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Abstract

The unprecedented speed and sensitivity of mass spectrometry (MS) unlocked

large-scale applications of proteomics and even enabled proteome profiling of

single cells. However, this fast-evolving field is hindered by a lack of scal-

able dimensionality reduction tools that can compensate for substantial batch

e↵ects and missingness across MS runs. Therefore, we present omicsGMF, a

fast, scalable, and interpretable matrix factorization method, tailored for bulk
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and single-cell proteomics data. Unlike current workflows that sequentially apply

imputation, batch correction, and principal component analysis, omicsGMF

integrates these steps into a unified framework, dramatically enhancing data pro-

cessing and dimensionality reduction. Additionally, omicsGMF provides robust

imputation of missing values, outperforming bespoke state-of-the-art imputation

tools. We further demonstrate how this integrated approach increases statistical

power to detect di↵erentially abundant proteins in the downstream data analy-

sis. Hence, omicsGMF is a highly scalable approach to dimensionality reduction

in proteomics, that dramatically improves many important steps in proteomics

data analysis.

1 Main

Recent technical advancements in mass spectrometry (MS) have enabled the proteome-
wide characterization of biological samples with unprecedented speed and sensitivity.
These developments have facilitated the application of proteomics in large-scale clini-
cal studies (e.g., [1, 2]) while simultaneously enabling the characterization of thousands
of proteins at the single-cell level [3, 4]. However, this increased throughput is accom-
panied by substantial technical batch e↵ects and a high prevalence of missing data,
primarily due to the extensive number of MS runs required for such applications [1–
5]. Together, these challenges hinder data exploration, normalization, and subsequent
di↵erential analysis.

Typically, a fundamental initial step in such large-scale proteomics (LSP) data
analysis involves dimensionality reduction (DR), which facilitates data visualization
and the extraction of meaningful insights from their data. Furthermore, DR is cru-
cial in single-cell proteomics (SCP) for downstream analyses, including cell clustering,
denoising, and trajectory inference [6]. However, DR in SCP presents significant chal-
lenges due to the high degree of missing data, which ranges from 50% to 90% [7].
Standard principal component analysis (PCA) methods are not applicable in the pres-
ence of missing values. To address this limitation, extensions of conventional PCA,
such as NIPALS [8, 9] and expectation-maximization PCA [10], have been proposed.
Nevertheless, these approaches su↵er from numerical instability and high computa-
tional complexity, making them unsuitable for large-scale SCP datasets [7]. Moreover,
they are unable to e↵ectively correct for known batch e↵ects, further restricting their
practical applicability in proteomics.

Consequently, conventional workflows continue to rely on imputation of missing
values prior to DR. However, not all missing values arise from the same underlying
mechanism. Specifically, missingness may occur due to variations in ionization e�-
ciency, ion competition, or computational limitations (e.g., unreliable identification),
which are independent of peptide abundance or the abundance of other peptides.
These types of missingness are all classified as missing completely at random (MCAR).
In contrast, certain peptides may be absent because they are not present in the cell
or sample, or because their abundance falls below the detection limit, a phenomenon
categorized as missing not at random (MNAR). Given these di↵erences, distinct
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imputation strategies are required for MCAR and MNAR peptide-spectrum matches
(PSMs) [11]. Indeed, the application of imputation methods designed to address
only one type of missingness can significantly alter the distribution of protein-level
intensities [12].

Moreover, the prevalence of MCAR and MNAR is largely influenced by the data
acquisition strategy, as well as by the specific characteristics of peptides and proteins,
making the imputation process particularly challenging. To address this issue, more
sophisticated methods have been developed, leveraging machine learning approaches
[13] or explicitly estimating the proportions of MCAR and MNAR values to inform
the selection of an appropriate imputation strategy [14]. However, these methods
are primarily designed for label-free bulk proteomics with data-dependent acquisition
strategies, whereas labeled approaches and data-independent acquisition techniques
are much more commonly employed in LSP and SCP to enhance proteome coverage.

In Fig. 1, we illustrate on three example datasets that employing PCA for visual-
ization after conventional imputation approaches is mainly driven by the large number
of missing values rather than by biological sources of variability. Panel B highlights
another limitation: PCA does not remove batch e↵ects, which are known to be major
sources of variability in LSP and SCP experiments [5, 15]. Consequently, an addi-
tional preprocessing step is required to eliminate batch e↵ects, resulting in lengthy and
complex analytical workflows that necessitate proficiency with multiple computational
tools.
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Fig. 1 Issues with conventional multistep workflows for dimensionality reduction upon
imputation. Panel A shows data from the label-free, single cell Petrosius study [4] where the clus-
ters of mouse-embryonic stem cells treated with and without inhibitor largely overlap, while the
treatment is expected to change the proteome considerably. In Panel B a PCA-plot is made for the
labeled single cell Leduc dataset [3] highlighting that batch e↵ects are the main source of variability.
It overwhelms the variability associated with the melanoma B subpopulation and renders the first
dimensions obsolete for clustering cell-types. Panel C shows data from the label-free, bulk CPTAC
spike-in study [16] with 48 human UPS proteins that were spiked in at five di↵erent concentrations in
a yeast background. The experimental conditions with the lowest spike-in concentrations (Condition
A and B) cannot be separated by the conventional multi-step workflow. All low dimensional visual-
izations were obtained with state-of-the-art CF-imputation [13] followed by PCA.
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More critically, the order in which batch correction and imputation are performed
also has a substantial impact on downstream analyses [17], underscoring the necessity
for approaches that perform batch correction and imputation, simultaneously. In this
context, scPROTEIN [18] represents an initial attempt to address both batch e↵ects
and missing data. However, its batch correction is limited to a single factor, lacking the
flexibility to account for multiple technical artifacts and other confounding variables.
Given the importance of adjusting for these sources of variation in LSP and SCP
experiments, more comprehensive solutions are needed to enhance the robustness and
accuracy of proteomic data analysis.

