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Let H be a Hilbert space, continuously embedded in S ′(Rd), and which contains 
at least one non-zero element in S ′(Rd). If there is a constant C0 > 0 such that

‖ei〈 · ,ξ〉f( · − x)‖H ≤ C0‖f‖H, f ∈ H, x, ξ ∈ Rd,

then we prove that H = L2(Rd), with equivalent norms.
© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

0. Introduction

In [18] it is proved that a suitable non-trivial Hilbert space H ⊆ S ′(Rd), which is norm preserved under 
translations

f �→ f( · − x)

and modulations

f �→ ei〈 · ,ξ〉f 

is equal to L2(Rd). (See [11] or Section 1 for notations.) It is here also proved that the norms between H
and L2(Rd) only differ by a multiplicative constant, i.e. for some constant C > 0 one has

‖f‖H = C‖f‖L2(Rd), f ∈ H = L2(Rd). (0.1)
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This property is analogous to Feichtinger’s minimization property, which shows that the Feichtinger algebra 
S0(Rd), which is the same as the modulation space M1,1(Rd), is the smallest non-trivial Banach space of 
tempered distributions which is norm invariant under translations and modulations. (See e.g. [8] for general 
facts about modulation spaces.)

The condition on non-triviality in [18] is simply that H should contain at least one non-trivial element 
in M1,1(Rd). Hence the main result in [18] can be formulated as follows.

Theorem 0.1. Let H be a Hilbert space which is continuously embedded in S ′(Rd), and norm preserved 
under translations and modulations. If H contains a non-zero element in M1,1(Rd), then H = L2(Rd), and 
(0.1) holds for some constant C > 0 which is independent of f ∈ H = L2(Rd).

An alternative approach, using the Bargmann transform, to reach similar properties is given by Bais, 
Pinlodi, and Venku Naidu in [2]. In fact, by using their result [2, Theorem 3.1] in combination with some 
well-known arguments in the distribution theory, one obtains the following improvement of Theorem 0.1.

Theorem 0.2. Let H be a Hilbert space which is continuously embedded in S ′(Rd), and norm preserved under 
translations and modulations. If H is non-trivial, then H = L2(Rd), and (0.1) holds for some constant C > 0
which is independent of f ∈ H = L2(Rd).

We observe that the condition

|〈f, φ〉| ≤ C‖f‖H, f ∈ H, φ(x) = e−
1
2 |x|

2
, (0.2)

for some constant C > 0 in the hypothesis in [2, Theorem 3.1] is absent in Theorem 0.2. Hence Theorem 0.2
is slightly more general than [2, Theorem 3.1]. The notation 〈 · , · 〉 in (0.2) stands for the dual pairing 
between a distribution and a test function.

Here we remark that we may relax the hypothesis in Theorem 0.2 by assuming that H is continuously 
embedded in the space D ′(Rd) instead of the smaller space S ′(Rd). In fact, let B be a translation invariant 
Banach space which is continuously embedded in D ′(Rd) and satisfies

‖f( · − x)‖B ≤ C‖f‖B,

for some constant C ≥ 1 which is independent of f ∈ B and x ∈ Rd. Then it follows by some standard 
arguments that B is continuously embedded in S ′(Rd) (see e.g. [18, Proposition 1.5]).

In the paper we investigate properties on weaker forms of translation and modulation invariant Hilbert 
spaces compared to [2,18]. More precisely we show that except for the norm identity (0.1), Theorem 0.2 still 
holds true after the condition that H is norm preserved under translations and modulations, is relaxed into 
the weaker condition

‖f( · − x)ei〈 · ,ξ〉‖H ≤ C0‖f‖H, f ∈ H, x, ξ ∈ Rd. (0.3)

In our extension, the identity (0.1) should be replaced by the norm equivalence

C−1
0 C‖f‖L2(Rd) ≤ ‖f‖H ≤ C0C‖f‖L2(Rd), f ∈ H = L2(Rd). (0.4)

More precisely our extension of Theorem 0.2 is the following.

