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ABSTRACT

Bioreactors are usually modelled as continuous stirred tank reactors (CSTRs) or CSTRs connected in series (Tanks-In-Series configuration). In

large systems with non-ideal mixing, such approaches do not sufficiently capture the complex hydrodynamics, leading to model inaccuracies

due to the lumping of spatial gradients. Highly detailed computational fluid dynamics (CFD) models provide insight into complex hydrodyn-

amics but are computationally too expensive for flow-sheet models and digital twin applications. A compartmental model (CM) can be a

middle-ground by providing a more realistic representation of the hydrodynamics and still being computationally affordable. However, the

hydrodynamics of a plant can be very different under varying flow conditions. Dynamic CMs can capture these changes in an elegant

way. So far, the application of CMs has been limited mostly to continuous flow systems. In this study, a dynamic CM of a sequencing

batch reactor (SBR) is developed for a bio-P removal process. The SBR comes with challenges for CM development due to its distinct oper-

ational stages. The dynamic CM shows significant improvements over the CSTR model (using the same biokinetic parameters) for dissolved

oxygen and phosphate predictions reducing the need for model recalibration that can lead to over-fitting and limited extrapolation capability

of the model.
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HIGHLIGHTS

• CFD simulations showed incomplete mixing and stagnation zones in an SBR with an anaerobic/aerobic cycle.

• A dynamic compartmental model was developed for an SBR with an anaerobic/aerobic cycle.

• The impact of dynamic CM was investigated on biological phosphorus removal.

• The dynamic CM showed significant improvement in the model prediction power.

• CMs can reduce the calibration effort for the biokinetic models.

INTRODUCTION

Water resource recovery facility (WRRF) modelling is going through a transition from traditional process models to Digital

Twin (DT) applications. A DT is a virtual replica of the physical system that simulates its operation in real-time and can be
used for improved decision-making, predictive maintenance, online optimisation, etc. (Torfs et al. 2022). In order for a DT to
remain reliable and robust over time, the predictive power of the underlying model is critical (Regmi et al. 2018). This will

inevitably lead to a need for frequent model recalibration if the model predictive power is not sufficiently good enough
(for the objective of the modelling study) or deviates from reality over time. A possible solution for this could be to use
data-driven algorithms for automatic recalibration of the model parameters (de Almeida Martins et al. 2021). However,
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this may not be the best practice if the discrepancies are related to flaws in the structure of the model. In the case of WRRFs,

mechanistic models of the biological processes are the backbone of the DT. They are usually based on activated sludge models
(ASMs) that have been developed to describe the biological carbon, nitrogen and phosphorus removal in wastewater treat-
ment trains (Henze et al. 2006). Although there have been numerous studies on the calibration and validation of ASMs,

the identifiability of most of their parameters remains a challenge (Sin et al. 2005; Sin & Al 2021). In addition, ASMs
have been mainly benchmarked on municipal wastewater data (Gernaey et al. 2014). Industrial wastewater on the other
hand shows highly variable characteristics which makes the application of ASMs an even more challenging task (Zhu
et al. 2015; Monje et al. 2022). Consequently, a big effort usually goes into the calibration of the parameters of such

models which can potentially lead to over-fitting problems due to the uncertainty of the parameters thus limiting their extra-
polation capabilities.

Next to biological removal efficiency, the mixing and transport of carbon, nitrogen, phosphorous and oxygen components,

play an important role in the performance of wastewater treatment plants. Wastewater treatment biokinetic models (i.e.
ASMs) are usually implemented considering simple hydrodynamic representations such as a continuous stirred tank reactor
(CSTR) or a number of CSTRs connected in series in the so-called Tanks-In-Series (TIS) configuration. TIS assume complete

mixing inside the CSTRs and considers gradients in only one direction which is the direction of the flow (Levenspiel 1999).
However, in many reactor configurations, this is far from the reality as more complex mixing leads to concentration gradients
in different directions which can significantly impact the biological process (Rehman et al. 2017). Overly simplified hydraulic

models lead to unnecessary calibration efforts for the biokinetic ASMs that can limit their predictive and extrapolation power
(Gujer 2011). Hence, developing models with a more realistic representation of the system’s hydrodynamics is becoming
increasingly important when considering their real-time application for DTs, optimisation for more stringent effluent and
energy requirements or real-time control purposes, all of which put high demands on the model’s predictive power and

require models to remain reliable and valid over a long time horizon. A model that fails to capture important dynamics of
the system due to lumping spatial variations will not be able to achieve sufficient predictive power without cumbersome
and not always reliable recalibration efforts.

