. Commonly, this method is too slow as

congestion has already occurred and the receiving user has already

experienced a latency spike. Low latency, low loss and scalable

throughput (L4S), recently published as RFC 9330, wants to alleviate

this problem by aiming for sub 1ms queuing delay for low-latency

traffic by using accurate explicit congestion notification (AccECN)

packet marking to notify applications of early congestion. We pro-

pose an L4S-based pipeline for volumetric video delivery, which

achieves a more consistent latency under congestion compared to

web real-time communication (WebRTC). In addition, L4S band-

width estimation achieves a 45% faster convergence compared to

Google congestion control (GCC) estimation, commonly used in

WebRTC. Furthermore, in our detailed evaluation setup the L4S

application experiences no packet loss, while the WebRTC-based

version suffers from irrecoverable packet loss, resulting in 3% of

frames being undecodable.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Human-
centered computing → Virtual reality.

KEYWORDS
Volumetric Video, Virtual Conferencing, Virtual Reality, WebRTC,

L4S

ACM Reference Format:
Matthias De Fré

1
, Jeroen van derHooft

1
, Chia-YuChang

2
, KoenDe Schepper

2
,

Patrice Rondao Alface
2
, Danny De Vleeschauwer

2
, Tim Wauters

1
, Peter

Steenkiste
3
, Filip De Turck

1
. 2025. Low-Latency Volumetric Video Confer-

encing in Congested Networks Through L4S. In ACM Multimedia Systems
Conference 2025 (MMSys ’25), March 31-April 4, 2025, Stellenbosch, South
Africa. ACM, Stellenbosch, South Africa, 11 pages. https://doi.org/10.1145/

3712676.3714443

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1467-2/2025/03. . . $15.00

https://doi.org/10.1145/3712676.3714443

1 INTRODUCTION
The growing interest in virtual reality (VR) has led to its integration

into various applications, such as virtual conferencing [26]. Tradi-

tional two dimensional (2D) implementations of these applications

limited users to basic, non-immersive 2D perspectives. Proposals

for six degrees-of-freedom (6DoF) video address this limitation by

providing rotational and positional freedom [2]. However, current

solutions fail to offer the low and consistent latency required for

high interactivity, which is critical, as increased latency can lead

to user frustration and a significant decline in the quality of the

virtual conference experience [18].

The content of 6DoF applications can be divided into two distinct

categories: image-based video and volumetric video formats [33].

Image-based solutions, such as light fields, generate a new frame

based on numerous images to create a new view based on the user’s

viewing angle, captured by either a lenslet camera or a setup with

many cameras [22]. However, this process leads to higher bitrates,

increased latency and lower rendering performance at the client-

side [33]. In contrast, volumetric video uses three dimensional

(3D) objects such as meshes, consisting of vertices and a texture,

or point clouds, consisting of individual points with a color, to

represent objects within the video [4]. Capturing these objects can

be done using a single specialized camera, resulting in a single red,

green, blue and depth (RGBD) image, or with multiple specialized

camera views that must be stitched together to create a single 3D

object [3]. Compared to image-based video, volumetric video-based

approaches yield bitrates that are significantly lower. Furthermore,

the use of existing advanced rendering techniques increases overall

quality. The simplicity of the capture process, together with its

superior bandwidth and lower computational complexity, makes

volumetric video an ideal candidate for 6DoF videos.

To ensure low latency in streaming, various protocol suites like

low-latency dynamic adaptive streaming over HTTP (LL-DASH)

and low-latency HTTP live streaming (LL-HLS) are often consid-

ered, yielding latencies ranging from 1 to 5 seconds in live streaming

scenarios [33]. For true real-time communication, user datagram

protocol (UDP)-based solutions like web real-time communication

(WebRTC) are preferred, aiming to minimize latency by eliminating

chunking overhead caused by LL-DASH and LL-HLS segments [32].

Additionally, WebRTC-based applications enable transmission of

encoded frames through push-based methods, rather than the pull-

based approach of transmission control protocol (TCP) formats,

further improving the overall latency [5, 25].

The chosen streaming format alone does not guarantee both

low latency and high quality of experience (QoE). Due to varied

network conditions among users, content quality has to be adapted

113

https://doi.org/10.1145/3712676.3714443
https://doi.org/10.1145/3712676.3714443
https://doi.org/10.1145/3712676.3714443
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712676.3714443&domain=pdf&date_stamp=2025-03-31

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa M. De Fré et al.

to available bandwidth to ensure real-time delivery without packet

loss. Unlike traditional video, volumetric video offers numerous

viewing angles, allowing for quality adjustments based on the user’s

field of view (FoV) and position. Higher quality can be allocated to

objects in proximity or directly within the FoV, while peripheral or

distant objects are delivered at a lower quality [34, 14].

Quality adaptation relies on accurate bandwidth estimation.

Traditional TCP methods typically employ a capacity-seeking ap-

proach: the bandwidth is progressively increased until packet loss

is encountered, after which the transmission window is reduced [7].

Alternatively, other approaches exists which leverage variations in

round-trip time (RTT) as indicators of network congestion [9]. For

UDP, estimation happens at the application level using loss-based

feedback messages that are exchanged between the sender and re-

ceiver. However, classic estimators react after congestion has taken

place. In contrast, low latency, low loss and scalable throughput

(L4S) aims to keep queuing delays below 1ms by marking packets

with accurate explicit congestion notification (AccECN) whenever

there are early signs of congestion. This mechanism ensures prompt

congestion response and consistent low latency [7]. Although the

behavior of L4S is advantageous for real-time applications, it has

yet to be evaluated for volumetric video conferencing.

The contributions of this paper are twofold. First, we propose an

L4S-based streaming pipeline to support real-time communication

for immersive applications, with a focus on maintaining a low la-

tency in congested networks. This pipeline delivers consistent and

uninterrupted volumetric video conferencing without high-latency

spikes, which is essential for enhancing the user experience.. Sec-

ond, we perform a comparative analysis between our proposed

pipeline and an open-source WebRTC-based volumetric video so-

lution [14], evaluating their respective performance in terms of

latency, quality and behavior of the bandwidth estimator. The re-

sults show that the L4S-based solution achieves a similar, but more

consistent, latency, faster bandwidth estimator convergence, and

no packet loss, compared to the WebRTC-based approach when

faced with competing traffic.

The remainder of this paper is organized as follows. Section 2

provides an overview of the current state of the art concerning

volumetric video streaming. Section 3 introduces our proposed L4S-

based approach to facilitate low-latency streaming of volumetric

video. Section 4 presents the evaluation methodology and discusses

the obtained results. Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK
This section presents an overview of the related work on real-time

streaming of volumetric video. First, we introduce the concept

of volumetric video and how it differs from traditional 2D video.

Following this, we describe traditional transport protocols and

solutions and the problems that occur with these solutions. Then,

we introduce L4S-based transport as a possible solution to existing

transport problems. Finally, we give an overview of the currently

used quality adaptation methods for volumetric video streaming.

