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Random Forests (RFs) are powerful ensemble learning algorithms that are widely used in various 
machine learning tasks. However, they tend to overfit noisy or irrelevant features, which can 
result in decreased generalization performance. Post-hoc regularization techniques aim to solve 
this problem by modifying the structure of the learned ensemble after training. We propose a 
novel post-hoc regularization via tree smoothing for classification tasks to leverage the reliable class 
distributions closer to the root node whilst reducing the impact of more specific and potentially 
noisy splits deeper in the tree. Our novel approach allows for a form of pruning that does not 
alter the general structure of the trees, adjusting the influence of nodes based on their proximity 
to the root node. We evaluated the performance of our method on various machine learning 
benchmark data sets and on cancer data from The Cancer Genome Atlas (TCGA). Our approach 
demonstrates competitive performance compared to the state-of-the-art and, in the majority of 
cases, and outperforms it in most cases in terms of prediction accuracy, generalization, and 
interpretability.

1. Introduction and motivation

In the rapidly evolving fields of bioinformatics and biomedical informatics, the ability to efficiently and accurately analyze complex 
biological data is becoming paramount. Ensemble learning algorithms [5], particularly Random Forests (RFs) [6,28], have proven to 
be indispensable tools in this endeavor. Their robustness, interpretability, and exceptional performance in handling high-dimensional 
and nonlinear tabular data make them highly suitable for the application on complex biological data sets [4]. In this paper we 
introduce a novel method for post-hoc regularization via tree smoothing, called Beta-Binomial Tree Smoothing (BBTS), and we 
underscore the significance of RFs in facilitating research, enabling scientists to decode complex disease mechanisms and discover 
potential biomarkers, ultimately advancing our understanding of biology, health and disease.

RFs combine multiple decision trees to make predictions [17,2,16]. Decision trees are often used in the field of pattern recognition 
and classification due to their good interpretability and efficiency [15].
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RFs play a crucial role in bioinformatics and biomedical informatics due to their exceptional ability to handle high-dimensional 
data and nonlinear relationships often encountered in biological data sets. Their robust ensemble learning framework enables effective 
feature selection, making them well-suited for genomics, proteomics, and other ‘omics’ data analyses. Additionally, the interpretability 
of RFs allows researchers to gain insights into complex biological processes, facilitating advancements in understanding disease 
mechanisms and identifying potential biomarkers [12].

Moreover, RFs exhibit scale invariance, making them particularly well-suited for heterogeneous data sets encountered in bioinfor-
matics [14]. This attribute allows them to effectively handle features with varying scales, facilitating robust analysis across diverse 
biological data types and ensuring reliable model performance in the presence of mixed data modalities [29,26].

However, RFs can still suffer from overfitting, especially when the trees in the forest become highly complex and tailored to the 
training data.

In general, regularization is a fundamental technique that is used to prevent overfitting and enhance generalization performance 
by restricting the complexity of a model [3]. Post-regularization techniques aim to address this shortcoming by modifying or refining 
the RF model after the initial training phase. Post-regularization techniques for RFs refer to methods used to reduce overfitting and 
improve the generalization performance [10]. These techniques typically focus on adjusting the complexity of individual trees or 
applying ensemble-level modifications. Some commonly used post-regularization techniques for random forests include:

Pruning: Pruning involves removing unnecessary branches or nodes from individual trees to simplify their structure. This helps 
prevent overfitting and promotes better generalization by reducing the complexity of the trees [21]. Particularly, ensemble pruning 
is a widely used method for eliminating superfluous classifiers from a large ensemble. This technique not only decreases the overall 
resource consumption but also occasionally enhances the performance of the original ensemble. In the same vein, leaf-refinement is 
a method that enhances the performance of a tree ensemble by joint re-learning the probability estimates in the leaf nodes of the 
trees. This enables the use of smaller ensembles while maintaining their predictive capabilities [7].

Feature selection: RFs can sometimes include irrelevant or redundant features, which can degrade performance. Feature selection 
techniques aim to identify and remove such features from the model, allowing it to focus on the most informative ones and potentially 
reducing overfitting [19,27].

Calibration: Calibration techniques aim to refine the predicted probabilities of random forests to better align with the true class 
probabilities. This can be particularly useful in tasks where reliable probability estimates are important, such as in certain risk 
assessment or medical diagnosis scenarios [24,20].

Smoothing: Smoothing is used in Probability Estimation Trees (PETs). PETs are a generalization of a single decision tree by taking 
the observed frequencies at a leaf node as the class probability estimates for any test examples that fall into that leaf [34]. Hierarchical 
smoothing assumes that the class probabilities in the leaf nodes depend on the probabilities higher in the tree. M-branch smoothing, 
for instance, considers each node in the tree as a subsample of the upper parent. It smoothes the leaf node to its direct parent using 
M-estimation, with the parent also being smoothed recursively until the root node is reached. For more information see [34]. Another 
Smoothing-based method is Hierarchical Shrinkage [1]. We will discuss this method in more detail in Section 2.