Computational fluid dynamics (CFD) is used to model hydrodynamics with extremely high resolutions (in the order of
centimetres) and has been shown to improve modeller’s understanding of local mixing behaviour (Rehman 2016). However,
CFD models are not widely used in the wastewater modelling community mainly due to them being computationally expens-

ive. Alternatively, compartmental modelling (CM) represent a unique approach to model the hydrodynamics through a
combination of functional zones, called compartments (Jourdan et al. 2019). These compartments, interconnected through
exchange fluxes, can simulate the presence of dead zones or recirculation caused by non-ideal mixing. As such they are
able to model concentration gradients in multiple directions making them much more powerful than TIS models without

requiring the computational resources of a CFD model.
Local information about the gradients in the bioreactors is required to build a CM. This information could be obtained

either from local measurements, expert knowledge or from CFD simulations, the latter being the most widely used. Some

successful examples of CMs to model mixing behaviour in bioreactors can be found in the literature (Delafosse et al.
2014; Tajsoleiman et al. 2019; Massmann et al. 2020).

To build a CM from CFD models, the CFD simulations are mostly performed in steady-state and consequently provide only

a snapshot of the bioreactor mixing patterns in time. However, the information about volumes and exchange flows between
different regions can be used to build up the CM considering that they represent the most common operating condition of the
system. The result is a fixed CM where the number of compartments, their volume and exchange flow between them is con-

stant. This can be a reasonable assumption if the system is not highly dynamic and often represents a significant improvement
compared to traditional TIS models. In case of having high variations in the local conditions due to for example extreme
weather conditions or highly dynamic aerations, the assumption of fixed compartments and exchange flows will not hold
and a dynamic CM would be more appropriate. In particular, non-continuous operations, like sequencing batch reactors

(SBRs) are prone to highly dynamic local conditions. A dynamic CM can have different numbers of compartments, volumes
and/or exchange flows depending on the dynamic operating conditions over time. However, building a dynamic CM usually
requires several CFD simulations to cover a wide range of operating conditions in order to have a realistic representation of

the real bioreactors.
Although there have been several studies on the CM for chemical reactors (Alexopoulos et al. 2002; Guha et al. 2006;

Gresch et al. 2009; Vakili & Esfahany 2009), in the wastewater treatment domain, there are only a handful of applications
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for CMs which mostly consider a continuous treatment process and a fixed CM configuration. While no previous study in the

literature has been reported on the impact of hydrodynamics on the biokinetics of biological phosphorus removal, the effect
of hydrodynamics on other biokinetic aspects has been proven to be significant. Le Moullec et al. (2010) conducted one of the
first studies on the comparison of CFD, CM and the so-called systemic approaches where the flow is modelled through one

reactor or some interconnected reactors like the TIS. The results showed a clear advantage of the CM compared to the TIS for
dissolved oxygen (DO) and chemical oxygen demand (COD) concentration prediction in a conventional activated sludge
system for carbon and nitrogen removal. Alvarado et al. (2012) did a similar study for a stabilisation pond where they exten-
sively investigated the residence time distribution of different modelling approaches. The outcome was that the TIS (or in

general the systemic approach) is not able to provide a good representation of the mixing patterns no matter the number
and size of the CSTRs in the model and the further recalibration of the biokinetic model for solving a problem that is related
to the structure of the model is not considered good modelling practice (Gresch et al. 2011; Gujer 2011; Le Moullec et al.
2011). Bellandi et al. (2019) did an extensive study on the comparison of TIS and CM for selecting the best model parameters
that showed a narrower range of good values for the parameters thus improving the calibration effort and predictive power of
the model. Most recently De Mulder (2019) and Borzooei et al. (2024) studied a CM approach for a full-scale treatment plant

with enhanced biological phosphorus removal. Although the focus of those studies was on the implementation of CM for the
aerobic and anoxic zones and therefore not on the biological phosphorus kinetics, the overall results show that the predictive
power of the mechanistic biokinetic model was significantly improved for the DO and total suspended solids (TSS) concen-

trations. Nevertheless, all the previous studies showed the development of CMs for continuous systems and using a fixed CM
configuration. The literature on the dynamic CM is even more limited. Some very recent studies showed the development of
dynamic CMs (change in volume and exchange flows based on inlet flows of the bioreactors) for the fed-batch fermentation
processes with improved results over the fixed CM approach in describing the local metabolic regimes in the bioreactor