2.1 Volumetric Video
Because of the added depth dimension, volumetric video presents a

substantially higher level of complexity in both transmission and

encoding compared to traditional 2D video. The added complexity

presents a challenge in maintaining low latency, making it essential

to carefully select the type of volumetric content and encoder to

ensure smooth, real-time video delivery.

While most 3D applications typically utilize meshes due to their

advanced feature set, significant challenges emerge when applying

them to volumetric video. The primary issue is that mesh capturing

and processing introduce excessive latency, rendering them un-

suitable for real-time virtual conferencing. In contrast, point cloud

capture offers a more efficient alternative, as it eliminates the need

to convert the captured data into a mesh. Additionally, it avoids

computationally expensive mesh optimizations aimed at reducing

object complexity [1]. Furthermore, point clouds have proven effec-

tive in volumetric video delivery. VR2Gather, a real-time volumetric

video application, uses point clouds to enable real-time, bidirec-

tional experiences, such as immersive museum visits or remote

consultations [35].

No matter the representation, volumetric video typically results

in bitrates that remain impractical for contemporary networks. For

instance, large point clouds, such as those in the 8i dataset [12],

can reach up to 5.2Gb/s [33]. To address this problem, numerous

point cloud codecs have been proposed to compress the data [20].

However, in virtual conferencing, minimizing encoding latency is

essential to achieving a frame rate above 15 FPS, which is necessary

for an acceptable user experience. As a result, highly bandwidth-

efficient codecs such as video point cloud coding (V-PCC) and

geometry-based point cloud compression (G-PCC) are unsuitable,

as they have encoding and decoding times of multiple seconds

for a single frame [38]. Alternative codecs, including cwipc [11]

and Draco [16], achieve single-frame encoding times below 100ms,

which is viable for real-time volumetric video conferencing, albeit

at the cost of increased bandwidth consumption [14]. However,

these resulting bitrates are low enough to support volumetric video

conferencing with a limited number of users. Furthermore, as the

encoded frames are still quite large, they will need to be fragmented

into a large number of packets. Since neither codec supports partial

decoding, every packet must be received for successful playback.

This requirement becomes challenging if many packets are dropped

due to network congestion, highlighting the importance of selecting

an appropriate network protocol.

2.2 TCP-based vs UDP-based content delivery
For on-demand video, HTTP-based implementations are often pre-

ferred due to their inherent reliability, ensuring that the whole video

can be received by the user. Within the realm of HTTP streaming,

protocol suites such as dynamic adaptive streaming over HTTP

(DASH) and HTTP live streaming (HLS) have gained widespread

adoption. These formats segment video content temporally and

encode these segments at various bitrates and quality levels. This

approach introduces a latency ranging anywhere from 1 to 18 sec-

onds for live streaming scenarios [37], rendering it unsuitable for

real-time applications. In contrast, WebRTC, a real-time communi-

cation suite utilizing UDP, achieves sub-second delays, making it a

more suitable choice for real-time volumetric video streaming [25].

Unlike TCP-based solutions, such as LL-DASH, UDP-based ap-

proaches lack inherent flow control and bandwidth estimation

114

Low-Latency Volumetric Video Conferencing in Congested Networks Through L4S MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

Figure 1: System architecture for an L4S-based volumetric video streaming solution sharing the network with non-L4S flows.

mechanisms. As a result, congestion controllers such as Google

congestion control (GCC) [10] and Self-Clocked Rate Adaptation

for Multimedia (SCReAM) [24], are implemented at the application

layer to fulfill the purpose of bandwidth estimation and flow control.

The primary objective of these controllers is to maintain a good

balance between latency and high throughput by accurately esti-

mating available bandwidth and pacing packets accordingly [13].

Similar to DASH-based solutions, the application can then use the

bandwidth to select the transmitted quality on a per-peer basis, so

that the video stream remains below the supplied bitrate [14]. In

scenarios with a limited number of users, a unique quality repre-

sentation can be generated for each user based on their available

bandwidth, with the video encoder adjusting compression or re-

ducing quality as needed to keep the stream within the bandwidth

constraints of each user [27]. However, this approach significantly

limits scalability, as the need to create a distinct representation for

each user constrains the maximum number of participants. In this

paper, the primary focus will be on the individual encoder to better

illustrate the bandwidth estimation. Furthermore, for volumetric

video, quality adaptation can be further enhanced by using the po-

sition and rotational information to prioritize the most important

details [34].

For traditional transport, a significant portion of the latency

comes from the queuing delay, with increased throughput raising

the likelihood of higher, more variable queuing delay [29]. This is

caused by congestion and queue buildup, particularly when all flows

attempt to use their maximum bandwidth. Congestion eventually

results in queue overflow and packet loss until the queue begins to

drain [17]. The packet loss and increased delay are signals to the

congestion controller that it should reduce its send rate in order to

reduce network congestion. However, flows quickly increase send

rates, restarting the process. Additionally, the queuing discipline

at bottleneck links affects congestion reaction time; classic active

queue management (AQM) disciplines delay packet drops for up

to 20ms after a burst before dropping the packet, potentially exac-

erbating delay [7]. These slow adaptation times, compounded by

loss, cause buffering, increased latency and frame loss in streaming

until network flows finally adjust their send rates. In the context

of volumetric video, this increased buffering and latency can con-

tribute to cybersickness [31]. Furthermore, due to the high bitrates

of volumetric video, packet loss has a greater impact. Even a small

percentage of packet loss can necessitate retransmitting a signifi-

cant number of packets, each with its own risk of being lost again,

resulting in further delays.

2.3 L4S-Based Transport
The emergence of real-time interactive applications like cloud gam-

ing and virtual reality has intensified the demand for network

protocols that prioritize both low latency and high throughput [8].

Traditional streaming solutions and congestion control mechanisms

often struggle to achieve this balance, as latency reduction can come

at the expense of reduced throughput, leading to a reduced user

experience [19].

L4S attempts to address the problems that occur in highly con-

gested networks. At the protocol level, L4S uses either TCP or UDP

to transport data and acts as a congestion controller for these pro-

tocols. L4S also operates within the network architecture, enabling

the identification and prioritization of latency-sensitive traffic flows

by using the AccECN field of network packets [30]. This approach

allows for differentiated services, ensuring minimal queuing de-

lays for these flows without compromising overall network effi-

ciency too much. L4S leverages AccECN to signal early congestion

to senders, enabling them to adjust their transmission rates dy-

namically before the queuing delay becomes too high. This early

congestion notification allows senders to react faster to upcoming

congestion events, and prevents the queue from overflowing which

would result in packets being dropped. Having a low queuing de-

lay target also ensures that the latency within the network is less

variable compared to traditional queuing systems [7].