Therefore, the development of novel dimensionality reduction methods that can
simultaneously account for batch e↵ects, handle missing values, and scale e�ciently to
the increasing data volumes in LSP and SCP experiments is essential to push the field
forward. In this work, we develop a user-friendly package, omicsGMF, that leverages
the power of our novel sgdGMF framework, stochastic gradient descent for general-
ized matrix factorization [19], with the omics data infrastructure of the Bioconductor
ecosystem to develop streamlined workflows that specifically addresses the unique chal-
lenges posed by large-scale (single-cell) proteomics datasets. omicsGMF is designed
to correct for known sample- or feature-level covariates, accommodate missing val-
ues, and optimize its parameters through minibatch subsampling, partial parameter
updates, and exponential gradient averaging. These computational strategies provide
substantial e�ciency gains over traditional matrix factorization approaches that sup-
port missing data. As a result, omicsGMF e↵ectively addresses the three primary
challenges of dimensionality reduction in the LSP and SCP contexts, while preserv-
ing the interpretability of conventional PCA by maximizing a Gaussian likelihood
function.

We first demonstrate that omicsGMF provides superior dimensionality reduction
for both TMT-labeled and label-free proteomics data by benchmarking it against com-
monly used workflows that involve separate imputation, batch correction, and principal
component analysis (PCA), as well as against the single-step method scPROTEIN
[18]. Next, we illustrate how the final parameter estimates from omicsGMF can be
leveraged for imputation of missing values and evaluate its performance relative to tra-
ditional imputation methods, including k-nearest neighbors (KNN) imputation [20],
quantile regression imputation of left-censored data (QRILC) [21], zero or minimum
imputation, and more recent deep-learning-based approaches [13]. Finally, we present
a case study with known ground truth, demonstrating that imputation performed by
omicsGMF yields superior results for downstream di↵erential abundance analysis.

2 Results

omicsGMF leverages our novel sgdGMF framework [19] to develop innovative work-
flows for information extraction that tackle key challenges in proteomics data analysis.
Indeed, omicsGMF can concentrate the leading sources of variability in a limited num-
ber of dimensions, while accounting for missing values and known covariates such as
treatment and batch e↵ects (Fig. 2). Consider n samples (bulk samples or single cells)
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and J features (PSMs, peptides or proteins). The normalized intensities (Yij) of sam-
ple i (i = 1, ..., n) and feature j (j = 1, ..., J) can then be modeled in terms of known
sample- and feature-level covariate matrices X and Z, such as cell types, experimen-
tal batches and quality control measures. Further, consider the unknown sample-level
latent covariate matrix U, which accounts for unknown variation as in RUV [22], and
ZINB-WaVe [23]. These primal directions of unknown (biological) variation represent
the samples in a reduced dimensionality, and are often used for downstream analyses
such as visualization or clustering of samples. The parameters of the known sample
and feature covariates, and the unknown latent covariates are �, � and V respectively.
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Fig. 2 Schematic overview of the omicsGMF model for the Gaussian Model family. Y
is modeled in function of known sample-level covariates X, feature-level covariates Z, latent factors
U and their loadings V. omicsGMF iteratively estimates the parameters �, �, U and V. omicsGMF
addresses missing values by re-imputing them in each iteration with their current mean µt. The
latent factors have a similar interpretation as principal components upon correcting for known covari-
ates, and thus allow for dimensionality reduction and visualization. omicsGMF can also provide the
imputed values upon convergence, which are useful for downstream applications. Furthermore, omic-
sGMF allows for model selection that can guide the user for choosing the number of latent factors
and known covariates to be included in the model. More details can be found in the Methods section.

The goal of omicsGMF is to estimate all the unobserved parameters U, �, � and
V. Since both U and V are unknown, a closed-form solution is however not available.
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Therefore, omicsGMF uses iterative regression of Y to [X, �̂, Û] followed by regres-
sion of Y to [�̂,Z, V̂] to estimate all the parameters. Here, the hat notation indicates
the current estimate of the corresponding parameters. Due to the extensive number of
missing values, these linear regressions are not possible without imputing missing val-
ues. Therefore, omicsGMF iteratively imputes the missing values with the estimated
mean of the prior iteration. The advantages are threefold: First, the imputed values
account for known sample- and feature-level covariates, as well as the latent structure,
resulting in accurate imputed intensities even when dealing with significant technical
e↵ects. Second, it avoids complicated multi-step workflows, and performs imputation
and correction for technical e↵ects simultaneously. Therefore, the user does not su↵er
from di↵erent results that rely on the order in which batch correction and imputation
are conducted [17, 24]. Third it is an all-in-one workflow that maximizes a Gaus-
sian likelihood, rendering its parameter estimates, latent variables and imputed values
easily interpretable. Additionally, the latent covariates U used for dimensionality
reduction and visualization, have a similar interpretation to conventional PCA.

Another drawback of conventional algorithms is their lack of a structured way
to estimate the optimal number of latent factors, d, in the model. omicsGMF, how-
ever, provides model selection based on scree plots, information criteria such as AIC
and BIC, or cross-validation calculating the out-of-sample deviances of masked values.
This results in comprehensive model selection for the user, allowing for optimal down-
stream analyses. Moreover, omicsGMF uses minibatch subsampling, partial parameter
updates and exponential gradient averaging to obtain computational advantages over
existing methods that can deal with missing values. We refer to the Methods section
for an overview of the omicsGMF estimation and imputation processes, and an exten-
sive overview of the approach’s minibatch subsampling, partial parameter updates and
exponential gradient averaging is provided here [19].

The benchmarking of omicsGMF versus other state-of-the-art tools consists of
three parts. We first qualitatively show that omicsGMF can accurately visualize pro-
teomics data while correcting for known confounders such as batch e↵ects. We then
proceed to compare omicsGMF imputation to other imputation tools in a bench-
mark that includes missing values that are missing completely at random (MCAR) as
well as missing values due to low abundance (MNAR). We also evaluate the distribu-
tions of imputed intensities in a dataset with known spike-in concentrations of human
proteins. Finally, we compare the performance of di↵erent imputation strategies in
downstream di↵erential abundance analyses. These benchmarks show that omicsGMF
is an all-in-one tool that outperforms current complex multistep workflows for dimen-
sionality reduction and visualization of proteomics data, with superior performance in
downstream analyses while remaining fast, scalable and easy to use.