Theorem 0.3. Let H be a Hilbert space which is continuously embedded in S ′(Rd), and such that (0.3) holds 
true for some constant C0 ≥ 1 which is independent of f ∈ H and x, ξ ∈ Rd. If H is non-trivial, then 
H = L2(Rd), and (0.4) holds for some constant C > 0 which is independent of f ∈ H = L2(Rd).
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The key step for the proof of Theorem 0.3 is to find an equivalent Hilbert norm to ‖ · ‖H, which is norm 
preserved under translations and modulations. The result then follows from Theorem 0.2. As a first idea 
one may try to use the equivalent norm

‖f‖B ≡ sup 
x,ξ∈Rd

(
‖f( · − x)ei〈 · ,ξ〉‖H

)
.

A straight-forward control shows that this norm is invariant under translations and modulations. On the 
other hand, it seems ‖f‖B might fail to be a Hilbert norm, and thereby not being suitable for applying 
Theorem 0.2.

In our approach to find the sought Hilbert norm, we use some ideas in the construction of ‖ · ‖B above, 
but replace the supremum with mean-values of the form

‖f‖2
[R] ≡ (2R)−2d

¨

[−R,R]2d

‖f( · − x)ei〈 · ,ξ〉‖2
H dxdξ,

when R > 0. It follows that each ‖ · ‖[R] is a Hilbert norm which is uniformly equivalent to ‖ · ‖H. On 
the other hand, none of ‖ · ‖[R] need to be translation nor modulation invariant. However, by increasing R, 
it follows that ‖ · ‖[R] becomes, in some sense, closer to being translation and modulation invariant. From 
suitable limit process, letting R tending to infinity, we are able to extract a sought equivalent Hilbert norm 
which is norm preserved under translations and modulations. (See Lemma 1.3.)

In Section 3 we also present some improvements of this result, where it is assumed that H in Theorem 0.3
is embedded in suitable larger (ultra-)distribution spaces which contain S ′(Rd) (see Theorem 3.1). These 
investigations are based on some general properties of translation and modulation invariant Banach spaces 
(see Proposition 3.3).

The proofs of Theorem 0.3 and its extensions, are, among others, based on the fact that the involved 
Hilbert spaces are separable. In Section 2 we verify such facts, by using the Bargmann transform to transfer 
the questions to Hilbert spaces of entire functions. In the end we conclude that any Hilbert space which 
is continuously embedded in S ′(Rd) (or in some even larger distribution spaces), must be separable. (See 
Propositions 1.2 and 2.2.)
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1. Proof of the main result

In this section we prove our main result Theorem 0.3. First we show how the condition (0.2) in [2, 
Theorem 3.1] can be removed, which leads to Theorem 0.2. Then we prove a lemma, which in combination 
with Theorem 0.2, essentially leads to Theorem 0.3.

First we have the following lemma.

Lemma 1.1. Suppose that H is continuously embedded in S ′(Rd). Then there is a constant C > 0 such that 
(0.2) holds.
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Lemma 1.1 follows by a straight-forward continuity argument. (See e.g. the arguments in [14, p. 35].) In 
order to assist the reader we present a proof in Section 2 for a more general result (see Lemma 2.1 and its 
proof).

Proof of Theorem 0.2. The result follows by combining [2, Theorem 3.1] with Lemma 1.1. The details are 
left for the reader. �

The proof of Theorem 0.3 is based on the fact that the involved Hilbert spaces are separable. This fact 
is guaranteed by the following proposition.

Proposition 1.2. Suppose that the Hilbert space H is continuously embedded in S ′(Rd). Then H is separable.

We observe that neither translation nor modulation invariant hypotheses are imposed on the Hilbert 
spaces in Proposition 1.2.

It is expected that Proposition 1.2 is available in the literature. For completeness we give a proof of a 
generalized result in Section 2 (see Proposition 2.2 and its proof).

