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Abstract

The so-called ‘Impossibility Theorem’ for fairness definitions is one of the more striking
research results with both theoretical and practical consequences, as it states that satisfying
certain combinations of fairness definitions is impossible. To date, this negative result has
not yet been complemented with a positive one: a characterization of which combinations
of fairness notions are possible. This work aims to fill this gap by identifying maximal sets
of commonly used fairness definitions for binary classification that can be simultaneously
satisfied. The fairness definitions used are demographic parity, equal opportunity, predic-
tive equality, predictive parity, false omission rate parity, overall accuracy equality and
treatment equality. We conclude that in total 12 maximal sets of these fairness definitions
are possible, among which are seven combinations of two definitions, and five combinations
of three definitions. Our findings also shed light on the practical relevance and utility of
each of these 12 maximal fairness definitions in various scenarios, regarding the accuracy
of the classifier and ratios of false positives and false negatives, considering the base rates.

1. Introduction

The field of fairness in AI started gaining more attention after the ProPublica article about
the recidivism risk assessment system COMPAS (Angwin et al., 2016). Due to this article,
questions arose on which characteristics an AI system needs to satisfy for it to be fair in a
practical, intuitive, or legal sense. One of the main criticisms from the authors of the ProP-
ublica article was the difference between the false positive and false negative rates for black
people compared to white people. The creators of the COMPAS-tool defended their system
by arguing that it was properly calibrated, meaning that defendants with the same scores
had similar rearrest rates for both demographic groups, and that this made the system fair.
One could argue that ideally these properties would both be satisfied. However, the works
of Chouldechova (2016), Barocas et al. (2019), and Kleinberg et al. (2016) all concluded that
these properties cannot be satisfied simultaneously. This result is colloquially referred to as
the “Impossibility Theorem”, stating it is mathematically impossible to achieve calibration,
equal false positive and equal false negative rates simultaneously, except in a practically
irrelevant, degenerate case. (See Sec. 2 for further details.)

The usage of fairness definitions has often been limited to enforcing one at a time. This
severely limits the complexity of the fairness requirements imposed on a system. Creating a
contrasting “Possibility Theorem” might open up the possibility of simultaneously imposing
multiple compatible fairness definitions. These combinations could allow to enforce multiple
perspectives on fairness simultaneously (Rahman et al., 2024a; Park et al., 2022; Luo et al.,
2024). Additionally, it would also indicate which perspectives are incompatible.
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Contributions To the best of our knowledge, this negative result has never been comple-
mented with a positive one, namely the characterisation of maximal sets of fairness notions
that can be simultaneously satisfied. In this paper, we investigate which and how many
of the more frequently used fairness definitions can be combined, leading to a set of maxi-
mal notions of fairness on which no additional of the commonly used fairness notions can
be imposed without making the problem infeasible. We do this for the simplest but most
commonly studied case of binary classification.

Out of a range of seven commonly used fairness definitions (Demographic Parity (Dwork
et al., 2012), Equal Opportunity (Hardt et al., 2016), Predictive Equality (Hardt et al.,
2016), Predictive Parity (Chouldechova, 2016), False Omission Rate Parity, Overall accuracy
Equality (Berk et al., 2021) and Treatment Equality (Berk et al., 2021)), we identify a total
of 12 maximal combinations, including seven maximal combinations of two and five maximal
combinations of three fairness definitions. Figure 1 shows the possible combinations of
fairness definitions. In addition, we investigate the constraints these combinations impose
on the accuracies of both groups and on the confusion matrices. We find that imposing a
combination of two or more fairness definitions imposes a strict behaviour on the relation
of errors made between two sensitive groups. This behaviour is influenced by the base rates
of both groups, which means that for some datasets a combination of fairness definitions
would heavily constrain the performance for one sensitive group.

2. Related Work

The field of fairness in AI knows two large, distinct research topics. The first one is based on
the explainability or interpretability of AI systems. This research aims to create AI models
that are explainable or to create explanations for existing models in order to investigate
if the models exhibit unfairness, which is identifiable for people. This approach is related
to the legal concept of procedural fairness (Australian Law Reform Commission, 2016),
meaning that the decision process itself should be deemed fair.

The second research focus, adopted in the current paper, concerns the formulation and
study of mathematical definitions of fairness. The aim is to have the model adhere to a
certain fairness notion, defined in terms of certain mathematical properties on the outcome
of the model. This method if often referred to as outcome fairness and relates to the legal
concept of distributive justice (Lamont & Favor, 2017), meaning that the distribution of
the outcome decision should be deemed fair.

Both approaches are not mutually exclusive, but work with a different ideology on how
fairness should be achieved. It is possible to have a fair procedure, thus procedural fairness,
that results in an unfair distribution and vice versa. In this section, we briefly elaborate on
both these research lines.

2.1 Procedural Fairness Approaches: Explainability and Interpretability

The simplest approach in explainability is to only use non-discriminatory features. For
example, Grgic-Hlaca et al. (2018) let human participants decide which features are ac-
ceptable to base a prediction on given a specific context. A special case of this fair feature
selection is fairness through unawareness, wherein no sensitive attributes are included in
the features.
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Figure 1: The possible sets of fairness definitions are represented by nodes, according to
Definition 1. The nodes with an asterisk are maximal sets which cannot be extended with
an extra fairness definition, whilst satisfying Definition 1.
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A second explainability approach to AI fairness focuses on the output behaviour of a
model, and aims to assess the fairness of outputs per individual. This can be achieved
by interchanging the values of the sensitive attributes, and checking if doing so changes
the prediction (Agarwal et al., 2018; Galhotra et al., 2017). Counterfactuals extend this
principle by analysing the model’s behaviour through the difference between the real-world
data and a counterfactual one. This counterfactual data is created by changing the sensi-
tive attribute and using a causal model to subsequently adjust the other features (Kusner
et al., 2017). This approach is favoured to account for the correlation between the sensitive
attribute and the other features. Other methods besides causal models can also be used to
adjust for these correlations (Black et al., 2020). The work of Grari et al. (2023) extends
the capabilities of counterfactuals to also function with continuous sensitive variables.

Another method using counterfactuals is investigating the difference in effort certain
groups would have to make in order to change their predictions (Sharma et al., 2020). The
work of Goethals et al. (2023) has a similar goal: they investigate which attributes have an
imbalanced influence on the prediction for a group with a certain sensitive attribute.

2.2 Outcome Fairness: Fairness Definitions on the Output Distribution

The research around fairness definitions can be categorised in two main groups. The first
group consists of methods enforcing a certain fairness definition on a learned model, often
called fairness methods. The other consist of more conceptual research on these definitions.
In general this group is about either the introduction of new fairness definitions, surveys on
fairness definitions, the interpretation of previously proposed fairness notions, or about so-
called impossibility theorems showing the incompatibility of certain combinations of fairness
definitions. Here we survey the work most directly related to the present paper.

2.2.1 Surveys on Fairness Definitions

Verma & Rubin (2018) discuss different fairness definitions for classification and focus on
creating a human-understandable interpretation of these definitions and applying them to a
specific use case. An elaborate discussion about the design of a predictive model concerning
pitfalls and biases that occur in the process can be found in Mitchell et al. (2021). It also
covers different fairness definitions and relates the choice between these definitions back to
the discussion of design choices. They touch upon the impossibilities of combining certain
fairness definitions when working with scores instead of binary decisions.

The survey of Mehrabi et al. (2021) contains an extensive list of possible biases and
fairness definitions. The fairness definitions are grouped by type, group, subgroup or in-
dividual. It also discusses methods to satisfy them. A similar recent survey was done by
Caton & Haas (2024). Pessach & Shmueli (2022) published a similar survey. They con-
clude with several emerging research sub-fields of algorithmic fairness. Ruf & Detyniecki
(2021) strive to create a type of Fairness Compass which should help practitioners decide
what fairness definition is best suited to a given problem. Throughout the work, different
fairness definitions are clearly explained through the use of confusion matrices and with a
theoretical use case. Congruently, a similar tool was developed with the Aequitas Toolkit
(Saleiro et al., 2019). However, their Fairness Tree is constructed based on the use of the
system rather than the properties in the data, on which the Fairness Compass is designed.

1498



Maximal Combinations of Fairness Definitions

2.2.2 Prior Work on Combining Fairness Definitions

The majority of research on combining fairness definitions focusses on the impossibility of
certain combinations. Chouldechova (2016) discuss how adherence to a certain fairness cri-
terion can lead to considerable disparate impact between groups. They state it is impossible
to achieve equality between groups for false positive rate (FPR), positive predictive value
(PPV) and false negative rate (FNR) when the base rates differ between groups.

Kleinberg et al. (2016) discuss combining three specific fairness definitions in the context
of risk scoring. The work focusses on scoring rather than binary classification. They con-
clude that combining those three definitions is only possible under unique circumstances,
namely if the groups have equal base rates or if the model is capable of perfect prediction.

Berk et al. (2021) focus on the trade-off that would occur when using multiple incom-
patible fairness definitions such as discussed in the work by Chouldechova (2016). They
also provide different techniques for achieving this goal.

Related to the two original Impossibility Theorems, Beigang (2023) created a new impos-
sibility theorem, which concerns the combination of counterfactual fairness with equalized
odds and predictive parity. They also provide some relaxations to the fairness definitions in
order for them to be compatible. Bell et al. (2023) investigated the impossibility theorems
in practice. In this work, experiments are used to investigate the effects of enforcing equal
FPRs, FNRs and PPVs on the accuracy of the system. A similar result is found in the work
by Hsu et al. (2022). They use integer programming to solve this multi-objective problem.
In their experiment they also reaffirm the existing impossibility theorems.

The work of Rosenblatt & Witter (2023) shows that counterfactual fairness and de-
mographic parity are basically equivalent. Pleiss et al. (2017) created a relaxed version
of equalised odds and calibration for which the combination is feasible in more situations.
However, they indicate themselves that the models which satisfy this combination of con-
straints have limited usefulness.

Another approach was taken by Rahman et al. (2024b). They designed a novel set of
fairness definitions. The paper focusses on intra-marginal and intersectional concepts of
fairness and express these concepts for both individual and group fairness.

2.2.3 Combining Fairness Definitions with Other Metrics

The work of Cummings et al. (2019) shows that given a system with non-trivial accuracy,
it is impossible to combine pure differential fairness with strict equal opportunity. Trivial
accuracy is the maximal accuracy a system could achieve when only predicting the same
label. They also show that combining differential fairness with a relaxed version of equal
opportunity is feasible. A subsequent work of Agarwal (2021) refutes this possibility of the
combination with a relaxed notion of fairness. Furthermore, they prove that pure differential
fairness is impossible to combine with either demographic parity, equal opportunity or
equalised odds while achieving non-trivial accuracy.

The work of Pinzón et al. (2023) finds that given a probabilistic data source, equal
opportunity is incompatible with non-trivial accuracy under certain conditions. This is
complementary to the work of Hardt et al. (2016), which proves that equal opportunity and
non-trivial accuracy are compatible for a deterministic data source.
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3. Maximal Combinations of Fairness Definitions

Common fairness definitions can be expressed as functions of the variables in confusion
matrices (such as Table 1) for the different protected demographic groups. More specifically,
they are defined as the equality of a statistic, such as the false negative rate, computed on
the confusion matrices for the different demographic groups. Often, these demographic
groups are based on their sensitive attributes. We articulate these expressions for seven
common fairness definitions in Sec. 3.1. This approach makes combining fairness definitions
easy: simply combining the constraints they impose on the confusion matrices.

Our analysis considers two groups, referred to as groups a and b. However, later we show
that our findings hold up for multiple groups, if these groups are disjoint. Note that con-
fusion matrices commonly use counts. However, we normalize the confusion matrices such
that the four variables in each confusion matrix sum to 1, as this simplifies the calculations.

Table 1: Symbolic representation of a confusion matrix.

Predicted
Positive Negative

True
Positive TP FN
Negative FP TN

The values in the confusion matrix are constrained due to properties of the dataset itself:

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

0 ≤ TPa ≤ 1− x, 0 ≤ TPb ≤ 1− y

0 ≤ TNa ≤ x, 0 ≤ TNb ≤ y

0 ≤ FPa ≤ x, 0 ≤ FPb ≤ y

0 ≤ FNa ≤ 1− x, 0 ≤ FNb ≤ 1− y

(1)

The variables 1 − x and 1 − y in Equation (1) denote the base rates of group a and
group b respectively. The base rate is the fraction of positive samples in the data per group.
The inequalities will be left out of subsequent derivations to keep the notations concise.

Let us now define what we mean when we say that a certain combination of fairness
definitions is ‘possible’. Before doing this, the following two observations are relevant.

First, if the base rates of the two groups are equal, i.e. if x = y, then it is always
possible to satisfy any combination of fairness definitions, as the confusion matrices can
then be identical. If the confusion matrices are identical, then any statistics computed
on them will also be equal. However, base rates are a property of the dataset and hence
situation dependent. Thus, any definition of what it means for a combination of fairness
definitions to be ‘possible’, should be independent of the base rates.

Second, some combinations of fairness definitions may be too constraining that jointly
enforcing them leads to certain variables in the confusion tables having a fixed (and possibly
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trivial) value. Although this means that the combination can strictly speaking be satisfied,
it leaves so little freedom to the classifier that it becomes of limited practical use. Thus, we
propose a definition where also such combinations are not deemed ‘possible’.

The following definition determines the necessary properties for a combination of fairness
definitions to be deemed ‘possible’.

Definition 1 (Possibility of combining fairness definitions). A combination of fairness def-
initions is deemed possible if after combining the constraints, all elements in both confusion
matrices can still take on values within a subset of [0, 1] with non-zero Lebesgue measure,
and this for all pairs of base rates (1 − x, 1 − y) from a subset of [0, 1]2 with non-zero
2-dimensional Lebesgue measure. Or informally speaking, the elements of the confusion
matrices should be able to take on values within a non-trivial range, and this for all base
rate pairs from within a non-trivial 2-dimensional range.

Remark 1. This definition is solely focussed on finding some configuration of the confusion
matrix that will satisfy the fairness definitions. It would also be possible to include the
performance of the resulting classifier as a requirement. This was done by Barocas et al.
(2019). They additionally required that the prediction of the model must not be independent
of the ground truth. In other words, it would require the classifier not to be random.

Remark 2. This paper only considers satisfying fairness definitions, meaning the equality
must be satisfied. Other approaches to fairness aim to minimize the difference between two
relevant quantities, instead of requiring an equality. In this line of research, several methods
have been proposed to use this difference as a loss term in order to make a model more fair
(Kamishima et al., 2011; Zemel et al., 2013; Padala & Gujar, 2020; Buyl et al., 2024) . The
results in the present paper remain valid for this approach as an incompatibility will signify
that minimizing to a difference of zero is impossible, thus signalling that the minimization
task will be working on conflicting goals.