2.1 Dimensionality reduction and visualization of proteomics
data

We demonstrate that the latent factors estimated by omicsGMF can be used for the
visualization of high throughput data with a similar interpretation as PCA upon
correction of known covariates, ordered by the amount of variability they explain.
We compare the visualizations provided by omicsGMF to conventional workflows that
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first impute missing data, and subsequently use ordinary PCA on the imputed data
matrix. This is done for the label-free single-cell Petrosius dataset [4] consisting of 525
cells and 4435 peptides with 58.5% missing values, the TMT-labeled single-cell Leduc
dataset [3] consisting of 1508 cells and 6280 peptides with 61.8% missing values, and
the bulk label-free CPTAC study [16] where 48 human UPS proteins were spiked in at
five di↵erent concentrations in a yeast proteome background. In the latter experiment,
three samples for each concentration were analyzed in three di↵erent labs, resulting
in a total of 45 MS-runs. In the main text we only show the results for a multi-
step workflow with a PIMMS neural network-based collaborative filtering (CF) [13]
and K-Nearest-Neighbors (KNN) imputation followed by PCA. We refer the reader
to supplementary information for results on PIMMS denoising autoencoder (DAE)
[13], PIMMS variational autoencoder (VAE) [13], QRILC [21], and zero or minimum
imputation imputation. The Supplementary Figures also include data exploration with
NIPALS [9], which performs PCA by ignoring missing values, and therefore does not
require a prior imputation step.

Visualization upon dimensionality reduction of the Petrosius dataset (Fig. 3, Panel
A) shows that omicsGMF provides a better separation between treated and untreated
mouse stem cells. CF imputation prior to PCA does not show a good visual separation
according to treatment in the space defined by the first two PC’s. The same holds for
the other bespoke proteomics imputation methods DAE, VAE, QRILC, and zero and
minimum imputation (Supplementary Fig. 1). In fact, these are also out-competed by
basic KNN-imputation. Interestingly, the first two principal components of omicsGMF
have much lower correlation with missing values, suggesting that omicsGMF su↵ers
less from missing data artifacts (Supplementary Fig. 2 and 3).

omicsGMF can also directly account for known covariates, such as batch e↵ects,
which we illustrate for the TMT-labeled Leduc dataset (Fig. 3, Panel B; Supplemen-
tary Fig. 4). Indeed, Leduc et al. multiplexed up to 14 cells in each TMT run. Upon
correcting for the run e↵ect omicsGMF uncovers additional biological variability cor-
responding to a previously reported subpopulation of melanoma cells [3]. Imputation
of missing values followed by PCA cannot directly control for the technical run-to-run
variability, resulting in a dimensionality reduction where the first two latent variables
are mainly driven by this strong batch e↵ect. Hence, conventional PCA-based work-
flows with imputation methods require an additional step for batch removal prior or
post imputation. NIPALS, however, which conceptually does not require imputation
of missing values, also cannot account for known batch e↵ects, and therefore su↵ers
from the same caveats. When using a more complicated multi-step workflow involving
imputation, batch correction, and PCA, similar visualizations as with omicsGMF can
be obtained for CF, DAE, VAE, NIPALS and KNN, while QRILC, zero and minimum
imputation clearly display imputation artifacts in their low dimensional visualizations
(Supplementary Fig. 5).

Data exploration upon dimensionality reduction in the bulk, label-free CPTAC
spike-in study (Fig. 3, Panel C; Supplementary Fig. 6), shows that intensity profiles
from the Orbitrap at site 86, here referred to as Lab 1, deviates from those of the other
labs. Interestingly, it has been previously reported that ionization issues occurred in
Lab 1 while analyzing the samples from conditions A-C [16]. This is also clear from
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Fig. 3 Low-dimensional visualization of proteomics data. omicsGMF estimates latent factors
that have a similar interpretation as regular PCA. These can be used for a low dimensional visual-
ization of proteomics data and are compared to PCA plots after CF and KNN imputation of missing
data. Panel A shows the results for the Petrosius [4] dataset, colored by inhibitor treatment. Panel B
shows di↵erent cell-types from the Leduc [3] dataset. Here, omicsGMF directly accounts for known
batch e↵ects, resulting in a better representation of the biological signal compared to PCA after CF
and KNN-imputation. Panel C and D show CPTAC data [16] from all labs, and upon exclusion of
Lab 1, respectively (Lab 1 was known to su↵er from ionization issues). Samples are colored by the
spike-in concentration of human proteins, with A the lowest spike-in concentration, and E the high-
est spike-in concentration. Distinct marker shapes indicate the di↵erent labs.

the vast number of missing values that can be observed for this lab (Supplementary
Fig. 7), which has been partially overcome for the acquisition of samples from spike-
in condition D-E. omicsGMF has superior visualization of the data. It captures the
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spike-in concentration as most important source of variability in its first latent vari-
able, and that of the technical lab-to-lab variability in its second latent variable. Upon
removing the data from Lab 1 from the analysis, better visualizations are obtained for
all methods (Fig. 3, Panel D; Supplementary Fig. 8). However, omicsGMF is still the
only method that can distinguish between the most challenging conditions A and con-
dition B. Indeed, many missing values for the di↵erentially abundant UPS PSMs occur
in these conditions due to their low spike-in concentrations. PCA upon imputation
with the state-of-the-art tools, however, does not provide a good separation between
the lowest spike-in conditions, suggesting that the performance of the dimensionality
reduction is a↵ected by the imputation of the high proportion of missing values for
the di↵erentially abundant features.

The graph contrastive deep learning framework scPROTEIN [18], developed explic-
itly for single-cell proteomics data, failed to generate sensible embeddings for both the
Petrosius and Leduc datasets (Supplementary Fig. 9). This could be due to errors in
its initial training step, which estimates the quality of the signal of each cell. Despite
following the (rather limited) documentation, these errors could not be resolved.
Therefore, scPROTEIN is not considered in the remainder of this manuscript.

The competing workflows also do not infer or provide guidelines on the number
of latent factors for imputation nor for downstream applications, such as clustering,
UMAP and t-SNE visualizations, or for correction for unknown batch e↵ects and
confounders, amongst others. Interestingly, omicsGMF allows selection of the optimal
number of latent factors and/or the inclusion for known covariates by using cross-
validation, information criteria such as AIC and BIC or scree plots, all of which can
guide the user in di↵erent downstream applications.

