
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2024 1

Deep Learning-Based Event Counting for
Apnea-Hypopnea Index Estimation using

Recursive Spiking Neural Networks
Lorin Werthen-Brabants, Yolanda Castillo-Escario, Willemijn Groenendaal, Raimon Jané, Senior Member,
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Abstract— Objective: To develop a novel method for
improved screening of sleep apnea in home environments,
focusing on reliable estimation of the Apnea-Hypopnea
Index (AHI) without the need for highly precise event lo-
calization. Methods: RSN-Count is introduced, a technique
leveraging Spiking Neural Networks to directly count apneic
events in recorded signals. This approach aims to reduce
dependence on the exact time-based pinpointing of events,
a potential source of variability in conventional analysis.
Results: RSN-Count demonstrates a superior ability to
quantify apneic events (AHI MAE 6.17 ± 2.21) compared to
established methods (AHI MAE 8.52 ± 3.20) on a dataset
of whole-night audio and SpO2 recordings (N=33). This is
particularly valuable for accurate AHI estimation, even in the
absence of highly precise event localization. Conclusion:
RSN-Count offers a promising improvement in sleep apnea
screening within home settings. Its focus on event quan-
tification enhances AHI estimation accuracy. Significance:
This method addresses limitations in current sleep apnea
diagnostics, potentially increasing screening accuracy and
accessibility while reducing dependence on costly and
complex polysomnography.

Index Terms— Sleep apnea detection, AHI Estimation,
Deep Learning, Spiking Neural Networks, Wearables

I. INTRODUCTION

SLEEP apnea affects 25-50% of the adult population,
particularly elderly and obese individuals, and stands

as one of the most common sleep disorders [1]. However,
about 80% of patients remain undiagnosed [2]. The gold
standard for sleep apnea diagnosis is a polysomnography (PSG)
conducted in a sleep laboratory. During the night, PSG measures

This research received funding from the Flemish Government under
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multiple physiological signals pertaining to respiration, brain
activity, sleep stages, heart rate, oxygen saturation and others.
These signals are analysed and annotated by trained sleep
specialists according to the American Academy of Sleep
Medicine (AASM) guidelines [3]. This leads to the determi-
nation of the Apnea-Hypopnea Index (AHI), representing the
number of apneas and hypopneas per hour of sleep. Depending
on the outcome, patients are categorized as normal (AHI < 5),
having mild sleep apnea (5 ≤ AHI < 15), experiencing
moderate sleep apnea (15 ≤ AHI < 30), or facing severe
sleep apnea (AHI ≥ 30) [3]. Nevertheless, PSG has several
limitations, including its high cost and complexity, patient
discomfort, long waiting lists, interference with natural sleep
patterns, and its reliance on a single night recording. Therefore,
portable devices for home sleep apnea monitoring are being de-
veloped. Such devices measure a limited number of respiratory-
related signals, such as respiratory flow, thoracic effort, oxygen
saturation (SpO2), bio-impedance or audio signals [4], [5].

Despite the availability of guidelines, the annotation of the
signals involves some degree of subjectivity and can lead
to inter-rater and intra-rater variability as shown by recent
studies [6]. This can hamper the performance of existing
techniques [7]–[18] that detect apneic events using deep
learning models by sliding a window over the raw filtered
signals and extracting relevant features. Especially in cases
where the pinpointing of apneic events is approximate, there
can be a mismatch between the considered windows and their
correct annotation. Furthermore, annotations can be ill-defined
when windows contain only a part of the apneic event, or
multiple events.

This paper aims to address those problems by taking
advantage of the fact that, in clinical practice, the diagnosis
is mostly based on the AHI without requiring the precise
location of events. To this end, a novel RSN-Count algorithm is
proposed, as a method that leverages Spiking Neural Networks
to count apneic events in the recorded signals, treating the task
as a true counting task where the events are treated as singular
units in time. This is in contrast to previous methods, that
either treat it as a regression problem, or otherwise make use
of time thresholds, where there needs to be an uninterrupted
positive prediction of several seconds. Instead, the proposed
RSN-Count aims to estimate the AHI directly by counting
the number of apneic events, while discarding information
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about the precise start and end times of those events. It is
successfully applied to determine the AHI of patients, based
on a home sleep apnea test that records acoustic signals with
a smartphone, as well as oxygen saturation. It is noted that the
algorithmic approach is generic and could be applied to other
types of signals as well.

The structure of the paper is organized as follows. After this
Section I, corresponding to the introduction, an overview is
provided of related work on sleep apnea detection in Section II.
Section III introduces some preliminary concepts and the
methodology of the novel RSN-Count algorithm. Section IV
describes the available data and experimental set-up. This is
followed by numerical results and a performance validation in
Section V. Finally, the paper provides a discussion in Section VI
and concluding remarks in Section VII.