3.1 Fairness Definitions Considered in the Present Paper

The present paper considers the following fairness definitions: demographic parity, equal
opportunity, predictive equality, predictive parity, false omission rate parity, overall accu-
racy equality and treatment equality. Table 2 contains two equivalent definitions for each
fairness definition: one expressed in terms of probabilities, and another in terms of a con-
straint on the confusion matrices. The table also notes the statistical property it requires
to be equal between groups (if it has a standard name). In its last column, it states the
‘orientation’ of the constraint on the confusion matrices (horizontal, vertical, or diagonal).

Other frequently used fairness definitions exist, particularly in other settings than binary
classification, but this paper focusses only on the binary prediction setting. A well known
example is calibration as is used in Kleinberg et al. (2016) for risk scoring, its equivalent
for binary classification, Predictive Parity, is used in this work. Note that each of these
definitions only imposes one constraint on the confusion matrix, combining them increases
the number of constraints.

Below we discuss each of the considered fairness definitions in greater detail. Figure 2
illustrates them more visually, highlighting the orientations on the confusion matrix, and
thus showing their differences and similarities.
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Table 2: The list of fairness definitions considered in this paper, defined in probabilistic
terms (second column) and defined in terms of elements in the confusion matrices (third
column). The fourth column names the statistic that is constrained to be equal across the
confusion matrices. The fifth column mentions the orientation of the constraints on the
confusion matrix as shown in Figure 2.

Probabilities Confusion Matrix Statistic Orientation

Demographic Parity

P (Ŷ = y|A = 0) =
P (Ŷ = y|A = 1)

FPA+TPA
FPA+TPA+FNA+TNA

=
FPB+TPB

FPB+TPB+FNB+TNB

Positive Rate
(PR)

Board
(Bv)

Equal Opportunity

P (Ŷ = 1|A = 0, Y = 1) =
P (Ŷ = 1|A = 1, Y = 1)

TPA
TPA+FNA

= TPB
TPB+FNB

True Positive
Rate (TPR)

Horizontal
(H)

Predictive Equality

P (Ŷ = 1|A = 0, Y = 0) =
P (Ŷ = 1|A = 1, Y = 0)

FPA
FPA+TNA

= FPB
FPB+TNB

False Positive
Rate (FPR)

Horizontal
(H)

Predictive Parity

P (Y = 1|A = 0, Ŷ = 1) =
P (Y = 1|A = 1, Ŷ = 1)

TPA
TPA+FPA

= TPB
TPB+FPB

Pos. Prediction
Value (PPV)

Vertical
(V)

False Omission Rate Parity

P (Y = 1|A = 0, Ŷ = 0) =
P (Y = 1|A = 1, Ŷ = 0)

FNA
FNA+TNA

= FNB
FNB+TNB

False Omission
Rate (FOR)

Vertical
(V)

Overall accuracy Equality

P (Ŷ = Y |A = 0) =
P (Ŷ = Y |A = 1)

TPA+TNA
TPA+FPA+TNA+FNA

=
TPB+TNB

TPB+FPB+TNB+FNB

Accuracy
(ACC)

Board
(Bd)

Treatment Equality

− FNA
FPA

= FNB
FPB

- Diagonal
(D)
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Definition 2 (Demographic Parity - DP (Dwork et al., 2012)). In order to satisfy demo-
graphic parity both groups proportionally must receive the positive prediction (TP + FP)
equally regardless of the ground truth and thus also regardless of the base rates. This is un-
like other fairness definitions, the result of which is that satisfying demographic parity can
come at the cost of predictive performance. Conditional statistical parity (Corbett-Davies
et al., 2017) is a similar fairness definition, which requires equal positive rates between
sensitive groups when restricted to people that share a certain attribute value. Conditional
statistical parity will not be considered in this paper.

Definition 3 (Equal Opportunity - EOP (Hardt et al., 2016)). Equal opportunity is both
a definition of itself and also one of two conditions that is required for the popular fairness
definition equalised odds (Hardt et al., 2016). Equal opportunity requires that people have
the same probability of receiving a negative prediction given that they belong in the positive
category, regardless of their sensitive attribute.

Definition 4 (Predictive Equality - PE (Hardt et al., 2016)). Predictive equality is the
second condition required in equalised odds, alongside equal opportunity. It requires that
the probability of receiving a positive prediction when the ground truth is negative is equal
across demographic groups. If both predictive equality and equal opportunity are satisfied
then equalised odds is satisfied.

Definition 5 (Predictive Parity - PP (Chouldechova, 2016)). Predictive parity is yet an-
other kind of definition as it is conditional on the probability of the actual class and not
of the predicted class. Expressed on the confusion matrix, it imposes a vertical ratio on
it rather than a horizontal one like equal opportunity and predictive equality. In order to
satisfy predictive parity the probability that a positive prediction is correct must be equal
across sensitive groups.

Definition 6 (False Omission Rate Parity - FORP). False omission rate parity is similar
to predictive parity. It requires that the probability of a negative prediction to be correct is
equal across sensitive groups. The combination of satisfying both predictive parity and false
omission rate parity is also called conditional use accuracy equality (Verma & Rubin, 2018).

Definition 7 (Overall accuracy Equality - OaE (Berk et al., 2021)). Overall accuracy equal-
ity requires equal classifier accuracy between sensitive groups. Although straightforward and
intuitive, this definition alone is often insufficient to guarantee intuitive fairness. Indeed, it
implicitly assumes an equal importance of positive and negative predictions, which is often
inaccurate in practice.

Definition 8 (Treatment Equality - Tr. Eq. (Berk et al., 2021)). Treatment equality is
an atypical fairness definition as it cannot be expressed as a probability nor as a commonly
used statistic. It is a constraint on the false positives and false negatives, requiring their
ratio to be equal for sensitive groups.
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TP FN

TNFP

TP FN

TNFP

TP FN

TNFP

Treatment
Equality(--)

Equal
Opportunity (-)

Demographic
Parity

Overal
accuracy
Equality

Predictive
Parity (..)

False
Omission Rate

Parity (..)

Predictive
Equality (-)

Figure 2: Orientations of the fairness definitions in the confusion matrix.

3.2 Combining Two Fairness Definitions

We begin with the pairwise combinations of the fairness definition discussed in Sec. 3.1.

Proposition 1. All pairwise combinations of demographic parity, equal opportunity, pre-
dictive equality, predictive parity, false omission rate parity, overall accuracy equality and
treatment equality are possible in accordance with Definition 1.

Proof outline. To prove for a given pair of fairness definitions that they can be combined
pairwise, we pair the constraints of the confusion matrices, as listed in Eq. (1), and the
constraints from the respective fairness definitions to yield a combined system of equations.
We solve this system of equations to express a subset of the variables in terms of the
remaining free variables. The base rates must be such free variables, as required in Def. 1.

An example of calculating the constraints for combining two fairness definitions is shown
in Eq. (2), where demographic parity is combined with equal opportunity:



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
TPa

TPa+FNa
= TPb

TPb+FNb
TPa+FPa

1 = TPb+FPb
1

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
TPa
1−x = TPb

1−y
TPa+FPa

1 = TPb+FPb
1

⇐⇒



FNa = 1− x− 1−x
1−yTPb

TNa = x− x−y
1−yTPb − FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

(2)
By combining this result with the inequalities from Eq. (1), feasible ranges for each of the
free variables and the base rates can be computed. For conciseness, a shortened version of
the calculation of these ranges is shown in Eq. (3), while the full system of inequalities can
be found in Appendix A.1.1:

0 ≤ 1− x− 1−x
1−yTPb

1− x− 1−x
1−yTPb ≤ 1− x

0 ≤ x− x−y
1−yTPb − FPb

x− x−y
1−yTPb − FPb ≤ x

0 ≤ x−y
1−yTPb + FPb

x−y
1−yTPb + FPb ≤ x

⇐⇒



1
1−yTPb ≤ 1
1−x
1−yTPb ≥ 0

FPb ≤ x+ −x+y
1−y TPb

−x+y
1−y TPb ≤ FPb

−x+y
1−y TPb ≤ FPb

FPb ≤ x+ −x+y
1−y TPb

(3)
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DP & EOP
(1)

DP & PE
(1)

DP & PP
(2)

DP & FORP
(2)

DP & OaE
(5)

DP & Tr. Eq.
(4)

EOP & PE
(3) EOP & PP (3)

EOP & FORP
(3)

EOP & OaE
(7)

PE & PP
(3) PE & FORP (3)

PE & OaE
(7)

PP & FORP
(6)

PP & OaE
(4)

FORP & OaE
(4)

OaE & Tr. Eq.
(2)

EOP & Tr. Eq.
PP & Tr. Eq.

PE & Tr. Eq.
FORP & Tr. Eq.

TP  =        TP

FP  =        TP  + FP

a b
1 - x
1 - y
x - y
1 - ya b b

TP  =        FP  + TPy - x
ya b b

FP  =     FPa b
x
y

TP  =  TP

FP  =  FP
a

a

b

b

TN  =  TN

FN  =  FN
a

a

b

b

FP  = FP  +         a b
x - y

2

TP  = TP  +         a b
y - x

2

FN  = FN  (           +1)a b
x - y

FP  - FN b b

FP  = FP  (           +1)a b
x - y

FP  - FN b b

TP  =        TP 
1 - x
1 - ya b

FP  =     FP 
x
y ba

TP  =        TP 1 - ya b
1 - x

FP  =        FP 1 - ya b
1 - x

FN  =        FN 1 - ya b
1 - x

TN  =        TN 1 - ya b
1 - x

TP  =        TP 1 - ya b
1 - x

TP  =        (TN  - TN ) y - xb b
1 - y

a

FP  =     FP 
x
ya b

TP  =     TP 
x
ya b

TN  =     TN x
ya b

FN  =     FN x
ya b

TN  =       (TP  - TP )x
x - ya b a

TN  =       (TP  - TP )y
x - yb b a

TP  =             FPa
bTP . FP 

FN  =              a

b

a

TN
bFN  . TN

b

a TP  = FP  (           +1)b b
y - x

FP  - FP a b

TP  = FP  (           +1)a a
y - x

FP  - FP a b

FN  = FN  (           +1)a b
y - x

TN  - FN b b

TN  = TN  (           +1)a b
x - y

TN  - FN b b
FP  =  FP

FN  =  FN
a

a

b

b

Figure 3: Resulting constraints when combining pairs of fairness definitions.

This system of inequalities shows a specific range for the free variables FPb, TPb, and both
base rates 1−x and 1− y are unconstrained. The range for FPb is [max(0, −x+y

1−y ),min(x+
−x+y
1−y , y)] which simplifies to [0, x+ −x+y

1−y ] if x ≥ y, which means it has a non-zero Lebesgue

measure, or [−x+y
1−y , y] if y > x then TPb will have a non-zero Lebesgue measure if x > y2.

Thus the Lebesgue measure is non-zero for each free variable for a set of base rates with a
non-zero 2-dimensional Lebesgue measure, meaning that the combination of demographic
parity with equal opportunity is possible.

The proofs for the other pairwise combinations of fairness definitions follow a similar
structure and can be found in Appendix A. The results are summarized in Figure 3.

From Proposition 1 we can infer that none of the fairness definitions are in contradiction
with each other. In other words, what is fair according to one of the fairness definitions
considered, is not impossibly fair according to another.

Figure 3 shows that the combinations of fairness definitions result in a unique set of con-
straints. However, two exceptions exist: the three pairwise combinations of any two fairness
definitions taken from the set (EOP, PP, Tr. Eq.) are identical to each other, and the same
is true for all pairwise combinations of fairness definitions from the set (PE, FORP, Tr. Eq.).

The interpretability of these combinations differs greatly. The solution of the combina-
tion of predictive parity with false omission rate parity is too tedious to detail in Table 3,
but can be found in the calculations of combining predictive parity, false omission rate
parity and overall accuracy equality in Section B.25.
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Table 3: The structure of the seven different constraint types and the associated combination
of orientations.

Nr. Orientation of the
combined definitions

Constraint structure

(1) BvH Xa = FactorBR ∗Xb Yb = FactorBR ∗Xb + Yb

(2) BvV , BdD Xa = Xb Ya = Yb

(3) HH,HV,HD, V D Xa = FactorBR ∗Xa Ya = FactorBR ∗ Yb
(4) BvD, V Bd Xa = FactorBR,Xb,Yb

∗Xb Ya = FactorBR,Xb,Yb
∗ Yb

(5) BvBd Xa = Xb + FactorBR Ya = Yb + FactorBR

(6) V V Xa = FactorBR,Ya,Yb
∗Yb+

FactorBR,Ya,Yb
∗ Ya

Xb = FactorBR,Ya,Yb
∗Yb+

FactorBR,Ya,Yb
∗ Ya

(7) HBd Xa = FactorBR ∗(Yb−Ya) Xb = FactorBR ∗ (Yb−Ya)

We point out that some structure can be found in the resulting constraints from the
pairwise combinations. Seven types of constraint combinations can be discerned, as denoted
in the top right corner of the combinations in Figure 3. Which of these seven types a
pairwise combination belongs to, is dependent on the orientations of the fairness definitions
as discussed in Section 3.1, Table 2 and Figure 2. A summary of the structures and the
corresponding orientations of the fairness definitions can be found in Table 3.

3.2.1 The P%-Rule

We additionally investigate a relaxed fairness definition based on demographic parity, namely
the p%-rule (Roth et al., 2021). Instead of requiring equality of the positive rates, as in de-
mographic parity, the p%-rule requires that positive rate in any demographic group cannot
be less than p% of the positive rate in any other demographic group. Formally:

∀a, b : PRgroup a

PRgroup b
≥ p

100
. (4)

The p%-rule is unique as it is based on a legal concept, the 80%-rule, from the Equal
employment opportunity commission (1978). It requires that any selection rate for recruit-
ment procedures is at least 4/5 of the group with the highest selection rate. If this is not
satisfied then it is seen as adverse impact. In other words it requires that the positive rates
between groups must satisfy the p%-rule, in this instance p = 80.

There are two special instances of the p%-rule, namely if p = 0 or p = 100. If p = 0
then no restrictions are placed on the system as a ratio is always larger than 0. The
second possibility of p = 100 requires for the positive rates to be equal across all groups,
which is equivalent to requiring demographic parity. Because each fairness definition can
be combined with demographic parity and the p%-rule with p < 100 is a relaxation of
demographic parity, all fairness definitions can be combined with the p%-rule.
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3.2.2 Extending to Multiple Demographic Groups

Thus far only two demographic groups were taken into consideration. However, the analysis
can easily be extended to multiple disjoint groups.

When combining any two fairness definitions, two degrees of freedom remain in the
system of linear equations. It is then possible to parameterize these equations in such a
way that those two free variables represent two of the four variables in the confusion matrix
of just one demographic group. Let us refer to this demographic group as the ‘first’ one.
The variables in the confusion matrix of the other demographic group are then expressed
through those two free variables.

