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Background: Homozygous deletion of methylthioadenosine phosphorylase (MTAP) occurs in ~10%-15% of solid
tumors. AMG 193, a CNS-penetrant methylthioadenosine-cooperative protein arginine methyltransferase 5 (PRMT5)
inhibitor, selectively induces synthetic lethality in MTAP-deleted tumor cells. Here, we report results of the
completed monotherapy dose exploration evaluating AMG 193 in patients with MTAP-deleted solid tumors.

Patients and methods: In this first-in-human, multicenter, open-label, phase | study, patients with advanced CDKN2A-
deleted and/or MTAP-deleted solid tumors received AMG 193 orally [once (o0.d.) or twice (b.i.d.) daily] continuously in
28-day cycles. Primary objectives were safety and tolerability assessed by dose-limiting toxicities and determination of
the maximum tolerated dose; secondary objectives included pharmacokinetics and preliminary antitumor activity
measured by RECIST v1.1.

Results: As of 23 May 2024, 80 patients in dose exploration received AMG 193 at doses 40-1600 mg o.d. or 600 mg
b.i.d. The most common treatment-related adverse events were nausea (48.8%), fatigue (31.3%), and vomiting
(30.0%). Dose-limiting toxicities were reported in eight patients at doses >240 mg, including nausea, vomiting,
fatigue, hypersensitivity reaction, and hypokalemia. The maximum tolerated dose was determined to be 1200 mg
o.d. Mean exposure of AMG 193 increased in a dose-proportional manner from 40 mg to 1200 mg. Among the
efficacy-assessable patients treated at the active and tolerable doses of 800 mg o.d., 1200 mg o.d., or 600 mg b.i.d.
(n = 42), objective response rate was 21.4% (95% confidence interval 10.3% to 36.8%). Responses were observed
across eight different tumor types, including squamous/non-squamous non-small-cell lung cancer, pancreatic
adenocarcinoma, and biliary tract cancer. At doses >480 mg, complete intratumoral PRMT5 inhibition was
confirmed in paired MTAP-deleted tumor biopsies, and molecular responses (circulating tumor DNA clearance) were
observed.

Conclusions: AMG 193 demonstrated a favorable safety profile without clinically significant myelosuppression.
Encouraging antitumor activity across a variety of MTAP-deleted solid tumors was observed based on objective
response rate and circulating tumor DNA clearance.

Key words: MTAP, methylthioadenosine phosphorylase, non-small-cell lung cancer, pancreas cancer, PRMT5, protein
arginine methyltransferase 5, synthetic lethality
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been shown to promote tumor growth and survival by
regulating the expression of oncogenes and tumor sup-
pressor genes.” Inhibition of PRMT5 has been shown to
have antitumor effects in preclinical models by inducing cell
cycle arrest and cell death.> Furthermore, PRMT5 deple-
tion/inhibition reduced DNA damage repair in response to
topoisomerase | inhibitors, poly (adenosine diphosphate-
ribose) polymerase inhibitors, and cytarabine®’ and
PRMT5 depletion/inhibition enhanced the anticancer ac-
tivity of immune checkpoint blockade in vivo.® PRMTS
dysregulation has also been associated with poor prognosis
in lung cancer, glioblastoma multiforme (GBM), and
epithelial ovarian cancer.*?** These findings have validated
PRMTS as a reasonable therapeutic target; however, the use
of first-generation PRMT5 inhibitors was limited by severe
dose-limiting hematological toxicities.** ™

PRMTS5 has been identified as a synthetic lethal target in
tumors harboring methylthioadenosine phosphorylase
(MTAP) homozygous deletion. MTAP and cyclin-dependent
kinase inhibitor 2A (CDKN2A) are co-deleted in ~10%-
15% of human cancers. The role of CDKN2A as a tumor
suppressor gene and in the tumorigenesis of various ma-
lignancies is well documented. The proximity of MTAP to
CDKN2A on C9p21 leads to the co-deletion of both genes in
80% of the cases.'® MTAP is a key enzyme in the methio-
nine salvage pathway, and its loss leads to the accumulation
of methylthioadenosine (MTA),° which partially inhibits
PRMTS5 activity.”*® In MTAP-deleted cancer cells, PRMT5
expression and activity are preferentially required for cell
growth."” This makes PRMTS5 an attractive synthetic lethal
therapeutic target for the treatment of MTAP-deleted
tumors.?