II. RELATED WORK

In literature, several advancements are reported in predicting
the AHI from PSG recorded signals, hereby leveraging a variety
of machine learning techniques. Classical approaches for sleep
apnea detection are based on a sliding window approach where
human-engineered features are extracted from physiological
signals, followed by the application of classical algorithms
such as k-nearest neighbor, Hidden Markov models, support
vector machine, fuzzy logic and neural networks [19]. More
recently, the use of deep learning algorithms, such as 1D or
2D Convolutional Neural Networks (CNN’s), bi-directional
Long Short-Term Memory (BiLSTM) networks, Gated Recur-
rent Units (GRU), self-attention mechanisms and transformer
networks has emerged as a promising approach [20]–[22]. A
systematic review of the latest developments is reported in [23].
With the uprise of wearable devices, various modalities can be
recorded and analysed, such as nasal or oral airflow, electro-
cardiogram (ECG), ECG-derived respiration, bio-impedance,
pulse oximetry, tracheal sound, accelerometer data, and various
respiration signals. Such measurements can be obtained from
a chest band, patch, pressure sensor, thermal sensor or other
types of devices.

Nowadays, the analysis of acoustic breathing and snoring is
gaining attention for sleep apnea monitoring as it only requires
a low-cost sensor (microphone) and can be used to detect
apneas and hypopneas as an absence or reduction in sound.
In [4], a rule-based algorithm was presented, based on entropy
analysis of acoustic signals recorded with a smartphone for
home sleep apnea diagnosis. When traditional machine learning
methods are applied to audio signals, a random forest approach
yields a Mean Absolute Error (MAE) on the AHI of 9.64 using
global audio features [9]. In [15], OSA harnessess deep learning
methods, such as a CNN, to achieve an improved MAE of
3 events per hour. In other papers, deep neural networks are
combined with Mel-frequency cepstral coefficients (MFCC)
to classify normal snoring, apneic snoring and not snoring by
making use of a windowed approach [13]. Furthermore, it was
shown in [24] that the integration of physiological signals, such
as respiratory effort, can potentially enhance the AHI prediction.
Additionally, ensemble methods, particularly gradient boosted
models, have been highlighted for their promise in predicting
OSA severity [25].

Fig. 1: Conceptual model of RSN-Count making use of a
predetermined spike history h. Note that the BiLSTM block
replaces the function gθ from (3), which by itself is also
recurrent. Hence, the output of this block is a time series.

In this work, a novel Recursive Spiking Network is proposed
that changes the overall objective to counting events, rather than
detecting individual apneic events. As such, the algorithm does
not require a precise localization of individual apneic events
during annotation. This is an important advantage, as there
can be subjective elements in the interpretation and scoring
of sleep data, even though the AASM guidelines themselves
are objectively defined [3]. By detecting entire events, rather
than focusing solely on the fact an event occurred at or near a
specific time step, the RSN-Count algorithm is able to estimate
the AHI more accurately.

III. METHODS

This section gradually introduces RSN-Count, a technique
that is not restricted to specific signal modalities. In this
work, however, audio and SpO2 are considered in particular. A
transformation on the audio and SpO2 signals is proposed in
Section III-A using standard deep learning techniques, resulting
in a fused time series. Then, an introduction to Spiking Neural
Networks (SNN) is given in Section III-B, followed by the
novel RSN-Count in Section III-C. The complete pipeline of
an RSN-Count based model is shown in Fig. 1.

A. CNN-Based Feature extraction

Prior to the proposed RSN-Count stage, a feature extraction
step is applied on the input audio and SpO2 data. First the
raw audio data is transformed to a spectrogram making use
of the Short-Time Fourier Transform (STFT). Then, a CNN
is applied as it can extract meaningful features from audio
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spectrograms. It is composed of four sequential blocks, each
comprising the following layers:

1) Convolutional Layer: Each block contains a convolu-
tional layer with 100 filters. Each filter has a kernel size
of 3, and Rectified Linear Unit (ReLU) activation is
applied to the output of this layer.

2) MaxPooling Layer: Following the convolutional layer
in each block is a max-pooling layer, responsible for
downsampling the feature maps.

3) Dropout Layer: To prevent overfitting, a dropout layer
with a probability of p = 0.4 is inserted after the max-
pooling step to improve generalizability.