Fig. 4 shows results for omicsGMF-based selection of the number of relevant latent
variables and known covariates with cross-validation. Cross-validation on the Petro-
sius study (Fig. 4, panel A) shows that the optimal number of latent variables is
five. As expected, when we incorporate the inhibitor treatment in omicsGMF, stem
cells of both treatments nicely overlap in one homogeneous cluster when visualized in
the first two latent variables (Supplementary Fig. 10). Remarkably, the optimal num-
ber of latent variables then reduces to four, which shows that the inclusion of one
additional categorical dummy variable replaces one latent variable for optimal data
representation. Note that the inhibitor treatment is also perfectly confounded with
the acquisition time, so we cannot rule out that the di↵erence we observe between
the two populations of cells in the plot without known covariates is due to technical
e↵ects (Fig. 3, panel A). Nevertheless, the application clearly shows the strengths and
relevance of omicsGMF in practice: omicsGMF captures this variability better than
the existing methods in an unsupervised analysis and can e↵ectively remove it from
the analysis for applications that aim to cluster cells upon removal of the treatment
or batch e↵ect.

For the Leduc study, around forty latent variables are needed when no known
covariates are fed to omicsGMF (Fig. 4, panel B). However, the cross-validation error
dramatically reduces when correcting for the TMT run e↵ect and omicsGMF then
only needs about additional ten latent variables. These results clearly indicate the
importance of accounting for the run-to-run variability in this study, which is di�cult
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Fig. 4 Cross-validation with omicsGMF allows for comprehensive selection of the
number of latent factors for dimensionality reduction. Each panel shows the mean of the
out-of-sample deviances over three cross-validation folds in function of the number of latent factors
included in the model. In each fold, 30% of the values are masked for out-of-sample prediction. Panel
A shows the cross-validation results for the Petrosius dataset [4] with and without accounting for
the treatment e↵ect (one dummy variable). Panel B shows the cross-validation results for the Leduc
dataset [3], with and without correcting for the known batch-e↵ect associated to multiplexing cells
in the same run (142 dummy variables). Panel C shows the cross-validation results for the CPTAC
data [16], considering all three labs. Results are shown for omicsGMF without known covariates,
accounting for the lab e↵ects (two dummy variables), and accounting for both the lab (two dummy
variables) and spike-in concentration e↵ects (four dummy variables).

to pick up with latent variables as the experiment involves many TMT runs with
relatively few single cells profiled per run.

The results for the CPTAC study are particularly insightful (Fig. 4, panel C).
Indeed, cross-validation for an omicsGMF analysis conducted without incorporation of
known covariates identifies six latent variables. However, the introduction of the “Lab”
variable in the omicsGMF model, produces a cross-validation score that is on par,
albeit with only four latent variables: a reduction which matches with the inclusion
of two categorical dummy variables representing Lab 2 and Lab 3, as Lab 1 serves as
the reference group. Upon incorporating an additional categorical variable for spike-in
condition, the optimal number of latent variables is further reduced to three. Interest-
ingly, omicsGMF that correct for the lab variable seems to capture the variability of
the spike-in condition with a single additional latent variable, although incorporating
the spike-in condition explicitly in the omicsGMF model included four additional cat-
egorical dummy variables. This suggests that omicsGMF detects the linear increase in
UPS protein levels across conditions using a single, continuous, latent variable, which
aligns with the actual experimental design. However, the cross-validation performance
that includes the spike-in concentration is clearly inferior compared to omicsGMF
models that exclude known covariates or account only for a batch e↵ect associated
with lab, probably due to more generous model with a factor for spike-in concentration
overfitting the data.
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2.2 Imputation of missing values

The final mean estimates obtained from omicsGMF can also be utilized for the imputa-
tion of missing values while accounting for latent factors, as well as for known sample-
and feature-level covariates. To evaluate imputation performance, we simulate miss-
ingness both completely at random (MCAR) and missing not at random (MNAR)
due to low abundance (see Methods). The mean absolute error (MAE) between the
imputed and original values is then assessed across ten di↵erent random seeds, con-
sidering scenarios where 25%, 50%, and 75% of the masked values are attributed to
low abundance.

On the label-free Petrosius dataset (Supplementary Fig. 11 and 12), omicsGMF
demonstrates superior imputation performance compared to PIMMS neural network-
based approaches DAE, VAE and CF, as well as to traditional methods such as
NIPALS, KNN, QRILC, and zero or minimum imputation. Notably, omicsGMF out-
performs other methods, particularly for MNAR. Despite being specifically designed
for MNAR imputation, QRILC, zero, and minimum imputation result in dramatically
higher error rates for MNAR data. For MCAR, however, methods that account for
the covariance structure of the dataset i.e., omicsGMF, DAE, VAE, CF, and NIPALS,
demonstrate comparable performance.

On the TMT-labeled Leduc dataset (Supplementary Fig. 13 and 14), omicsGMF
accounting for batch e↵ects, demonstrates an improved performance compared to all
other imputation methods. This finding suggests that when complex technical artifacts
are present, e↵ective imputation of missing values requires explicit adjustment for
these e↵ects, both for MCAR and MNAR data. Although CF, DAE, and VAE were not
designed for TMT-labeled data, they nonetheless outperform conventional imputation
methods KNN, QRILC, zero, and minimum imputation.

For the label-free CPTAC dataset, omicsGMF achieves substantially lower impu-
tation errors across the entire CPTAC study (Supplementary Fig. 15 and 16) as well
as when only considering the subset excluding data from Lab 1, which is known to suf-
fer from ionization issues (Supplementary Fig. 17 and 18). Notably, even when using
the full CPTAC dataset and calculating the imputation performance exclusively for
Lab 1, omicsGMF outperforms competing methods (Supplementary Fig. 19 and 20).
This result suggests that omicsGMF not only provides more accurate imputation, but
also e↵ectively captures the underlying structure of the data.

omicsGMF has the advantage that it allows for the selection of the optimal number
of latent factors prior to imputation. For a fair comparison we also ran DAE, VAE
and CF with the number of latent factors selected by omicsGMF (Supplementary Fig.
21). However, this did not consistently improve the performance of these methods,
indicating that those methods require their own hyperparameter optimalization.