Then adding an additional demographic group can be done by simply constraining its
confusion matrix in the same manner. This ensures that the resulting fairness notions are
equal to those from the first demographic group. As the fairness notions in each additional
demographic group are equal to those of the first group, they will be equal to each other.

In order for this to hold, it is necessary that the demographic groups are disjoint to
prevent dependencies between groups. Disjoint groups can be achieved by creating a new
group for each possible combination of sensitive attributes. Depending on the number of
sensitive attributes, this could result in a large number of groups and lead to some very
small groups. The work of Ghosh et al. (2021) argues that this intersectional fairness may
be preferable for detecting every type of unfairness. We therefore argue that this property
of extending to multiple sensitive groups is sufficient for most contexts.

3.3 Combining Three Fairness Definitions

We characterize the set of possible combinations of three fairness definitions.

Proposition 2. When combining three fairness definitions out of demographic parity,
equal opportunity, predictive equality, predictive parity, false omission rate parity, over-
all accuracy equality, and treatment equality only five out of 35 possible combinations are
feasible (according to Definition 1).

Proof outline. Section 3.2 shows that combinations of three fairness definitions are possible
as certain pairwise combinations are equivalent. To examine other possible combinations of
three fairness definitions, we combine the constraints of two pairwise combinations which
share one fairness definition. Equation (5) shows an example of the calculations for com-
bining demographic parity, equal opportunity, and predictive equality:

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TPa = y−x
y FPb + TPb

FPa = x
yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
1−yTPb

FPb =
y

1−yTPb

TPb = TPb

∨



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

x = y

0 = 0

(5)
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The resulting constraints show that one variable, TPb, is free, the base rates are uncon-
strained, and none of the variables are fixed to a particular value. Therefore, the combina-
tion of demographic parity, equal opportunity and predictive equality is possible.

Remark 3. Note that the prediction of any classifier that satisfies demographic parity,
equal opportunity, and predictive equality, is independent of the ground truth: the probability
of any combination of a ground truth label value and predicted label value is equal to the
marginal probabilities of these values. Indeed, independence can be expressed in terms of
the variables in the confusion matrix:

TPa = (TPa + FPa) · (TPa + FNa),

TPb = (TPb + FPb) · (TPb + FNb),

TNa = (TNa + FNa) · (TNa + FPa),

TNb = (TNb + FNb) · (TNb + FPb).

(6)

It is easy to verify that given Eq. (5), this set of equations expressing independence is
satisfied. While this is of course undesirable behaviour of a classifier, Definition 1 does
not deem such combinations ‘impossible’, because it is possible to satisfy the equations in
non-trivial value ranges – albeit only with an essentially random classifier.

It is worth reiterating that e.g. in Barocas et al. (2019), such combinations were defined
as incompatible as well. We return to this point in Sec. 3.6.

However, not all combinations of three fairness definitions are possible. The combination
of demographic parity, predictive parity, and false omission rate parity serves as an example.
The calculations can be found in Eq. (7):



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

TNa = TNb

FNa = FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

x− FPa = y − FPa

−x− TPa = −y − TPa

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

x = y

(7)

The final set of constraints requires x = y, which violates the condition of the base rates hav-
ing a non-zero 2-dimensional Lebesgue measure. Therefore, these three fairness definitions
can only be achieved simultaneously when the base rates are equal, which is entirely data-
dependent. The combination of demographic parity, predictive parity and false omission
rate parity is thus not possible.
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Combining demographic parity, equal opportunity and predictive parity is also impos-
sible, as shown in Eq. (8):

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TPa = TPb

FPa = FPb

⇐⇒



FNa = 1− x− TPa

TNa = x− FPa

FNb = 1− y − TPb

TNb = y − FPb

x = y

TPa = TPb

TPa = TPb

FPa = FPb

∨



FNa = 1− x

TNa = x− FPa

FNb = 1− y

TNb = y − FPb

TPb = 0

TPa = 0

TPa = 0

FPa = FPb

(8)

Eq. 8 shows that the solution either requires equal base rates or it requires for TPb and
TPa to equal zero. The occurrence of the former was previously discussed in this section,
how this leads to incompatibility. In that latter case, the feasible set of four out of eight
variables in the confusion matrices will have a Lesbesgue measure of zero, which violates
the requirements for being a possible combination from Definition 1.

The final kind of outcome, when combining three fairness definitions, arises when com-
bining predictive parity, false omission rate parity and overall accuracy equality. In this
case, the following second degree polynomial needs to be satisfied:

(−2x+ 1)TN2
b + (xy − y + x+ 2yTNa − x2 + 2xTNa − 2TNa)TNb

+(xy − x+ TNa − 2yTNa + y − y2)TNa = 0.
(9)

As this equation is not transparent, a numerical approach was used to solve it. The results
are plotted in Figure 4. From Figure 4 we can see that a free variable, e.g. TNa, exists. It
is solvable for a range of base rates, although not for all base rates. However, this range of
base rates consists of non-trivial real intervals and therefore satisfies Definition 1. The plots
show that none of the variables have a Lebesgue measure of zero, such that the combination
of predictive parity, false omission rate parity and overall accuracy equality is possible.

(a) Relation between TNa and TNb (b) Relation between TNa, TPa and TPb

Figure 4: Relation between the free variable TNa and the variables TNb, TPa, TPb for
(PP, FORP, OaE), showing multiple values are possible for TPb and TPa given TNa.
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Table 4: Summary of possible and impossible combinations of three fairness definitions.

Possible combinations Impossible combinations

(DP, EOP, PE) (DP, PP, FORP) (DP, EOP, PP) (DP, FORP, Tr. Eq.)

(EOP, PE, OaE) (DP, PP, OaE) (DP, EOP, FORP) (DP, OaE, Tr. Eq.)

(EOP, PP, Tr. Eq.) (DP, FORP, OaE) (DP, EOP, OaE) (EOP, FORP, Tr. Eq.)

(PE, FORP, Tr. Eq.) (DP, PP, Tr. Eq.) (DP, PE, Tr. Eq.) (EOP, PE, Tr. Eq.)

(PP, FORP, OaE) (DP, PE, PP) (EOP, PE, PP) (EOP, PE, FORP)

(EOP, OaE, PP) (DP, PE, FORP) (EOP, FORP, OaE)

(DP, PE, FORP) (EOP, OaE, Tr. Eq.) (EOP, FORP, PP)

(DP, PE, Tr. Eq.) (PE, PP, FORP) (FORP, OaE, Tr. Eq.)

(PE, PP, OaE) (PE, OaE, Tr. Eq.) (PE, OaE, FORP)

(PE, PP, Tr. Eq.) (PP, OaE, Tr. Eq.) (PP, FORP, Tr. Eq.)

The proofs for all other combinations of three fairness definitions can be found in Ap-
pendix B, and the results are summarized in Table 4.

3.3.1 P%-Rule

The p%-rule is investigated separately from the more strict fairness definitions. In order to
determine the compatibility of the p%-rule with two other fairness definitions, we introduce
the following two inequalities in the set of linear equations:

TPa+FPa
TPb+FPb

≥ p
100 ,

TPb+FPb
TPa+FPa

≥ p
100 .

(10)

The combination of these equations constitute the p%-rule via the confusion matrix.
The calculations for all combinations with two other fairness definitions can be found in
Appendix C. The results can be divided into three categories: solvable for all p, an upper
bound on p, or for p = 1 there is a specific value for certain variables. This property is
noted for each combination in Table 5.

Table 5: The compatibility of the p%-rule with two fairness definitions.

∀p1 Natural bound2 Set value for a variable3

(EOP, PE) (EOP, Tr. Eq.) (EOP, PP) (PE, FORP) (FORP, OaE)
(PE, PP) (EOP, FORP) (PE, Tr. Eq.) (FORP, Tr. Eq.)
(PP, Tr. Eq.) (EOP, OaE) (PP, OaE) (OaE, Tr. Eq.)
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3.3.2 Extending to Multiple Sensitive Groups

Like for combining two fairness definitions, the calculations can be conveniently extended to
multiple sensitive groups. The combinations (EOP, PP, Tr. Eq.) and (PE, FORP, Tr. Eq.)
both contain two free variables; their extension to multiple sensitive groups follows the
method discussed in Section 3.2.2. Other possible combinations have only one free variable,
belonging to one sensitive group. The confusion matrices of other groups are defined by the
base rates and the one free variables. This is repeated for every disjoint sensitive group.

3.4 Combining Four Fairness Definitions

There are only four free variables across the confusion matrices for two sensitive groups,
due to the inherent constraints in a confusion matrix as noted in Eq. (1). Therefore,
combinations of four independent fairness notions will not be possible. In other words:
for a combination of four fairness definitions to be possible, at least one of the constraints
should mathematically follow from the combination of other constraints in order for the
values in the confusion matrix to have a non-zero Lebesgue measure.

Proposition 3. Out of demographic parity, equal opportunity, predictive equality, predictive
parity, false omission rate parity, overall accuracy equality and treatment equality no set of
four fairness definitions is possible (according to Definition 1).

Proof outline. If a set of four fairness definitions were possible, then all subsets of three out
of those four definitions should be possible. Based on Table 4, we can exhaustively verify
that this is not the case: no set of size four exists for which all its size three subsets are
possible. Thus, no possible combination of four fairness definitions exist.

3.4.1 P%-Rule

The compatibility of three fairness definitions with the p%-rule can be found by combining
the previous constraints of the combination of the p%-rule with two fairness definitions.
Simply put, the intersection of the possible values of p of all the combinations with two
of the relevant fairness definitions will constitute the range of possible values for p when
combined with three fairness definitions. It is not possible to satisfy three fairness definitions
and the p%-rule for every possible value of p. This can be deduced from the incompatibility
that no three fairness definitions can be extended with demographic parity, which can be
seen as the strictest form of the p%-rule.

3.5 Integration of the Results

Combining the propositions above, we now state the main result of this paper.

Theorem 1. Twelve sets form a maximal combination of fairness definitions that are pos-
sible according to Definition 1, out of demographic parity, equal opportunity, predictive
equality, predictive parity, false omission rate parity, overall accuracy equality and treat-
ment equality. We call these twelve combinations the maximal fairness notions. Seven
of these sets are pairwise combinations and five are a combination of three fairness defini-
tions. All subsets from these twelve sets are also possible.
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Proof outline. Figure 1 visualizes the sets of possible combinations out of the results in
Propositions 1, 2, and 3. This tree of possible sets contains twelve leaf nodes, meaning
that these twelve nodes are the maximal sets of possible fairness definitions. The nodes
representing a maximal set of fairness definitions are marked with an asterisk(*).

A relation is found between the possible combinations. This relation is shown in Ta-
ble 6. It shows how often each fairness definition is possible to combine with two others, is
impossible to combine as it requires a trivial 2-dimensional range for base rates, or requires
a trivial range either for the variables or a trivial 2-dimensional range for the base rates.

Table 6: The prevalence of each fairness definition when combined with two others as the
different characteristics of the outcome.

Definition Count possible
combinations

Count requiring
equal base rates

Count trivial range for
variables or base rates

Demographic Parity 1 3 11
Equal Opportunity 3 2 10
Predictive Equality 3 2 10
Predictive Parity 2 6 7
False Omission Rate
Parity

2 6 7

Overall accuracy
Equality

2 2 11

Treatment Equality 2 3 10

Table 6 reveals a symmetry between equal opportunity and predictive equality and also
between predictive parity and false omission rate parity. This symmetry is due to their
mathematical symmetry, as formalized by the following proposition.

Proposition 4. Given any possible combination of fairness definitions, another possible
combination can be obtained by swapping the semantics of the classes, i.e. by renaming the
positive class as the negative and vice versa.

Proof outline. When visualization fairness definitions on the confusion matrix, swapping
the positive and negative classes is equivalent to a point inversion at the center of the
confusion matrices. Figure 5 illustrates the point inversions of all possible combinations of
three fairness definitions, revealing the symmetric relation between them.

A formal proof follows from the symmetry relations between the individual fairness
definitions. Switching positives and negatives in the constraint of equal opportunity results
in the constraint for predictive equality, and vice versa. The same relation holds between
predictive parity and false omission rate parity. However, demographic parity becomes an
equivalent constraint to the original definition. The definitions of overall accuracy equality
and treatment equality remain unaffected by switching the positive and negative classes.

Proposition 4 explains the symmetry in Table 6 of equal opportunity with predictive
equality and of predictive parity with false omission rate parity. If for every possible com-
bination their inversion is also a possible combination, then for every possible combination
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Figure 5: Point inversion of the possible combinations of three fairness definitions.

with predictive parity there will be a possible combination with false omission rate parity.
The relation between equal opportunity and predictive equality is analogous.

Figure 5 shows that three, among the five maximal combinations of three fairness defi-
nitions, treat the positive and negative classes equally; they remain unaltered by swapping
the role of the positive and negative class. These three combinations are (DP, EOP, FPP),
(EOP, PP, OaE), and (PP, PE, OaE). The combinations (EOP, PP, Tr. Eq.) and (FPP,
PE, Tr. Eq.) treat the classes differently, and represent each other’s symmetrical analogue.

Finally, both Figure 1 and Table 6 indicate that possible combinations with demographic
parity are most rare. Demographic parity does not relate to the base rates of the groups as
it is independent from the ground truth. Therefore, it can only be combined with definitions
that relate directly to the base rates such as equal opportunity and predictive parity.

3.6 Relation to Existing Impossibility Theorems

Our work is congruent with previous impossibility theorems. The work of Chouldechova
(2016) states, it is not possible to have equal positive prediction values, false negative rates,
and false positive rates between groups for different the base rates. We call these definitions
predictive parity, predictive equality, and equalised odds. As can be seen in Figure 1, our
work comes to the same conclusion as the work of Chouldechova.

Another impossibility theorem of Kleinberg et al. (2016) is centred on scoring instead
of binary prediction. The incompatible fairness definitions for risk scoring can be mapped
onto binary prediction. Calibration is seen as predictive parity, balance for the negative
class as predictive equality, and balance for the positive class as equal opportunity. This
matches what Chouldechova (2016) proved and our results.

Barocas et al. (2019) state that demographic parity is not compatible with equalised
odds. Initially, this seems to contradict our results. However, Barocas et al. introduce the
constraint on combining fairness definitions that predictions cannot be independent from
the ground truth. As pointed out in Remark 3, this could be a desirable constraint for a
definition of compatibility, but was not adopted in Def. 1. Def. 1 focusses on the possibility
of finding a confusion matrix configuration satisfying multiple fairness definitions. Sec. 4
concerns the performance constrained seen when enforcing multiple fairness definitions.
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4. Analysis of The Fairness Combinations

The following section discusses the performance and characteristics of the combinations of
fairness definitions. We first discuss the maximal accuracies each group can achieve when
enforcing multiple fairness definitions. In the last section we discuss the performance in
more detail. We discuss the type of constraint that is posed on the confusion matrix in
order to provide some insight on the resulting behaviour of the system.