(Nadal-Rey et al. 2021; Bisgaard et al. 2022). De Mulder (2019) developed a dynamic CM for the aeration tank of a
WRRF with adaptive volume/exchange flows based on the influent and air flow rate conditions. While it improved the pre-
dictive power of the model compared to the fixed CM, it needed several CFD simulations to cover a wide range of dynamics in

the operating conditions of the continuous process.
Nevertheless, in all cases, CM shows promising improvements in model predictive power without further recalibration

efforts for the underlying biokinetic model. This study presents a dynamic CM of an SBR for biological phosphorus removal

of a maltery wastewater treatment plant. The SBR goes through different hydrodynamic phases due to the cyclic operation
with and without aeration. This motivates the development of a dynamic CM which can adapt to different operating con-
ditions based on the cycle time and therefore can demonstrate improved predictive power compared to the single-CSTR
model.

METHODS

Case study

The bioreactor used in this study is a cylindrical sequencing batch reactor (SBR) treating maltery wastewater with the charac-

teristic presented in Table 1. It has a volume of 5,200 m3 and a depth of 6 m. The SBR cycle includes an anaerobic feeding
phase (55 min) followed by an aerobic feeding phase (20 min) and a longer aerobic (non-feeding) phase (165 min) to provide
optimal conditions for biological phosphorus removal. The effluent of the SBR goes to a membrane bioreactor which recycles

Table 1 | Characteristics of the maltery wastewater influent in the study

Unit Average value

COD mg/L 2,587.4 + 203

TN mg/L 69.8 + 9.9

TP mg/L 22 + 2.5

TSS mg/L 364.2 + 86.6

Q m3/d 2,009.2 + 267.8

Note: The concentrations are mean values of nine samples in the month of March 2022. The flow rate is the mean daily value of the month of March 2022.
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part of the wastewater back to the SBR. The aeration inside the SBR is controlled based on the DO concentration measured

near the inlet of the SBR and using a combination of an on-off controller for activating the blowers and a PID controller to
regulate the frequency of the blowers. The MLSS inside the SBR is kept at 9.5–10 g/L and the average sludge retention time
(SRT) of the system is about 4.2 days. The waste-activated sludge is being removed from the SBR with an average flow rate of

170 m3/d. Chemical dosing using iron chloride (FeCl3) is done during the anaerobic phase to improve the phosphorus
removal when the capacity of the biological phosphorus removal is not enough to remove all the phosphorus load coming
into the plant during each cycle of the SBR (estimated based on lab-measured phosphorus uptake rate of 1.5 g P/kg VSS/
hour). Overall, the plant shows 95, 97 and 94% of COD, TP and TN removal efficiency, respectively, over the 1 month

period of the data presented in this study. Figure 1 shows the layout of the treatment plant.
High-frequency data were collected using the Oxymax COS61D sensor (EndressþHauser, Switzerland) for DO and the

Liquiline System CA80PH analyzer (EndressþHauser, Switzerland) for phosphate (PO4) to capture the dynamics of the

phosphate release and update during the anaerobic and aerobic phases of the SBR cycle. These measurements were initially
undertaken in different locations of the SBR to assess the homogeneity of mixing within the reactor. This exploratory step
revealed variances in some parameters across different reactor zones, prompting the application of CFD to gain deeper

insights into these mixing patterns.
In order to obtain the dynamics of the influent COD during the SBR cycles, high-frequency total organic carbon (TOC) data

were collected at the influent wastewater using the TOCII CA72TOC analyzer (EndressþHauser, Switzerland) and the opti-

cal TOC sensor Viomax CAS51D (EndressþHauser, Switzerland). These measurements and laboratory COD data were
analysed to establish a correlation between TOC and COD. This was an important step since readily biodegradable COD,
which includes simple soluble substrates and volatile fatty acids (VFAs), is integral to the metabolic processes of phos-
phorus-accumulating organisms (PAOs).