The aforementioned post-regularization techniques provide various approaches to combat overfitting and enhance the general-
ization ability of tree ensembles. By incorporating these techniques into the random forest workflow, practitioners can often achieve 
better performance and more reliable and interpretable predictions on unseen data. This is especially crucial in the biomedical field 
[11]. Based on preliminary work [25], in the following we present a novel, simple but effective regularization technique for post-hoc 
calibration of the Decision trees’ leaf node probabilities. Our method leverages the reliable class distributions closer to the root node, 
whilst potentially reducing the impact of more specific and potentially noisy splits deeper in the tree. By emphasizing a more gener-
alizable approach, our work not only provides advances compared to the state-of-the-art through its interpretability, but also lays the 
foundation for future research and applications. The remainder of the paper is structured as follows: In Section 2, we provide a brief 
introduction to the Hierarchical Shrinkage method [1], which is closely related to our method. Next, we introduce Beta-Binomial 
Tree Smoothing in Section 3. In Section 4, we describe the data sets and evaluation strategy we will employ to evaluate the proposed 
method. The results are presented and discussed in Section 5; based on a set of benchmark data sets in Section 5.1, and with a real-
world bioinformatics application on gene expression breast cancer data from the Cancer Genome Atlas in Section 5.3. We conclude 
and discuss possible directions for future work in Section 6.

2. Hierarchical shrinkage

Agarwal et al. (2022) [1] recently proposed a post-hoc regularization technique known as Hierarchical Shrinkage (HS). Without 
modifying the tree structure, HS recursively moves predictions in deeper nodes closer to their ancestors. Although this is effectively a 
form of smoothing as described in the previous section, the authors name this Shrinkage, as the method shrinks the difference between 
predictions of nodes and their parents. This additional regularization improves generalization performance and allows for smaller 
ensembles without sacrificing accuracy. HS also enhances post-hoc interpretations by reducing noise in feature importance measures, 
leading to more reliable and robust interpretations. The method replaces the average prediction of a leaf node with a weighted average 
of the mean responses of the leaf and its ancestors, controlled by a regularization parameter 𝜆 as defined in equation (2).

The following is a brief summary of the ideas proposed in [1]. Assume that we are given a training set 𝑛 = (𝑋; 𝑦). Our goal 
is to learn a tree model 𝑓 that accurately represents the regression function based on this training data. Given a query point 𝐱, let 
𝑡𝐿 ⊂ 𝑡𝐿−1 ⊂⋯ ⊂ 𝑡0 denote its leaf-to-root path, with 𝑡𝐿 and 𝑡0 representing its leaf node and the root node respectively. For any node 
𝑡, let 𝑁(𝑡) denote the number of samples it contains, and 𝔼̂𝑡{𝑦} the average response. The tree model prediction can be written as 
2
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𝑓 (𝐱) = 𝔼̂𝑡0
{𝑦} +

𝐿∑
𝑙=1

(
𝔼̂𝑡𝑙

{𝑦} − 𝔼̂𝑡𝑙−1
{𝑦}

)
(1)

HS transforms 𝑓 into a shrunk model 𝑓𝜆 via the formula:

𝑓𝜆(𝐱) ∶= 𝔼̂𝑡0
{𝑦} +

𝐿∑
𝑙=1

𝔼̂𝑡𝑙
{𝑦} − 𝔼̂𝑡𝑙−1

{𝑦}
1 + 𝜆∕𝑁(𝑡𝑙−1)

, (2)

where 𝜆 is a hyperparameter chosen by the user, for example by cross validation. HS maintains the tree structure, and only modifies 
the prediction over each leaf node.

3. Beta-binomial tree smoothing

3.1. Intuition of the proposed approach

The approach described here is inspired by the concept of Hierarchical Shrinkage, drawing parallels to pruning but without 
explicitly pruning the tree. Unlike traditional pruning, which reduces the tree complexity by decreasing depth, this method retains 
the overall structure of the trees and adjusts the probabilities at the leaf nodes. By giving more weight to the nodes near the root, the 
method aims to smooth the tree. Specifically, this approach involves updating a conjugate Beta prior 𝐁𝑝𝑟𝑖𝑜𝑟(𝛼, 𝛽) from the root to the 
leaf nodes by subsequently adding the number of classified samples to the model parameters 𝛼 (class 0) and 𝛽 (class 1). The parameter 
of the Beta prior 𝐁𝑝𝑟𝑖𝑜𝑟(𝛼, 𝛽) can be inferred based on training data and/or might consist of some human expert prior belief. A human-
in-the-loop here can bring in knowledge about the prior belief, i.e. the parameters of the Beta prior 𝐁𝑝𝑟𝑖𝑜𝑟(𝛼, 𝛽) can be influenced 
not only by training data but also by incorporating expert human knowledge. This knowledge injection allows for the inclusion of 
domain-specific insights as a domain expert often knows the prior beliefs, thereby enhancing the model’s performance, reliability 
and robustness, consequently better reflect real-world conditions and expectations, thus enhance trust. The leaf node probabilities 
are determined using the probabilities of observing a specific class given the inferred posterior Beta distribution 𝐁𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛼, 𝛽). A 
graphical illustration of our approach is shown in Fig. 1.