4.1 Performance Bounds of Combinations of Fairness Definitions

Enforcing a set of fairness definitions imposes extra constraints on the classifier. This might
affect the performance on the model. We discuss the effects each set of fairness definitions
will have on the accuracy for each group. Below, for the sake of the argument, we take the
positive class to be preferable over the negative class.

The calculations from Sections 3.2 and 3.3 can be reused to determine the minimal
and maximal accuracy a predictor can achieve. This performance is dependent on the
difference in base rates and for some combinations on the absolute values of the base rate.
This relation between the accuracies of both groups is visualized for some combinations of
fairness definitions in Figure 6.

Figure 6 shows that the behaviour of the accuracies vary greatly depending on the
combinations of fairness definitions. Such as for Figure 6a, the combination of demographic
parity with predictive parity, where for large differences between the base rates of groups
A and B, the performance for group A is greatly limited. Contrarily, the combination of
equal opportunity and predictive equality (Figure 6b) can achieve high performance for
both groups regardless of the difference in base rates.

The formulas to calculate the minimal and maximal accuracy for each feasible combina-
tion can be found in Table 7. In calculations of the maximal accuracy, the variable εx either
refers to the false positive or false negative rate within a specific group. For the minimal
accuracy it signifies the true positive and true negative rate.

From Table 7, we can see that the combinations with demographic do not have accuracies
within a the range [0, 1]. This range is dependant on the base rates. This means that a
perfect predictor is impossible while enforcing a set of fairness definitions that contains
demographic parity.

Example of Performance Influence with The COMPAS Dataset

We briefly show how these performance bounds have an effect on a real-world example. The
COMPAS dataset (Angwin et al., 2016) is used for this example as this was used in the
introduction. It has been argued that the COMPAS dataset is not appropriate to use in a
benchmarking setting (Fabris et al., 2022). However, this example is fictional and the only
information used in the subsequent calculations are the base rates.

We limit ourselves to two sensitive groups, namely Caucasian and African American.
The base rates are 0.43 and 0.54 respectively for the Caucasian and African American group.
The COMPAS case is peculiar as an individual prefers the negative prediction. Common
fairness use cases such as loan applications or job applications have a preferred positive
prediction. Therefore, the advantaged group is the Caucasian as it has a lower base rate.
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Table 7: The minimal and maximal accuracy of each possible combination of fairness def-
initions except for the combination of (PP, FORP) and (PP, FORP, OaE). εx denotes the
false positive or false positive for a specific group in the maximal accuracy calculations and
the true positive or true negative rates in the minimal accuracy calculations. The value of
εx is thus constrained by the properties of the set of combinations. Specific ranges can be
found in Appendix A and B.

Minimal accuracy Maximal Accuracy

Advantaged Disadvantaged Advantaged Disadvantaged

Pairwise Combinations

(DP, EOP)
x− y +

1+y−2x
1−y ε1 + ε2

ε1 + ε2
1 + y − x−

1+y−2x
1−y ε1 − ε2

1− ε1 − ε2

(DP, PE)
y − x+

2x−y
y ε2 + ε1

ε1 + ε2
1 + x− y −
y−2x
y ε2 − ε1

1− ε1 − ε2

(DP, PP) x− y + ε1 + ε2 ε1 + ε2 1+x−y−ε1−ε2 1− ε1 − ε2

(DP, FORP) y − x+ ε1 + ε2 ε1 + ε2 1−x+y−ε1−ε2 1− ε1 − ε2

(DP, OaE) 0 0 1− y−x
2 1− y−x

2

(DP, Tr. Eq.)
ε1 + ε2 +

(y−x)(1−ε1−ε2)
2∗y−1−ε2+ε1

ε1 + ε2
1− ε1 − ε2 −
(ε1+ε2)(x−y)

ε2−ε1

1− ε1 − ε2

(EOP, PE) 1−x
1−y ε1 +

x
y ε2 ε1 + ε2 1− 1−x

1−y ε1−
x
y ε2 1− ε1 − ε2

(EOP, FORP) 1−x
1−y (ε1 + ε2) ε1 + ε2

1−x
1−y (1−ε1−ε2) 1− ε1 − ε2

(EOP, OaE) 1−x
y−xε2 −

1−y
y−xε1

1−x
y−xε2 −

1−y
y−xε1 1− ε2 1− ε2

(PE, PP) x
y (ε1 + ε2) ε1 + ε2

x
y (1− ε1 − ε2) 1− ε1 − ε2

(PE, OaE) x
x−yε2 −

y
x−yε1

x
x−yε2 −

y
x−yε1 1− ε 1− ε

(PP, OaE) ε1 + ε2 ε1 + ε2 1− ε1 − ε2 1− ε1 − ε2

(FORP, OaE) ε1 + ε2 ε1 + ε2 1− ε1 − ε2 1− ε1 − ε2

(OaE, Tr. Eq.) ε1 + ε2 ε1 + ε2 1− ε1 − ε2 1− ε1 − ε2

Combination of three fairness definitions

(DP, EOP, PE) x+ 1−2∗x
1−y ε y + 1−2∗y

1−y ε 1− x− 1−2∗x
1−y ε 1− y − 1−2∗y

1−y ε

(EOP, PE, OaE) 1
yε

1
yε 1− ε

y 1− ε
y

(EOP, PP,
Tr. Eq.)

x−y
1−y +

1−x
1−y (ε1 + ε2)

ε1 + ε2
1− 1−x

1−y ε1 −
1−x
1−y ε2

1− ε1 − ε2

(PE, FORP,
Tr. Eq.)

y−x
y +x

y (ε1+ε2) ε1 + ε2 1− x
y ε1 −

x
y ε2 1− ε1 − ε2
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(a) (DP, PP) (b) (EOP, PE)

(c) (EOP, FORP) (d) (DP, OEP)

Figure 6: The maximal accuracies for groups A and B. We assume the base rate of group
A = 0.7 and FNa = 2 ∗ FPa (Reducing the complexity to allow for visualizations). White
regions in the graph denotes impossible results. Performance borders for group B are drawn
for the values 0.2, 0.4, 0.6 and 0.8.

We posit that the most interesting fairness definitions for this use case are Predictive
Equality and Predictive Parity as both these definitions aim to impose some type of parity
related to the false positives. We focus on these false positive as these are the worst possible
outcome for an individual. Figure 7 shows some examples of the performance characteristics
when enforcing a combination of fairness definitions.

The combination of Predictive Equality and Predictive Parity could seem opportune
in such a system. However, Figure 7d shows that the performance discrepancy between
groups for these base rates is large, which can be considered undesirable. The performance
of the fairness-unaware classifier often provides an upper bound (Liu & Vicente, 2022)
for the performance of a fairness-aware classifier, providing a likely accuracy region of the
fairness-aware classifier. For lower accuracy levels, a significant performance difference can
be observed for the combinations DP & PP (Fig. 7b) and PP & Tr.Eq. (Fig. 7f). Therefore,
these combinations can be seen as undesirable for lower accuracies.

The other three combinations of fairness definitions shown in Figure 7 exhibit more
preferable properties. Figure 7e shows that the combination PE & Tr.Eq. has a large
breadth of possible combinations, meaning that a desirable solution could be found. The
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(a) Enforcing DP and PE (b) Enforcing DP and PP (c) Enforcing EOP and PE

(d) Enforcing PE and PP (e) Enforcing PE and Tr. Eq. (f) Enforcing PP and Tr. Eq.

Figure 7: Possible range of results when enforcing a set of fairness constraints for the
COMPAS dataset for the groups of Caucasian and African American individuals.

combinations of DP & PE and EOP & PE, as shown in Figures 7a and 7c respectively, have
a fairly wide range of solutions and require smaller differences in the accuracies of the groups
compared to the other portrayed combinations of fairness definitions. From a performance
perspective this is desirable as there is no risk of sizeable performance differences between
sensitive groups when a model satisfies these combinations of fairness definitions.

Remark 4. The desired combination of fairness definitions should not be determined based
on performance. A choice of fairness definitions is an ethical choice that has to be made in-
dependently. However, negative influences on the performance of the model might eliminate
certain combinations from consideration.

4.2 Behaviour of Feasible Combinations of Fairness Definitions

The calculations in Sections 3.2 and 3.3 allow to group the sets of possible combinations
based on the resulting constraints that are imposed on the confusion matrices. Five distinct
behaviour types and their correspondent sets are noted in Table 8.

An example for each of the behaviour types identified in Table 8 is provided in Ta-
bles 9 and 9c in the form of the resulting confusion matrices when enforcing such a set of
fairness definitions. We discuss these behaviour in the remainder of this section.

Lower bound on one variable A lower bound is imposed on one variable in the con-
fusion matrix. This lower bound is dependent on the base rates of the groups. The lower
bound is primarily dependent on the difference in base rates when combining two fairness
definitions. An example of such behaviour in the confusion matrix can be found in Table 9a.
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Table 8: The different feasible combinations of fairness definitions sorted on the behaviour
they exhibit in the confusion matrices

Behaviour type Combinations of fairness definitions

Lower bound on one variable (DP, PP) (DP, FORP) (DP, OaE) (DP, EOP, PE)
Trade-off between errors (DP, EOP) (DP, PE) (PP, OaE) (FORP, OaE)

(EOP, OaE) (PE, OaE)
Factor on the accuracy (EOP, FORP) (PE, PP)
Factor on the error (EOP, PP, Tr.Eq.) (PE, FORP, Tr. Eq.)

(EOP, PE, OaE) (EOP, PE)
No effect (OaE, Tr. Eq.)

It shows that there will either be false negatives for the one group or for the other group as
it is impossible to satisfy both y − x− ε1 = 0 and ε1 = 0 if the base rates differ.

The combination of demographic parity, equalised opportunity, and predictive equality
also contains a lower bound, though on the false positives. Unlike the combinations with
two fairness definitions, the relation between the base rates and the lower bound is more
complicated as can be seen in Table 9b.

Trade-off between errors Two errors of the other group contribute to one of the vari-
ables in the confusion matrix. In this case, the value from one errors constrains the possible
range of values for the other error. An example is shown in Table 9c for the combination
of predictive parity and overall accuracy equality. The presence of x − y in the equation
means that the difference in base rates will influence the possible ranges of these errors.

Factor on the TP/TN True positives or true negatives are related through a multiplica-
tive factor, derived from the base rates. An example of this relation on the true negatives
is shown in Table 9d. Unless the base rate are equal, this causes that no perfect accuracy
can be achieved for one of the groups. This can also be seen in Table 7, as the combinations
EOP & FORP and PE & PP have that factor in their maximal accuracy.

Factor on the error This is closely related to the previous behaviour, however the factor
is on the errors. Although similar, this characteristic does not impose the same limitation
on the accuracies of the groups. If one group has perfect accuracy, then the other group
will too, as all errors will be zero. An example of this can be found in Table 9e.

No effect Only the combination of overall accuracy equality and treatment equality have
no special properties are present on the confusion matrix, as can be seen in Table 9f.

5. Conclusion

We investigated which and how many fairness definitions can be combined and imposed
simultaneously for the simple setting of binary classification. We find that out of seven
fairness definitions, namely demographic parity, equal opportunity, predictive equality, pre-
dictive parity, false omission rate parity, overall accuracy equality and treatment equality,
in total twelve maximal combinations are possible. Five of these maximal combinations
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(a) Lower bound on one variable: Demographic parity and predictive parity

Group A with base rate: 1− x
Predicted

Pos. Neg.

True
Pos. 1− y − ε1 y − x+ ε1
Neg. ε2 x− ε2

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. 1− y − ε1 ε1
Neg. ε2 y − ε2

(b) Lower bound on one variable: Demographic parity, equalised odds and predictive equality.

Group A with base rate: 1− x
Predicted
Pos. Neg.

True
Pos. 1− x− 1−x

1−y ε
1−x
1−y ε

Neg. x− x
1−yε

x
1−yε

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. 1− y − ε ε

Neg. y − y
1−yε

y
1−yε

(c) Trade-off between errors: Predictive parity and overall accuracy equality

Group A with base rate: 1− x
Predicted

Pos. Neg.

True
Pos. ε1

y−x
ε1−ε2

+ ε1 1− x− ε1
y−x
ε1−ε2

− ε1

Neg. ε1 x− ε1

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. ε2

y−x
ε1−ε2

+ ε2 1− y − ε2
y−x
ε1−ε2

− ε2

Neg. ε2 y − ε2

(d) Factor on the TP/TN: Equal opportunity and false omission rate parity.

Group A with base rate: 1− x
Predicted

Pos. Neg.

True
Pos. 1− x− 1−x

1−y ε1
1−x
1−y ε1

Neg. x− 1−x
1−y (y − ε2)

1−x
1−y (y − ε2)

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. 1− y − ε1 ε1
Neg. ε2 y − ε2

(e) Factor on the error: Equal opportunity and predictive equality.

Group A with base rate: 1− x
Predicted

Pos. Neg.

True
Pos. 1− x− 1−x

1−y ε1
1−x
1−y ε1

Neg. x
y ε2 x− x

y ε2

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. 1− y − ε1 ε1
Neg. ε2 y − ε2

(f) No effect: Overall accuracy equality and treatment equality.

Group A with base rate: 1− x
Predicted

Pos. Neg.

True
Pos. 1− x− ε1 ε1
Neg. ε2 x− ε2

Group B with base rate: 1− y
Predicted

Pos. Neg.

True
Pos. 1− y − ε1 ε1
Neg. ε2 y − ε2

Table 9: Examples of the different behaviour types identified in Table 8 and their corre-
sponding confusion matrices. 1−x, 1− y are the base rates of groups A and B respectively.
εx denotes an error of some type, and functions as a variable.
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consist of three fairness definitions, while seven of them consist of just two fairness defi-
nitions. Each of these sets could be regarded as maximal fairness notions, which means
that it is not possible to impose any further of the discussed fairness constraints without
the problem becoming infeasible. Evidently, all subsets of these twelve maximal sets are
also possible combinations of fairness definitions. An overview of the possible combinations,
maximal as well as non-maximal, and their subset relations, is given in Figure 1. Our results
confirm and extend related work, such as the theorem colloquially referred to as the fairness
impossibility theorem.

We consider the five maximal sets of three fairness definitions as particularly interesting.
Of these five, three treat the positive and negative classes symmetrically, in that they remain
unaltered after swapping the class labels. The remaining two are each other’s symmetrical
analogue: one of these two sets of fairness definitions is equivalent to the other set after
swapping the class labels. These properties are shown in Figure 5. They can provide initial
guidance to determine which set of fairness notions is most appropriate in a given setting: if
the costs of different types of misclassifications are very different, one of the sets of fairness
notions that are not invariant with respect to a label swap might be more appropriate.