The output from the final block of the CNN is concatenated
with the input SpO2 maxdrop time series data, resulting in
a new time series that contains a compressed, latent version
of the audio. This combined data is then fed into a stacked
BiLSTM, all with 50 hidden units, allowing the network to
leverage both the learned features from the audio spectrograms
and the temporal dynamics of the SpO2 data. The output of
this stacked BiLSTM is then used as the base latent time series
used by RSN-Count.

B. Spiking Neural Networks
Before introducing RSN-Count, a basic foundation of

Spiking Neural Networks (SNNs) [26], [27] is given. SNNs
are inspired by the way biological neurons communicate and
process information. In the human brain, neurons do not con-
tinuously send information. Instead, they transmit information
sporadically through electrical impulses, known as spikes.
When the electrical potential across a neuron’s cell membrane
reaches a specific threshold, the neuron fires this spike. This
discrete, event-driven communication stands in contrast to
traditional artificial neural networks, which rely on continuous
values. SNNs attempt to mimic this biological spiking behavior,
aiming to capture the efficiency and temporal dynamics seen
in natural neural systems. These spiking neural networks are
particularly well-suited for modeling temporal information and
have been used in various applications, including neuromorphic
computing and time-series analysis. The key advantage for
sleep apnea detection is that the spikes can be interpreted as
discrete events, whereas an LSTM or other techniques for
modeling sequential data need additional post-processing and
thresholding to discretize an output time series into events.

1) Leaky Integrate and Fire (LIF) Neuron: The Leaky Integrate
and Fire Neuron is a core concept in SNNs. It is a simplified
version of the biological process that occurs in real neurons.
Unlike traditional artificial neurons that output a continuous
value, the Leaky Integrate and Fire Neuron models the spiking
behavior of biological neurons. It integrates incoming signals
until a threshold is reached, at which point it fires a spike and
resets its internal state, also known as the membrane potential.
The leaky aspect comes into play because the neuron also has a
mechanism to gradually lose or leak some of its stored energy
over time, mimicking the decay process in biological neurons.
This allows SNNs to capture temporal dynamics and makes
them particularly useful for time series data and tasks requiring
temporal context.

2) Membrane potential: The membrane potential ut of a LIF
neuron is defined as

ut = βut−1 + xt, (1)

and is determined by its previous value ut−1 and an input
term xt, where u0 = 0. A decay parameter β ∈ [0, 1]
determines how fast the membrane potential decays over time,
given an external input xt ∈ R to the neuron. If the membrane
potential ut surpasses a defined threshold κ (often κ = 1), the
neuron fires or “spikes” and the membrane potential is reset to
zero. Depending on the application or task at hand, the spikes
can be interpreted in different ways. In this paper, the timing
of the spikes reflects critical events in the signal or temporal
changes in the system being modeled. This threshold crossing
is often described using the Heaviside step function Θ. The
spike train, which represents the discrete spike emissions over
time, can be defined as LIF = {st},∀t with

st = Θ(ut − κ). (2)

3) Solving the Dead neuron problem: The use of the heaviside
function implies that the LIF neuron can not be used with
back-propagation, which is the primary mechanism for training
neural networks. Its derivative is the Dirac δ distribution, which
is 0 everywhere except at 0, where it tends to infinity, causing
the dead neuron problem. This occurs when certain neurons in
a neural network become inactive, outputting constant values
and ceasing to update during training, thereby reducing the
model’s learning capacity. Instead, the gradient of the arctangent
function is used as a surrogate st ≈ s̃t =

1
π arctan(πut) in the

backward pass

∂s̃t
∂ut
← 1

π

1

(1 + (πut)2)
,

where the left arrow denotes substitution. The forward pass,
as described in (2), remains unchanged.

C. RSN-Count Algorithm

The novel Recursive Spiking Network for Counting (RSN-
Count) technique leverages the recursive application of the
Leaky Integrate and Fire (LIF) Neuron used in Spiking Neural
Networks (SNNs) to assess apnea severity of a patient.

The input of RSN-count are recorded signals, e.g. based
on a PSG or a wearable, whereas the output is the estimated
AHI. The method is applied in a windowed manner, meaning
segments x of a predefined size are extracted from the
input signals. Based on a recursive approach, a binary spike
history vector h is calculated that contains a single spike
for every detected apneic event in the window. By counting
the occurrence of spikes over time for each window and
subsequently dividing by the overlap in the sliding window,
the patient’s AHI is estimated.