Mechanistic biokinetic model

A mechanistic model of the treatment plant is developed in WEST (DHI, Denmark) simulation software using a single CSTR
to describe hydraulics and the activated sludge model No. 2 (ASM2d) to describe biological phosphorus removal. It includes
an aeration model (Rosso et al. 2005) to calculate the oxygen transfer rate based on the air flow rate supplied to the bio-
reactor. The controllers for the airflow based on DO concentrations are specifically implemented for this plant. This

includes an on-off controller which activates three blowers based on different set-points of DO during different stages of

Figure 1 | Layout of the maltery treatment plant used in this study.
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the SBR as well as a PID controller which regulates the frequency of the blowers during the second aeration phase (aeration

without feeding). The model was calibrated and validated based on three weeks of dynamic data from the plant. The cali-
bration was performed by changing the parameters one at a time and it followed the good modelling practice protocol
(Rieger et al. 2012). The influent fractions were changed from the default values of the ASM2d model (Table 2). This was

quite expected considering the difference in influent characteristics of the maltery wastewater compared to the conventional
municipal one. Influent VFA and effluent COD lab measurement data were used for estimating the fraction of the fermenta-
tion product (F_S_A) and the fraction of soluble inert (F_S_I), respectively. While the model demonstrated satisfactory
performance in simulating sludge balance and COD removal, with average relative errors of 3.7 and 4.6%, respectively,

further calibration was necessary for the biological phosphorus removal parameters. This calibration aimed to fit the
model’s predictions more closely with the observed phosphate concentrations in the SBR bioreactor and effluent. The full
list of the calibrated model parameters with their default values in the ASM2d model is given in Table 2.

CFD model

Although the mechanistic model performed well on average for the effluent quality, mixed liquor suspended solids, average
DO and air flow rate, it lacked important dynamics of DO and showed an overestimation for the phosphate concentration.
Considering the relatively big volume of the tank and the cyclic operation of the SBR with and without aeration phases, mod-
elling the bioreactor as a single CSTR was considered a potentially important simplification. This was supported by a visual

investigation of the bioreactor at the plant which showed inhomogeneous mixing patterns under different operating con-
ditions. In addition, it is crucial for the model performance to have a good representation of the chemical dosing
availability throughout the reactor to achieve good phosphorus removal predictions. Therefore, it was decided to investigate

the mixing patterns inside the SBR by conducting a CFD study to investigate the mixing pattern which can impact the local
concentration gradients. Three CFD simulations were done for anaerobic feeding, aerobic feeding and aerobic without feed-
ing phases of the SBR cycle. The CFD model was built following the procedure reported in (Rehman 2016) with the geometry

data of the bioreactor reported in Table 3. The meshing is performed using the commercial mesh/grid generator ICEM CFD,
ANSYS with polyhedral mesh composed of a total of 3.3 million number of cells (Figure 2). Mesh independence test is per-
formed starting with a coarser size until a fine mesh with sufficient performance is achieved. The mixture model is used for
the multi-phase model. To reduce the computational demand of the simulations, only liquid and gas phases are considered in

the multi-phase model in order to study the impact of aeration on the flow patterns. Besides, the solids are expected to have
no significant impact on the aeration. The realisable k–ε turbulence model is used in this study. The mixers are modelled as
momentum sources. Boundary conditions are defined based on the system knowledge. Inlet/outlet and air flows are

Table 2 | Calibrated influent fractions, kinetic and stoichiometric parameters of the mechanistic model

Parameter Description Calibrated value Default value Unit

Influent fractionations

F_S_F Fraction of fermentable readily biodegradable organic matter 0.5 0.375 –

F_S_A Fraction of fermentation product (acetate) 0.45 0.25 –

F_S_I Fraction soluble inert 0.05 0.375 –

F_X_S Fraction of slowly biodegradable organic matter 0.1–0.3 0.69 –

F_X_H Fraction of heterotrophic organisms 0.1 0.17 –

F_X_I Fraction of particulate inert 0.6–0.8 0.14 –

Stoichhiometric parameters

Y_PO4 Yield coefficient for phosphate release 0.26 0.4 gP/gCOD

Kinetic parameters

Q_pp Rate constant for storage of X_PP 2.5 1.5 1/d

b_PAO Rate for lysis of X_PAO 0.1 0.2 1/d

Q_PAO_Stor Rate constant for storage of PHA 1.2 3 1/d

b_PP Rate constant for lysis of X_PP 0.03 0.2 1/d
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Table 3 | The geometry data of the bioreactor used in the CFD model

Parameter Value Unit

Volume 5,200 m3

Depth 6 m

Number of mixers 2 —

Mixers’ diameter 2.5 m

Mixers’ rotational speed 45 rpm

Figure 2 | (a) The scheme of the bioreactor geometry. (b) The meshing of the bioreactor. (c) The meshing around the diffusers at the bottom
of the tank.
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calculated based on known values while for the walls no-slip condition is considered (zero velocity at the walls). The sym-

metry boundary condition is used for the free surface on top of the reactor which is similar to the wall condition with
zero wall friction. The FeCL3 dosing was simulated as a tracer with transient simulations in order to investigate the required
time for its complete dissolution in the reactor.