Interestingly, the CPTAC study, with known ground truth for di↵erentially abun-
dant proteins, also allows the evaluation of the imputations for missing values in
the original dataset i.e., without masking values. Fig. 5 presents the distribution of
observed values for spike-in proteins, stratified by spike-in condition, alongside those
generated by di↵erent imputation methods. This analysis excludes data from Lab 1,
which is a↵ected by ionization issues. Notably, omicsGMF successfully captures the
concentration gradient in the missing values for UPS proteins, whereas other methods
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fail to recover this trend, particularly in the low spike-in conditions A, B, and C. Addi-
tionally, omicsGMF systematically imputes missing values lower than the observed
ones, suggesting that missingness is driven by low abundance combined with lower ion-
ization e�ciency for specific peptide species. In contrast, other methods tend to shift
imputed values toward higher intensities, sometimes exceeding those observed in con-
ditions A, B, and even C, indicating di�culties in accurately imputing MNAR data.
For non-di↵erentially abundant yeast proteins, the imputed value distributions remain
similar across conditions but are consistently lower than their observed counterparts
(Supplementary Fig. 22). Interestingly, in condition E, the omicsGMF imputations are
further shifted downward, mirroring a trend also seen in the observed yeast protein
intensities. This is likely due to increased ionization competition caused by peptide
overspiking in this condition, which omicsGMF seems to pick up on.

When including the Orbitrap data from Lab 1, which su↵ers from ionization issues,
the omicsGMF imputation distributions for missing UPS peptides remains consistent
for Labs 2 and 3, but deviates for Lab 1 (Supplementary Fig. 23). Specifically, omic-
sGMF imputes higher intensities in conditions A, B, and C, while imputations for
conditions D and E are lower, reflecting the adjustments made to correct the ioniza-
tion issue in Lab 1. However, the relative di↵erences between conditions A, B, and C,
and those between D and E remain preserved. Again, omicsGMF appears to better
account for ion competition e↵ects in yeast PSMs at higher UPS spike-in conditions.
Hence, both the results for masked values in the simulation study and the results for
actual missing values in the original CPTAC data indicate that omicsGMF better
captures the real structure in the data than its competitors.
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Fig. 5 omicsGMF imputation accounts for missingness due to low abundance. Distri-
butions of peptide intensities from human spike-in proteins are shown in function of the spike-in
condition for the CPTAC data excluding Lab 1 that su↵ered from ionization issues. The first panel
shows the distribution of observed values, and the other panels show the distributions of imputed
intensities by omicsGMF, DAE, VAE, CF and KNN imputation respectively.
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2.3 Di↵erential analysis

The CPTAC experiment provides a ground truth for di↵erential abundance (DA) anal-
ysis, where 48 human UPS DA proteins are spiked at di↵erent concentrations alongside
1,477 non-DA yeast proteins. DA was inferred using msqrob2 [25, 26], incorporating a
main e↵ect for treatment and a block e↵ect for lab, both on the original non-imputed
data and on data processed with di↵erent imputation methods.

We first focus on the analysis using data from Labs 2 and 3. Fig. 6, panel A shows
that only the workflows using non-imputed data and omicsGMF-imputed data pro-
vide reliable inference between the two lowest spike-in conditions, A and B. Other
imputation methods generate numerous false positives in their top-ranked results.
This outcome aligns with previous observations in Fig. 5, where most methods impute
similar values for missing UPS peptides across these conditions. For comparisons
between B vs. C and A vs. C, CF’s performance improves considerably, but still falls
short of omicsGMF. Meanwhile, other state-of-the-art imputation methods continue
to struggle with reliable DA inference. As the comparisons shift to higher spike-in
concentrations, the performance of all methods improves, but omicsGMF consistently
outperforms the existing methods (Supplementary Fig. 24).
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Fig. 6 omicsGMF imputation leads to better downstream di↵erential abundance analy-
sis. Performance evaluation of di↵erential abundance analyses using msqrob2 [25, 26] on the CPTAC
dataset [16]. Results for the comparisons between the lowest spike-in concentrations B versus A, C
versus A and C versus B are shown. Data from Lab 1 are excluded due to ionization issues. Human
UPS proteins are di↵erentially spiked between the conditions, with yeast background proteins as true
negative control. Panel A shows the true positive rate (TPR) in function of the false discovery pro-
portion (FDP). The dots on each curve represent working points when the FDR level is set at the
nominal 5% level. Panel B shows the estimated log2 fold changes (FC) by msqrob2 for both human
spike-in proteins, and for reference yeast proteins. The grey line indicates the known log2 FC.
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Fig. 6, Panel B, and Supplementary Fig. 25 show that all imputation methods
result in an underestimation of the fold change for spike-in UPS proteins. However,
omicsGMF is the only approach that produces fold change estimates reasonably close
to the ground truth, confirming that other methods struggle to correctly impute miss-
ing values due to low abundance. Interestingly, the bias in fold change estimates for
spike-in UPS proteins disappears when only the observed PSM intensities are used in
the msqrob2 analysis. However, this comes at the cost of reduced sensitivity as seen in
Panel A of Fig. 6, because fewer data points are available for many spike-in proteins
due to missingness.

When incorporating data from Lab 1, which experienced ionization issues, omics-
GMF still outperforms other methods for the B versus A and C versus A comparisons
(Supplementary Fig. 26). However, its performance deteriorates for comparisons
involving spike-in conditions D and E. This drop is due to omicsGMF accounting for
the ionization issues in Lab 1 samples from conditions A-C, leading to a upward shift
in the imputed missing values as compared to those from conditions D and E in Lab
1. Despite this shift, however, the imputation preserved the relative di↵erences among
conditions A-C and D-E. Interestingly, even in comparisons involving conditions D-
E, omicsGMF’s fold change estimates remain significantly less biased than those of
competing methods (Supplementary Fig. 27).

When reanalyzing the complete CPTAC data with an additional dummy variable
for conditions D-E of Lab 1 in the msqrob2 analysis, thus accounting for the ioniza-
tion issues flagged during QC, omicsGMF once again emerged as the top performer
(Supplementary Fig. 28). Note that the results for other imputation methods also
improved. Interestingly, this adjustment reduced the bias in fold change estimates for
all comparisons involving conditions D and E (Supplementary Fig. 29). This highlights
the importance of properly accounting for technical artifacts in the downstream DA
analysis. It also underscores the critical role of thorough quality control before pro-
ceeding with analysis, for which low-dimensional visualization with omicsGMF proved
particularly insightful, as it was the only method that clearly captured all leading
sources of variability, namely: the spike-in condition, the lab e↵ect, and the impact of
poor ionization.