Note that this network is not considered to be an SNN in
the purest sense, but rather a hybrid approach. SNNs typically
make use of spikes throughout the architecture, including the
inputs, whereas RSN-Count only makes use of the LIF neuron
to mark the location of a discrete apneic event, occurring
approximately around the spike. This makes it possible to
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design a loss function that shifts the time of the spike closer to
the time of an actual event. Hence, the methodology of RSN-
Count revolves around the implementation of a Deep Neural
Network with a LIF head, where its primary function is to
identify the first event in a given window, given the previously
detected events. This paradigm characterizes the approach,
where h is constructed through successive predictions obtained
from previous recursive steps of RSN-Count.

Note that the event spikes emitted by RSN-Count are not
exact, and indicate the presence of an event in its vicinity, rather
than its exact location and duration. This makes it suitable in
situations where the number of events in a given window is
more important than their precise time localization.

1) Model Architecture: The architecture of the algorithm is
visualized in Fig. 1. First, the input segments of the recorded
signals are passed through the aforementioned feature extractor
from Section III-A. The resulting time series data x, together
with a spike history h that is initialized with zeros, are then fed
into a Bidirectional Long Short-Term Memory layer, denoted
as function gθ(x,h). Both x and h are of the same size.
The output z of this BiLSTM layer is then multiplied with
a mask m = µ(h). Initially, the mask consists of only ones,
meaning no change is applied to output z. However, in each
recursive step, it is constructed by zeroing a ones vector until
the time of the last event τω(h) in the spike history h.

µ(h) = w, where wi =

{
0 if i < τω(h)

1 otherwise
.

τω(h) = max ({t : ht = 1} ∪ {0}) .

The masked signal z⊙m, calculated as a Hadamard product, is
then fed into the LIF neuron (1) that potentially emits a spike. If
it does, the spike is recorded in h and the process is recursively
repeated until either no spike is emitted, or τω(h) = W ,
where W represents the window size.

Hence, RSN-count starts from h(0) = 0 and recursively
solves (3) in consecutive steps, n, until h(n+1) = h(n).

m(n) = µ
(
h(n)

)
, z(n) = gθ

(
x,h(n)

)
RSN(x,h(n)) = h(n+1) = h(n) + ιn

(
LIF

(
m(n) ⊙ z(n)

))
.

(3)

In (3), an auxiliary function ιn(x) is used that filters the LIF
to only contain the first n occurrences of 2 as follows

ιn(v) = w, where wi =

{
vi if

∑i
j=1 vj ≤ n

0 otherwise
.

This final history vector h(n) then becomes the resulting
output of the network, indicating approximate locations of
detected events within this window. Algorithm 1 provides a
description on how apneic events are detected by RSN-Count
through a recursive application of (3) and consecutive addition
of predicted spikes to the spike history h.

Algorithm 1 RSN-Count at inference time

1: Given function RSN from (3)
2: h(0) ← 01×lw

3: h(1) ← RSN(x;h(0))
4: i← 1
5: while h(i) ̸= h(i−1) do
6: h(i+1) ← RSN(x;h(i))
7: i← i+ 1
8: end while
9: return h(i)

2) AHI Estimation: By sliding the window over an entire
night recording and applying this procedure to the subsequent
segments, the AHI can be determined by counting the number
of detected apneic events over time and calculating the average
number of events over each hour of sleep. The number
of events is determined as follows: given a window stride
length l and a window size W , it is anticipated that each
event will be observed W/l times within any given time
period. Consequently, the spikes are tallied to obtain the count
estimate ĉ = Ntot

W/l , where Ntot denotes the total number
of observed apneic events. It is worth noting that at the
edges of the predictions, the accuracy of detected events
tends to decrease. To enhance the counting accuracy when
analyzing events over an extended time period using a sliding
window approach, only the predictions within a calibrated
sub-window [tinit, tend] are considered. Note that the optimal
configuration of these hyperparameters is identified from an
evaluation of the model on the validation set.

3) Model training: The model training procedure is explained
in Algorithm 2. For each input segment x, a corresponding
binary vector y is defined, containing N target spikes that
are located at the mid-point of each apneic event in the
window, as determined from the ground-truth annotations.
First, the predicted spikes ŷi = RSN (x; ιi(y)) are sequentially
calculated by the model for every i ≤ N+1, by making use of
the target spikes y. The last prediction at iteration N+1 is used
as an “off” event, where no prediction signals the lack of any
further events. Subsequently, the loss function L(ŷ,y,u(N+1)),
where u(N+1) is the last membrane potential from RSN-Count
is computed.

Algorithm 2 RSN-Count training with Teacher Forcing

1: Given function RSN from (3), input x, target spikes y
2: for k ∈ [1 . . . N + 1] do
3: h′ ← ιk−1(y)
4: ŷk ← RSN(x;h′)
5: end for
6: Retrieve last membrane potential u(N+1)

7: Calculate ∇θL
(
ŷ,y,u(N+1)

)
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4) Loss Function: The loss function L
(
ŷ,y,u(N+1)

)
com-

prises of three terms, and is defined as follows.