Furthermore, we investigated the properties of the possible combinations. This included
the effects they have on the accuracy of the classifier for each of the groups. Those results
showed that certain combinations of fairness definitions are impractical if the difference
between the base rates are too large. Additionally, we studied the type of effect the possible
combinations had on the confusion matrix and how they constrain the confusion matrices.
Five behaviour types could be discerned.

An important next step building on these results would be to develop methods that
are capable of imposing these (maximal) sets of fairness definitions. Subsequently, it would
be interesting to investigate the impact of imposing (maximal) sets of fairness definitions
on the learning capabilities (e.g. learning rate and convergence rate) of machine learning
methods.

A separate line of further work would be towards including other fairness definitions, in
addition to the seven definitions included in this work. Moreover, we consider extensions
towards other problems besides binary classification as fruitful avenues for further research.

Finally, and perhaps most importantly, the meaning of the maximal fairness notions
derived in the present paper needs to be better understood from an ethical and/or legal
point of view. This is an important aspect of research in fairness in AI as this translation
to real world concepts is a pre-requisite for wide-spread adoption.
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Appendix A. Combining two definitions

A.1 Equal Opportunity and Demographic Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
TPa

TPa+FNa
= TPb

TPb+FNb
TPa+FPa

TPa+FPa+FNa+TNa
= TPb+FPb

TPb+FPb+FNb+TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
TPa
1−x = TPb

1−y

TPa + FPa = TPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = TPb + FPb − 1−x
1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = (1− 1−x
1−y )TPb + FPb

⇐⇒



FNa = 1− x− 1−x
1−yTPb

TNa = x− x−y
1−yTPb − FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

A.1.1 Applying Inequalities

0 ≤ 1− x− 1−x
1−yTPb

1− x− 1−x
1−yTPb ≤ 1− x

0 ≤ x− x−y
1−yTPb − FPb

x− x−y
1−yTPb − FPb ≤ x

0 ≤ 1− y − TPb

1− y − TPb ≤ 1− y

0 ≤ y − FPb

y − FPb ≤ y

0 ≤ 1−x
1−yTPb

1−x
1−yTPb ≤ 1− x

0 ≤ x−y
1−yTPb + FPb

x−y
1−yTPb + FPb ≤ x

⇐⇒



1
1−yTPb ≤ 1
1−x
1−yTPb ≥ 0

FPb ≤ x+ −x+y
1−y TPb

−x+y
1−y TPb ≤ FPb

TPb ≤ 1− y

TPb ≥ 0

FPb ≤ y

FPb ≥ 0

0 ≤ 1−x
1−y

1
1−yTPb ≤ 1
y−x
1−y ≤ FPb

TPb

FPb +
x−y
1−yTPb ≤ x

⇐⇒

{
y−x
1−y ≤ FPb

TPb

FPb +
x−y
1−yTPb ≤ x
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A.2 Demographic Parity and Predictive Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa + FPa = TPb + FPb

FPa = x
yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

TPa = TPb + (1− x
y )FPb

⇐⇒



FNa = 1− x− y−x
y FPb − TPb

TNa = x− x
yFPb

FNb = 1− y − TPb

TNb = y − FPb

FPa = x
yFPb

TPa = y−x
y FPb + TPb

A.2.1 Added Constraints through Inequalities

{
x−y
y ≤ TPb

FPb

1− x ≥ y−x
y FPb + TPb

A.3 Demographic Parity and Predictive Parity



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa ∗ FPb = TPb ∗ FPa

TPa + FPa = TPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb
TPb∗FPa

FPb
+ FPa = TPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb
FPb+TPb

FPb
∗ FPa = TPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb

FPa = FPb ∨ FPb + TPb = 0
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⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

∨



FNa = 1− x− FPa

TNa = x− FPa

FNb = 1− y

TNb = y

TPa = FPa

FPb = TPb = 0

A.3.1 Added Constraints through Inequalities{
1− x ≥ TPb

x ≥ FPb

A.4 Demographic Parity and False Omission Rate Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa ∗ TNb = FNb ∗ TNa

TPa + FPa = TPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb

1− FNa − TNa = 1− FNb − TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb

FNa + TNa = FNb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb
FNb∗TNa

TNb
+ TNa = FNb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb
FNb+TNb

TNb
∗ TNa = FNb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = TNb ∨ FNb = TNb = 0

FNa = FNb∗TNa

TNb
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⇐⇒



TPa = 1− x− FNa

FPa = x− FNa

TPb = 1− y

FPb = y

FNb = TNb = 0

FNa = TNa

∨



TPa = 1− x− FNb

FPa = x− TNb

TPb = 1− y − FNb

FPb = y − TNb

TNa = TNb

FNa = FNb

A.4.1 Added Constraints through Inequalities{
FNb ≤ 1− x

TNb ≤ x

A.5 Demographic Parity and Overall accuracy Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa + FPa = TPb + FPb

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa − TPb = FPb − FPa

TPa − TPb = TNb − TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNb − TNa = FPb − FPa

TPa − TPb = FPb − FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

y − FPb − x+ FPa = FPb − FPa

TPa − TPb = FPb − FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

y − x = 2FPb − 2FPa

TPa − TPb = FPb − FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPb − FPa = y−x
2

TPa − TPb =
y−x
2

⇐⇒



FNa = 1− x− TPb − y−x
2

TNa = x− FPb − x−y
2

FNb = 1− y − TPb

TNb = y − FPb

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2
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A.5.1 Added Constraints through Inequalities
TPb ≤ 1− x+y

2

TPb ≥ x−y
2

FPb ≤ x+y
2

FPb ≥ y−x
2

A.6 Demographic Parity and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa + FPa = TPb + FPb

FNa
FPa

= FNb
FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FNa∗FPb
FNb

1− x− FNa +
FNa∗FPb

FNb
= 1− y − FNb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FNa∗FPb
FNb

FPb−FNb
FNb

FNa = x− y + FPb − FNb

⇐⇒



TPa = 1− x− FNb(
x−y

FPb−FNb
+ 1)

TNa = x− FPb(
x−y

FPb−FNb
+ 1)

TPb = 1− y − FNb

TNb = y − FPb

FNa = FNb(
x−y

FPb−FNb
+ 1)

FPa = FPb(
x−y

FPb−FNb
+ 1)

∨



TPa = 1− x− FNa

TNa = x− FNa

TPb = 1− y − FNb

TNb = y − FNb

FPb = FNb

x = y

FPa = FNa

A.6.1 Added Constraints through Inequalities
x−y

FPb−FNb
≥ −1

1− x ≥ FNb

x ≥ FPb
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A.7 Equalised Odds

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa
FPa+TNa

= FPb
FPb+TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa
x = FPb

y

⇐⇒



FNa = 1− x− 1−x
1−yTPb

TNa = x− x
yFPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = 1−x
1−yTPb

FPa = x
yFPb

A.8 Equal Opportunity and Predictive Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TPa
TPa+FPa

= TPb
TPb+FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TPa ∗ FPb = TPb ∗ FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

1−x
1−y ∗ TPb ∗ FPb = TPb ∗ FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

1−x
1−yFPb = FPa ∨ TPb = 0

⇐⇒



FNa = 1− x− 1−x
1−yTPb

TNa = x− 1−x
1−yFPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = 1−x
1−yTPb

FPa = 1−x
1−yFPb

∨



FNa = 1− x

TNa = x− FPa

FNb = 1− y

TNb = y − FPb

TPa = 0

TPb = 0

A.8.1 Added Constraint through Inequalities

FPb ≤ x
1− y

1− x
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A.9 Equal Opportunity and False Omission Rate Parity



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FNa
FNa+TNa

= FNb
FNb+TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FNa ∗ TNb = FNb ∗ TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

1− x− FNa = 1−x
1−y (1− y − FNb)

FNa ∗ TNb = FNb ∗ TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

1−x
1−yFNb ∗ TNb = FNb ∗ TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

1−x
1−yTNb = TNa ∨ FNb = 0

⇐⇒



TPa = 1− x− 1−x
1−yFNb

FPa = x− 1−x
1−yTNb

TPb = 1− y − FNb

FPb = y − TNb

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

∨



TPa = 1− x

FPa = x− TNa

TPb = 1− y

FPb = y − TNb

FNa = 0

FNb = 0

A.9.1 Added Constraint through Inequalities

TNb ≤
1− y

1− x
∗ x
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A.10 Equal Opportunity and Overall accuracy equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

1−x
1−yTPb − TPb = TNb − TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

y−x
1−yTPb = TNb − TNa

⇐⇒



FNa = 1− x− 1−x
y−x(TNb − TNa)

FPa = x− TNa

FNb = 1− y − 1−y
y−x(TNb − TNa)

FPb = y − TNb

TPa = 1−x
y−x(TNb − TNa)

TPb =
1−y
y−x(TNb − TNa)

A.10.1 Added Constraints through Inequalities


y > x

TNa ≤ TNb

y − x ≥ TNb − TNa

∨


x > y

TNb ≤ TNa

y − x ≤ TNb − TNa

A.11 Equal Opportunity and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FNa
FPa

= FNb
FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

1−x
1−y

FNb
FPa

= FNb
FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb ∨ FNb = 0
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⇐⇒



TPa = 1− x− 1−x
1−yFNb

TNa = x− 1−x
1−yFPb

TPb = 1− y − FNb

TNb = y − FPb

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb

∨



TPa = 1− x

TNa = x− FPa

TPb = 1− y

TNb = y − FPb

FNa = 0

FNb = 0

A.11.1 Added Constraints through Inequalities

1− y

1− x
x ≥ FPb

A.12 Predictive Equality and Predictive Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

TPa ∗ FPb = TPb ∗ FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

TPa ∗ FPb = TPb ∗ x
yFPb

⇐⇒



FNa = 1− x− TPa

TNa = x− x
yFPb

FNb = 1− y − TPb

TNb = y − FPb

FPa = x
yFPb

TPa = x
yTPb ∨ FPb = 0

A.12.1 Added Constraints through Inequalities

y

x
(1− x) ≥ TPb

A.13 Predictive Equality and False Omission Rate Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa ∗ TNb = FNb ∗ TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

x− TNa = x
y (y − TNb)

FNa ∗ TNb = FNb ∗ TNa
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

FNa ∗ TNb = FNb ∗ x
y ∗ TNb

⇐⇒



TPa = 1− x− FNa

FPa = x− x
yTNb

TPb = 1− y − FNb

FPb = y − TNb

TNa = x
yTNb

FNa = x
yFNb ∨ TNb = 0

A.13.1 Added Constraints through Inequalities

y

x
(1− x) ≥ FNb

A.14 Predictive Equality and Overall accuracy Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa +
x
yTNb = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

x−y
y TNb = TPb − TPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNb =
y

x−y (TPb − TPa)

TNa = x
y

y
x−y (TPb − TPa)

⇐⇒



FNa = 1− x− TPa

FPa = x− x
x−y (TPb − TPa)

FNb = 1− y − TPb

FPb = y − y
x−y (TPb − TPa)

TNb =
y

x−y (TPb − TPa)

TNa = x
x−y (TPb − TPa)

A.14.1 Added Constraints through Inequalities
x > y

TPa ≤ TPb

x− y ≥ TPb − TPa

∨


x < y

TPa ≥ TPb

x− y ≤ TPb − TPa
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A.15 Predictive Equality and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa
FPa

= FNb
FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa ∗ FPb = FNb ∗ x
y ∗ FPb

⇐⇒



TPa = 1− x− FNa

TNa = x− x
yFPb

TPb = 1− y − FNb

TNb = y − FPb

FPa = x
yFPb

FNa = x
y ∗ FNb ∨ FPb = 0

A.15.1 Added Constraints through Inequalities

y

x
(1− x) ≥ FNb

A.16 Predictive Parity and False Omission Rate Parity



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPbFPa

FPb

FNa = FNbTNa

TNb

A.17 Predictive Parity and Overall accuracy Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa ∗ FPb = TPb ∗ FPa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb
TPb∗FPa

FPb
+ x− FPa = TPb + y − FPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb
FPa−FPb

FPb
TPb = y − x+ FPa − FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb

TPb = FPb
y−x

FPa−FPb
+ FPb ∨ (FPa = FPb ∧ x = y)

⇐⇒



FNa = 1− x− FPa
y−x

FPa−FPb
− FPa

TNa = x− FPa

FNb = 1− y − FPb
y−x

FPa−FPb
− FPb

TNb = y − FPb

TPb = FPb
y−x

FPa−FPb
+ FPb

TPa = FPa
y−x

FPa−FPb
+ FPa

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb ∧ x = y

A.17.1 Added Constraints through Inequalities
1− y ≥ 1− x

FPa ≥ FPb
1−y−FPa

1−x−FPa
≥ FPb

FPa
1−y+FPb
1−x+FPb

≥ FPb
FPa

∨


1− y ≤ 1− x

FPa ≤ FPb
1−y−FPa

1−x−FPa
≤ FPb

FPa
1−y+FPb
1−x+FPb

≤ FPb
FPa

A.18 Predictive Parity and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa ∗ FPb = TPb ∗ FPa

FNa ∗ FPb = FNb ∗ FPa
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗FPa

FPb

(1− x− FNb∗FPa

FPb
) ∗ FPb = (1− y − FNb) ∗ FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗FPa

FPb

FPb − xFPb − FNb ∗ FPa = FPa − yFPa − FNb ∗ FPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗FPa

FPb

FPb − xFPb = FPa − yFPa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗FPa

FPb

FPa = 1−x
1−yFPb

⇐⇒



TPa = 1− x− 1−x
1−yFNb

TNa = x− 1−x
1−yFPb

TPb = 1− y − FNb

TNb = y − FPb

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb

A.18.1 Added Constraints through Inequalities

1− y

1− x
x ≥ FPb

A.19 False Omission Rate Parity and Overall accuracy Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa ∗ TNb = FNb ∗ TNa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb

x+ FNa − TNa = y + FNb − TNb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb
TNb−FNb

TNb
TNa = x− y + TNb − FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = TNb
x−y

TNb−FNb
+ TNb ∨ (TNb = FNb ∧ x = y)

FNa = FNb∗TNa

TNb

⇐⇒



TPa = 1− x− FNb
x−y

TNb−FNb
− FNb

FPa = x− TNb
x−y

TNb−FNb
− TNb

TPb = 1− y − FNb

FPb = y − TNb

TNa = TNb
x−y

TNb−FNb
+ TNb

FNa = FNb
x−y

TNb−FNb
+ FNb

∨



TPa = 1− x− TNa

FPa = x− TNa

TPb = 1− y − FNb

FPb = y − FNb

TNb = FNb ∧ x = y

FNa = TNa

A.19.1 Added Constraints through Inequalities
TNb ≥ FNb

y ≥ x
x−TNb
y−TNb

≤ TNb
FNb

1−x−FNb
1−y−FNb

≥ FNb
TNb

∨


TNb ≤ FNb

y ≤ x
x−TNb
y−TNb

≥ TNb
FNb

1−x−FNb
1−y−FNb

≤ FNb
TNb

A.20 False Omission Rate Parity and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa ∗ TNb = FNb ∗ TNa