Lemma 1.3. Suppose that H satisfies the hypothesis in Theorem 0.3. Then there is a norm ‖ · ‖ on H with 
the following properties:

(1) ‖ · ‖ is equivalent to ‖ · ‖H;
(2) ‖ · ‖ is a Hilbert norm;
(3) ‖ei〈 · ,ξ〉f( · − x)‖ = ‖f‖ for every f ∈ H and x, ξ ∈ Rd.

Proof. Let QR = [−R,R]2d be the cube in R2d with center at the origin and side length 2R, R ≥ 1. Then 
the volume of QR is given by |QR| = (2R)2d. We define the norm ‖ · ‖[R] by the formula

‖f‖2
[R] = 1 

|QR|

¨

QR

‖ei〈 · ,ξ〉f( · − x)‖2
H dxdξ, f ∈ H.

By the definition it follows that ‖ · ‖[R] is equivalent to ‖ · ‖H, and (0.3) gives

C−1
0 ‖f‖H ≤ ‖f‖[R] ≤ C0‖f‖H, f ∈ H. (1.1)

Furthermore, ‖ · ‖[R] is a norm which arises from the scalar product

(f, g)[R] = 1 
|QR|

¨

QR

(ei〈 · ,ξ〉f( · − x), ei〈 · ,ξ〉g( · − x))H dxdξ, f, g ∈ H.

Now let �0 be a dense countable subset of H containing 0, and let � be the smallest set which contains 
�0, and is closed under multiplications by ±i, additions and subtractions. Then � is countable. Note that 
�0 and � exist, because H is separable, due to Proposition 1.2. Let � = {fj}∞j=1 be a counting of �. Since

C−1
0 ‖f1‖H ≤ ‖f1‖[m] ≤ C0‖f1‖H,

for every m ∈ N, there is a subsequence {mk}∞k=1 of N such that

‖f1‖ ≡ lim 
k→∞

‖f1‖[mk]
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exists. By Cantor’s diagonalization principle, there is a subsequence {nk}∞k=1 of {mk}∞k=1 such that

‖fj‖ ≡ lim 
k→∞

‖fj‖[nk]

exists for every fj ∈ �, and by (1.1) we get

C−1
0 ‖f‖H ≤ ‖f‖ ≤ C0‖f‖H, (1.2)

when f ∈ �.
Next suppose that f ∈ H is arbitrary, and let {f0,j}∞j=1 ⊆ �0, be chosen such that

lim 
j→∞

‖f − f0,j‖H = 0.

Then

‖f0,j − f0,k‖ ≤ C0‖f0,j − f0,k‖H → 0, as j, k → ∞.

Since |‖f0,j‖ − ‖f0,k‖| ≤ ‖f0,j − f0,k‖, it follows that {‖f0,j‖}∞j=1 is a Cauchy sequence in R. Hence

‖f‖ ≡ lim 
j→∞

‖f0,j‖

exists and is independent of the chosen particular sequence {f0,j}∞j=1. Since (1.2) holds for any f0,j ∈ �, it 
follows from the recent estimates and limit properties that (1.2) extends to any f ∈ H. This gives (1).

For f, g ∈ H, their scalar product (f, g)[nk] can be evaluated by

(f, g)[nk] = 1
4

(
‖f + g‖2

[nk] − ‖f − g‖2
[nk] + i‖f + ig‖2

[nk] − i‖f − ig‖2
[nk].

)
By letting k tends to ∞, it follows that ‖ · ‖ is a Hilbert norm with scalar product

(f, g) ≡ 1
4
(
‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2) ,

giving that ‖ · ‖ fulfills (2).
It remains to prove that (3) holds. By repetition it suffices to prove

‖ei〈 · ,ξ〉f( · − x)‖ = ‖f‖ (1.3)

when x = 0 and ξ = ξjej or when ξ = 0 and x = xjej for some xj , ξj ∈ R. Here ej denotes the vector 
of order j in the standard basis of Rd. Then we only prove (1.3) for ξ = 0 and x = xjej . The other cases 
follow by similar arguments and are left for the reader.