To ensure coexistence with existing traffic, a dual queue setup is

commonly used [15]. With this type of AQM, it becomes possible

to split low-latency traffic from classic network traffic using the

AccECN field. The queue containing the classic traffic works as a

traditional queue, filling up until eventual packet loss. The low-

latency queue will not immediately drop traffic, but will instead

mark packets as congestion experienced (CE). Additionally, to pre-

vent bursty traffic in the queue, each L4S application is required to

space it’s packets equally in a pacing interval. In the context of vol-

umetric video, which has large bitrates, this pacing interval should

be chosen carefully to maintain a balance between low latency

and burstiness. In this paper, we will leverage L4S-based transport

to create a volumetric video pipeline. To the best of the authors’

knowledge, this is the first paper to study and evaluate L4S-based

volumetric video in detail.

3 L4S-BASED VOLUMETRIC VIDEO DELIVERY
In this section, we first present the proposed volumetric video

delivery architecture, followed by an explanation of the employed

115

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa M. De Fré et al.

quality adaptation scheme. Next, we provide an overview of the

L4S components used, along with their implementation details.

3.1 Volumetric Video Delivery Architecture
The first step of the pipeline shown in Figure 1 involves capturing

of the volumetric video, typically a person in virtual conferencing

scenarios. In the context of this paper, it is assumed that a single

camera is utilized, although this framework can be easily extended

to accommodate multiple cameras by incorporating an additional

component that is responsible for merging the views from all cam-

eras. A specialized depth camera captures an RGBD image of the

user, which is subsequently converted into a point cloud representa-

tion. This process may include an optional sampling step to reduce

the number of points in the point cloud. However, caution must be

exercised to ensure that sampling does not introduce a significant

amount of latency. After sampling, it is necessary to encode the

point cloud to reduce the bitrate, ensuring efficient transmission

in networks with lower bandwidths. Similar to the sampling com-

ponent, the encoding process must be performed with minimal

latency to allow for higher frame rates, provided that sufficient

bandwidth is available. Furthermore, it is important to note that

current real-time state-of-the-art point cloud codecs do not support

partial encoding. As a result, packet loss has a more pronounced

effect, as the entire frame must be received for successful decoding.

After encoding, the frame is processed through the L4S net-

work stack, beginning with the server component. Each frame is

divided into packets, each containing frame data and a header for

reconstruction at the receiver. The server is tasked with ensuring

compliance with L4S requirements, such as implementing pacing

and L4S-compliant bandwidth estimation. The next stage of the

L4S stack is the queuing mechanism of the network, which must

differentiate between L4S and traditional network traffic, handling

each traffic type accordingly. This process may involve assigning

different priorities or allocating distinct bandwidth shares to each

flow type. For L4S traffic, it is critical to implement mechanisms

that marks L4S packets so that they can anticipate congestion early

enough to mitigate its effects. In contrast, traditional flows, such

as large file downloads or LL-DASH streaming, typically have less

stringent latency requirements than real-time virtual conferencing,

which demands minimal latency. Further details regarding the spe-

cific implementation of the L4S components are discussed in the

following subsections.

Upon delivery, the frames are decoded and displayed to the user.

In most cases, rendering is carried out using a game engine, such as

Unity, on a high-performance desktop PC. The rendered content is

then transmitted to a head-mounted display (HMD) either through

a high-speed wired connection or via a wireless solution, such as

5GHz Wi-Fi or 5G.

3.2 Bandwidth Estimation
Bandwidth estimation is performed by leveraging the number of

marked packets to calculate the marking probability. Based on this

information, and using a target RTT of 25ms, the system adjusts

the bandwidth, either increasing or decreasing it accordingly. In the

event of packet loss, either due to severe congestion or suboptimal

network conditions, the L4S congestion controller falls back to a

classic TCP-Reno congestion controller. As a result, the estimated

bandwidth is halved upon detecting packet loss, helping to maintain

low latency by reducing the need for retransmissions beyond the

already lost packets. However, this approach leads to a reduction

in video quality due to the lowered throughput.

In comparison to GCC, this L4S-based approach is more sensitive

to network instability. GCC employs a lower threshold for packet

loss, which mitigates the impact of minor losses that result from

faulty equipment [36]. This lower boundary allows GCC tomaintain

stability in the presence of occasional packet loss, whereas the

proposed approach responds more aggressively in such conditions.

3.3 Packet Acknowledgment
The delivery of packets is confirmed using selective acknowledg-

ments (SACK) messages. In addition to containing the acknowledg-

ments, it also includes information on the number of bytes marked

as CE. Subsequently, these AccECN markings, along with the target

RTT, are utilized by the congestion controller to estimate the avail-

able bandwidth. Moreover, the data contained within the SACK

message enables the application to identify which packets require

retransmission in the event of packet loss.

3.4 Quality Adaptation
An essential aspect of the architecture, present across multiple

components, is the concept of quality adaptation. The objective

is to optimally calculate the highest achievable quality within the

constraints of limited available bandwidth. In the case of volumetric

video, this calculation must also account for the user’s FoV position

and rotation. Achieving this, however, necessitates the coordination

of several components that exchange information with one another.

In our solution, point cloud frames are adapted using an ex-

isting individual encoding approach [14]. This encoding method

determines the required sampling rate for each user and uniformly

reduces the number of points in the point cloud according to this

rate. This approach facilitates a smooth scaling of frame size and

enables more effective comparisons between the employed conges-

tion control algorithms. Furthermore, it produces streams that are

visually comparable to those generated by a multiple description

coding (MDC)-based approach for use cases with up to 10 users,

at a lower bitrate [14]. Alongside the estimated bitrate, both the

user’s position and FoV are required. This data is transmitted from

the client to the server along with packet acknowledgments within

the SACK messages. The positional and rotational information is

utilized by the sampler to limit the maximum achievable quality pro-

duced by the individual encoding approach. The sampler achieves

this by dividing the user’s FoV into multiple equal-sized regions,

each with a defined maximum sampling rate, and then determining

the region in which the object currently resides. This approach is

based on the rationale that the objective quality of the object can be

reduced without significantly affecting the perceived visual quality

for the user. However, it is important to note that there will be a

discrepancy between the used position and the current position of

the user as the pipeline does not perform any viewport prediction.

Additionally, the transmission of the quality decision, and the time

for the next frame to become available (between 1ms and 33ms for

30 FPS) both add latency before the new quality becomes visible.

116

Low-Latency Volumetric Video Conferencing in Congested Networks Through L4S MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

Figure 2: L4S compliant queue separating L4S and traditional
traffic into two separate classes.

3.5 Retransmissions
As the point cloud codec does not support partial decoding, the

loss of packets can have a significant impact on the visual qual-

ity. Because of this it is important to retransmit any packets that

were lost so that the frames are able to be eventually decoded. The

proposed architecture uses SACKs to identify which packets were

dropped and need to be retransmitted to the client. The data for

these dropped packets is retrieved from an in-flight buffer, which

stores the data of frames currently in transit. However, this in-flight

buffer only has limited capacity, and retains a frame until the client

has acknowledged that it has received all packets of that frame.