L(ŷ,y,u) =
N∑
i=1

(
t̂yi
− tyi

α

)2

︸ ︷︷ ︸
target events

+

(
tŷN+1

− α

α

)2

+

membrane penalty︷ ︸︸ ︷
λ

α− τω(u)

α∑
i=τω(u)

|ui|︸ ︷︷ ︸
no event

.

The first term computes the Mean Squared Error (MSE)
between the predicted spike times tŷi

and the actual spike
times tyi

, normalized by the value α = tend + 1. The second
term computes the MSE between the last predicted spike
time and α. If no spike is predicted, this term vanishes
because tŷN+1

= α. The last term is a penalty term that steers
the membrane potential of the prediction after the last spike yN
towards 0, where λ = 0.01 is a regularization parameter.
Without this penalty term, spikes may be incorrectly predicted
at the end of the window, even though no event is present.
For example, if tŷN+1

= α − 1, the “no event” term would
become α−2, resulting in a negligible contribution to the loss
function.

Note that the derivative of each spike time with respect to
the spike ∂tŷ/∂s is non-differentiable. Therefore, the gradient
of each predicted spike time tŷ is set to a sign estimator
of -1. A positive gradient ∂s/∂u at the predicted spike when
using gradient descent will increase the value of membrane
potential u, therefore causing an earlier firing time.

By utilizing MSE in this event-based context, only an
approximate event location becomes crucial. If a cross-entropy
loss were employed instead, it would enforce a single pre-
cise location for each event detection, potentially leading to
overfitting. This scenario is more likely when the timing of
apneic event annotations is noisy or imprecise, and represent
approximations of the actual underlying ground truth data.

IV. EXPERIMENTAL SETUP

A. Dataset description
RSN-Count is applied to a sleep apnea dataset containing

overnight recordings of 33 patients (18 men, 15 women) with
a mean age of 55 ± 16 who were enrolled for an overnight
sleep test [4]. The data acqusition and analysis was performed
by the BIOSPIN group of Institute for Bioengineering of
Catalonia (IBEC) and received approval from the Ethics
Committee of Hospital Clı́nic de Barcelona (protocol code
HCB/2017/0106), and informed consent was obtained from
all participants. Among the participants, 20 underwent in-lab
polysomnography (PSG), while 13 underwent a home sleep
apnea test with ResMed ApneaLink Air™ [28].

The PSG recordings consisted of various channels, including
respiratory signals (nasal cannula, thermistor, and thoracic
and abdominal effort) sampled at a rate of 32Hz, single-
lead electrocardiogram sampled at 256Hz, and SpO2 sampled

Fig. 2: Example of a 60 second window from the dataset.
The SpO2 maxdrop feature is shown in the lower half.
Apnea/Hypopnea events are marked in red.

at 1Hz. On the other hand, the ApneaLink measurements
included respiratory flow through a nasal cannula sampled
at 100Hz, thoracic movement sampled at 10Hz, and SpO2

sampled at 1Hz. Simultaneously, overnight audio recordings
were acquired at a rate of 48kHz using the built-in microphone
of a smartphone (Samsung Galaxy S5) placed over the subjects’
thorax using an elastic band. This configuration had been
successfully tested in previous studies [4], [11]. The mean
recording length for each subject was 6.4± 1.3 hours.

To ensure synchronization, timestamps were used to align
the data from the smartphone and the reference system (either
PSG or ApneaLink). Trained sleep specialists annotated the
data from the reference system, following the guidelines of the
American Academy of Sleep Medicine (AASM) [3]. Based
on these annotations, 3 subjects were identified with a normal
Apnea-Hypopnea Index (AHI), 4 with mild AHI, 17 with
moderate AHI, and 9 with severe AHI.

B. Data preprocessing

The dataset is divided into a train, validation, and test set,
comprising 17, 8, and 8 patient recordings, respectively, and
the model results are evaluated using 4-fold cross validation.

Audio recordings from the smartphone’s microphone and
oxygen saturation SpO2 are the two modalities that will be
considered to determine the patient’s AHI using RSN-Count.

In a data-preprocessing step, a Short-Term Fourier Trans-
form (STFT) is applied to the audio signals with an FFT
window size of 512. Subsequently, each 60-second window
is extracted from the STFT and resized to 256 × 960 using
nearest neighbor sampling. Additionally, a “maxdrop” SpO2

signal is defined at each second t by computing the maximum
drop in SpO2 within the time range [t, t+ 45]. An example of
a 60 second segment x, obtained from the STFT spectogram
and the SpO2 maxdrop feature can be seen in Fig. 2.