We repeated this benchmark using another dataset, in which an E. coli pro-
teome was mixed at varying concentrations within a constant human background [27].
Consistent with our previous findings, the performance of DA following omicsGMF
imputation surpasses that of other imputation strategies, particularly at low spike-in
concentrations (Supplementary Fig. 30, 31). Furthermore, the imputed values gener-
ated by omicsGMF again exhibit a closer alignment with the trends across conditions
for quantified yeast and human PSMs than those imputed with the existing methods
(Supplementary Fig. 32). These results rea�rm that omicsGMF imputation leads to
more powerful downstream DA analyses than existing imputation strategies.

3 Discussion

omicsGMF is a scalable, flexible, and generic tool that streamlines and enhances data
processing and dimensionality reduction for bulk and single-cell proteomics. It retrieves
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unknown sources of variation while simultaneously addressing the massive proportion
of missing values and the strong batch e↵ects, which are characteristic of large-scale
MS experiments. omicsGMF shows several advantages over its current state-of-the-art
competitors.

First, omicsGMF improves the quality of dimensionality reduction. For instance,
for the Petrosius data set [4], omicsGMF returns a homogeneous cluster of stem cells
after correcting for the e↵ect of treatment. We also showed that correcting for the run
e↵ect for multiplexed cells was key to uncover a previously reported subpopulation
of melanoma cells in the TMT-labeled SCP data from [3]. Moreover, ignoring known
sources of variation to retrieve them as latent variables is a useful feature for data
exploration and QC. For instance, on the CPTAC data, we convincingly showed that
omicsGMF best captured the di↵erent sources of variability in the experiment, while
flagging outlying samples su↵ering from ionization issues.

Second, correctly specifying the number of reduced dimensions has an important
impact on the quality of the dimensionality reduction and imputation, and hence on
the downstream analysis steps, such as UMAP and t-SNE visualization, cell cluster-
ing, trajectory inference, di↵erential abundance analysis, among others. omicsGMF
o↵ers an automated model selection approach to determine the optimal number of
latent variables, in contrast to state-of-the-art workflows that rely on the user-defined
parameters without providing clear guidelines.

Third, omicsGMF provides sensible and accurate imputation and consistently
ranks as a top performer across di↵erent datasets, for both MCAR and MNAR. The
improved imputation performance systematically resulted in a more sensitive di↵eren-
tial abundance analysis. Moreover, we found that omicsGMF is the only method that
imputes values in line with the expected concentration for spike-in proteins, following
a similar trend to the observed intensities for those proteins.

Fourth, omicsGMF relies on matrix factorization with interpretable model param-
eters. In contrast to neural networks which optimize weights that bear no meaning
regarding the experimental context, the parameters estimated by omicsGMF are
directly associated with experimental attributes (Fig. 2). This interpretation feature
does not come at the expense of performance since omicsGMF outmatches the PIMMS
deep-learning framework, both on small and large-scale datasets. These findings pro-
vide compelling evidence that Gaussian linear models are relevant for proteomics data
analysis. A similar observation was reported by [28], who compared simple linear mod-
els to deep-learning frameworks specifically designed for predicting gene perturbations
in the context of single-cell RNA sequencing.

Fifth, omicsGMF o↵ers a framework for dimensionality reduction that simultane-
ously tackles the challenges of batch e↵ects and missing values. Up to now, these tasks
were performed in multi-step workflows, but designing multi-step workflows is cum-
bersome. It requires expert knowledge about the di↵erent methods available for each
step and requires the optimization of the sequence of steps and their parameters [15].
The optimization is di�cult and time-consuming to validate objectively, refraining
the experimental researcher to confidently explore their data. Moreover, each dataset
is unique in terms of technical and biological e↵ects, amount of missing values, type

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2025. ; https://doi.org/10.1101/2025.03.24.644996doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.24.644996
http://creativecommons.org/licenses/by-nc-nd/4.0/


of missingness, hence requiring multi-step workflows to be re-optimized, a costly pro-
cedure which is often neglected. Finally, multi-step workflows attempt to solve data
challenges that are intertwined since missingness is influenced by batch e↵ects [5], so
there is no guarantee such workflows can lead to optimal and reliable results. In con-
trast, omicsGMF provides an extremely valuable alternative that integrates all steps in
a single model, for which the parameters are simultaneously estimated. This improves
performance, robustness across datasets, and overall user experience.

Finally, omicsGMF is available as an open source R-package, provid-
ing a user-friendly interface and vignettes for omics applications through
https://github.com/statOmics/omicsGMF, which will soon be available on Biocon-
ductor. In conclusion, omicsGMF o↵ers an o↵-the-shelf solution that empowers
researchers with the ability to thoroughly explore and process small- and large-scale
(single-cell) proteomics data, alleviating the need to invest time and e↵ort in data
analysis technicalities.

4 Methods

4.1 omicsGMF Gaussian matrix factorization model

Let Yij be the intensity of peptide j (j = 1...J) in sample i (i = 1...n), which we
model as a random variable following a Gaussian distribution with mean µij :

µij = (X�> + �Z
> +UV

>)ij = x
>
i:�:j + �>

i: z:j + u
>
i:v:j

with X a n ⇥ p matrix with known sample-level covariates such as batch or cell
type or spike-in concentration, and � a matrix with its corresponding J ⇥p regression
parameters, Z a J ⇥ q matrix with known feature specific covariates, and � a matrix
with its corresponding n⇥q regression parameters. BothX and Z can contain a column
of ones, corresponding to a gene-specific and sample-specific intercept respectively.
The n⇥d latent covariate matrix U and its J⇥d loading matrix V explain the residual
variation that are not captured by the known covariates.

Because U and V are both unknown, these are estimated using an iterative pro-
cess, i.e. with a block-wise stochastic gradient descent quasi-Newton method. In this
manuscript, the core ideas of initialization and iterative estimation of the parameters
are explained with a special focus on the huge missingness, which is characteristic for
large-scale proteomics (LSP) and single cell proteomics (SCP) data. For further details
upon block-wise parameter estimation, the adapting learning rate, and the smoothing
of gradient and Hessian matrices, we refer the reader to our technical manuscript on
the sgdGMF framework [19].