The CFD simulations are done in the Fluent, ANSYS commercial software using steady-state single-phase for the anaerobic
phase and steady-state multi-phase for the two aeration phases of the SBR cycle. For investigating the dispersion of chemical
dosing within the bioreactor, a transient simulation is performed for both anaerobic and aerobic phases to check which one is
more optimal for the time of the dosing. For the aeration phases, an average air flow rate of 4,500 m3/h is used based on the

available data. Finally, the results of the CFD simulations are used to build a dynamic CM for the SBR which can switch
between flow patterns of the anaerobic and aerobic phases.

RESULTS AND DISCUSSION

CFD model

The results of the CFD simulation in terms of the velocity vectors for the anaerobic phase are presented in Figure 3. A circular

pattern can be seen inside the tank driven by the presence of the mixers. The inlet and outlet streams do not significantly
affect the flow pattern inside the bioreactor. Interestingly, a stagnation zone is observed in the centre of the bioreactor
(the region with the blue colours for the velocity vectors) which is almost cut-off from the main circular flow. Although

the flow in both downward and upward directions are observed in that region, they are relatively very small compared to
the rest of the tank with lower velocities towards the centre and bottom of the bioreactor.

Figure 4 shows the dispersion of FeCl3 inside the bioreactor during the anaerobic phase after 10 min of the transient simu-

lation. It is clearly visible that after this time the FeCl3 is not still homogeneously distributed in the reactor volume and it is
much slower in the bottom and centre of the reactor. This can be explained by the presence of the stagnation zone in those
areas. During the anaerobic phase, it takes almost 30 min for the chemicals to be distributed in the tank in a completely
homogeneous way.

On the other hand, the results of the multi-phase CFD simulation during the first aeration phase of the SBR (Figure 5(a))
show a significantly reduced stagnation zone in the centre of the bioreactor due to the high air flow rates present in the tank.
The impact of the aeration is much higher than the inlet flow rate (quite expected considering the difference in the flow rates;

an average of 250 m3/h for inflow compared to an average of 4,500 m3/h for the airflow). As a result, the CFD simulation of
both aeration phases (with and without feeding) is practically the same (data are shown only for aeration with feeding).
Figure 5(b) shows the air volume fraction during the aeration phase. The distribution of the air within the bioreactor is

highly affected by the circular and vertical flow driven by the mixers. In general, the air is less present in the areas where

Figure 3 | The velocity vectors simulated with the CFD model for the anaerobic phase of the SBR.
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there are no diffusers. The centre of the tank (the stagnation zone during the anaerobic phase) shows much less air compared
to the rest of the tank. This is more visible when comparing the air volume fraction at different depths of the bioreactor

(Figure 5(c)).
The dispersion of the FeCl3 during the aeration phase is much faster compared to the anaerobic phase. In fact, after only 3

min of the transient simulation time (Figure 6), the chemical is already distributed quite well within the bioreactor. In this
case, the total dispersion is achieved after almost 8 min compared to 30 min during the anaerobic time. Based on this, it

is a wiser choice to add the chemical during the aeration phase instead of the anaerobic one in order to achieve a better phos-
phorus removal performance.

Dynamic CM

Based on the observations from the CFD simulations, it was decided to derive a compartment model to better capture the

mixing dynamics in the SBR. The number of compartments, the volumes of the compartments and the exchange flows
between them are then calculated from the CFD data. The compartmentalisation procedure is the same for both anaerobic
and aerobic phases and it follows the step-wise approach presented in Rehman (2016). Thresholds to decide on the number of
compartments are defined based on the variations in the velocity vectors and air volume fractions observed in different

regions of the bioreactor. The idea is to represent the heterogeneity of the flow patterns as accurately as possible but with
the smallest number of compartments possible to avoid high complexity and computational cost for the model simulation.
In this study, it was observed that the flow patterns can be first divided in the direction of the convective flow in two

main regions separating the part of the bioreactor where the air diffusers are located. This seems to be a reasonable assump-
tion considering the air is mostly distributed in that region along the vertical axis with the rest of the bioreactor without
diffusers showing an air volume fraction of mostly between 0 and 0.007 compared to values up to 0.015 above the diffusers.