FNa
FPa

= FNb
FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = FNb∗TNa

TNb

FNa = FNb∗FPa

FPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
FNb∗FPa

FPb
= FNb∗TNa

TNb

FNa = FNb∗TNa

TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa ∗ FPb = TNb ∗ FPa ∨ FNb = 0

FNa = FNb∗TNa

TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa(y − TNb) = TNb(x− TNa) ∨ FNb = 0

FNa = FNb∗TNa

TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb ∨ FNb = 0

FNa = FNb∗TNa

TNb

⇐⇒



TPa = 1− x− x
yFNb

FPa = x− x
yTNb

TPb = 1− y − FNb

FPb = y − TNb

TNa = x
yTNb

FNa = x
yFNb

∨



TPa = 1− x

TNa = x− FPa

TPb = 1− y

TNb = y − FPb

FNb = 0

FNa = 0

A.20.1 Added Constraints through Inequalities

y

x
(1− x) ≥ TNb

A.21 Overall accuracy Equality and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa + FNa = FPb + FNb

FNa = FNb∗FPa

FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa +
FNb∗FPa

FPb
= FPb + FNb

FNa = FNb∗FPa

FPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa
FPb+FNb

FPb
= FPb + FNb

FNa = FNb∗FPa

FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb ∨ FPb = FNb = 0

FNa = FNb∗FPa

FPb

⇐⇒



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

FPa = FPb

FNa = FNb

∨



TPa = 1− x

TNa = x− FPa

TPb = 1− y

TNb = y

FPb = FNb = 0

FNa = 0

A.21.1 Added Constraints through Inequalities{
x ≥ FPb

1− x ≥ FNb

Appendix B. Combining Three Definitions

B.1 Demographic Parity and Equalised Odds

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TPa = y−x
y FPb + TPb

FPa = x
yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

x
yFPb =

x−y
1−yTPb + FPb

1−x
1−yTPb =

y−x
y FPb + TPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

x−y
y FPb =

x−y
1−yTPb

1−x−1+y
1−y TPb =

y−x
y FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

FPb =
y

1−yTPb ∨ x = y
y−x
1−yTPb =

y−x
y FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

FPb =
y

1−yTPb

y−x
1−yTPb =

y−x
y

y
1−yTPb

∨



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

x = y

0 = 0

⇐⇒



FNa = 1− x− 1−x
1−yTPb

TNa = x− x
1−yTPb

FNb = 1− y − TPb

TNb = y − y
1−yTPb

TPa = 1−x
1−yTPb

FPa = x
1−yTPb

FPb =
y

1−yTPb

TPb = TPb

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

0 = 0

B.2 Demographic Parity, Equal Opportunity and Predictive Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TPa = TPb

FPa = FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPa

TPa = TPb

FPa = FPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

x−y
1−yTPb = 0

TPa = TPb

FPa = FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

x− y = 0 ∨ TPb = 0

TPa = TPb

FPa = FPb

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

x = y

TPa = TPb

TPa = TPb

FPa = FPb

∨



FNa = 1− x

TNa = x− FPb

FNb = 1− y

TNb = y − FPb

TPb = 0

TPa = 0

TPa = 0

FPa = FPb

B.3 Demographic Parity, Equal Opportunity and False Omission Rate Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TNa = TNb

FNa = FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

−FPa = −x+ y − FPb

−TPa = −1 + x+ 1− y − TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = −x+ y + TPb

−x+ y + TPb =
1−x
1−yTPb

x− y + FPb =
x−y
1−yTPb + FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = −x+ y + TPb

−x+ y = y−x
1−yTPb

x− y = x−y
1−yTPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = −x+ y + TPb

1 = 1
1−yTPb ∨ x = y

1 = 1
1−yTPb ∨ x = y

⇐⇒



FNa = 0

TNa = y − FPb

FNb = 0

TNb = y − FPb

FPa = x− y + FPb

TPa = 1− x

TPb = 1− y

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

FPa = FPb

TPa = TPb

x = y

B.4 Demographic Parity, Equal Opportunity and Overall accuracy Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

x−y
1−yTPb + FPb = FPb +

x−y
2

1−x
1−yTPb = TPb +

y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

x−y
1−yTPb =

x−y
2

y−x
1−yTPb =

y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

x−y
1−yTPb =

x−y
2
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

TPb =
1−y
2 ∨ x = y

⇐⇒



FNa = 1−x
2

TNa = x− x−y
2 − FPb

FNb =
1−y
2

TNb = y − FPb

TPa = 1−x
2

FPa = x−y
2 + FPb

TPb =
1−y
2

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

B.5 Demographic Parity, Equal Opportunity and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x−y
1−yTPb + FPb

FNa = FNb(
x−y

FPb−FNb
+ 1)

FPa = FPb(
x−y

FPb−FNb
+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x−y
1−y (1− y − FNb) + FPb

FNa = FNb(
x−y

FPb−FNb
+ 1)

FPa = FPb(
x−y

FPb−FNb
+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

1−x
1−yFNb = FNb(

x−y
FPb−FNb

+ 1)

x− y − x−y
1−yFNb + FPb = FPb(

x−y
FPb−FNb

+ 1)
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

1−x
1−y = ( x−y

FPb−FNb
+ 1) ∨ FNb = 0

x− y − x−y
1−yFNb = FPb(

x−y
FPb−FNb

)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

− 1
1−y = 1

FPb−FNb
∨ FNb = 0 ∨ x = y

(x− y)(1− 1
1−yFNb) = FPb

x−y
FPb−FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

−1 + y = FPb − FNb ∨ FNb = 0 ∨ x = y

1− 1
1−yFNb =

FPb
FPb−FNb

∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

−1 + y = FPb − FNb ∨ FNb = 0 ∨ x = y

FPb − FNb − 1
1−y (FPb − FNb)FNb = FPb ∨ x = y
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

−1 + y = FPb − FNb ∨ FNb = 0 ∨ x = y

−1− 1
1−y (FPb − FNb) = 0 ∨ x = y ∨ FNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

−1 + y = FPb − FNb ∨ FNb = 0 ∨ x = y

FPb − FNb = −1 + y ∨ x = y ∨ FNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb + FPb

FPb = −1 + y + FNb ∨ FNb = 0 ∨ x = y

⇐⇒



TPa = 1− x− 1−x
1−yFNb

TNa = y + x−y
1−yFNb

FNb = 1− y

TNb = y

FNa = 1−x
1−yFNb

FPa = x− y − x−y
1−yFNb

FPb = −TPb = 0

∨



TPa = 1− x

TNa = y + FPb

TPb = 1− y

TNb = y − FPb

FNa = 0

FPa = x− y − FPb

FNb = 0

∨



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

FNa = FNb

FPa = FPb

x = y
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B.6 Demographic Parity, Predictive Equality and Predictive Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

TPa = TPb

FPa = FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPb =
y−x
y FPb + TPb

FPb =
x
yFPb

TPa = TPb

FPa = FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

0 = y−x
y FPb

1 = x
y ∨ FPb = 0

TPa = TPb

FPa = FPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

x = y ∨ FPb = 0

x = y ∨ FPb = 0

TPa = TPb

FPa = FPb

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

x = y

TPa = TPb

FPa = FPb

∨



FNa = 1− x− TPb

TNa = x

FNb = 1− y − TPb

TNb = y

FPb = 0

TPa = TPb

FPa = 0

B.7 Demographic Parity, Predictive Equality and False Omission Rate Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

TNa = x
yTNb

TNa = TNb

FNa = FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

TNb =
x
yTNb

TNa = TNb

−TPa = −1 + x+ 1− y − TPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

1 = x
y ∨ TNb = 0

TNa = TNb

TPa = −x+ y + TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

−x+ y + TPb =
y−x
y FPb + TPb

x = y ∨ TNb = 0

TNa = TNb

TPa = −x+ y + TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

−x+ y = y−x
y FPb

x = y ∨ TNb = 0

TNa = TNb

TPa = −x+ y + TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

1 = 1
yFPb ∨ x = y

x = y ∨ TNb = 0

TNa = TNb

TPa = −x+ y + TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

y = FPb ∨ x = y

x = y ∨ TNb = 0

TNa = TNb

TPa = −x+ y + TPb

⇐⇒



FNa = 1− x− TPb

FPa = x− TNb

FNb = 1− y − TPb

FPb = y − TNb

x = y

x = y

TNa = TNb

TPa = TPb

∨



FNa = 1− y − TPb

FPa = x

FNb = 1− y − TPb

0 = 0

FPb = y

TNb = 0

TNa = 0

TPa = −x+ y + TPb
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B.8 Demographic Parity, Predictive Equality and Overall accuracy Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

TPa = TPb +
y−x
2

FPa = FPb +
x−y
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

y−x
y FPb + TPb = TPb +

y−x
2

x
yFPb = FPb +

x−y
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

y−x
y FPb =

y−x
2

x−y
y FPb =

x−y
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

1
yFPb =

1
2 ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

FPb =
y
2 ∨ x = y

⇐⇒



FNa = 1− x− y−x
2 − TPb

TNa = x
2

FNb = 1− y − TPb

TNb =
y
2

TPa = y−x
2 + TPb

FPa = x
2

FPb =
y
2

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y
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B.9 Demographic Parity, Predictive Equality and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = y−x
y FPb + TPb

FPa = x
yFPb

FNa = FNb ∗ ( x−y
FPb−FNb

+ 1)

FPa = FPb ∗ ( x−y
FPb−FNb

+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

−FNa = x− y − FNb +
y−x
y FPb

FPa = x
yFPb

x
yFPb = FPb ∗ ( x−y

FPb−FNb
+ 1)

FNa = FNb ∗ ( x−y
FPb−FNb

+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

x
y = ( x−y

FPb−FNb
+ 1) ∨ FPb = 0

y − x+ FNb − y−x
y FPb = FNb ∗ ( x−y

FPb−FNb
+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

x−y
y = x−y

FPb−FNb
∨ FPb = 0

y − x− y−x
y FPb = FNb ∗ ( x−y

FPb−FNb
)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x− y = 0

1− 1
yFPb = −FNb ∗ 1

FPb−FNb
∨ x = y
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x− y = 0

y − FPb = −yFNb ∗ 1
FPb−FNb

∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x− y = 0

yFPb − yFNb − FP 2
b + FNbFPb = −yFNb ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x− y = 0

yFPb − FP 2
b + FNbFPb = 0 ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x = y

y − FPb + FNb = 0 ∨ x = y ∨ FPb = 0
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPb − FNb = y ∨ FPb = 0 ∨ x = y

FPb − FNb = y ∨ x = y ∨ FPb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FNb = FPb − y ∨ FPb = 0 ∨ x = y

⇐⇒



TPa = 1− x− FNa

TNa = x− FPa

TPb = 1− y − FNb

TNb = y − FPb

FNb = FPb − y

FNa = −x(1− 1
yFPb)

FPa = x
yFPb

∨



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb − y−x
y FPb

FPa = x
yFPb

FPa = 0 ∨ FPa = FPb

⇐⇒



TPa = 1− x

TNa = 0

TPb = 1− y

TNb = 0

FNb = 0

FNa = 0, FPb = y

FPa = x

∨



TPa = 1− y − FNb

TNa = x

TPb = 1− y − FNb

TNb = y

FPb = 0

FNa = y − x+ FNb

FPa = 0

∨



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

x = y

FNa = FNb

FPa = FPb
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B.10 Demographic Parity, Predictive Parity and False Omission Rate Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

TNa = TNb

FNa = FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

x− FPa = y − FPb

1− x− TPa = 1− y − TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

x− FPa = y − FPa

−x− TPa = −y − TPa

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

x = y

B.11 Demographic Parity, Predictive Parity and Overall Accuracy equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

FPa = FPa +
x−y
2

TPa = TPa +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

0 = x−y
2

0 = y−x
2

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

x = y
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B.12 Demographic Parity, Predictive Parity and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb

FPa = FPb

FNa = FNb ∗ ( x−y
FPb−FNb

+ 1)

FPa = FPb ∗ ( x−y
FPb−FNb

+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

1− x− FNa = 1− y − FNb

FPa = FPb

FNa = FNb ∗ ( x−y
FPb−FNb

+ 1)

FPb = FPb ∗ ( x−y
FPb−FNb

+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb

FPa = FPb

y − x+ FNb = FNb ∗ ( x−y
FPb−FNb

+ 1)

1 = x−y
FPb−FNb

+ 1 ∨ FPb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = y − x+ FNb

FPa = FPb

y − x = FNb ∗ ( x−y
FPb−FNb

)

x = y ∨ FPb = 0

⇐⇒



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

FNa = FNb

FPa = FPb

0 = 0

x = y

∨



TPa = 1− y − FNb

TNa = x

TPb = 1− y − FNb

TNb = y

FNa = y − x+ FNb

FPa = FPb = 0

y − x = −(x− y)

FPb = 0
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B.13 Demographic Parity, False Omission Rate Parity and Overall accuracy
Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = TNb

FNa = FNb

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

x− FPa = y − FPb

1− x− TPa = 1− y − TPb

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = y − x+ TPb

x− y + FPb = FPb +
x−y
2

y − x+ TPb = TPb +
y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = y − x+ TPb

x− y = x−y
2

y − x = y−x
2

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

TPa = y − x+ TPb

x = y

x = y

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

FPa = FPb

TPa = TPb

x = y

B.14 Demographic Parity, False Omission Rate Parity and Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

FNa = FNb(
x−y

FPb−FNb
+ 1)

FPa = FPb(
x−y

FPb−FNb
+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

FNb = FNb(
x−y

FPb−FNb
+ 1)

x− y + FPb = FPb(
x−y

FPb−FNb
+ 1)
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

1 = x−y
FPb−FNb

+ 1 ∨ FNb = 0

x− y = FPb
x−y

FPb−FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

0 = x−y
FPb−FNb

∨ FNb = 0

1 = FPb
FPb−FNb

∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

x = y ∨ FNb = 0

FPb − FNb = FPb ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x− y + FPb

FNa = FNb

x = y ∨ FNb = 0

FNb = 0 ∨ x = y

⇐⇒



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

FPa = FPb

FNa = FNb

x = y

∨



TPa = 1− x

TNa = y − FPb

TPb = 1− y

TNb = y − FPb

FPa = x− y + FPb

FNa = 0

FNb = 0

B.15 Demographic Parity, Overall accuracy Equality and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