4.1.1 Initialization of the parameters

Because parameter estimation cannot be done when the input matrix contains missing
values, omicsGMF uses soft-imputation for the initialization and optimization of the
parameters. This soft-imputation avoids using fixed values for the missing values, by
updating their estimates in each iteration.

We adopt the notation of [29] and [30] and define a n⇥ J matrix P⌦(Y),
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P⌦(Yij) =

(
Yij if (i, j) 2 ⌦

0 if (i, j) /2 ⌦
(1)

which is the projection of the n ⇥ J intensity matrix Y on the observed entries.
The complementary projection P?

⌦ (Y) is defined via P⌦(Y) + P?
⌦ (Y) = Y.

Let S be the n ⇥ J matrix with the values used for imputation. We initialize all
entries of S as the feature mean of the observed entries, S0,j = mean(P⌦(Yj)). Then,
we initialize the n⇥ J imputed intensity matrix Ȳ as

Ȳ0 = P⌦(Y) + P?
⌦ (S0). (2)

Using this imputed intensity matrix, the parameters related to the known sample-
and feature-level covariates can be initialized. This can be achieved by maximum
likelihood estimation or by minimizing the residual sum of squared errors:

�̂0 = argmin�

nX

i=1

JX

j=1

(Ȳij � (X�>)ij)
2 (3)

�̂0 = argmin�

nX

i=1

JX

j=1

(Ȳij � (X�̂
>
0 � �Z

>)ij)
2 (4)

Then, we can initialize the latent covariate matrix U and its loadings V by
performing a principal component analysis on the n⇥ J working residuals matrix E:

E = Ȳ0 �X�̂
>
0 � �̂0Z

> (5)
This gives an initial estimate of all the parameters �,Z,U and V from which

omicsGMF proceeds with optimization of these parameters.

4.1.2 Optimization of the parameters

The optimization process consist of three consecutive steps. We consider iteration t,
and iterate till convergence:

1. The imputed values are updated based on the current mean intensity estimates:

St = µ̂t�1 = (X�̂
>
t�1 + �̂t�1Z

> + Ût�1V̂
>
t�1)

Ȳt = P⌦(Y) + P?
⌦ (St)

(6)

2. Update of � and V by minimizing the residual sum of squared errors:

�̂t, V̂t = argmin�,V

nX

i=1

JX

j=1

((Ȳt �X�> � �̂t�1Z
> � Ût�1V

>)ij)
2 (7)

3. Update of � and U by minimizing the residual sum of squared errors:

�̂t, Ût = argmin�,U

nX

i=1

JX

j=1

((Ȳt �X�̂
>
t � �Z

> �UV̂
>
t )ij)

2 (8)
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Upon convergence, the eigenvalues ofUV
> are then stored inU, such thatV>

V =
Id⇥d and that the eigenvalues of U are ordered in descending order, just as with
conventional PCA. Then, U can easily be used for visualization as they are having
the same interpretation as the scores in PCA. For imputation purposes, the estimated
means after convergence, µ̂t, can be used.

Note that in steps 2 and 3, omicsGMF does not compute the optimal values of the
parameters. Rather, it uses a stochastic gradient descent with minibatch subsampling
for computational e�ciency, and only a few samples and features are considered in each
update of the parameters. Therefore, updating the parameters to the optimal values
for that part of the data might not represent the optimal solution for the complete
matrix. To tackle this, omicsGMF uses partial parameter updates and exponential
gradient averaging. For more details, we refer the reader to the technical manuscript
on the sgdGMF framework [19].

4.1.3 Cross-validation to determine the number of latent covariates

To use omicsGMF, the number of latent variables included in the model, d, has to be
selected. omicsGMF has the option to select these using the eigenvalues in a scree-
plot, information criteria such as AIC or BIC or by using cross-validation. In this
manuscript, we consider 3-fold cross-validation to select d. During cross-validation, a
subset of the observed data is masked as missing. Then, for various numbers of latent
factors, omicsGMF imputes these values after convergence and calculates the residual
sum of squared errors between the imputed and original values for the masked entries.
The number of latent variables that minimizes the sum of squared errors is then
considered the optimal number of latent variables and is used for the final fit without
masking any observed values. The cross-validation results on the di↵erent datasets are
available in Fig. 4.

4.2 Benchmarking of imputation methods

To benchmark the di↵erent imputation methods, we consider the approach introduced
by [11] which simulates both missingness completely at random (MCAR) and miss-
ingness due to low abundance or missingness not at random (MNAR). In summary
they consider:

↵ =
100⇥ (#MCAR+#MNAR)

nJ

� =
#MNAR

#MNAR+#MCAR

(9)

where ↵ represents the percentage of observed values turned into missing values,
and is here fixed at 10%. � is the ratio of MNAR to the total missingness introduced
in the dataset. This value is set at 25%, 50% and 75%, to benchmark methods across
a broad range of MNAR levels. This means that respectively 75%, 50% and 25%
of the missingness are MCAR. MNAR are based on a stochastic threshold. Assume
a threshold matrix W from a Gaussian distribution parameterized by µW = c and
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�W = 0.01, where c is the ↵th quantile of the observed intensities. When the observed
intensity for sample i and feature j is below its threshold Wij , its value is censored by
a Bernouilli draw with probably of censoring equal to �↵

100 . For more details, we refer
to [11].

We conducted 10 simulations, each introducing di↵erent missing values for each
MNAR percentage. For each simulation, the mean average error between the imputed
and observed values were computed, for each entry that was masked during the
simulation.

4.3 State-of-the art tools for imputation in proteomics

We conduct an extensive comparison with following bespoke methods from the
proteomics literature for dimensionality reduction and imputation:

scPROTEIN [18] is a deep graph contrastive learning framework that searches for
embeddings to visualize single-cell proteomics data. It consists of two stages. The first
stage estimates the uncertainty of the peptide signals. However, this step led to errors
on all datasets, and could therefore not be used in our contribution. The second stage
is contrastive learning to search the embedding of the samples. This tool can only be
used for dimensionality reduction, and not for imputation.