3.2. Mathematical formulation

We define a Beta prior distribution 𝐁𝑝𝑟𝑖𝑜𝑟(𝛼, 𝛽) at the root node, and subsequently update the parameter of this prior along a path 
to the leaf node. The updating scheme of the conjugate prior is defined as follows:

𝛼(𝑡𝐿) = 𝛼𝑝𝑟𝑖𝑜𝑟 +
𝐿∑
𝑙=0

𝑁1(𝑡𝑙) (3)

𝛽(𝑡𝐿) = 𝛽𝑝𝑟𝑖𝑜𝑟 +
𝐿∑
𝑙=0

𝑁0(𝑡𝑙), (4)

where 𝑁0(𝑡𝑙) refers to the number of samples labeled as class 0, and 𝑁1(𝑡𝑙) is the number of samples labeled as class 1 at node 𝑡𝑙 .
The leaf node probabilities are calculated as

𝑓𝛼,𝛽 (𝐱) =
𝛼(𝑡𝐿)

𝛼(𝑡𝐿) + 𝛽(𝑡𝐿)
. (5)

An alternative formulation can be found in the Appendix in eq. (15). From the Beta posterior 𝐁𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛼, 𝛽) and the correspond-
ing density distribution the actual confidence about the inferred leaf probabilities can be obtained. As a consequence, the overall 
interpretability of the classification is improved since the certainty about the inferred probability is provided by the distribution, e.g. 
through the density around the point estimate 𝑓𝛼,𝛽 (𝐱).

3.3. Feature importance

The mean decrease in impurity (MDI) specifies the importance of a given feature. According to MDI, the impurity decrease at 
node 𝑡𝑙 for a split on variable 𝑋 is:

∇(𝑋, 𝑡𝑙) = (𝑡𝑙) −

(
𝑁left,𝑡𝑙

𝑁𝑡𝑙

⋅ (left, 𝑡𝑙) +
𝑁right,𝑡𝑙

𝑁𝑡𝑙

⋅ (right, 𝑡𝑙)

)
, (6)

where left and right refer to the child nodes resulting from the split on variable 𝑋 at node 𝑡𝑙 . The default impurity for a node in trees 
is simply the variance of a binomial or multinomial process: (𝑡𝑙) = 1 −

∑𝐾

𝑗=1 𝑝̂
2
𝑗
, where 𝑝̂𝑗 is the empirical node probability of class 𝑗.

For our BBTS scheme, we modify the impurity in a node 𝑡𝑙 as
3

(𝑡𝑙) = 1 − 𝑝̃0(𝑡𝑙)2 − 𝑝̃1(𝑡𝑙)2, (7)
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Fig. 1. Graphical representation of Beta-Binomial Tree Smoothing (BBTS). Left: classical decision tree. The predicted probability is the empirical average of the samples 
in the leaf. Right: BBTS. Each node represents a Beta distribution. Parameters 𝛼 and 𝛽 are updated using the label counts for each node. The predicted probability is 
the average of the Beta distribution in the leaf node.

where

𝑝̃0(𝑡𝑙) =𝑁0(𝑡𝑙)∕(𝛼(𝑡𝑙) + 𝛽(𝑡𝑙)) (8)

𝑝̃1(𝑡𝑙) =𝑁1(𝑡𝑙)∕(𝛼(𝑡𝑙) + 𝛽(𝑡𝑙)). (9)

We are using the actual node-specific sample counts 𝑁0(𝑡𝑙) and 𝑁1(𝑡𝑙) in the numerator, instead of 𝛼(𝑡𝑙) and 𝛽(𝑡𝑙), because we do 
not want to measure the signal from an entire path to the node, but instead aim to measure the local effect the feature has on the 
global Beta-binomial distribution.

The MDI for variable 𝑋 at node 𝑡𝑙 in a specific tree 𝑡 is defined as:

MDI(𝑡)(𝑋) =
∑
𝑥∈𝑡𝑙

∇(𝑋, 𝑡𝑙), (10)

where 𝑥 ∈ 𝑡𝑙 refers to a node in tree 𝑡 a specific variable 𝑋 was used for splitting. This is especially relevant when feature sampling 
is performed with replacement.

The MDI for variable 𝑋 across all trees is:

MDI(𝑋) = 1
𝑇

𝑇∑
𝑡=1

MDI(𝑡)(𝑋) (11)

The above equations define MDI with a modified impurity calculation, taking into account the 𝛼 and 𝛽 model parameter, so it 
aligns with the herein proposed tree smoothing post-regularization technique. We refer the reader to section 5.2 for insights on this 
new definition of MDI on simulated data.