AMG 193 is a first-in-class, novel, MTA-cooperative
PRMTS inhibitor and a highly selective small molecule
designed to specifically target MTAP-deleted cancer (Amgen
Inc.). In vitro, AMG 193 preferentially inhibited the MTA-
bound PRMT5 enzyme in MTAP-null tumor cells. In vivo,
AMG 193 inhibited the growth of multiple MTAP-deleted
tumor xenograft models.

Here, we report the results from the completed dose
exploration of AMG 193 monotherapy first-in-human (FIH)
study. In this phase | trial, we evaluated the safety, tolera-
bility, pharmacokinetics (PK), and preliminary efficacy of
AMG 193 in patients with selected advanced-stage solid
tumors.

METHODS

Study design

This is an FIH, phase I/lb, multicenter, open-label, dose-
escalation/dose-exploration, and dose-expansion study of
AMG 193 monotherapy in adult patients with metastatic or
locally advanced MTAP-deleted solid tumors across 45 sites
in Australia, Japan, Hong Kong, Korea, Taiwan, Belgium,
France, Switzerland, Germany, Austria, the UK, Canada, and
the USA (NCT05094336).2° Herein, we have summarized the
results from the completed dose-exploration phase of the
study. The first patient was enrolled on 1 February 2022,
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and the last was enrolled on 19 February 2024; the data
cut-off was 23 May 2024. The design of the dose-escalation/
dose-exploration part is shown in Supplementary Figure S1,
available at https://doi.org/10.1016/j.annonc.2024.08.2
339.

Study procedures were approved by institutional review
boards at each study site (details can be found in
Supplementary Appendix 1, available at https://doi.org/10.
1016/j.annonc.2024.08.2339), and the study was conducted
in accordance with principles originating in the Declaration
of Helsinki, Council for International Organizations of
Medical Sciences International Ethical Guidelines, and Good
Clinical Practice guidelines of the International Conference
on Harmonisation (ICH-GCP). Informed consent was ob-
tained from all patients before initiating study screening.

Eligibility criteria

Key inclusion criteria in the phase | monotherapy dose-
escalation/dose-exploration part included patients (>18
years old) with histologically confirmed metastatic or locally
advanced solid tumors and locally determined MTAP or
CDKN2A deletion by next-generation sequencing (NGS), or
MTAP deficiency of protein expression by immunohisto-
chemistry (IHC) by a central laboratory. Tumor tissue biopsy
samples of patients enrolled via local NGS testing were
retrospectively assessed by IHC for MTAP deletion if suffi-
cient tissue was available. CDKN2A deletion based on local
NGS testing as a surrogate for MTAP deletion was accept-
able for enrollment during dose exploration only. Patients
previously treated with a methionine adenosyltransferase Il
alpha (MAT2A)/PRMTS5 inhibitor were excluded. Other
eligibility criteria are mentioned Supplementary Appendix
2.1, available at https://doi.org/10.1016/j.annonc.2024.08.
2339.

Treatments

AMG 193 was administered continuously orally once daily
(0.d.) at doses ranging from 40 mg to 1600 mg, or twice
daily (b.i.d.) at 600 mg in a treatment cycle of 28 days.
Treatment with AMG 193 was continued until disease
progression, unacceptable toxicity, or withdrawal of
consent.

Study endpoints

The primary endpoints were dose-limiting toxicities (DLTs),
treatment-emergent adverse events (TEAEs), treatment-
related adverse events (TRAEs), serious adverse events
(SAEs), clinical laboratory tests, vital signs, and electrocar-
diogram (ECG). Severity of all AEs was assessed according to
Common Terminology Criteria for Adverse Events version
5.0 (CTCAE v5.0). Secondary endpoints included objective
response (OR) based on RECIST v1.1 by investigator
assessment, duration of response (DOR), disease control,
duration of disease control (DoDC), time to response (TTR),
and PK parameters. Exploratory endpoints included
assessment of pharmacodynamic (PD) biomarkers such as
symmetric dimethylation of arginine (SDMA) and circulating
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tumor DNA (ctDNA). Detailed DLT criteria are described in
Supplementary Appendix 2.2, available at https://doi.org/
10.1016/j.annonc.2024.08.2339.

Statistical analyses

Descriptive statistics were provided for selected de-
mographics, safety, efficacy, PK, and biomarker data by
dose. The determination of maximum tolerated dose was
guided by a Bayesian logistic regression model. Patients
enrolled based on the CDKN2A deletion who did not have
MTAP deletion by central IHC (CDKN2A-deleted/MTAP-
intact) were excluded from efficacy analyses because of the
MTA-cooperative mechanism of action of AMG 193. Further
details are described in Supplementary Appendix 2.3,
available at https://doi.org/10.1016/j.annonc.2024.08.
2339.