Let R be chosen such that R > |xj |. Then QR and −xjej + QR intersect. We have

‖f( · − xjej)‖2
[R] = 1 

|QR|

¨

QR

‖ei〈 · ,η〉f( · − (xjej + y))‖2
H dydη

= 1 
|QR|

¨

−xjej+QR

‖ei〈 · ,η〉f( · − y)‖2
H dydη

= 1 
|QR|

¨

QR

‖ei〈 · ,η〉f( · − y)‖2
H dydη + ER(f),
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where

ER(f) = 1 
|QR|

¨

−xjej+QR

‖ei〈 · ,η〉f( · − y)‖2
H dydη − 1 

|QR|

¨

QR

‖ei〈 · ,η〉f( · − y)‖2
H dydη.

This gives

‖f( · − xjej)‖2
[R] = ‖f‖2

[R] + ER(f). (1.4)

If

ΔR =
(
(−xjej + QR) \QR

)⋃(
QR \ (−xjej + QR)

)
,

then it follows that |ΔR| = 2|xj |(2R)2d−1 and that

|ER(f)| ≤ 1 
|QR|

¨

ΔR

‖ei〈 · ,η〉f( · − y)‖2
H dydη.

This gives

|ER(f)| ≤ 1 
|QR|

¨

ΔR

‖ei〈 · ,η〉f( · − y)‖2
H dydη

≤ C0

|QR|

¨

ΔR

‖f‖2
H dydη

= C0|ΔR|‖f‖2
H

|QR| 
= C0|xj |‖f‖2

H
R

,

which tends to zero as R turns to infinity.
By letting R = nk in the previous analysis, (1.4) gives

‖f( · − xjej)‖ = lim 
k→∞

‖f( · − xjej)‖2
[nk]

= lim 
k→∞

⎛
⎜⎝ 1 
|Qnk

|

¨

Qnk

‖ei〈 · ,η〉f( · − y)‖2
H dydη + Enk

(f)

⎞
⎟⎠

= ‖f‖ + 0,

which gives (3) and thereby the result. �
Proof of Theorem 0.3. By Lemma 1.3, we may replace the norm for H by an equivalent norm which is 
invariant under translations and modulations. The result now follows from Theorem 0.2. �
2. Separability of Hilbert spaces embedded in distribution spaces

In this section we prove that Hilbert spaces which are continuously embedded in suitable distribution 
spaces are separable. We remark that these distribution spaces can be significantly larger than the set of tem
pered distributions, S ′(Rd). Especially we deduce a generalization of Proposition 1.2 (see Proposition 2.2
below).
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First we introduce some test function spaces and their distribution spaces, which are under consideration. 
We recall that the Pilipović space H�(Rd) consists of all Hermite function expansions

f(x) =
∑

α∈Nd

c(f, α)hα(x), (2.1)

where the Hermite coefficients c(f, α) should satisfy

|c(f, α)| ≲ h|α|α!− 1
2 ,

for some h > 0. As in [16], we equip H�(Rd) with the inductive limit topology of H�,h(Rd) with respect to 
h > 0. Here H�,h(Rd) is the Banach space of all smooth functions f on Rd such that

‖f‖H�,h
≡ sup 

α∈Nd

(
|c(f, α)|α! 1

2

h|α|

)

is finite. In particular, H�(Rd) is the union of all H�,h(Rd), h > 0.
The distribution space H′

�(Rd) can be identified with the set of all formal expansions in (2.1) such that

|c(f, α)| ≲ h|α|α! 1
2 ,

for every h > 0. The topology of H′
�(Rd) is the projective limit topology of H′

�,h(Rd) with respect to h > 0. 
Here H′

�,h(Rd) is the Banach space of all formal expansions f in (2.1) such that

‖f‖H′
�,h

≡ sup 
α∈Nd

(
|c(f, α)|α!− 1

2

h|α|

)

is finite. In particular, H′
�(Rd) is the intersection of all H′

�,h(Rd), h > 0. It follows that H�(Rd) is a complete 
(LB)-space (by e.g. [6, Proposition 15 and Theorem 4]) and that H′

�(Rd) is a Fréchet space. These spaces 
are reflexive.