The midpoints of the annotated apnea-hypopnea events, vis-
ible within each window, are used to define the corresponding
target spikes y that can be used to train RSN-Count.
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V. RESULTS

A. Baseline models

In order to assess the model performance of RSN-count, the
novel approach will be benchmarked against two state-of-the-art
deep learning for sleep apnea detection using audio recordings
and SpO2. The first technique is a CNN architecture that
comprises 5 sequential blocks, as described in [29], whereas
the second technique is a CNN-BiLSTM architecture, similar
to other reported methods for sleep apnea detection [16], [17],
[20], [21]. A key difference is that the reference models are
trained by making use of the Cross-Entropy Loss, whereas
RSN-Count makes use of the loss provided in Section III-C.4,
based on the distance of the predicted event and the center of
the actual event.

For both the CNN and CNN-BiLSTM baseline, a similar
strategy for event detection is applied, following the approach
used by Kwon et al. [20]. This strategy involves counting one
discrete event of Apnea-Hypopnea (AH) if six consecutive
windows with a stride of 1 second in a night are classified as
AH. In this work however, we adhere to the AASM guidelines
and accept only events longer than 10 seconds as AH.

B. Performance metrics

While RSN-Count is not geared towards predicting exact
locations and durations of apneic events, it is possible to
evaluate RSN-Count in a similar way by using commonly
used metrics for sleep apnea detection. Typical metrics are the
area under the ROC curve, average precision score, NPV, PPV,
sensitivity, specificity and accuracy. The average precision is
similar to the area under the precision-recall curve (AUCPR),
but less optimistic. The formal definition is as follows, with
recall (sensitivity) values r, and precision (PPV) values p:

AP =
∑
n

(rn − rn−1)pn.

An often overlooked metric is the Intersection over
Union (IoU), a.k.a. Jaccard index, defined for two sets A
and B as:

J(A,B) =
|A ∩B|
|A ∪B|

.

It is frequently used in semantic segmentation for computer
vision to score how well the predicted regions overlap with the
labels, which is more important when detecting AH events.

A calculation of the regions is achieved by post-processing
the spikes produced by RSN-Count. Each predicted spike ŷi
is represented as an unnormalized Gaussian f(t; tŷi

, σ), and
they are aggregated over subsequent windows by a summation

f(t; tŷi , σ) = exp

(
− (t− tŷi

)2

2σ2

)
. (4)

The standard deviation σ is determined by optimizing the
area under the receiver operating characteristic curve (AUC
ROC) for the approximated scores on the validation set. Hyper-
parameter σ is optimized to 20.69. Fig. 7 shows the resulting,
unnormalized scores for a sample segment as an example.

Fig. 3: Optimal hyperparameters tinit and tend (red asterisk).

C. AHI assessment
The main goal of RSN-Count is the assess the AHI of

patients as accurately possible. While the complete window
of predictions could be used of RSN-Count, through testing
it can be observed that selecting a smaller window of the
predictions (defined by a tinit and tend) improves the counting
performance. Through a grid search, it is determined that
optimal value of hyperparameters is tinit = 5 and tend = 50, as
shown in Fig. 3

Table I shows a comparison between different models when
evaluating the Apnea-Hypopnea Index (AHI) with a 4-fold
cross-validation split on the patients over all folds. It can
be seen that the MAE of RSN-Count is 6.17 ± 2.21, while
that of the base CNN-BiLSTM is 8.52 ± 3.20, showing
superior performance in a generalized setting as well. A similar
observation can be made when comparing the AHI RMSE
between both models. This demonstrates that RSN-Count
significantly outperforms the other state-of-the-art methods.

The evaluation based on the AASM guidelines [3] involves
the construction of a confusion matrix, shown in Fig. 4c for
all folds. It can be seen that there is slight confusion among
the higher severities, with one severe AHI patient identified as
normal. This outlier also persists in the CNN-BiLSTM model
and suggests an outlier in the dataset. The Pearson correlation
coefficient of 0.86 ± 0.12 and intraclass correlation (ICC)
of 0.87 within the 95% confidence interval of 0.75 to 0.93
further highlights the positive correlation between the predicted
AHI values and the actual AHI values obtained from the gold-
standard measurement. The linear correlation is shown for each
tested model in Fig. 5, with corresponding Bland-Altman plots
in Fig. 6. The Bland-Altman plots show some degree of bias
of all three models, with the CNN-BiLSTM model having a
negative bias (underprediction) and the CNN model showing a
slight positive bias (overprediction), while RSN-Count shows
virtually no bias. Additionally, RSN-Count has the narrowest
limits of agreement, indicating more consistent predictions
compared to the CNN and CNN-BiLSTM models.