PIMMS DAE [13] is a denoising autoencoder that trains a deep neural network
by masking values and attempting to reconstruct them. It is used to impute missing
values and requires hyperparameters for the dimensionality of the latent space and
the number of hidden layers. For the latter we used the default value of 512 hidden
layers, while the dimensionality of the latent space was either set at the default value
of 50 or at the value suggested by the cross-validation of omicsGMF.

PIMMS VAE [13] is a variational autoencoder similar to the denoising autoencoder
but with a stochastic latent space optimized to follow a standard normal distribution.
It is also used for imputation of missing values. The deep neural network is again
trained by masking values and trying to reconstruct them. We again used the default
value of 512 hidden layers, and have set the dimensionality of the latent space to either
the default of 50 or at the one suggested upon cross-validation with omicsGMF.

PIMMS CF [13] is a collaborative filtering deep learning approach where both
features and samples have trainable latent embedding spaces. The hyperparameter is
the latent space of the separate sample and feature embeddings, and was either set to
its default value of 30 or to the one suggested upon cross-validation with omicsGMF.

KNN (K-nearest neighbours) [20] searches for k features (peptides or proteins)
that are most similar to the one with missing values, using Euclidean distances. Each
missing value is imputed by averaging the intensities of these features in its corre-
sponding sample. Here, k is set to 10. We used NAguideR [31] as a wrapper for the
impute package.

NIPALS (non-linear estimation by iterative partial least squares) [9] performs PCA
by ignoring missing values when calculating the inner products. It does not require
imputation to compute the matrix factorization. The dimensionality used corresponds
to the one suggested upon cross-validation with omicsGMF. Further, NIPALS can
also be used for imputation, by multiplying the scores and loadings of its matrix
factorization. NIPALS cannot correct for known covariates.
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QRILC [21] imputes missing values by drawing values from a truncated normal
distribution estimated by quantile regression. This method was mainly developed to
impute missing values based on missing due to low abundance. NAguideR [31] was
used as a wrapper for the imputeLCMD package.

Finally, zero imputation and minimum imputation simply impute every miss-
ing values with 0 or the minimum value observed in the data, respectively, and are
implemented in NAguideR [31].

Methods that can only impute data were followed by classical PCA to evaluate the
dimensionality reduction upon imputation.

4.4 Data

This manuscript builds its results from two single cell and two bulk proteomics datasets
that were acquired with either TMT-labeling or label-free quantification.

First, the Petrosius dataset [4] originates from a label-free SCP experiment on
mouse embryonic stem cells incubated in two distinct conditions i.e., a serum-free 2i
condition (m2i) containing cytokine LIF with inhibitors for the MEK and GSK3 path-
ways, and a serum condition (m15) containing cytokine LIF, only. Data were acquired
using an orbitrap Eclipse Tribrid mass spectrometer operated in data independent
acquisition mode. The MS data were analyzed by the authors using Spectronaut v17
[32]. We performed quality control by removing cells with fewer than 750 detected
peptides or a median log2-intensity lower than log2(7). Features with more than 90%
missing values were also removed. The detected intensities were log2-transformed for
variance-stabilization, and the intensities of each cell were centered with the median
log2-intensity of the corresponding cell. The resulting dataset contains 525 cells with
4435 detected peptides, of which 58.5% of the values are missing.

Second, the Leduc dataset [3] was acquired using pSCoPE technology, which relies
on TMT labeling and a prioritized data dependent acquisition strategy carried out
by a Thermo Scientific Q-Exactive mass spectrometer. The MS data were quantified
and identified using MaxQuant version 1.6.17 [33]. We performed quality control by
filtering cells with fewer than 750 detected peptides or a median coe�cient of varia-
tion greater than 0.5, calculated using the medianCV perCell function of the scp [15]
package. Peptides with more than 90% missing values were removed, resulting in a
dataset with 6280 peptides for 1508 cells and a total of 61.8% missingness. The inten-
sities were log2-transformed for variance-stabilization, and the log2-intensities of each
cell are centered using the median log2-intensity of the corresponding cell.

Third, data from an interlaboratory bulk label-free proteomics spike-in study of
the CPTAC consortium was used [16]. Forty-eight human proteins were spiked in
a background of yeast proteins at 5 di↵erent concentrations (A = 0.25fmol/µl,
B = 0.76fmol/µl, C = 2.2fmol/µl, D = 6.7fmol/µl and E = 20fmol/µl) and
three samples of each concentration were sent to three di↵erent labs resulting in data
from forty-five di↵erent MS-runs. Hence, the ground truth on di↵erential abundance
is known, which is useful to assess the imputation of missing values for di↵erential
(UPS) and non-di↵erential proteins (Yeast), and how the di↵erent imputation meth-
ods a↵ects the downstream di↵erential abundance analyses. The data were searched
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and quantified according to [25]. Again, peptides with more than 90% missing val-
ues were removed, resulting in a total of 10105 peptides remaining from 1477 yeast
proteins and 44 human proteins and 42.5% missing values.

Finally, we used Shen dataset [27], another bulk proteomics label-free benchmark-
ing e↵ort consisting of E. coli proteins mixed in five di↵erent weight ratio’s in a
background of the human reference proteome (in wt/wt percentage: a = 3%, b = 4.5%,
c = 6%, d = 7.5 % and e = 9%). After normalization and filtering peptides with more
than 90% missing values, the dataset consists of 28944 peptides from 756 E. coli pro-
teins and 3954 human proteins with 18.8% of the values missing. The data originates
from twenty MS-runs acquiring four samples from each spike-in condition.

5 Data availability

All data used in this manuscript are publicly available. The Petrosius [4] and Leduc
[3] datasets were downloaded using the scpdata [5, 15] package from Bioconductor.
The unfiltered intensities of the CPTAC [16] and Shen data [27] are available through
https://github.com/statOmics/GMFProteomicsPaper.

6 Code availability

All code used to prepare and analyze the datasets, and pro-
duce the figures of this manuscript are available through
https://github.com/statOmics/GMFProteomicsPaper.

Finally, omicsGMF is published as an open source R-package through
github.com/statOmics/omicsGMF, which will be available soon on Bioconductor. It
builds on the sgdGMF framework, which is available through CRAN, https://cran.r-
project.org/web/packages/sgdGMF/index.html.

Supplementary information. Supplementary Information contains Supplemen-
tary Figures 1-32.
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