The distribution action between φ ∈ H�(Rd) and f ∈ H′
�(Rd) is then given by

〈f, φ〉 =
∑

α∈Nd

c(f, α)c(φ, α). (2.2)

Next we recall some facts concerning the Gelfand-Shilov space Σ1(Rd) and its distribution space Σ′
1(Rd), 

originally introduced by Silva in [15] (see also [12,16]). The space Σ′
1(Rd) is also known as the space of Fourier 

ultrahyperfunctions [7]. We recall that Σ1(Rd) consists of all f ∈ C∞(Rd) such that for every h > 0, there 
is a constant Ch > 0 such that

|xα∂βf(x)| ≤ Chh
|α+β|α!β! .

The smallest choice of Ch defines a semi-norm on Σ1(Rd), and by defining a (project limit) topology from 
these semi-norms, it follows that Σ1(Rd) is a Fréchet space.

There are several characterizations of Σ1(Rd) and its (strong) dual or distribution space Σ′
1(Rd). For 

example, Σ1(Rd) is the set of all expansions in (2.1) such that

|c(f, α)| ≤ Cre
−r|α|

1
2
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for every r > 0. The smallest Cr defines a semi-norm for Σ1(Rd), and the (project limit) topology in this 
setting agrees with the topology for Σ1(Rd). We may then identify Σ′

1(Rd) with all expansions in (2.1) such 
that

|c(f, α)| ≤ Cer0|α|
1
2 ,

for some constants C > 0 and r0 > 0, with distribution action given by (2.2) when f ∈ Σ′
1(Rd) and 

φ ∈ Σ1(Rd).
In the same way we may identify S (Rd) and S ′(Rd) as the sets of all expansions in (2.1) such that

|c(f, α)| ≤ Cr(1 + |α|)−r

for every r > 0, and

|c(f, α)| ≤ C(1 + |α|)r0

for some C > 0 and r > 0, respectively (see e.g. [13]). The distribution action is given by (2.2) when 
f ∈ S ′(Rd) and φ ∈ S (Rd).

From these identifications it is evident that

H�(Rd) ⊆ Σ1(Rd) ⊆ S (Rd) ⊆ S ′(Rd) ⊆ Σ′
1(Rd) ⊆ H′

�(Rd), (2.3)

with dense and continuous embeddings.
We are now prepared to state the generalizations of Lemma 1.1 and Proposition 1.2 in Section 1.

Lemma 2.1. Suppose that H is continuously embedded in H′
�(Rd). Then there is a constant C > 0 such that 

(0.2) holds.

Proof. Note that pφ(f) = |〈f, φ〉|, f ∈ H′
�(Rd), is a continuous seminorm on H′

�(Rd). The continuity of the 
inclusion mapping H → H′

�(Rd) then yields pφ(f) ≤ Cφ‖f‖H for some Cφ > 0 and all f ∈ H, which is the 
same as (0.2), completing the proof. �

We observe that the Hilbert structure of H actually plays no role in the previous proof and Lemma 2.1
therefore holds if we just assume that H is a Banach space that is continuously embedded in H′

�(Rd).
Our generalization of Proposition 1.2 is the following.

Proposition 2.2. Suppose that the Hilbert space H is continuously embedded in H′
�(Rd). Then H is separable.

Evidently, by (2.3) it follows that Proposition 2.2 is true with Σ′
1 in place of H′

�.
We need some preparations for the proof of Proposition 2.2. Especially we shall make use of the Bargmann 

transform, Vd, defined by

(Vdf)(z) = π− d
4 
ˆ

Rd

exp
(
− 1

2(〈z, z〉 + |y|2) + 21/2〈z, y〉
)
f(y) dy, z ∈ Cd.