3.4. Weighted Bayesian model averaging

Here, we outline a possible approach for aggregating the posterior distributions from specific leaf nodes decisive for test sample 
𝐲 to form a global ensemble-wide posterior distribution. This approach leverages Bayesian Model Averaging (BMA) to combine the 
individual tree-level information and obtain a more robust and uncertainty-aware prediction for a given test sample. The posterior 
distributions associated with the specific leaf nodes in each tree of the random forest are aggregated using BMA. For each leaf node 
in each tree, we denote the Beta distribution as 𝐁(𝛼𝑖,leaf, 𝛽𝑖,leaf). The aggregated parameters for the ensemble of 𝑁 decision trees are 
calculated as follows:

𝛼BMA =
𝑁∑
𝑖=1

𝑤𝑖 ⋅ 𝛼𝑖,leaf (12)

𝛽BMA =
𝑁∑
𝑖=1

𝑤𝑖 ⋅ 𝛽𝑖,leaf (13)

The ensemble-wide aggregated Beta distribution Beta(𝛼BMA, 𝛽BMA) is utilized to make the final prediction for a given test sample 
𝐲. The probability of belonging to class 1 is determined as:

𝛼BMA
4

𝑃 (𝐲|𝐁(𝛼BMA, 𝛽BMA)) =
𝛼BMA + 𝛽BMA

(14)



Information Sciences 690 (2025) 121564B. Pfeifer, A. Gevaert, M. Loecher et al.

Table 1

Benchmark data sets.

Datasets Samples Features Class 0 Class 1

Breast cancer 286 9 196 81

Habermann 306 3 81 225

Heart 270 15 150 120

Diabetes 768 8 500 268

German credit 1000 20 300 700

Juvenile 3640 286 3153 487

The weights 𝑤𝑖 in the aggregation process are assigned based on the chosen criteria, such as accuracy, performance, or biological 
relevance, reflecting the reliability or importance of each leaf node of a tree within the ensemble.

We have investigated the general applicability of the suggested BMA aggregation scheme while using the true positive rate as the 
weights 𝑤. However, in this paper, we put the focus on a comprehensive evaluation of the 𝑓𝛼,𝛽 (𝐱) estimates (equation (5)), which is 
the basis for the BMA approach.

3.5. Outlined similarities and differences to hierarchical shrinkage

[1] show a direct connection of their proposed Hierarchical Shrinkage method to ridge regression (in a special feature space) which 
often performs favorably in the bias-variance trade off especially at low sample sizes. From a Bayesian standpoint, ridge regression is 
equivalent to assuming a Gaussian with mean zero and variance 𝜏2 = 𝜎2∕𝜆1 as the prior distribution for the regression coefficients. 
For each child node in a tree, its estimated mean response is shrunk to its parent node mean, hence the difference is shrunk toward 
zero. While the same one-parameter regularization can be applied to classification problems, a more natural prior (conjugate to the 
binomial distribution) is the Beta distribution which requires two hyperparameters 𝛼𝑝𝑟𝑖𝑜𝑟 and 𝛽𝑝𝑟𝑖𝑜𝑟 to be tuned.

Both HS and our Beta-Binomial Tree Smoothing (BBTS) are post-hoc procedures which do not alter the actual structure of the 
trees. They also both compute the sample size dependent shrinkage in a hierarchical fashion from parent node to child node unlike 
the superficially similar Leaf Based Shrinkage (LBS) [8] which shrinks each leaf directly towards the overall sample mean of the 
responses. A key difference between HS and our approach is that we compute a posterior distribution along the internal nodes down 
to the leaf nodes. As a consequence, the leaf nodes capture more information about the entire tree compared to HS.

4. Evaluation

4.1. Data sets

We assessed the accuracy of our post-hoc regularization technique on six machine learning benchmark data sets (see Table 1). 
The data sets were retrieved using the Python packages imodels [31] and PMLB [30]. Moreover, we put special focus on the evalu-
ation of our method on gene expression breast cancer data from The Cancer Genome Atlas (TCGA) (https://www .cancer .gov/). The 
corresponding evaluation set-up and the obtained results are reported in Section 6.

Moreover, in close analogy to [32], we used the following data generating process, which we revisit in section 5.2. A binary 
response variable 𝑌 is predicted from a set of 5 predictor variables that vary in their scale of measurement and number of categories. 
The first predictor variable 𝑋1 is continuous 𝑋1 ∼  (0, 1), while the other predictor variables 𝑋2, … , 𝑋5 are multinomial with 
2, 4, 10, 20 categories, respectively. The sample size for all simulation studies was set to 𝑛 = 200. The distribution of the response is 
a Bernoulli process with probabilities that depend on 𝑋2 via a “relevance” parameter 𝑟 ∈ [0; 0.5] which is related to the signal-to-
noise-ratio (SNR), namely 𝑃 (𝑦 = 1|𝑋2 = 1) = 0.5 − 𝑟, 𝑃 (𝑦 = 1|𝑋2 = 2) = 0.5 + 𝑟. We would naturally hope that a reasonable variable 
importance measure would assign non zero scores only to 𝑋2.