Due to this limitation, new frames can only be admitted into the

buffer when it is not full, leading to frames being dropped when

the in-flight buffer is full. However, in contrast to WebRTC, which

uses a round-robin buffer that removes frames once filled [21], this

approach ensures that once a frame is transmitted, it will ultimately

be delivered in its entirety. The size of the in-flight buffer is a critical

parameter that must be carefully calibrated based on the specific

requirements of the use case. A larger buffer enhances resilience

against high round-trip times, but may also increase overall latency

in scenarios with significant packet loss.

3.6 Packet Queuing
Any packet queuing configuration is allowed, provided it ensures

that L4S traffic is isolated from the queuing latency experienced by

classic traffic and that L4S packets are marked with CE in anticipa-

tion of upcoming congestion [6].

In Section 4, we will consider a queuing setup based on the

principles shown in Figure 2. This queue uses the AccECN field

to distinguish the L4S traffic from the classic traffic into the two

separate classes of the overall queue. Link capacity is distributed

between both queues and the aim is to achieve fairness between

all flows in each traffic class. The packets within the low-latency

queue are marked as CE whenever an early form of congestion is

detected. This dual-class setup is designed to ensure the coexistence

of L4S traffic with traditional traffic while maintaining low queuing

delays for the L4S traffic. Additionally, the utilization of the two

classes also does not negatively impact the performance of flows

in the traditional queue as the scheduler is configured to prevent

starvation of either queue.

3.7 Frame Pacing
To mitigate network congestion, an L4S application must minimize

burstiness by reducing the number of packets transmitted back to

back. In this L4S implementation, we propose to reduce the bursti-

ness by spreading the packets of the frame over a fixed interval.

The send time of each packet is calculated using Equation 1.

𝑇next = 𝑇current +
pacing interval

frame size

× packet size (1)

This pacing mechanism, in conjunction with a fair queue (FQ)

scheduler at the sender, ensures that frame data is transmitted

gradually rather than in bursts, since the packets are evenly dis-

tributed throughout the specified pacing interval. In contrast to

GCC, which transmits packets in bursts over intervals of 5ms, this

method exhibits greater fairness toward competing flows. By uni-

formly spreading the packets across the pacing interval, it maintains

consistent burstiness regardless of the available bandwidth.

While the use of pacing introduces additional latency to the

pipeline, it effectively prevents sudden spikes in the queuing time

of the low-latency queue during frame transmission. This approach

ensures that all flows within the low-latency queue can maintain

consistent latency and sustain steady throughput, thereby enhanc-

ing the overall performance of those flows.

4 EVALUATION
This section contains an evaluation of the L4S-based implementa-

tion compared to an open-source WebRTC-based volumetric video

pipeline [14]. First, we introduce the metrics that will be used in the

evaluation. Following this, we describe the experimental setup and

the implementation of the L4S compliant queuing setup that was

used during the experiments. Then, the results of our experiments

in terms of throughput, bandwidth estimation, transport latency,

packet loss and visual quality are reported and discussed.

4.1 Evaluation Criteria
In our experiments, both the WebRTC-based and L4S-based im-

plementations are evaluated against one or more competing TCP

Cubic or TCP Prague flows, initiated by the iperf program. TCP

Prague is a congestion control algorithm similar to the one in our

L4S application, which aims for low, sub 1ms, queuing delay by

reacting to AccECN markings. These competing flows are intro-

duced five seconds after the volumetric application has started. The

results of our experiments are reported in two stages. First, we

analyze the system’s behavior during a startup phase lasting thirty

seconds. This analysis allows us to draw significant conclusions

regarding initial performance metrics, such as the time required for

the congestion controller to converge and the growth rate of the

bandwidth estimation. Next, we examine the system’s behavior in

the stable state, after the first thirty seconds have elapsed. In this

stage, we are primarily interested in packet loss, transport latency,

and visual quality. It is crucial to evaluate these metrics in the stable

state, as the throughput will have stabilized, and the results will no

longer be influenced by the initial convergence of the bandwidth

estimate. Finally, we compare the total end-to-end latency of both

flows.

4.2 Experimental Setup
Both the client and L4S server implementations are developed us-

ing the C++ programming language. To ensure that packets are

not sent in bursts, the server uses a pacing interval of 20ms and

equally paces the packets over this interval using the SO_TXTIME
socket option and SCM_TXTIME packet field to specify the send

117

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa M. De Fré et al.

Figure 3: L4S stack using UDP sockets to transport data be-
tween Windows and Linux (L4S applications).

Figure 4: Experimental setup on the imec Virtual Wall [23].

time. To ensure that this send time is respected, a FQ is employed

at the server side. The capture, encoding, decoding, and render-

ing components are implemented on a Windows system due to

its superior support for VR application. However, given that the

current L4S implementation requires capabilities such as setting

packet send times and utilizing a sender side FQ, which are only

supported by the Linux operating system, the decision was made

to implement the networking components on a Linux machine. As

shown in Figure 3, a UDP socket proxy is used to transmit data

between the Windows-based modules and the L4S server running

on Linux, as well as to receive data from the client. This mechanism

introduces minimal latency due to the Windows and Linux systems

being directly connected via Ethernet on the same network. All

experiments utilize a sequence of a single person, captured with

an Intel RealSense D455 camera, at a frame rate of 30 FPS with a

resolution of 848 × 480 pixels. During the experiments, this precap-

tured volumetric video is played back at the same speed, using an

accurate timer which sleeps for 33ms between each frame. After

background removal, the resulting point clouds contain an aver-

age of 125,000 points. The point clouds are then sampled based on

the estimated bandwidth and user position by using the sampling

method described in Section 3.4. To achieve real-time encoding at 30

FPS, each point cloud is individually encoded using the Draco [16]

codec, with position quantization at 11 bits and KD-tree coding

enabled. A speed parameter of 7 was selected to maintain an op-

timal balance between encoding speed and output bitrates. After

the sampling and encoding, the resulting bitrates of the sequence

vary between 12.5Mb/s and 75Mbit/s. In terms of congestion con-

trol, the WebRTC-based approach employs GCC, which is the most

widely used congestion controller inWebRTC applications. Alterna-

tive congestion controllers, such as SCReAM [24], offer a different

trade-off between throughput and latency, yielding results that dif-

fer from those presented in this section. Both the L4S bandwidth

estimator and the GCC algorithm used by WebRTC use a minimum

and initial bitrate of 12.5Mb/s and a maximum rate of 90Mb/s.
The experimental setup is shown in Figure 4. Throughput and la-

tency experiments are carried out on the imec VirtualWall, a testbed

with a large number of interconnected bare metal nodes [23]. We

use several connected nodes with the following hardware specifi-

cations; CPU: Intel Xeon E5520 (2.27GHz), RAM: 12GB DDR3 (1066
MHz), NIC: 1Gb/s. Each node uses a patched Ubuntu 20.04 kernel to

Figure 5: The detailed implementation of the L4S compliant
queuing setup used in the experiments.

enable support for TCP Prague [28]. This includes the router node,

which uses standard Linux features to perform the routing. All

experiments are performed with 10ms of delay added in both direc-

tions using traffic control, as well as 200Mb/s bandwidth restriction
on the outgoing interface of the queue.