TPa = TPb +
y−x
2

FNa = FNb(
x−y

FPb−FNb
+ 1)

FPa = FPb(
x−y

FPb−FNb
+ 1)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = y − x+ FNb − y−x
2

y − x+ FNb − y−x
2 = FNb(

x−y
FPb−FNb

+ 1)

FPb +
x−y
2 = FPb(

x−y
FPb−FNb

+ 1)
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = y − x+ FNb − y−x
2

y−x
2 = FNb

x−y
FPb−FNb

x−y
2 = FPb

x−y
FPb−FNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = y − x+ FNb − y−x
2

−1
2 = FNb

1
FPb−FNb

∨ x = y
1
2 = FPb

1
FPb−FNb

∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = y − x+ FNb − y−x
2

−FPb+FNb
2 = FNb ∨ x = y

FPb−FNb
2 = FPb ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = FNb +
y−x
2

−FPb
2 = FNb

2 ∨ x = y
−FNb

2 = FPb
2 ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb +
x−y
2

FNa = FNb +
y−x
2

−FPb = FNb = 0 ∨ x = y

−FNb = FPb = 0 ∨ x = y

⇐⇒



TPa = 1− x− y−x
2

TNa = x− x−y
2

TPb = 1− y

TNb = y

FPa = x−y
2

FNa = y−x
2

−FPb = FNb = 0

∨



TPa = 1− x− FNa

TNa = x− FPa

TPb = 1− y − FNb

TNb = y − FPb

FPa = FPb

FNa = FNb

x = y
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B.16 Equalised odds and Predictive Parity/Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

TPa = 1−x
1−yTPb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

1−x
1−yFPb =

x
yFPb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

1−x
1−y = x

y ∨ FPb = 0

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

y − xy = x− xy ∨ FPb = 0

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

y = x ∨ FPb = 0

FPa = 1−x
1−yFPb

⇐⇒



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

y = x

FPa = FPb

∨



FNa = 1− x− 1−x
1−yTPb

TNa = x

FNb = 1− y − TPb

TNb = y

TPa = 1−x
1−yTPb

FPb = 0

FPa = 0
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B.17 Equalised odds and False Omission Rate Parity

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = x
yTNb

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = x
yTNb

x
yTNb =

1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = x
yTNb

x
y = 1−x

1−y ∨ TNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = x
yTNb

x = y ∨ TNb = 0

⇐⇒



TPa = 1− x− FNb

FPa = x− TNb

TPb = 1− y − FNb

FPb = y − TNb

FNa = FNb

TNa = TNb

x = y

∨



TPa = 1− x− 1−x
1−yFNb

FPa = x

TPb = 1− y − FNb

FPb = y

FNa = 1−x
1−yFNb

TNa = 0

TNb = 0

B.18 Equalised odds and Overall accuracy Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

TPa = 1−x
1−yTPb

y−x
1−yTPb = TNb − TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

1−x
1−yTPb =

1−x
1−yTPb

y−x
1−yTPb =

y−x
y TNb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = x
yFPb

TPb =
1−y
y TNb ∨ x = y

⇐⇒



FNa = 1− x− 1−x
y TNb

TNa = x− x
yFPb

FNb = 1− y − 1−y
y TNb

TNb = y − FPb

TPa = 1−x
y TNb

FPa = x
yFPb

TPb =
1−y
y TNb

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

FPa = FPb

x = y

B.19 Equal Opportunity, False Omission Rate Parity and Overall accuracy
Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

FNa = 1−x
1−yFNb

TNa = TNb − y−x
1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

1−x
1−yTNb = TNb − y−x

1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

1−x−1+y
1−y TNb = −y−x

1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

y−x
1−yTNb = −y−x

1−yTPb
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⇐⇒



TPa = 1− x− FNa

FPa = x− TNa

TPb = 1− y − FNb

FPb = y − TNb

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

TNb = −TPb ∨ x = y

⇐⇒



TPa = 1− x− 1−x
1−yFNb

FPa = x− 1−x
1−yTNb

TPb = 1− y − FNb

FPb = y − TNb

FNa = 1−x
1−yFNb

TNa = 1−x
1−yTNb

TNb = −TPb = 0 ∨ x = y

B.20 Equal Opportunity, False Omission Rate Parity and Predictive
Parity/Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = 1−x
1−yFPb

TPa = 1−x
1−yTPb

TNa = 1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

x− TNa = 1−x
1−y (y − TNb)

TNa = 1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

x− 1−x
1−y (y − TNb) =

1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

x = 1−x
1−y y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

x = y

⇐⇒



FNa = 1− x− TPb

FPa = x− TNb

FNb = 1− y − TPb

FPb = y − TNb

TPa = TPb

TNa = TNb

x = y
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B.21 Equal Opportunity, Overall accuracy Equality and Predictive
Parity/Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

FPa = 1−x
1−yFPb

TPa = 1−x
1−yTPb

TNa = TNb − y−x
1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

x− TNa = 1−x
1−y (y − TNb)

TNa = TNb − y−x
1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

x− 1−x
1−y y +

1−x
1−yTNb = TNb − y−x

1−yTPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

−TNb +
1−x
1−yTNb = −y−x

1−yTPb − x+ 1−x
1−y y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

y−x
1−yTNb = −y−x

1−yTPb − x+ 1−x
1−y y
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

TNb = −TPb − 1−y
y−xx+ 1−x

1−y
1−y
y−xy ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

TNb = −TPb − 1−y
y−xx+ 1−x

y−xy ∨ x = y

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1−x
1−yTPb

TNa = x− 1−x
1−y (y − TNb)

TNb = −TPb +
1

y−x(−x+ y) ∨ x = y

⇐⇒



FNa = 1− x− TPa

TNa = x− FPa

FNb = 1− y − TPb

TNb = y − FPb

TPa = 1−x
1−yTPb

TNa = 1− 1−x
1−yTPb

TNb = 1− TPb

∨



FNa = 1− x− TPa

TNa = x− FPa

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

TNa = TNb

x = y

⇐⇒



FNa = 0

FPa = 0

FNb = 0

TNb = 0

TPa = 1− x

TNa = x

TNb = y

TPb = 1− y

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

TPa = TPb

TNa = TNb

x = y
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B.22 Predictive Equality, Predictive Parity and False Omission Rate
Parity/Treatment Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

TPa = x
yTPb

FPa = x
yFPb

FNa = x
yFNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa = x
yFNb

1− x− FNa = x
y (1− y − FNb)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa = x
yFNb

1− x− x
yFNb =

x
y − x− x

yFNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = x
yFPb

FNa = x
yFNb

1 = x
y

⇐⇒



TPa = 1− x− FNb

TNa = x− FPb

TPb = 1− y − FNb

TNb = y − FPb

y = x

FPa = FPb

FNa = FNb

B.23 Predictive Equality, Predictive Parity and Overall accuracy Equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = x
yTPb

TNa = x
x−y (TPb − TPa)

TNb =
y

x−y (TPb − TPa)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = x
yTPb

TNa = x
x−y (TPb − x

yTPb)

TNb =
y

x−y (TPb − x
yTPb)
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = x
yTPb

TNa = x
x−y (

y−x
y TPb)

TNb =
y

x−y (
y−x
y TPb)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = x
yTPb

TNa = −x
yTPb

TNb = −TPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = x
yTPb

TNa = −x
yTPb

TNb = −TPb

−x
yTPb = −x

yTPb

⇐⇒



FNa = 1− x

FPa = x

FNb = 1− y

FPb = y

TPa = x
yTPb = 0

TNa = −x
yTPb = 0

TNb = −TPb = 0

1 = 1

B.24 Predictive Equality, Overall accuracy Equality and False Omission Rate
Parity/Treatment equality

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

FNa = x
yFNb

TNa = x
x−y (TPb − TPa)

TNb =
y

x−y (TPb − TPa)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = 1− x
y + x

yTPb

TNa = x
x−y (TPb − 1 + x

y − x
yTPb)

TNb =
y

x−y (TPb − 1 + x
y − x

yTPb)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = 1− x
y + x

yTPb

TNa = x
x−y (

x−y
y + y−x

y TPb)

TNb =
y

x−y (
x−y
y + y−x

y TPb)

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x
yTNb

TPa = 1− x
y + x

yTPb

TNa = x
y − x

yTPb

TNb = 1− TPb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = 1− x
y + x

yTPb

TNa = x
y − x

yTPb

TNb = 1− TPb

x
y − x

yTPb =
x
y (1− TPb)

⇐⇒



FNa = 1− x− TPa

FPa = x− TNa

FNb = 1− y − TPb

FPb = y − TNb

TPa = 1− x
y + x

yTPb

TNa = x
y − x

yTPb

TNb = 1− TPb

1 = 1

⇐⇒



FNa = 0

FPa = 0

FNb = 0

FPb = 0

TPa = 1− x

TNa = x

TNb = y

TPb = 1− y

1 = 1

B.25 Predictive Parity, False Omission Rate Parity and Overall accuracy
Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb∗FPa

FPb

FNa = FNb∗TNa

TNb

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa ∗ (y − TNb) = TPb ∗ (x− TNa)

(1− x− TPa) = (1− y − TPb) ∗ TNa
TNb

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb ∗ x−TNa
y−TNb

(1− x− TPb ∗ x−TNa
y−TNb

) ∗ TNb = (1− y − TPb) ∗ TNa

TPa + TNa = TPb + TNb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb ∗ x−TNa
y−TNb

−TPbTNb
x−TNa
y−TNb

+ TPbTNa = −TNb + xTNb + TNa − yTNa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb ∗ x−TNa
y−TNb

TPb(TNa − TNb ∗ x−TNa
y−TNb

) = (x− 1)TNb + (1− y)TNa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb ∗ x−TNa
y−TNb

TPb(
yTNa−TNaTNb−xTNb+TNbTNa

y−TNb
) = (x− 1)TNb + (1− y)TNa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPb ∗ x−TNa
y−TNb

TPb(
yTNa−xTNb

y−TNb
) = (x− 1)TNb + (1− y)TNa

TPa + TNa = TPb + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = (x−1)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa

TPb =
(x−1)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa

TPa + TNa = TPb + TNb
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⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = (x−1)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa

TPb =
(x−1)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa
(x−1)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa + TNa =
(x−1)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa + TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = (1−x)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa

TPb =
(1−x)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa

(x2 − xTNa − x+ TNa)TNb + (x− xy − TNa + yTNa)TNa+

(yTNa − xTNb)TNa = (xy − xTNb − y+ < tn− b)TNb+

(y − TNb − y2 + yTNb)TNa + (yTNa − xTNb)TNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = (1−x)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa

TPb =
(1−x)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa

(xy − 2xTNb − y + TNb + yTNa − x2 + xTNa + x− TNa)TNb =

(x− xy − TNa + 2yTNa − xTNb − y + TNb + y2 − yTNb)TNa

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = (1−x)(x−TNa)
yTNa−xTNb

TNb +
(1−y)(x−TNa)
yTNa−xTNb

TNa

TPb =
(1−x)(y−TNb)
yTNa−xTNb

TNb +
(1−y)(y−TNb)
yTNa−xTNb

TNa

(−2x+ 1)TN2
b + (xy − y + x+ 2yTNa − x2 + 2xTNa − 2TNa)TNb

+(xy − x+ TNa − 2yTNa + y − y2)TNa = 0
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B.26 Predictive Parity, False Omission Rate Parity and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TPa = TPbFPa

FPb

FNa = FNbTNa

TNb

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
1−x
1−yTPb =

TPbFPa

FPb
1−x
1−yFNb =

FNbTNa

TNb

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
1−x
1−yFPb = FPa ∨ TPb = 0

TNa = 1−x
1−yTNb ∨ FNb = 0

FNa = 1−x
1−yFNb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = 1−x
1−yTNb ∨ FNb = 0

FNa = 1−x
1−yFNb

TNa = x− 1−x
1−y y +

1−x
1−yTNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x− 1−x
1−y y +

1−x
1−yTNb

TNa = 1−x
1−yTNb

FNa = 1−x
1−yFNb

∨



TPa = 1− x

FPa = x− TNa

TPb = 1− y

FPb = y − TNb

TNa = x− 1−x
1−y y +

1−x
1−yTNb

FNb = 0

FNa = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y
1−x
1−yTNb = x− 1−x

1−y y +
1−x
1−yTNb

TNa = 1−x
1−yTNb

FNa = 1−x
1−yFNb

∨



TPa = 1− x

FPa = x− TNa

TPb = 1− y

FPb = y − TNb

TNa = x− 1−x
1−y y +

1−x
1−yTNb

FNb = 0

FNa = 0
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⇐⇒



TPa = 1− x− FNb

FPa = x− TNb

TPb = 1− y − FNb

FPb = y − TNb

x = y

TNa = TNb

FNa = FNb

∨



TPa = 1− x

FPa = 1−x
1−y y −

1−x
1−yTNb

TPb = 1− y

FPb = y − TNb

TNa = x− 1−x
1−y y +

1−x
1−yTNb

FNb = 0

FNa = 0

B.27 Predictive Parity, Overall accuracy Equality and Treatment Equality



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

FNa = FNb

TPa = 1−x
1−yTPb

FPa = 1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

1− x− TPa = 1− y − TPb

TPa = 1−x
1−yTPb

FPb =
1−x
1−yFPb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

TPa = y − x+ TPb

y − x− TPb =
1−x
1−yTPb

x = y ∨ FPb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

TPa = y − x+ TPb

y − x = y−x
1−yTPb

x = y ∨ FPb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

TPa = y − x+ TPb

TPb = 1− y ∨ x = y

x = y ∨ FPb = 0

⇐⇒



FNa = 0

TNa = x

FNb = 0

TNb = y

FPa = 0

TPa = 1− x

TPb = 1− y

FPb = 0

∨



FNa = 1− x− TPb

TNa = x− FPb

FNb = 1− y − TPb

TNb = y − FPb

FPa = FPb

TPa = TPb

x = y
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B.28 False Omission Rate Parity, Overall accuracy Equality and Treatment
Equality 

TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

FPa = FPb

FNa = FNb

TNa = x
yTNb

FNa = x
yFNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

x− TNa = y − TNb

FNa = FNb

TNa = x
yTNb

FNb =
x
yFNb

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x− y + TNb

FNa = FNb

x− y + TNb =
x
yTNb

1 = x
y ∨ FNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x− y + TNb

FNa = FNb

x− y = x−y
y TNb

x = y ∨ FNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x− y + TNb

FNa = FNb

1 = 1
yTNb ∨ x = y

x = y ∨ FNb = 0

⇐⇒



TPa + FNa = 1− x

TNa + FPa = x

TPb + FNb = 1− y

TNb + FPb = y

TNa = x− y + TNb

FNa = FNb

TNb = y ∨ x = y

x = y ∨ FNb = 0

⇐⇒



TPa = 1− x

FPa = 0

TPb = 1− y

FPb = 0

TNa = x

FNa = 0

TNb = y

FNb = 0

∨



TPa = 1− x− FNb

FPa = x− TNb

TPb = 1− y − FNb

FPb = y − TNb

TNa = TNb

FNa = FNb

x = y
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Appendix C. p%-rule Feasibility

C.1 Equalised Odds

1− x

1− y
TPb +

x

y
FPb ≥ pTPb + pFPb

TPb + FPb ≥ p
1− x

1− y
TPb + p

x

y
FPb

Case 1: x = y

TPb ≥ −FPb

This is always true, thus for x = y equalised odds satisfies the p%-rule for all p.