D. Event classification
By making use of (4), RSN-Count can provide predictions

in line with those given by the state-of-the-art CNN and



WERTHEN-BRABANTS et al.: DEEP LEARNING-BASED EVENT COUNTING FOR AHI ESTIMATION USING RECURSIVE SPIKING NEURAL NETWORKS 7

TABLE I: Model Performance Comparison: AHI and Correlation Metrics

Model Type AHI MAE AHI RMSE Pearson r ICC

CNN 11.49± 1.76 15.42± 3.19 0.68± 0.28 0.66 ∈ [0.41, 0.81]
CNN-BiLSTM 8.52± 3.20 12.79± 2.97 0.82± 0.08 0.81 ∈ [0.65, 0.90]
RSN-Count 6.17 ± 2.21 9.58 ± 3.44 0.86 ± 0.12 0.87 ∈ [0.75, 0.93]

TABLE II: Model Performance Comparison: Classification Metrics

Model Type ROC AUC IoU AP NPV Specificity PPV Sensitivity Accuracy

CNN 0.67± 0.05 0.26± 0.05 0.46± 0.04 0.85± 0.02 0.94 ± 0.02 0.57± 0.04 0.32± 0.09 0.82± 0.02
CNN-BiLSTM 0.87 ± 0.03 0.45± 0.05 0.71 ± 0.06 0.93 ± 0.01 0.83± 0.04 0.53± 0.04 0.75± 0.09 0.82± 0.02
RSN-Count 0.83± 0.03 0.64 ± 0.07 0.67± 0.06 0.90± 0.02 0.83± 0.04 0.73 ± 0.05 0.83 ± 0.07 0.83 ± 0.07

(a) CNN: AHI severity confusion matrix on every
test set.

(b) CNN-BiLSTM: AHI severity confusion matrix
on every test set.

(c) RSN-Count: AHI severity confusion matrix on
every test set.

(a) CNN predicted AHI vs. true AHI.

(b) CNN-BiLSTM predicted AHI vs. true AHI.

(c) RSN-Count predicted AHI vs. true AHI.

Fig. 5: Correlation between estimated AHI and true AHI for
CNN, CNN-BiLSTM and RSN-Count. The red regions denote
erroneous classifications w.r.t. the AASM annotations [3].
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(a) CNN predicted AHI vs. true AHI.

(b) CNN-BiLSTM predicted AHI vs. true AHI.

(c) RSN-Count predicted AHI vs. true AHI.

Fig. 6: Bland-Altman plots for each model.

CNN-BiLSTM models. The classification results for RSN-
Count and the reference methods are presented in Table II.
Although event classification is not the aim of RSN-Count, it
is observed that the method demonstrates competitive perfor-
mance compared to state-of-the-art methods. In comparing the
performance of convolutional neural networks (CNN), CNN-
BiLSTM, and RSN-Count models, significant variations in
classification metrics are evident. The CNN-BiLSTM model
outperforms the others in terms of ROC AUC (0.87 ± 0.03)
and Average Precision (0.71 ± 0.06), indicating its superior
ability to distinguish between classes and its higher precision in
classification. The RSN-Count model demonstrates the highest
Intersection over Union (IoU) score (0.64± 0.07), suggesting
better performance in overlapping class instances. In secondary
metrics, the CNN-BiLSTM also shows the highest Negative

Fig. 7: Unnormalized RSN-Count scores making use of the
method outlined in Section V-D.

Predictive Value (NPV) (0.93± 0.01), while the RSN-Count
model leads in Positive Predictive Value (PPV) (0.73± 0.05),
Sensitivity (0.83± 0.07), and Accuracy (0.83± 0.07). These
results indicate that while CNN-BiLSTM has a balanced per-
formance across various metrics, RSN-Count may be preferred
for applications requiring high sensitivity and accuracy. The
traditional CNN model, while outperformed by the others, still
maintains a consistent baseline across all evaluated metrics.

VI. DISCUSSION

RSN-Count differentiates itself from existing deep learning-
based sleep apnea detection methods by estimating the AHI
directly via treating apnea events as single units in time, rather
than a region with a precise begin and end time, as is the case
with previous proposed DL based methods. The main methods
of performing AHI estimation with deep learning are 1) direct
regression on the AHI [30], 2) classification on windows of
time, where the entire window is evaluated as containing an
apnea event or not [29], or 3) treating every second (or other
timestep) as a moment that needs to be classified as apnea or
not [20], [31]. They all have their own drawbacks:

1) Regression methods need to infer the task, as no prior
information about the events is given

2) Windowed classification methods suffer in cases when
there is overlap, or multiple apnea events occuring in a
single window

3) Per-second classification methods require an artificial
threshold, both in probability and time.