We have

(Vdf)(z) =
ˆ

Rd

Ad(z, y)f(y) dy, z ∈ Cd,
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or

(Vdf)(z) = 〈f,Ad(z, · )〉, z ∈ Cd, (2.4)

where the Bargmann kernel Ad is given by

Ad(z, y) = π− d
4 exp

(
− 1

2(〈z, z〉 + |y|2) + 21/2〈z, y〉
)
, z ∈ Cd, y ∈ Rd.

(Cf. [3,4].) Here

〈z, w〉 =
d ∑

j=1 
zjwj and (z, w) = 〈z, w〉

when

z = (z1, . . . , zd) ∈ Cd and w = (w1, . . . , wd) ∈ Cd.

Otherwise 〈 · , · 〉 denotes the duality between test function spaces and their corresponding duals, as above, 
which is clear from the context.

In [16], the images of the spaces (2.3) under the Bargmann transform are presented. Let A(Cd) be the 
set of entire functions on Cd, and let

A′
0,∞(Cd) ≡

⋃
r≥0

{ F ∈ A(Cd) ; |F (z)| ≤ Ce
1
2 |z|

2
(1 + |z|)r for some C, r > 0 }

A′
0,1(Cd) ≡

⋃
r≥0

{ F ∈ A(Cd) ; |F (z)| ≤ Ce
1
2 |z|

2+r|z| for some C, r > 0 }

and

A′
�(Cd) ≡ A(Cd). 

We equip A′
0,∞(Cd) and A′

0,1(Cd) with inductive limit topologies through the semi-norms

‖F‖A′
0,∞ ,r ≡ ‖F · e− 1

2 | · |2(1 + | · |)−r‖L∞ , r > 0,

and

‖F‖A′
0,1 ,r ≡ ‖F · e−( 1

2 |z|
2+r| · |)‖L∞ , r > 0,

respectively. We also equip A′
�(Cd) = A(Cd) with its canonical projective limit topology, given by the 

semi-norms

‖F‖A′
� ,r

≡ ‖F‖Br(0), r > 0.

Here Br(z) denotes the open ball in Cd with center at z ∈ Cd and radius r > 0.
In [16] it is proved that the Bargmann mappings

Vd : S ′(Rd) → A′
0,∞(Cd), (2.5)

Vd : Σ′
1(Rd) → A′

0,1(Cd) (2.6)
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and

Vd :H′
�(Rd) → A′

�(Cd) (2.7)

are linear homeomorphisms.

Proof of Proposition 2.2. We consider the Hilbert space of entire functions H̃ = Vd(H), provided with the 
scalar product (Vdf,Vdg)H̃ = (f, g)H. It suffices to show that H̃ is separable. Let z ∈ Cd. Reasoning as in 
the proof of Lemma 1.1 with the test function Ad(z, · ) instead of φ, we obtain the existence of a constant 
Cz > 0 such that

|Vdf(z)| = | 〈f,Ad(z, · )〉 | ≤ Cz‖f‖H = Cz‖Vdf‖H̃, f ∈ H,

which shows that H̃ is a reproducing kernel Hilbert space. (See e.g. [1].)
Let Kz(w) = K(z, w) be its reproducing kernel and fix a countable and dense subset D of Cd. We claim 

that the linear span of { Kz ; z ∈ D } is a dense subset of H̃.
Indeed, if 	 is a continuous linear functional on H̃ which vanishes on { Kz ; z ∈ D }, then by Riesz 

representation theorem, there is a unique G ∈ H̃ such that 	(F ) = (F,G)H̃, for every F ∈ H̃. Since 	 vanish 
on { Kz ; z ∈ D }, we have

G(z) = (G,Kz)H̃ = 	(Kz) = 0 for each z ∈ D,

giving that G, and thereby 	, are identically zero, in view of the density of D and the continuity of G. The 
result now follows by the Hahn-Banach theorem. �
Remark 2.3. Let dμ(z) = e−|z|2dλ(z), z ∈ Cd, where dλ(z) is the Lebesgue measure on Cd. Then the 
Bargmann-Fock space, A2(Cd), consists of all F ∈ A(Cd) such that

‖F‖A2 ≡

⎛
⎝ˆ

Cd

|F (z)|2 dμ(z)

⎞
⎠

1
2

is finite. We recall that A2(Cd) is a Hilbert space with scalar product

(F,G)A2 =
ˆ

Cd

F (z)G(z) dμ(z), F,G ∈ A2(Cd).