In addition, it was decided to create a compartment for the stagnation zone observed during the anaerobic phase. This com-
partment is considered an anaerobic one (without airflow supply) for the whole duration of the cycle since the presence of air
is limited there even during high aerating conditions under which air volume fractions of up to only 0.004 are observed.

Nevertheless, high DO concentrations can be still possible in this compartment (especially close to the surface) during the
aerobic phase due to the mixing effect. This was confirmed in an experiment by the DO measurements close to the surface
and center of the bioreactor which showed up to 0.5 mg/L lower concentrations than the rest of the tank. Moreover, it was
observed that the flow rates in the circular direction are significantly higher than the ones in the radial direction even during

the aeration phase (31.2–45.5 m3/s compared to 0.2–.6.1 m3/s, respectively). While during the anaerobic phase velocities of
between 0 and 0.1 m/s are observed in the stagnation zone, they are increased to almost 0.35 m/s in most cases during the
aeration phase which is still significantly lower than the 0.8 m/s in the rest of the tank. The tank is thus divided into three

compartments in total; a compartment representing the stagnation zone in the centre during the anaerobic phase, a compart-
ment representing the part of the bioreactor without diffusers where the inflow is located, and a compartment representing
the rest of the bioreactor.

Figure 4 | The result of the transient CFD simulation for the dispersion of FeCl3 in the bioreactor injected during the anaerobic phase at
time¼ 10 min after the start of simulation.
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To capture changes in mixing behaviour between the aerobic and anaerobic phases, the exchange flows between the com-
partments are modified dynamically according to the SBR cycle. This takes into account the fact that the stagnation zone in
the middle of the bioreactor remains somehow separated from the rest of the tank during the anaerobic phase but presents a

Figure 5 | (a) The velocity vectors simulated with the CFD model for the aerobic phase of the SBR. (b) The air volume fraction simulated with
the multi-phase CFD model during the aerobic phase. (c) Comparison of the air volume fraction simulated with the multi-phase CFD model at
different depths within the bioreactor.
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much better exchange of flows with other parts during the aerobic phase. Figure 7 shows the scheme of the compartmenta-
lisation during both anaerobic and aerobic stages as well as the volumes and exchange flows of the compartments.

The dynamic CM was implemented in the WEST using CSTRs and exchange flows between them. Additional ‘flow con-
trollers’ were implemented to change the exchange flows between the compartments based on the time of the SBR cycle.
The schematic layout of the model in WEST is depicted in Figure 8. The DO measurements for the controllers are taken
from the second compartment (CM_2) where in reality the sensor is located near the inlet of the bioreactor. On the other

hand, the aeration is supplied to the first compartment (CM_1) where the diffusers are located in the real SBR reactor.
Figure 9 shows the results of the 2-day dynamic simulation comparing measurement data to the single-CSTR model and the

CM model in which the CM configuration is dynamically switched between the anaerobic and aerobic phases of the SBR

cycle. Both DO and PO4 measurement data are taken from the probes located near the inlet of the bioreactor which in

Figure 6 | The result of the transient CFD simulation for the dispersion of FeCl3 injected during the aerobic phase at time¼ 3 min after the
start of the simulation.

Figure 7 | The scheme of the compartmentalisation of the SBR. The flow from CM_3 to CM_2 (dashed line) is active only during aerobic
phase. Measurements are taken from compartment 2 and the air flow is supplied to the compartment 1 while the compartment 3 represents
the central stagnation zone during the anaerobic phase. All flow rates reported in the figure are in m3/s.
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the dynamic CM refers to the CM_2. All the parameters of the biokinetic model are the same in both models which means

they are at the calibrated values reported in Table 2. A significant improvement can be seen for the DO and PO4 predictions
without further calibration of the biokinetic or the aeration model of the single-CSTR configuration. Although the RMSE
values for DO do not show a big difference (and for the dynamic CM it is slightly higher), the dynamic CM is capable of cap-

turing the dynamics of DO during the aeration phases which was something that the CSTR model was not able to do despite
of the extensive calibration efforts done on the biokinetic and aeration models and the detailed implementation of the DO

Figure 8 | The schematic layout of the implemented compartmental model in WEST.