4.3 L4S-Compliant Queuing Setup
As described in Section 3.6, the queuing setup is an important part

of ensuring that the L4S can properly work. For these experiments

the queuing setup shown in Figure 5 was used. The first step of

the queue is to separate L4S traffic from traditional flows. This

separation is done by checking if the packet has been marked as

AccECN-capable transport.

For a traditional flow, no additional processing is performed, and

the packet is immediately placed into the queue. However, for L4S

traffic, additional steps are taken. First, it is checked if the total rate

of all L4S traffic exceeds 200Mb/s. If this is the case, packets will
be dropped immediately, and no AccECN marking will be done. In

the next step, an AccECN marker is utilized, setting the AccECN

field to CE if the total rate surpasses 100Mb/s. This marking serves

as a notification to the applications that there is a probability that

congestion is imminent and that they should lower their send rate

to prevent sudden peaks in latency. It is important to emphasize

that the packets marked with CE are not dropped and that they

proceed through the rest of the queue as normal.

In these experiments, it is assumed that all AccECN-capable

flows will respond appropriately to early congestion warnings by

reducing their transmission rates. This reduction is intended to

prevent actual congestion from occurring. Specifically, by lowering

their send rates, the total rate of L4S traffic is kept below 100Mb/s,
ensuring that traditional flows consistently have at least 100Mb/s
of bandwidth available. This mechanism prevents the traditional

flows from experiencing starvation due to excessive L4S traffic,

which is one of L4S’s requirements.

Once packetmarking is completed, both L4S and traditional flows

are placed into the main hierarchy token bucket (HTB) queue. The

L4S traffic is assigned to the higher priority class, giving it preferen-

tial access to available bandwidth. However, since packet marking

occurs before priority assignment and is triggered at 100Mb/s, L4S
flows are capped at consuming a maximum of 100Mb/s of the to-
tal 200Mb/s bandwidth. This outcome assumes that all L4S flows

appropriately adjust their send rates in response to packet marking

to not cross this 100Mb/s limit.

118

Low-Latency Volumetric Video Conferencing in Congested Networks Through L4S MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

0 200 400 600 800 1000 1200 1400 1600
Frame Number

0

25

50

75

100

125

Es
tim

at
ed

 B
itr

at
e

(M
b/

s)

Estimated Bandwidth Actual Bandwidth Start of Background Traffic

(a) Three competing TCP Cubic flows

0 200 400 600 800 1000 1200 1400 1600
Frame Number

0

25

50

75

100

125

Es
tim

at
ed

 B
itr

at
e

(M
b/

s)

Estimated Bandwidth Actual Bandwidth Start of Background Traffic

(b) Three competing TCP Prague flows

Figure 6: WebRTC estimated bitrate for different competing
flows at 30 FPS.

The final component of the queue is a FQ placed at the end of

each priority class. This FQ ensures fairness between different flows

by operating in a round-robin manner. It cycles through all active

flows, taking one or more packets from each before moving to the

next. Without this FQ, the default queuing strategy, typically first-

in, first-out (FIFO), would be employed. A FIFO approach would

disproportionately benefit bursty traffic, as it could dominate the

queue and overwhelm other flows, especially those that are more

responsive to packet loss.

4.4 Achieved Throughput
Figure 6a shows the behavior of the bandwidth estimation and

the resulting bitrates for the GCC algorithm used in the WebRTC

application, when faced with three competing TCP Cubic flows.

This result shows that the maximum bitrate stabilizes at 30Mb/s
once the estimator has converged. This behavior is also present

when lowering the number of TCP Cubic flows to two. However,

with only one TCP Cubic flow, there is a slight increase in through-

put, with the maximum reaching 46Mb/s. Notably, in this scenario,

there are no L4S flows, meaning the entire 200Mb/s is allocated to

traditional traffic. This behavior implies that the expected through-

put for WebRTC should be around 75Mb/s when competing with

one or two TCP Cubic flows, if it is assumed that the bandwidth

is fairly distributed. The fact that WebRTC fails to achieve this

expected throughput suggests that it struggles with the chosen

implementation of GCC or queuing setup. In contrast, as shown in

Figure 6b, when competing against TCP Prague flows, the WebRTC

application is able to reach its maximum throughput. This behav-

ior is because TCP Prague flows receive AccECN markings upon

reaching 100Mb/s of the total 200Mb/s, prompting them to reduce

their transmission rates.

0 200 400 600 800 1000 1200 1400 1600
Frame Number

0

25

50

75

100

125

Es
tim

at
ed

 B
itr

at
e

(M
b/

s)

Estimated Bandwidth Actual Bandwidth Start of Background Traffic

(a) Three competing TCP Cubic flows

0 200 400 600 800 1000 1200 1400 1600
Frame Number

0

25

50

75

100

125

Es
tim

at
ed

 B
itr

at
e

(M
b/

s)

Estimated Bandwidth Actual Bandwidth Start of Background Traffic

(b) Three competing TCP Prague flows

Figure 7: L4S estimated bitrate for different competing flows
at 30 FPS.

Using the L4S-based application, we observe the results shown in

Figure 7. In case of competing TCP Cubic flows, the L4S-based appli-

cation consistently reaches and maintains its maximum throughput.

This outcome is expected, as the L4S application is the only flow in

the 100Mb/s priority queue dedicated to L4S traffic. However, when

three TCP Prague flows are introduced, a number of packets receive

AccECN markings, causing the throughput of the L4S application

to decrease significantly to its minimum value of 12.5Mb/s. This
behavior ensures that the queuing delay is close to 1ms. Reducing

the number of competing flows leads to a higher throughput: with

only one TCP Prague flow, the L4S application achieves an average

throughput of 58Mb/s, while with two flows it reaches 15Mb/s.

4.5 Convergence of Bandwidth Estimation
While achieving maximum throughput in a stabilized environment

is important, the time it takes to reach this stable state is also a

key metric to consider. In these experiments, the initial bitrate for

both implementations is set to 12.5Mb/s, which corresponds to the

minimum bitrate necessary to transmit the lowest quality. Starting

with this minimal value provides a clear indication of how quickly

the estimated bandwidth increases over time until it reaches the

maximum estimated bitrate of 90Mb/s.
Based on the results presented in the previous section, it is ev-

ident that the WebRTC application only achieves its maximum

throughput when competing with TCP Prague flows, while the

L4S application reaches its maximum throughput when contending

with TCP Cubic flows. Due to this fact, it is possible to use these

results as an indication of the convergence speed.

As shown in Figure 6b, convergence for the WebRTC application

occurs after approximately 22 seconds, which is significantly slower

than the L4S-based implementation, where maximum through-

put is achieved in just 10 seconds. Although the quality gradu-

ally improves during this period, the prolonged convergence of

119

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa M. De Fré et al.