4.2. Evaluation strategy

In the initial experiment, we used grid search-based on 5-fold cross validation to infer the optimal values for 𝛼𝑝𝑟𝑖𝑜𝑟 and 𝛽𝑝𝑟𝑖𝑜𝑟. Fol-
lowing we performed 5-fold crossvalidation with the inferred hyperparameters and calculated the mean accuracy. The aforementioned 
procedure was repeated 20 times and we report on results based on balanced accuracy and ROC-AUC.

In a subsequent experiment, we partitioned the data into training (80%) and testing (20%) sets. On the train dataset 5-fold 
crossvalidation was performed to tune the hyperparameters. The tuned model was then tested on the independent test data set. The 
described procedure was repeated 20 times, including the train-test split, and we report the classification performance based on 
balanced accuracy and ROC-AUC.

In case of the herein Tree Smoothing technique, the best performing Beta-specific hyperparameters 𝛼𝑝𝑟𝑖𝑜𝑟 and 𝛽𝑝𝑟𝑖𝑜𝑟 were grid-
searched within [2000, 1000, 800, 500, 100, 50, 30, 10, 1]. For the Hierarchical Shrinkage method we used 𝜆 = [0.001, 0.01, 0.1, 1, 10, 25,
50, 100, 200] as proposed by [1].
5

1 where 𝜎2 is the residual variance.

https://www.cancer.gov/


Information Sciences 690 (2025) 121564B. Pfeifer, A. Gevaert, M. Loecher et al.

Fig. 2. Balanced accuracy on six machine learning benchmark data sets. The 5-fold cross-validation performance of Random Forest (vanilla RF), Hierarchical Shrinkage 
(HS), and our Beta-Binomial Tree Smoothing (BBTS) across varying number of trees within the ensemble is evaluated. The results are based on 20 train-test split 
iterations for each set-up.

In a subsequent experiment, we compared BBTS with a recently developed method called ForestPrune [21]. ForestPrune is based 
on the pruning concept and thus considerable different to the BBTS and HS approach, where the regularization is achieved by adopting 
the node probabilities instead of altering the structure of the tree ensemble.

5. Results and discussion

5.1. Benchmark data sets

The results based on the herein analyzed six benchmark data sets suggest that our approach is competitive with the Hierarchical 
Shrinkage method (HS) when ROC-AUC is used as a performance metric (see Fig. 3 and Fig. 5).

Clearly, post-regularization and hierarchical shrinkage improves the accuracy of the vanilla RF. In terms of balanced accuracy, 
however, our Tree Smoothing regularization procedure is superior in the majority of cases, when the median is utilized for comparison 
(see Fig. 2 and Fig. 4). The results based on the Juvenile data set highlight that our empirical Bayesian approach, enabling the prior 
to be inferred, could have a balancing effect on unbalanced class distributions (see Fig. 2, Fig. 4, and Table 1). In addition, we could 
learn that a flat prior 𝐁𝑝𝑟𝑖𝑜𝑟(1, 1) did not perform well in almost all cases, which suggests that the prior is essential for the calibration 
of the ensemble classifier.

Furthermore, we found that Tree Smoothing and Hierarchical Shrinkage can have a substantial influence when the number of 
trees within the ensemble are low. In case of a single decision tree, for instance, a positive effect can be observed for almost all 
benchmark data sets. This phenomenon sheds light on the nuanced relationship between regularization techniques and ensemble 
size, providing valuable insights for practitioners aiming to optimize computational resources and/or building more parsimony and 
thus interpretable models.

Interestingly, this effect is not as substantial when balanced accuracy is used as a performance metric. The observed phenomenon, 
where the impact of Tree Smoothing and Hierarchical Shrinkage is less substantial when using balanced accuracy as a performance 
metric, suggests an important interplay between the regularization techniques and the specific metrics employed.

The competitive performance of vanilla Random Forests in certain cases implies that the considerations captured by balanced 
accuracy differ from those emphasized by ROC-AUC, enriching our understanding of the methodological intricacies in evaluating 
classification models. This finding expands upon the ROC-AUC-centric approach in the work by [1], shedding light on the complex 
relationship between regularization techniques and metric choices. Overall, there is much more variance in the outcome in the case 
of the train-test split evaluation (Fig. 5 and Fig. 4) compared to the 5-fold cross-validation set-up (Fig. 3 and Fig. 2).

Moreover, the BMA aggregation scheme (equation (14)) had a positive effect on the test performance (see Fig. 10). In almost all 
6

cases we could observe an increase in performance using the probabilities of the weighted global posterior distribution.
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Fig. 3. ROC-AUC on six machine learning benchmark data sets. The 5-fold cross-validation performance of Random Forest (vanilla RF), Hierarchical Shrinkage (HS), and 
our Beta-Binomial Tree Smoothing (BBTS) across varying number of trees within the ensemble is evaluated. The results are based on 20 train-test split iterations for 
each set-up.