Case 2: p < 1−x
1−y and p < 1−y

1−x

TPb ≥
1− y

y

yp− x

1− x− p+ yp
FPb

TPb ≥
1− y

y

xp− y

1− y − p+ xp
FPb

Case 3: p > 1−x
1−y

From this condition follows that x > y as p ≤ 1 and x ̸= y. Furthermore this means that
p < 1−y

1−x .

TPb ≤
1− y

y

yp− x

1− x− p+ yp
FPb

TPb ≥
1− y

y

xp− y

1− y − p+ xp
FPb

Case 4: p > 1−y
1−x

Similar to case 3, we can derive that y > x and p < 1−x
1−y .

TPb ≥
1− y

y

yp− x

1− x− p+ yp
FPb

TPb ≤
1− y

y

xp− y

1− y − p+ xp
FPb

Case 5: p = 1−x
1−y

From this condition we can derive that x ≥ y and thus p < 1−y
1−x .

TPb ≥
1− y

y

xp− y

1− y − p+ xp
FPb

Case 6: p = 1−y
1−x

From this we can derive that x ≤ y and thus p < 1−x
1−y .

TPb ≥
1− y

y

yp− x

1− x− p+ yp
FPb
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C.2 Equal Opportunity and Predictive Parity

1− x

1− y
TPb +

1− x

1− y
FPb ≥ pTPb + pFPb

TPb + FPb ≥ p
1− x

1− y
TPb + p

1− x

1− y
FPb

Case 1: x = y

TPb ≥ −FPb

This is always true, thus for x = y all p values are satisfied.
Case 2: p ≤ 1−x

1−y and p ≤ 1−y
1−x

TPb ≥ −FPb

This is always for all p values that fall within these constraints.
Case 3: p > 1−x

1−y or p > 1−y
1−x

TPb ≤ −FPb

This can only be satisfied if both variables are 0, which we do not considered as an acceptable
constraint, thus these p-values cannot be satisfied.

C.3 Equal Opportunity and False Omission Rate Parity

1− p+ pFNb + pTNb ≥
1− x

1− y
FNb +

1− x

1− y
TNb

1− p+
1− x

1− y
pFNb +

1− x

1− y
pTNb ≥ FNb + TNb

Case 1: x = y

1− FNb ≥ TNb

This condition is always satisfied, thus for equal base rates this combination of fairness
constraints will also satisfy demographic parity.

Case 2: p < 1−x
1−y and p < 1−y

1−x

(1− p)(1− y)

p− yp− 1 + x
+ FNb ≤ −TNb

(1− p)(1− y)

p− xp− 1 + y
+ FNb ≤ −TNb

Case 3: p > 1−x
1−y and thus p < 1−y

1−x

(1− p)(1− y)

p− yp− 1 + x
+ FNb ≥ −TNb

(1− p)(1− y)

p− xp− 1 + y
+ FNb ≤ −TNb

If p = 1 than the fraction in the second equation becomes zero. In order to satisfy
that equation under the condition p = 1 then it requires FNb = TNb = 0, which is not
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acceptable. Thus the equation is not possible but for larger p, the ranges for FNb and TNb

become undesirable.
Case 4: p > 1−y

1−x and thus p < 1−x
1−y

(1− p)(1− y)

p− yp− 1 + x
+ FNb ≤ −TNb

(1− p)(1− y)

p− xp− 1 + y
+ FNb ≥ −TNb

If p = 1 than the fraction in the first equation becomes zero. In order to satisfy that
equation under the condition p = 1 then it requires FNb = TNb = 0, which is not acceptable.
Thus the equation is not possible but for larger p, the ranges for FNb and TNb become
undesirable.

Case 5: p = 1−x
1−y

(1− p)(1− y)

p− xp− 1 + y
+ FNb ≤ −TNb

Case 6: p = 1−y
1−x

(1− p)(1− y)

p− yp− 1 + x
+ FNb ≤ −TNb

C.4 Equalised Opportunity and Overall accuracy Equality

x− py + TNb(
1− x− p+ 2py − xp

y − x
) ≥ TNa(

1− 2x− p+ yp+ y

y − x
)

−(y − xp) + TNa(
1− y − p+ 2xp− yp

y − x
) ≤ TNb(

1− 2y − p+ xp+ x

y − x
)

Case 1: x = y
x+ TPb ≥ TNb

This statement is always true, thus in this case the p%-rule will always be satisfied for every
p.

Case 2: y > x
Case 2a: p ≤ 1−2x+y

1−y ∧ p ≤ 1−2y+x
1−x

(x− py)(y − x)

1− 2x− p+ yp+ y
+

1− x− p+ 2py − xp

1− 2x− p+ yp+ y
TNb ≥ TNa

− (y − xp)(y − x)

1− 2y − p+ xp+ x
+

1− y − p+ 2xp− yp

1− 2y − p+ xp+ x
TNa ≤ TNb

Case 2b: p ≤ 1−2x+y
1−y ∧ p > 1−2y+x

1−x

(x− py)(y − x)

1− 2x− p+ yp+ y
+

1− x− p+ 2py − xp

1− 2x− p+ yp+ y
TNb ≥ TNa

− (y − xp)(y − x)

1− 2y − p+ xp+ x
+

1− y − p+ 2xp− yp

1− 2y − p+ xp+ x
TNa ≥ TNb
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In the case that p = 1 then these equations would simplify to TNa = TNb+
x−y
2 . While

this equation does not violate this relationship will make TPa = 1−x
2 and TPb =

1−y
2 , which

is a set value for these variables, making that for p = 1 this combination is not possible.
Case 3: y < x

Case 3a: p ≤ 1−2x+y
1−y ∧ p ≤ 1−2y+x

1−x

(x− py)(y − x)

1− 2x− p+ yp+ y
+

1− x− p+ 2py − xp

1− 2x− p+ yp+ y
TNb ≤ TNa

− (y − xp)(y − x)

1− 2y − p+ xp+ x
+

1− y − p+ 2xp− yp

1− 2y − p+ xp+ x
TNa ≥ TNb

Case 3b: p > 1−2x+y
1−y ∧ p ≤ 1−2y+x

1−x

(x− py)(y − x)

1− 2x− p+ yp+ y
+

1− x− p+ 2py − xp

1− 2x− p+ yp+ y
TNb ≥ TNa

− (y − xp)(y − x)

1− 2y − p+ xp+ x
+

1− y − p+ 2xp− yp

1− 2y − p+ xp+ x
TNa ≥ TNb

In the case that p = 1 then these equations would simplify to TNa = TNb+
x−y
2 . While

this equation does not violate this relationship will make TPa = 1−x
2 and TPb =

1−y
2 , which

is a set value for these variables, making that for p = 1 this combination is not possible.

C.5 Equal Opportunity and Treatment Equality

1− x− 1− x

1− y
FNb +

1− x

1− y
FPb ≥ p(1− y − FNb) + pFPb

1− y − FNb + FPb ≥ p(1− x− 1− x

1− y
FNb) + p

1− x

1− y
FPb

Case 1: p > 1−x
1−y ∨ p > 1−y

1−x
−(1− y) + FNb ≥ FPb

This is impossible to satisfy, so it is not possible to satisfy for p > 1−x
1−y .

Case 2: p ≤ 1−x
1−y ∧ p ≤ 1−y

1−x
(1− y) + FNb ≤ FPb

This always holds true, so for p ≤ 1−x
1−y ∧ p ≤ 1−y

1−x this sets of constraints always satisfies the
p%-rule.

C.6 Predictive Equality and Predictive Parity
x

y
TPb +

x

y
≥ pTPb + pFPb

TPb + FPb ≥ p
x

y
TPb + p

x

y
FPb

Case 1: p > x
y ∨ p > y

x
TPb ≤ −FPb
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This is impossible to satisfy, thus p > x
y ∨ p > y

x is not possible.

Case 2: p ≤ x
y ∧ p ≤ y

x
TPb ≥ −FPb

This always hold true, thus this combinations for constraints always satisfies for p ≤ x
y ∧p ≤

y
x .

C.7 Predictive Equality and False Omission Rate Parity

1− p+ pFNb + pTNb ≥
x

y
FNb +

x

y
TNb

1− p+ p
x

y
FNb + p

x

y
TNb ≥ FNb + TNb

Case 1: p ≥ x
y ∧ p < y

x

y(1− p)

py − x
+ FNb ≥ −TNB

y − yp

y − xp
− FNb ≥ TNb

The first equation is always simplified so this simplifies to:

y − yp

y − xp
− FNb ≥ TNb

This equation can only be satisfied for p = 1 if FNb = 0 and TNb = 0.
Case 2: p < x

y ∧ p ≥ y
x

y(1− p)

py − x
+ FNb ≤ −TNB

y − yp

y − xp
− FNb ≤ TNb

This first equation cannot be satisfied for p = 1, unless FNb = 0 and TNb = 0.
Case 3: p < x

y ∧ p < y
x

y(1− p)

py − x
+ FNb ≤ −TNB

y − yp

y − xp
− FNb ≥ TNb

C.8 Predictive Equality and Treatment Equality

1− x− x

y
FNb +

x

y
FPb ≥ p(1− y − FNb) + pFPb

1− y − FNb + FPb ≥ p(1− x− x

y
FNb) + p

x

y
FPb

Case 1: p ≥ x
y ∧ p < y

x =⇒ y ≥ x

y − y(
1− p

x− py
) + FNb ≥ FPb
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y − y(
1− p

y − px
) + FNb ≤ FPb

The first equation is always satisfied. The second equation cannot be satisfied for p = 1
unless FNb = 0 and FPb = y

Case 2: p ≥ y
x ∧ p < x

y =⇒ x ≥ y

y − y(
1− p

x− py
) + FNb ≤ FPb

y − y(
1− p

y − px
) + FNb ≥ FPb

The second equation is always satisfied. The first equation cannot be satisfied for p = 1
unless FNb = 0 and FPb = y

Case 3: p < y
x ∧ p < x

y

y − y(
1− p

x− py
) + FNb ≤ FPb

y − y(
1− p

y − px
) + FNb ≤ FPb

C.9 Predictive Parity and Overall accuracy Equality

(FPa − pFPb)(
y − x

FPa − FPb
) ≥ −2(FPa − pFPb)

(FPb − pFPa)(
y − x

FPa − FPb
) ≥ −2(FPb − pFPa)

Case 1: FPa ≥ pFPb ∧ FPa ≥ FPb ∧ FPb ≥ pFPa

y − x

2
+ FPa ≥ FPb

If y ≥ x then this statement is always true. For p = 1 the constraints would require that
FPa = FPb.

Case 2: FPa ≥ pFPb ∧ FPa ≥ FPb ∧ FPb ≤ pFPa

y − x

2
+ FPa ≥ FPb

y − x

2
+ FPa ≤ FPb

This simplifies to:
y − x

2
+ FPa = FPb

Case 3: FPa ≥ pFPb ∧ FPa ≤ FPb ∧ FPb ≥ pFPa

y − x

2
+ FPa ≤ FPb

Case 4: FPa ≤ pFPb ∧ FPa ≤ FPb ∧ FPb ≥ pFPa

y − x

2
+ FPa ≥ FPb
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y − x

2
+ FPa ≤ FPb

This simplifies to:
y − x

2
+ FPa = FPb

C.10 Predictive Parity and Treatment Equality

1− x− p+ px+ (p− 1− x

1− y
)FNb ≥ (p− 1− x

1− y
)FPb

1− y − p+ xp+ (p
1− x

1− y
− 1)FNb ≥ (p

1− x

1− y
− 1)FPb

Case 1: p > 1−x
1−y ∧ p ≤ 1−y

1−x

−(1− y) + FNb ≥ FPb

−(1− y) + FNb ≤ FPb

The first equation cannot be satisfied, it is thus impossible to satisfy the p%-rule in these
conditions.

Case 2: p ≤ 1−x
1−y ∧ p > 1−y

1−x

−(1− y) + FNb ≤ FPb

−(1− y) + FNb ≥ FPb

The second equation cannot be satisfied, it is thus impossible to satisfy the p%-rule in these
conditions.

Case 3: p ≤ 1−x
1−y ∧ p ≤ 1−y

1−x

−(1− y) + FNb ≤ FPb

This equation is always satisfied for all values for p.

C.11 False Omission Rate Parity and Overall Accuracy Equality

1

1− FNb − TNb
− (

FNb + TNb

1− FNb − TNb
)(1 +

x+ y

TNb − FNb
) ≥ p

1− FNb − TNb ≥ p(1− (FNb + TNb)(1 +
x− y

TNb − FNb
)

In the case that p = 1 this equation will simplify to:

−TNb ≥ FNb

FNb ≥ −TNb

These equations can only be satisfied for TNb = 0 and FNb = 0, however this is not possible
due to the original formulation of the equations.
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C.12 False Omission Rate Parity and Treatment Equality

1− p+ (p− x

y
)FNb ≥ −(p− x

y
)TNb

1− p+ (p
x

y
− 1)FNb ≥ −(p

x

y
− 1)TNb

Case 1: p ≥ x
y ∧ p < y

x

−y − yp

x− yp
+ FNb ≥ −TNb

−y − yp

y − xp
+ FNb ≤ −TNb

This first equation is always satisfied as p > x
y , the second equation however cannot be

satisfied for p = 1, unless FNb = 0 and TNb = 0.

Case 2: p < x
y ∧ p ≥ y

x

−y − yp

x− yp
+ FNb ≤ −TNb

−y − yp

y − xp
+ FNb ≥ −TNb

This second equation is always satisfied as p > y
x , the first equation however cannot be

satisfied for p = 1, unless FNb = 0 and TNb = 0.
Case 3: p < x

y ∧ p < y
x

−y − yp

x− yp
+ FNb ≤ −TNb

−y − yp

y − xp
+ FNb ≤ −TNb

C.13 Overall accuracy Equality and Treatment Equality

1− x− p+ yp

1− p
+ FPb ≥ FNb

1− y − p+ xp

1− p
+ FPb ≥ FNb

These equations hold for all cases.
In the special case that p goes to 1, then the first equation requires x ≥ y for the

inequality to hold, however the second equation would require y ≥ x. Thus these equations
can only hold for p = 1 if x = y.
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