RSN-Count treats its targets as single events that need to
be predicted. Its novelty lies in the use of Spiking Neural
Networks and a novel loss function that focuses the predictive
power of deep learning models to output single spikes or events,
close to the center of the actual event. This is done by using
an MSE distance loss, rather than cross-entropy, which is the
common method of training deep learning classifiers. This
property make the approach more appealing in cases where
annotation of apneic events is imprecise, or where the exact
start and end times are not relevant. Although event annotations
are based on strict AASM guidelines, there can be situations
where the recorded signals are affected by noise or artifacts.
Additionally, due to additional signals not being present in
the training data used for this study (only audio and SpO2 for
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convenience of the subject), there may be inherent uncertainty
on the exact location of the apnea event given this limited set of
data sources. Existing ML-based approaches often struggle to
deal with this uncertainty [32], leading to a loss of performance,
whereas the design of RSN-Count inherently addresses these
challenges.

When comparing RSN-Count to other state-of-the-art Deep
Learning-based methods for sleep apnea detection such as
CNNs and CNN-BiLSTMs [16], [17], [20], [21], the novel
approach shows superior performance for AHI estimation
when making use of smartphone audio and SpO2. While the
accuracies can not directly be compared due to the differences
in data, the findings in this work are similar and exceed those
from previous studies making use of smartphone audio, such
as [33], who report an average offset of 0.23 (95% CI [-28.73,
29.18]), similar to the performance of the CNN reported in
this work, with 0.97 (95% CI [-30.13, 32.07]). Comparing
these results to RSN-Count’s -0.02 (95% CI [-20.33, 20.29]),
it is clear that with a similar architecture and a novel loss
function, superior results can be obtained. The combination
of sleep sounds and SpO2 has also already been used with
deep learning, with similar results pertaining to classification
metrics as in [34], where they report accuracy, sensitivity and
specificity of 0.84, 0.84 and 0.84 respectively (rounded to
two significant digits), whereas RSN-Count presents accuracy,
sensitivity and specificity of 0.83, 0.83 and 0.83 respectively.

Unlike conventional methods that focus on pinpointing
events, RSN-Count’s counting-based learning scheme is more
flexible and can more accurately tackle the problem of AHI
estimation, while retaining similar “classical” classification
performance. The increase in IoU also indicates that RSN-
Count is more accurately aligned with the actual timestamps
in which apneas occur compared to CNN and CNN-BiLSTM.

One limitation of the study is the size of the data set. Due
to the unavailability of high quality audio recordings in public
datasets such as the Sleep Heart Health Study (SHHS) [35],
a small dataset is used (as in [4], [29]). However, there is a
lot of information present in the audio recordings due to the
heterogeneous data collection from sleep centers and at-home
recordings, resulting in approximately 211 hours of data. An
interesting future study would be to validate the generalisability
of the technique when tested on data sets from other sleep
centres.

Another limitation of the study is that acoustic signals
captured using a smartphone can be sensitive to background
noise and environmental sounds that interfere with the detection
of sleep apnea. While this data was used to validate and
demonstrate the proposed methodology, its application is not
necessarily exclusive to audio recordings and SpO2 signals. As
mentioned earlier, sleep apnea detection can also be based on
other types of respiratory-related signals, such as respiratory
flow, thoracic effort, bio-impedance, and others. Although the
effectiveness of the novel method has not been exhaustively
explored on all types of signals, it is hypothesized — as future
work — that the conceptual model of RSN-Count (see Fig. 1)
is sufficiently general to accommodate further expansion to
other signal types as well.

VII. CONCLUSION

RSN-Count represents a paradigm shift in the development
of ML-based solutions for the screening of patients or sleep
apnea severity assessment by leveraging concepts from spiking
neural networks. Apneic events can be counted from an
overnight recording, rather than aiming to exactly pinpoint
individual apneic events on a time scale. The novel algorithm
is validated on recordings of acoustic signals and oxygen
saturation that were recorded with a smartphone, an approach
that is particularly suitable for use in a home environment.
The results confirm that RSN-Count leads to a more accurate
estimation of the AHI (MAE 6.17± 2.21) when compared to
baseline models reproduced in this work (MAE 8.52 ± 3.20
and 11.49± 1.76).
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