Finally, the experiments and comparison with ForestPrune (see Fig. 11) indicate that BBTS-based regularization is the better 
strategy when it comes to performance. However, the authors of ForestPrune explicitly state that they do not expect any increase in 
performance, but rather put their focus on decreasing the complexity of the tree ensemble while maintaining its performance.

5.2. Simulated data

Empirical studies have demonstrated that MDI often assigns higher importance values to high entropy features [32,22] or variables 
with high category frequencies. This phenomenon occurs because standard RFs may overfit the outcome variable using features that 
offer many potential splitting points. Therefore high MDI values do not always indicate strong predictive associations between features 
and the outcome.

This discrepancy is referred to as MDI “feature selection bias” and prominently displayed in Fig. 6. The vanilla MDI shows a 
strong preference for variables with many categories and the continuous variable and fails entirely to identify the relevant predictor 
variable. In fact, the mean value for the relevant variable 𝑋2 is lowest and only slightly higher than in the null case.

Fig. 6 also indicates that our proposed technique accurately detects the relevant feature 𝑋2 . High entropy features tend to occur 
deeper in the trees and are down-weighted by our method. As a consequence, our approach detects the relevant feature already at a 
signal of 𝑟 = 0.15, whereas in the case of the Hierarchical Shrinkage (HS) method there exists still some uncertainty about the actual 
ranking of the features.

5.3. Application on cancer data from the cancer genome atlas (TCGA)

In the field of biomedical informatics and bioinformatics we face huge amounts of data, often consisting of far more predictors 𝑝
than samples 𝑛 (𝑝 >> 𝑛). Random forests are fast, flexible and represent a robust approach to analyze high dimensional data [23]. In 
fact, RFs are still considered as state-of-the-art machine learning tools when these dimensions are organized in tabular form [16].

Furthermore, a key advantage over alternative machine learning algorithms are variable importance measures, which can be used 
to identify relevant features or perform variable selection [23]. In the biomedical domain, explainability is an important factor and 
critically important for clinicians in their daily practice [11,26].

We applied our methodology on gene expression data from human breast cancer patients. The data was retrieved from The Cancer 
Genome Atlas (TCGA) and was preprocessed as described in [9]. The resulting dataset comprised 981 patients and 8469 genes. The 
binary prediction task was to classify the samples into a group of patients with the luminal A subtype (499 samples) and patients 
7

with other breast cancer subtypes (482 samples).
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Fig. 4. Balanced accuracy on six machine learning benchmark data sets. The hold-out test set performance of Random Forest (vanilla RF), Hierarchical Shrinkage (HS), 
and our Beta-Binomial Tree Smoothing (BBTS) across varying number of trees within the ensemble is evaluated. The results are based on 20 train-test split iterations 
for each set-up.

Table 2

TCGA Breast Cancer data set.

Metric n.trees RF HS BBTS

BA 1 0.66 0.64 0.70

2 0.64 0.69 0.71

5 0.75 0.73 0.80

10 0.75 0.75 0.78

50 0.78 0.78 0.80

100 0.78 0.78 0.82

AUC 1 0.65 0.74 0.73

2 0.72 0.81 0.83

5 0.81 0.85 0.86

10 0.84 0.85 0.87

50 0.88 0.88 0.89

100 0.90 0.90 0.91

Display of the median hold-out test set performance values based on Balanced Accuracy (BA) and 
ROC-AUC out of 20 train-test split iterations. The best performing method is highlighted in bold.

The application to the TCGA breast cancer dataset demonstrate the superior performance of our method when balanced accuracy 
is used as a performance metric (see Fig. 7). Vanilla RF is competitive with Hierarchical Shrinkage with increasing numbers of trees 
within the ensemble. Our approach consistently produced higher accuracy values across varying sizes of the ensemble.

In case of ROC-AUC, both Hierarchical Shrinkage as well as our Beta-binomial regularization technique improve the performance 
of a vanilla RF. This is especially true when the number of trees within the ensemble is low. The obtained observation confirms 
the results in [1]. The authors pointed out the benefits of their approach on small number of trees. Still, post-hoc Tree Smoothing 
produced slightly better results, when the median ROC-AUC values are used for comparison (see Fig. 7 and Table 2).

Furthermore, we could observe that pruning by decreasing the maximal depth of the decision trees can have a positive effect on 
a vanilla random forest, however, almost has no influence on the post-regularization performance using HS or BBTS (see Fig. 12).

The competitive and often superior performance of our method on the TCGA breast cancer dataset, demonstrated through both 
ROC-AUC and balanced accuracy, highlights its effectiveness in biomedical real-world applications. These results contribute valu-

able insights into the nuanced behavior of the studied regularization techniques across different performance metrics and ensemble 
8

configurations.
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Fig. 5. ROC-AUC on six machine learning benchmark data sets. The hold-out test set performance of Random Forest (vanilla RF), Hierarchical Shrinkage (HS), and our 
Beta-Binomial Tree Smoothing (BBTS). The results are based on 20 train-test split iterations for each set-up.