0 10 20 30 40 50
Latency (ms)

3 Competing
(TCP Cubic)

2 Competing
(TCP Cubic)

1 Competing
(TCP Cubic)

Mean All
Mean 10% High
Mean 1% High

(a) Three competing TCP Cubic flows

0 10 20 30 40 50
Latency (ms)

3 Competing
(TCP Prague)

2 Competing
(TCP Prague)

1 Competing
(TCP Prague)

Mean All
Mean 10% High
Mean 1% High

(b) Three competing TCP Prague flows

Figure 8: WebRTC latency for different competing flows.

0 10 20 30 40 50
Latency (ms)

3 Competing
(TCP Cubic)

2 Competing
(TCP Cubic)

1 Competing
(TCP Cubic)

Mean All
Mean 10% High
Mean 1% High

(a) Three competing TCP Cubic flows

0 10 20 30 40 50
Latency (ms)

3 Competing
(TCP Prague)

2 Competing
(TCP Prague)

1 Competing
(TCP Prague)

Mean All
Mean 10% High
Mean 1% High

(b) Three competing TCP Prague flows

Figure 9: L4S latency for different competing flows.

the WebRTC-based implementation time substantially impacts the

overall user experience. Furthermore, during periods of temporary

congestion, the bitrate will decrease, requiring an extended recov-

ery period to return to optimal levels, which further deteriorates

the user’s QoE. This slow convergence is observed when looking at

the growth behavior of the estimation curve. In the case of L4S, the

growth is clearly linear, whereas WebRTC exhibits a more gradual,

very slow, non-linear increase.

A potential solution to address the slow convergence is to in-

crease the initial bitrate, which would significantly reduce the time

required to reach maximum throughput. However, due to the queu-

ing structure, shown in Figure 5, that utilizes FQ at the end of each

priority class, this approach poses certain risks. If a flow would

send a sudden burst of data that exceeds its share of bandwidth, the

likelihood of packet loss for that flow increases. In contrast, if the

burst is lower than the data share, a large amount packet loss will

occur for the other flows, as they would not have sufficient time

to gradually reduce their transmission rates. Additionally, for L4S

traffic, a more gradual increase is more fair towards the other L4S

flows as they will not experience a sudden burst of packet markings.

4.6 Frame Loss
Due to the early congestion notifications in the L4S implemen-

tation, the L4S-based application avoids packet loss by marking

packets with AccECN before any are dropped. In contrast, the

WebRTC implementation suffers more from packet loss, which it

attempts to mitigate through negative acknowledgments (NACKs)

to identify and request the lost packets. For this reason, it is criti-

cal to focus on the percentage of frames that remain undecodable

during transmission for WebRTC. Given that the WebRTC-based

implementation uses a NACK retry count of one, each lost packet

has only one opportunity for retransmission. Combined with the

1024-packet round-robin buffer for NACKs, this configuration in-

creases the likelihood that certain frames may remain undecodable

in favor of achieving a lower latency for the other frames. When

competing with TCP Prague flows, the WebRTC implementation

suffers no packet loss. However, when faced with TCP Cubic flows,

the WebRTC-based implementation experiences non-recoverable

packet loss, resulting in approximately 3% of frames being unde-

codable when contending with three competing TCP Cubic flows.

4.7 Peak Transport Latency

For the latency results, it is important to reiterate that 10ms of

bidirectional latency was introduced and that this latency is also

included in the results of this section. As shown in Figure 8, the

WebRTC implementation achieves lower latency than the L4S im-

plementation when competing with TCP Prague flows. However,

this advantage is only maintained in the presence of fewer than two

TCP Cubic flows: when competing with three TCP Cubic flows, the

latency for WebRTC surpasses that of the L4S implementation. Fur-

thermore, Figure 8a shows that the latency, which mainly consists

of queuing delay, for the WebRTC implementation continues to

increase as the number of competing TCP Cubic flows rises, making

it more difficult to predict the average latency when the number of

competing flows is unknown. In addition to average latency, it is

essential to examine peak latency, as these spikes are more notice-

able to the end user. Both the WebRTC and L4S applications avoid

significant latency spikes. However, in terms of peak latency, the

WebRTC implementation only performs better when contending

with a single TCP Cubic flow. From two TCP Cubic flows onward,

L4S outperforms WebRTC.

120

Low-Latency Volumetric Video Conferencing in Congested Networks Through L4S MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

Table 1: VMAF scores for both implementations when competing with different flows, lower intra-sequence scores indicate
better quality consistency within a single iteration.

Competing flow TCP Cubic TCP Prague

VMAF Intra-sequence VMAF VMAF Intra-sequence VMAF

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

WebRTC 61.98 3.26 10.53 0.83 85.39 0.00 2.57 0.00

L4S 84.97 0.33 3.16 0.52 45.17 0.04 2.41 0.34

Table 2: Maximum and minimum VMAF scores for three iterations with a competing three competing TCP Cubic or TCP
Prague flows.

Competing flow TCP Cubic Prague

Iteration 1 2 3 1 2 3

Min Max Min Max Min Max Min Max Min Max Min Max

WebRTC 24 77 11 79 18 79 74 91 74 91 74 91

L4S 74 91 74 91 74 91 37 54 37 53 37 64

0 200 400 600 800 1000
Frame Number

0

25

50

75

100

V
M

A
F

Sc
or

e

Competing TCP Cubic Competing TCP Prague

(a) WebRTC

0 200 400 600 800 1000
Frame Number

0

25

50

75

100

V
M

A
F

Sc
or

e

Competing TCP Cubic Competing TCP Prague

(b) L4S

Figure 10: WebRTC and L4S VMAF for different competing flows (one concurrent) in the stable state of a single iteration.

0 200 400 600 800 1000
Frame Number

0

25

50

75

100

V
M

A
F

Sc
or

e

Competing TCP Cubic Competing TCP Prague

(a) WebRTC

0 200 400 600 800 1000
Frame Number

0

25

50

75

100

V
M

A
F

Sc
or

e

Competing TCP Cubic Competing TCP Prague

(b) L4S

Figure 11: WebRTC and L4S VMAF for different competing flows (two concurrent) in the stable state of a single iteration.

Furthermore, as shown in Figure 9, the latency for L4S remains

consistent across all configurations. For L4S, the total latency is pri-

marily determined by the chosen parameters, with 10ms resulting

from the introduced bidirectional latency and an additional 20ms

from the selected pacing interval. This consistency is due to the fact

that the L4S implementation effectively shifts the unpredictable

latency from queuing to a controlled and predictable pacing la-

tency, allowing it to maintain stable performance regardless of the

number of competing flows, compared to the WebRTC-based imple-

mentation, where latency continues to increase as more flows are

introduced. These results indicate that the proposed L4S approach

is successful in maintaining the queuing delay of sub 1ms.

4.8 VMAF Quality
Video Multi-Method Assessment Fusion (VMAF) is a comprehen-

sive video quality metric that merges scores from various video

evaluation methods to generate a unified score between 0 and 100.

This metric reflects the user-perceived quality more accurately than

methods based solely on geometric comparisons of frame differ-

ences, since these do not consider the full sequence of frames. In

scenarios where frame loss is observed, which in these tests oc-

curs exclusively for WebRTC, the preceding frame is used instead,

resulting in a small freeze.