In [3] it is proved that if H and its norm, are equal to L2(Rd) and its norm, then H̃ and its norm, are equal 
to A2(Cd) and its norm.

Let A�(Cd) be the space of entire functions of exponential type, given by

A�(Cd) ≡
⋃
r≥0

{ F ∈ A(Cd) ; |F (z)| ≤ Cer|z| for some C > 0 },

equipped with the inductive limit topology through the semi-norms

‖F‖A� ,r ≡ ‖F · e−r| · |‖L∞ .

Evidently, A�(Cd) is continuously embedded in A2(Cd). In [16] it is proved that



P.K. Ratnakumar et al. / J. Math. Anal. Appl. 550 (2025) 129530 11

(1) the Bargmann transform is a homeomorphism from H�(Rd) to A�(Cd);
(2) A�(Cd) ⊆ A2(Cd) ⊆ A′

�(Cd) with dense embeddings;
(3) the map (F,G) �→ (F,G)A2 from A�(Cd) × A�(Cd) to C extends uniquely to a continuous map from 

A′
�(Cd) ×A�(Cd) or from A�(Cd) ×A′

�(Cd) to C;
(4) the (strong) dual of A�(Cd) can be identified with A′

�(Cd), through the (extension of the) form ( · , · )A2

as

(Vdf,Vdφ)A2 = 〈f, φ〉, f ∈ H′
�(Rd), φ ∈ H�(Rd).

The reproducing kernel of A2(Cd) is given by Kz(w) = e(w,z) (see e.g. [3]). Hence

F (z) = (F, e( · ,z))A2 , (2.8)

when F ∈ A2(Cd). We observe that Kz ∈ A�(Cd), for every z ∈ Cd. Hence, the right-hand side of (2.8)
makes sense for any F ∈ A′

�(Cd), and because A2(Cd) is dense in F ∈ A′
�(Cd), it follows that the identity 

(2.8) still holds for any F ∈ A′
�(Cd).

We observe that the reproducing kernel in the proof of Proposition 2.2 is chosen with respect to the 
scalar product ( · , · )H̃, while the reproducing kernel in (2.8) is defined with respect to ( · , · )A2 . It follows 
that these kernels are not the same, when H differs from L2(Rd).

3. Extensions and variations

In this section we slightly improve Theorem 0.3, and show that the result is still true when H is contin
uously embedded in larger distribution spaces. Our extension of Theorem 0.3 is the following.

Theorem 3.1. Let H be a Hilbert space which is continuously embedded in D ′(Rd) or in H′
�(Rd), and such that 

(0.3) holds true for some constant C0 ≥ 1 which is independent of f ∈ H and x, ξ ∈ Rd. If H is non-trivial, 
then H = L2(Rd), and (0.4) holds for some constant C > 0 which is independent of f ∈ H = L2(Rd).

The proof of Theorem 3.1 follows by a combination of [18, Proposition 1.5], Theorem 0.3, and Proposi
tion 3.3 below.

We need some preparations for the proof of Theorem 3.1. Since translation and modulation invariant 
Hilbert spaces are in focus, we here notice that all the spaces in Theorem 3.1 are invariant under such 
actions, which is explained in the next result.

Proposition 3.2. Let x, ξ ∈ Rd. Then the map f �→ f( · − x)ei〈 · ,ξ〉 is a homeomorphism on each one of the 
spaces in (2.3) and in D ′(Rd).

Proof. The result is evidently true for the spaces

S (Rd), Σ1(Rd), S ′(Rd), Σ′
1(Rd) and D ′(Rd).

We need to prove the result for H�(Rd) and H′
�(Rd).