Fig. 6. Comparing MDI-based feature importance for various relevance 𝑟 (SNR) values and shrinkage schemes. For low SNR the well-known bias towards features with 
high cardinality/entropy affects all approaches. For moderate to high SNR values, our Beta-binomial shrinkage separates the informative feature 𝑋2 from the noisy 
features with the widest margins. The results are based on 100 iterations on the whole data set for each set-up.

Finally, to highlight the improved interpretability provided by our Tree Smoothing approach, we visualize the inferred distributions 
of the leaf nodes along the ensemble. In Fig. 8 we show the inferred 𝛼 and 𝛽 counts of the leaf nodes a single breast cancer patient 
was assigned to. The fact that the values within the leaf nodes are based on a well-defined model parameter allows us to derive 
additional conclusions. For instance, not only can the probability be obtained, but also the certainty of the model parameters. The 
density around the inferred parameter indicates to what extend we can trust the computed probabilities. A detailed inspection of the 
9

diagrams shown in Fig. 8 thus uncovers the trees and the corresponding leaf nodes for which a patient is classified with high certainty.
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Fig. 7. TCGA Breast Cancer dataset. The hold-out test set classification performance of Random Forest (vanilla RF), Hierarchical Shrinkage (HS), and our Beta-Binomial 
Tree Smoothing (BBTS) while subsequently increasing the number of trees. The left panel shows the results based on ROC-AUC; the results based on balanced accuracy 
are displayed in the right panel. The results are based on 20 train-test split iterations for each set-up.

6. Conclusion and future outlook

We have introduced a novel post-regularization method for tree ensembles which we call Beta-Binomial Tree Smoothing (BBTS). 
BBTS significantly improves the accuracy of a vanilla random forest. Furthermore, we were able to show that our proposed method 
is particularly suitable for real-world biomedical data, such as gene expression profiles of cancer patients, where the features are 
continuous and often organized in a 𝑝 >> 𝑛 setting.

By emphasizing a more general approach using empirical Bayes, our work not only provides advances but also lays the foundation 
for future research and applications. For example, the obtained posterior distribution in the leaf nodes, provides valuable information 
about the confidence and reliability of a prediction, which can help to further regularize and improve the ensemble classifier.

Future work may enhance similar techniques for regression tasks, for instance using conjugate Normal distributions, which can 
bring benefits in terms of computational simplicity because of straightforward analytical calculations of the posterior distribution. 
It can also support closed-form solutions as the posterior distribution parameters can be directly computed without resorting to 
numerical methods. Moreover, it can support the intuitive interpretation, because the resulting posterior distribution parameters 
provide clear insights into how the prior beliefs and observed data combine to form updated beliefs. Finally, the model-specific 
prior allows for incorporating domain-knowledge or expert-beliefs into the post-regularization procedure; a promising approach 
to further optimize the herein presented methodology, along with an investigation to understand how different types of expert 
knowledge influence the post-regularization process. Incorporating supplementary knowledge into data-driven machine learning 
models, a concept known as informed machine learning [33], is poised to gain prominence. This approach aims to enhance learning 
algorithms by integrating domain-specific information [18], thereby potentially improving model interpretability, robustness, and 
performance. As the field evolves, the synergy between explicit knowledge structures and machine learning could become a critical 
factor in developing advanced, human-centered AI systems particularly which enhance trust in the results [13].
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Fig. 8. Classification of a single sample. Shown are a set of values corresponding to the leaf node a sample was assigned to. In panel 1 the 𝛼 and 𝛽 values from the 
posterior distribution 𝐁𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛼, 𝛽) are displayed. Panel 2 shows the corresponding 𝑓 (𝐱; 𝛼, 𝛽) values, and panel 3 draws the corresponding density values 𝑓 (𝐱; 𝛼, 𝛽)
along the ten trees.
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Software package TreeSmoothing

The proposed post-hoc regularization method as well as the Hierarchical Shrinkage technique is implemented within our Python 
package TreeSmoothing, which seemingly interfaces with sklearn functionalities and thus can be employed on any trained tree-based 
classifier. TreeSmoothing is available from PyPI (https://pypi .org /project /treesmoothing/) as well as from our GitHub repository 
(https://github .com /pievos101 /TreeSmoothing).
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Appendix A. Comparison to hierarchical shrinkage

The strong performance of the proposed Beta-Binomial Tree Smoothing (BBTS) across a wide variety of data sets is somewhat 
surprising in the light of the conventional wisdom that RFs excel when averaging many randomized, deep trees. In an attempt to 
shed light on why BBTS works so well, we show in this section that the smoothed leaf predictions from Eq. (5) can be written as a 
weighted sum of the actual node values and the prior mean:

𝑓𝛼,𝛽 (𝐱) =
𝛼(𝑡𝐿)