Figure 9 | The results of the dynamic WEST model simulation for DO and PO4 comparing the CSTR model with the CM.
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control strategy. In addition, the phosphate predictions which were overestimated in most cycles in the CSTR model, are fit-
ting the measurement data in a better way by reducing the RMSE from 1.4 to 1.09. However, small dynamics between the
cycles are still not being captured in detail.

In the single-CSTR model, there is no distinction between where the DO sensor is located, where the the inlet/recycle flows
are located, where the sludge is taken out of the tank, and where the airflow is supplied to the bioreactor. Whereas the
dynamic CM describes these elements in a more realistic way by separating the point of DO measurement from the injection

of air as well as the point of sludge removal and inlet/recycle flows. The sensor location was proven to be an important aspect
to consider (Rehman et al. 2014). The overestimation of the phosphate in the single-CSTR model shows that the model pre-
dicts a higher release of phosphate during the anaerobic phase compared to the data. Considering the stagnation zone in the
middle of the bioreactor during the anaerobic phase, it makes sense that the phosphate release would not be the same in all

regions of the tank and if in theory higher phosphate can be released in the ideal case (which is represented by the single-
CSTR model), in reality the measurements by the probe near the inlet would be lower due to the incomplete mixing and
much slower transport of the flow from the middle to the rest of the reactor. This can explain the overestimation of the phos-

phate in the single-CSTR model.
Looking at the TSS in the SBR (Figure 10), the single-CSTR model shows a relatively good capture of the dynamics but the

solids remain constant during the second aeration phase (without feeding). This can be explained by the DO profile that does

not show any dynamics during the aeration phase and consequently leads to no further biomass growth in the bioreactor. On
the other hand, the improved prediction of the available DO in the SBR for the dynamic CM model also noticeably changed
the profile of the TSS bringing the simulation results much closer to the actual measured dynamics.

Overall, the dynamic CMmodel was able to improve the predictive power of the mechanistic biokinetic model compared to
the single-CSTR model without further recalibration needs. The dynamic CM developed in this study not only provides an
addition to the scarce literature on CM in the wastewater domain but also presents its application for a non-continuous pro-
cess (within the operation of the SBR) which is prone to high variations in the mixing patterns during different cycle phases.

Moreover, it investigates the impact of hydrodynamics on biological phosphorus removal where no previous studies using
CM have been documented. This proves once again the importance of hydrodynamics and shows how CM can be a valuable
approach to improve the model’s predictive power in mechanistic biokinetic models. Considering the emergence of DTs and

their need for long-standing reliability and the potential requirement for frequent validation/recalibration of (Torfs et al.
2022), a CM can provide a more accurate representation of the hydrodynamics (compared to the conventional CSTR or
TIS approaches) and therefore reduce the constant effort to compensate for the errors caused by the structure of the model.

CONCLUSIONS

Systemic approaches based on ideal reactors (such as in TIS configuration) for the wastewater treatment bioreactors are too
simplistic and inaccurate for describing such systems when they are significantly affected by non-ideal mixing patterns. Even
though CFD models can provide a highly accurate representation of the hydrodynamics for the bioreactors, they are compu-

tationally too expensive to be used for the emerging DT applications which require real-time simulations. Compartmental
models can be considered as the middle-ground solution. They provide a more accurate representation of the reactor
mixing conditions while still being computationally affordable. Nevertheless, their applications in the wastewater domain

Figure 10 | The results of the dynamic WEST model simulation for TSS comparing the CSTR model with the dynamic CM.

Water Science & Technology Vol 90 No 2, 521

Downloaded from http://iwaponline.com/wst/article-pdf/90/2/510/1457139/wst090020510.pdf
by guest
on 11 April 2025



are limited and the available literature on the subject is more focused on the continuous flow reactors and the impact of

incomplete mixing on the COD/N biokinetics.
This study presents the development and implementation of a dynamic CM for a SBR treating maltery wastewater focusing

on the biological phosphorus removal process. The CFD simulations of the various stages of the SBR cycle helped in building

a CM with three distinct compartments that dynamically vary the exchange flows between the compartments to adapt to the
mixing conditions occurring during the anaerobic and aerobic phases of the cycle.

The results of the dynamic CM simulations show significant improvements in the predictive power of the model for DO,
PO4 and TSS concentrations in the SBR over the overly simplified single-CSTR model without further recalibration of the

underlying mechanistic biokinetic model.
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