As shown in Table 1, the VMAF scores for WebRTC and the

L4S implementation are comparable when competing with a TCP

Cubic flow. However, in the presence of a TCP Prague flow, the L4S

implementation performs significantly worse, primarily due to its

inability to transmit at higher quality.

121

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa M. De Fré et al.

Table 3: Latency (ms) introduced by each of the transport-
independent pipeline modules.

Sender Receiver

Camera Encoding Decoding Rendering

104 ms 22 ms 14 ms 5 ms

0 20 40 60 80 100 120 140 160 180 200
Latency (ms)

L4S vs TCP Prague

L4S vs TCP Cubic

WebRTC vs TCP Prague

WebRTC vs TCP Cubic

Capturing Preprocessing Transport Decoding Rendering

Figure 12: End-to-end latency for the WebRTC-based and
L4S-based implementations when competing with three TCP
Cubic or TCP Prague flows.

While the average VMAF score is an important metric for as-

sessing overall visual quality, it is equally important to examine

how the quality evolves during a single iteration. Large fluctua-

tions in quality causes users to become less immersed, which has a

significant impact on their experience. As illustrated in Figure 10a,

when competing with only one TCP Cubic flow, theWebRTC-based

application maintains a relatively stable VMAF score throughout

the entire iteration. The minor drops observed can be attributed

to variations in frame sizes within the used point cloud sequence.

Similar behavior is observed for L4S in Figure 10b. However, for

L4S this behavior occurs when competing with a TCP Prague flow

instead of a TCP Cubic flow, due to those flows competing over the

same bandwidth share.

However, these results change when increasing the number of

competing flows to two. As depicted in Figure 11a, when competing

with TCP Prague flows, theWebRTC-based implementation exhibits

no significant variation, as it continues to utilize the 100Mb/s share
of the available bandwidth. In contrast, when contending with two

TCP Cubic flows, the quality fluctuates more noticeably than when

competing with only one flow. However, as shown in Figure 11b, the

L4S-based implementation does not experience such fluctuations.

Instead, it maintains a stable VMAF score, suggesting that although

the average score is lower when competing with TCP Prague flows,

it achieves a more consistent quality level across the iteration.

These findings are further reflected in Table 1, where the intra-

sequence scores reveal significantly greater variance within a sin-

gle iteration for the WebRTC implementation compared to L4S.

Moreover, as shown in Table 2, the WebRTC-based implementation

experiences more pronounced drops in visual quality, resulting in a

lower minimum VMAF score per iteration than the L4S application.

This discrepancy is primarily attributed to frame drops that occur

exclusively in the WebRTC implementation.

4.9 End-to-End Latency Breakdown
Most components of the pipeline are independent of the adopted

transport protocol. Table 3 shows the average latency for each of

these components, with the camera contributing the most to the

transport-independent end-to-end latency. However, when consid-

ering the impact of the transport protocol along with three com-

peting flows, the results in Figure 12 reveal that both the WebRTC-

based and L4S-based implementations achieve similar end-to-end

latencies. The slight differences in encoding and decoding times

can be attributed to higher throughput leading to longer processing

times. Nevertheless, as noted in Section 4.7, the L4S implementa-

tion exhibits significantly more consistent latency compared to

WebRTC, with the key advantage being that L4S latency remains

unaffected by the number of competing flows.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a low latency, low loss and scalable

throughput (L4S)-based architecture for volumetric video conferenc-

ing using point clouds. We perform a comprehensive comparison

of the proposed architecture against an open-source, web real-

time communication (WebRTC)-based volumetric video delivery

pipeline [14], which utilizesWebRTC to enable real-time volumetric

conferencing. Our L4S-based implementation demonstrates a more

stable transport latency by shifting unpredictable queuing delays

to a predictable latency through packet pacing. Consequently, the

transport latency of the proposed L4S architecture is determined

by the pacing interval and any fixed network latency, whereas

the WebRTC-based implementation experiences increased latency

as the number of competing Cubic flows grows. Moreover, the

L4S implementation leverages accurate explicit congestion notifi-

cation (AccECN) markings to receive early congestion warnings,

adjusting its rate accordingly, which prevents most packet loss. In

contrast, the WebRTC implementation suffers from packet loss,

with 3% of frames becoming undecodable due to missing packets

and the failure of negative acknowledgment (NACK)-based retrans-

mission. Additionally, the L4S bandwidth estimator converges from

12.5Mb/s to 90Mb/s within 10 seconds, representing a 45% faster

convergence rate compared to the Google congestion control (GCC)

estimator used in the WebRTC-based implementation. However,

implementing the L4S-based approach requires bottleneck routers

to have a fair queuing setup that supports AccECN marking, which

may be challenging for older or legacy networks.

In future work, we plan to extend the implementation based

on L4S to support bidirectional communication. This extension

will enable the implementation of a many-to-many communication

scenario, providing an opportunity to evaluate the performance

of L4S in environments with multiple senders and receivers. Such

a scenario will yield valuable insights into the scalability and ef-

ficiency of L4S in more complex, real-world conferencing setups.

Furthermore, since both the WebRTC and L4S-based implementa-

tions are designed to be content-independent, extending the system

to support various types of volumetric video, such as mesh-based

formats, would greatly enhance the modularity of the pipeline. This

flexibility is further bolstered by the use of the simple sampling

quality adaptationmethod and the Draco codec, which both support

mesh-based encoding.

122

Low-Latency Volumetric Video Conferencing in Congested Networks Through L4S MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

REFERENCES
[1] H. Afzal, D. Aouada, B. Mirbach, and B. Ottersten. 2018. Full 3D reconstruction

of non-rigidly deforming objects. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 14, 1s.

[2] S. J. Ahn, L. Levy, A. Eden, A. S. Won, B. MacIntyre, and K. Johnsen. 2021.

IEEEVR2020: exploring the first steps toward standalone virtual conferences.

Frontiers in Virtual Reality, 2, 648575.
[3] D. S. Alexiadis, D. Zarpalas, and P. Daras. 2012. Real-time, full 3-D reconstruc-

tion of moving foreground objects from multiple consumer depth cameras.

IEEE Transactions on Multimedia, 15, 2, 339–358.
[4] M. Bassier, M. Vergauwen, and F. Poux. 2020. Point cloud vs. mesh features for

building interior classification. Remote Sensing, 12, 14, 2224.
[5] N. Bouzakaria, C. Concolato, and J. Le Feuvre. 2014. Overhead and performance

of low latency live streaming using MPEG-DASH. In IISA 2014, The 5th Interna-
tional Conference on Information, Intelligence, Systems and Applications. IEEE,
92–97.

[6] B. Briscoe, K. De Schepper, M. Bagnulo, and G. White. 2023. Low Latency, Low

Loss, and Scalable Throughput (L4S) Internet Service: Architecture. RFC 9330.

(Jan. 2023). doi: 10.17487/RFC9330.