𝛼(𝑡𝐿) + 𝛽(𝑡𝐿)
=

𝛼𝑝𝑟𝑖𝑜𝑟 +
∑𝐿

𝑙=0𝑁1(𝑡𝑙)

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟 +
∑𝐿

𝑙=0𝑁1(𝑡𝑙) +𝑁0(𝑡𝑙)
(15)

=𝑤𝑝 ⋅
𝛼𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟
+

𝐿∑
𝑙=0

𝑤𝑙 ⋅ 𝔼̂𝑡𝑙
{𝑦} (16)

where 𝔼̂𝑡𝑙
{𝑦} =𝑁1(𝑡𝑙)∕(𝑁1(𝑡𝑙) +𝑁0(𝑡𝑙)) and the weights are defined as

𝑤𝑝 ≡
𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟

𝑁Σ
, 𝑤𝑙 ≡

𝑁1(𝑡𝑙) +𝑁0(𝑡𝑙)
𝑁Σ

(17)

and add up to 1, with the denominator denoted by the cumulative counts 𝑁Σ ≡ 𝛼(𝑡𝐿) + 𝛽(𝑡𝐿) = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟 +
∑𝐿

𝑙=0𝑁1(𝑡𝑙) +𝑁0(𝑡𝑙). 
As the node counts necessarily diminish with each split, the weights 𝑤𝑙 monotonically decrease from root to leaf.

An equivalent form of the HS scheme eq. (2) can also be written as a weighted sum of the actual node values:

𝑓𝜆(𝐱) = 𝔼̂0(1 −𝑆0) +
𝐿−1∑
𝑙=1

𝔼̂𝑙 ⋅
(
𝑆𝑙−1 − 𝑆𝑙

)
+ 𝔼̂𝐿 ⋅ 𝑆𝐿−1, (18)

where this time the coefficients form a telescoping sum adding up to 1:

(1 −𝑆0) +
𝐿−1∑
𝑙=1

(
𝑆𝑙−1 − 𝑆𝑙

)
+ 𝑆𝐿−1 = 1 + (−𝑆0 +𝑆0) + (−𝑆1 +𝑆1) +…+ (−𝑆𝐿−1 +𝑆𝐿−1) = 1 (19)

with 𝑆𝑙 ∶=
(
1 + 𝜆∕𝑁(𝑡𝑙)

)−1
and 𝔼̂𝑙 ∶= 𝔼̂𝑡𝑙

{𝑦}
Fig. 9 compares the BBTS weights with the weights from hierarchical shrinkage for the special case of a hypothetical balanced 

binary tree in which node counts halve at each split.
The differences are striking: for moderate values of 𝜆, HS heavily weighs nodes in the middle of the tree and closer to the leaves, 

whereas BBTS appears to exponentially downscale node contributions with increasing depth.

Fig. 9. Comparing node weights for Hierarchical Shrinkage (HS, left panel) and our BBTS scheme as defined in Eq. (17). For simplicity, we assume a perfect balanced 
12

binary tree of depth 8 in which node counts halve at each split and 𝑁1(𝑡𝑙) =𝑁0(𝑡𝑙), 𝑁1(𝑡0) = 28 .
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Appendix B. Influence of using Bayesian model averaging

Fig. 10. BMA versus non-BMA aggregation. The differences in ROC-AUC values on six machine learning benchmark data sets are shown. The hold-out test set performance 
is based on 30 train-test split iterations for each set-up. The ensembles included 10 trees.

Appendix C. Comparison with ForestPrune

Fig. 11. ROC-AUC on three machine learning benchmark data sets. The hold-out test set performance of our Beta-Binomial Tree Smoothing (BBTS) and ForestPrune. The 
13

results are based on 50 train-test split iterations for each set-up.
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Fig. 12. TCGA Breast Cancer dataset. The hold-out test set classification performance of Random Forest (vanilla RF), Hierarchical Shrinkage (HS), and our Beta-Binomial 
Tree Smoothing (BBTS) while subsequently increasing the maximum tree depth. The left panel shows the results based on ROC-AUC; the results based on balanced 
accuracy are displayed in the right panel. The results are based on 20 train-test split iterations for each set-up. The number of trees is set to 2.

Appendix D. Glossary of notations

• AI = Artificial intelligence
• AUC = Area under the Curve
• BMA = Bayesian Model Averaging
• BBTS = Beta-Binominal Tree Smoothing
• 𝐁𝑝𝑟𝑖𝑜𝑟(𝛼, 𝛽) = Beta prior distribution at the root node
• 𝐁𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛼, 𝛽) = Beta posterior
• 𝑛 = Training Set
• HS = Hierachical Shrinkage
• MDI = Mean Decrease in Impurity
• ML = Machine learning
• PET = Probability Estimation Trees
• PMLB = Penn Machine Learning Benchmarks
• RF = Random Forests
• ROC = Receiver Operating Characteristic
• TCGA = The Cancer Genome Atlas
• XAI = Explainable Artificial Intelligence

Data availability

Data will be made available on request.
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