Our argument relies on the Weyl maps, which are defined as the linear operators

(WwF )(z) ≡ e−
1
2 |w|2+(z,w)F (z − w), F ∈ A(Cd), z, w ∈ Cd. (3.1)

The relevance of these Weyl maps for us is that the Bargmann transform transfers time-frequency shifts 
into these Weyl maps. In fact, as observed in [2, Lemma 2.3], we have
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(Vd(ei〈 · ,ξ〉f( · − x)))(z) = e
i 
2 〈x,ξ〉(Ww/

√
2(Vdf))(z),

z ∈ Cd, w = x + iξ ∈ Cd.
(3.2)

Therefore, the transfer formula (3.2) yields that a distribution or function space is continuously invariant 
under the action of translations and modulations, if and only if its image space under the Bargmann 
transform is continuously invariant under the Weyl maps. Since it is evident that each Weyl map is a 
homeomorphism on the space of all entire functions, which by definition is A′

�(Cd), the assertion for H′
�(Rd)

is a consequence of the homeomorphism (3.2) and the fact that (2.7) is a topological isomorphism of Fréchet 
spaces. By duality it now follows that translations and modulations are homeomorphisms on H�(Rd) as 
well, and the result follows. �

The next proposition gives useful inclusion relations for Banach subspaces of H′
�(Rd) that are invariant 

under translations and modulations.

Proposition 3.3. Let B be a Banach space which is continuously embedded in H′
�(Rd), and let

v(x, ξ) = sup 
‖f‖B≤1

‖ei〈 · ,ξ〉f( · − x)‖B, x, ξ ∈ Rd. (3.3)

Then the following is true:

(1) if v ∈ L∞
loc(R2d), then B is continuously embedded in Σ′

1(Rd);
(2) if in addition v(x, ξ) ≤ C0(1+ |x|+ |ξ|)N , for some constants C0 > 0 and N > 0, then B is continuously 

embedded in S ′(Rd).

Proof. Suppose that v ∈ L∞
loc(R2d). Note that v is submultiplicative, i.e., v(x, ξ) > 0 and

v(x + y, ξ + η) ≤ v(x, ξ)v(y, η), x, y, ξ, η ∈ Rd. (3.4)

Since v is locally bounded, a classical result due to Beurling [5] (see also [9]) then yields

v(x) ≤ Cer(|x|+|ξ|), x, ξ ∈ Rd, (3.5)

for some constants C > 0 and r > 0.
Suppose that f ∈ B and let F = Vdf . By the assumptions, (3.2) and that (2.7) is a homeomorphism, it 

follows that for some C > 0 we have

|F (z − w)e− 1
2 |w|2+Re(z,w)|v(

√
2w)−1 ≤ C, z ∈ Br(0), w ∈ Cd,

which implies

sup 
z∈Cd

(
|F (z)|e− 1

2 |z|
2
v(−

√
2z)−1

)
< ∞. (3.6)

Combining the latter estimate with (3.5) shows that F ∈ A′
0,1(Cd). The asserted embedding in (1) now 

follows from the homeomorphic property of (2.6).
The assertion (2) can be found in e.g. [10]. Here we give alternative arguments. Therefore, suppose that 

v satisfies the estimates in (2). Then (3.6) shows that F ∈ A′
0,∞(Cd). The asserted embedding in (2) now 

follows from the homeomorphic property of (2.5), giving the result. �
Remark 3.4. Proposition 3.3 still holds under the weaker assumption that B is a quasi-Banach space [16,17].
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Remark 3.5. By the definition of modulation spaces and their mapping properties under the Bargmann 
transform, it follows from the estimate (3.6) that B in Proposition 3.3 (1) is continuously embedded in the 
modulation space M∞

(ω)(Rd), with ω(x, ξ) = v(−x− iξ)−1, x, ξ ∈ Rd. (See e.g. [16].)

Proof of Theorem 3.1. If H is continuously embedded in D ′(Rd) or in H′
�(Rd), then [18, Proposition 1.5] 

and Proposition 3.3 (2) show that H is continuously embedded in S ′(Rd). The result now follows from 
Theorem 0.3. �
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