[7] B. Briscoe, K. De Schepper, O. Tilmans, M. Kühlewind, J. Misund, O. Albisser,

and A. S. Ahmed. 2019. Implementing the’prague requirements’ for low latency

low loss scalable throughput (L4S). Netdev 0x13.
[8] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and C.-H. Hsu.

2016. A survey on cloud gaming: future of computer games. IEEE Access, 4,
7605–7620.

[9] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. 2016. BBR:

congestion-based congestion control: measuring bottleneck bandwidth and

round-trip propagation time. Queue, 14, 5, 20–53.
[10] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. 2016. Analysis and design

of the Google congestion control for web real-time communication (WebRTC).

In Proceedings of the 7th International Conference on Multimedia Systems, 1–12.
[11] 2024. Cwi point cloud codec. (2024). https://github.com/cwi-dis/cwipc_codec.

[12] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou. 2017. 8i voxelized full bodies-a

voxelized point cloud dataset. ISO/IEC JTC1/SC29 JointWG11/WG1 (MPEG/JPEG)
input document WG11M40059 / WG1M74006, 7, 8.

[13] W. De Bruijn and E. Dumazet. 2018. Optimizing UDP for content delivery: GSO,

pacing and zerocopy. In Linux Plumbers Conference.
[14] M. De Fré, J. van der Hooft, T. Wauters, and F. De Turck. 2024. Scalable MDC-

based volumetric video delivery for real-time one-to-many WebRTC confer-

encing. In Proceedings of the 15th ACM Multimedia Systems Conference, 121–
131.

[15] K. De Schepper, O. Albisser, O. Tilmans, and B. Briscoe. 2022. Dual queue

coupled AQM: deployable very low queuing delay for all. arXiv:2209.01078.
[16] [SW] Google, Draco 2023. url: https://google.github.io/draco/.

[17] W. Feng, D. Kandlur, D. Saha, and K. Shin. 1997. Techniques for eliminating

packet loss in congested TCP/IP networks. Tech. rep. Citeseer.

[18] S. Garg, A. Srivastava, M. Glencross, and O. Sharma. 2022. A study of the effects

of network latency on visual task performance in video conferencing. In CHI
Conference on human factors in computing systems extended abstracts, 1–7.

[19] P. Graff, X. Marchal, T. Cholez, B. Mathieu, S. Tuffin, and O. Festor. 2024.

Improving cloud gaming trafficQoS: a comparison between class-based queuing

policy and L4S. In Network Traffic Measurement and Analysis Conference (TMA
2024). IEEE, 10.

[20] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai.

2020. An overview of ongoing point cloud compression standardization activi-

ties: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions
on Signal and Information Processing, 9.

[21] S. Holmer, M. Shemer, and M. Paniconi. 2013. Handling packet loss in WebRTC.

In 2013 IEEE International Conference on Image Processing. IEEE, 1860–1864.
[22] X. Hu, C.Wang, Y. Pan, Y. Liu, Y.Wang, Y. Liu, L. Zhang, and S. Shirmohammadi.

2021. 4DLFVD: a 4D light field video dataset. In Proceedings of the 12th ACM
Multimedia Systems Conference, 287–292.

[23] [SW], imec Virtual Wall 2023. url: https://doc.ilabt.imec.be/ilabt/virtualwall/.

[24] I. Johansson. 2014. Self-clocked rate adaptation for conversational video in

LTE. In Proceedings of the 2014 ACM SIGCOMM workshop on Capacity sharing
workshop, 51–56.

[25] A. B. Johnston and D. C. Burnett. 2012.WebRTC: APIs and RTCWEB protocols
of the HTML5 real-time web. Digital Codex LLC.

[26] B. Kenwright. 2019. Virtual reality: where have we been? where are we now?

and where are we going?

[27] R. Neff and A. Zakhor. 1997. Very low bit-rate video coding based on matching

pursuits. IEEE Transactions on circuits and systems for video technology, 7, 1,
158–171.

[28] 2024. Patched l4s linux kernel. (2024). https://github.com/L4STeam/linux.

[29] M. P. Sarma. 2013. Performance measurement of TCP and UDP using different

queuing algorithm in high speed local area network. International Journal of
Future Computer and Communication, 2, 6, 682.

[30] D. Shan and F. Ren. 2018. Ecn marking with micro-burst traffic: problem,

analysis, and improvement. IEEE/ACM Transactions on Networking, 26, 4, 1533–
1546.

[31] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. 2020. Latency and cybersickness:

impact, causes, and measures. a review. Frontiers in Virtual Reality, 1, 582204.
[32] J. Tideström. 2019. Investigation into low latency live video streaming perfor-

mance of WebRTC. (2019).

[33] J. van der Hooft, H. Amirpour, M. T. Vega, Y. Sanchez, R. Schatz, T. Schierl, and C.

Timmerer. 2023. A tutorial on immersive video delivery: from omnidirectional

video to holography. IEEE Communications Surveys & Tutorials.
[34] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and H. Hellwagner. 2019.

Towards 6DoF HTTP adaptive streaming through point cloud compression. In

Proceedings of the 27th ACM International Conference on Multimedia, 2405–2413.
[35] I. Viola, J. Jansen, S. Subramanyam, I. Reimat, and P. Cesar. 2023. Vr2gather: a

collaborative, social virtual reality system for adaptive, multiparty real-time

communication. IEEE MultiMedia, 30, 2, 48–59.
[36] D. Vucic and L. Skorin-Kapov. 2019. The impact of packet loss and google

congestion control on QoE for WebRTC-based mobile multiparty audiovisual

telemeetings. In MultiMedia Modeling: 25th International Conference, MMM
2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings, Part I 25. Springer,
459–470.

[37] Wowza. 2021. 2021 Video Streaming Latency Report. Tech. rep. Wowza.

[38] M. Yang, Z. Luo, M. Hu, M. Chen, and D.Wu. 2023. A comparative measurement

study of point cloud-based volumetric video codecs. IEEE Transactions on
Broadcasting.

123

https://doi.org/10.17487/RFC9330
https://github.com/cwi-dis/cwipc_codec
https://google.github.io/draco/
https://doc.ilabt.imec.be/ilabt/virtualwall/
https://github.com/L4STeam/linux

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Video
	2.2 TCP-based vs UDP-based content delivery
	2.3 L4S-Based Transport

	3 L4S-Based Volumetric Video Delivery
	3.1 Volumetric Video Delivery Architecture
	3.2 Bandwidth Estimation
	3.3 Packet Acknowledgment
	3.4 Quality Adaptation
	3.5 Retransmissions
	3.6 Packet Queuing
	3.7 Frame Pacing

	4 Evaluation
	4.1 Evaluation Criteria
	4.2 Experimental Setup
	4.3 l4s-Compliant Queuing Setup
	4.4 Achieved Throughput
	4.5 Convergence of Bandwidth Estimation
	4.6 Frame Loss
	4.7 Peak Transport Latency
	4.8 VMAF Quality
	4.9 End-to-End Latency Breakdown

	5 Conclusion and Future Work