RESULTS

Baseline characteristics

At the data cut-off date of 23 May 2024, 80 patients
received AMG 193 in dose exploration [cohort 1: 40 mg o.d.
(n = 4); cohort 2: 120 mg o.d. (n = 2); cohort 3: 240 mg o.d.
(n = 7); cohort 4: 480 mg o.d. (n = 17); cohort 5: 800 mg
o.d. (n = 18); cohort 6: 1200 mg o.d. (n = 18); cohort 7:
1600 mg o.d. (n = 4); and 600 mg b.i.d. cohort (n = 10)].
Baseline patient characteristics are shown in Table 1.
Overall, 52.5% of patients were male; the median age was
61.5 years (range: 36-83 years), and 58.8% of patients had
an Eastern Cooperative Oncology Group performance status
(ECOG PS) of 1. Patients received a median of two prior
lines of therapy (range: 1-8 lines), and 23 patients (28.8%)
received four or more prior lines of therapy. The most
common tumor types were pancreatic duct adenocarci-
noma (PDAC) (19; 23.8%), non-small-cell lung cancer
(NSCLC) (14; 17.5%), biliary tract cancer (BTC) (7; 8.8%),
GBM (5; 6.3%), and gastric/esophageal cancer (2; 2.5%). In 6
of the 80 patients (7.5%), tumors were CDKN2A-deleted but
MTAP-intact per central IHC. Therefore, these patients were
excluded from the efficacy analysis. All other patients had
MTAP deletion by local NGS (55.4%) or central IHC (85.1%)
or both (41.3%).

Treatment was discontinued in 68 patients (85.0%). The
primary reason for discontinuation was progressive disease
(n = 50; 62.5%) followed by patient request (n = 9; 11.3%),
AEs (n = 5; 6.3%), death, and other (n = 2; 2.5% each).
Twelve patients continued on treatment at the time of data
cut-off.

Safety

Patients received a median of two cycles of treatment. DLTs
were reported in eight patients, all at doses >240 mg
(Table 2), and were vomiting (n = 2), nausea, fatigue, hy-
persensitivity reaction, hypokalemia, encephalopathy, and
palpitations (n = 1 each; Supplementary Table S1, available
at https://doi.org/10.1016/j.annonc.2024.08.2339). The
MTD was determined to be 1200 mg o.d. (11.1% of patients
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Table 1. Baseline demographics and disease characteristics
Dose-exploration (N = 80)
Sex, n (%)
Male 42 (52.5)
Female 38 (47.5)
Race, n (%)
White 45 (56.3)
Asian 19 (23.8)
Black or African American 4 (5.0)
Other 4 (5.0)
Missing 8 (10.0)
Median age, years (range) 61.5 (36-83)
ECOG PS, n (%)
0 33 (41.3)
1 47 (58.8)
Tumor type, n (%)°
PDAC 19 (23.8)
NSCLC 14 (17.6)
BTC 7 (8.8)
GBM 5 (6.3)
Gastric/esophageal 2 (2.5)
Others” 33 (41.3)
Baseline tumor stage, n (%)
Stage IV 69 (86.3)
Stage 11/1ll 4 (5.0)
Unknown 6 (7.5)
Missing 1(1.3)
Prior lines of therapy received, n (%)
1-3 55 (68.8)
>4 23 (28.8)
Missing 2 (2.5)
Prior lines of therapy, median (range) 2 (1-8)
Prior radiotherapy, n (%) 38 (47.5)
MTAP-deletion status (per central IHC), n (%)
Loss 61 (76.3)
Not evaluable 9 (11.3)
No loss® 7 (8.8)
Pending 3 (3.8)

BTC, biliary tract cancer; CDKN2A, cyclin-dependent kinase inhibitor 2A; ECOG PS,
Eastern Cooperative Oncology Group performance status; GBM, glioblastoma mul-
tiforme; IHC, immunohistochemistry; MTAP, methylthioadenosine phosphorylase;
NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; PDAC,
pancreatic duct adenocarcinoma.

?PDAC includes adenocarcinoma pancreas, pancreatic carcinoma metastatic, and
pancreatic carcinoma; NSCLC includes non-small cell lung cancer, squamous cell
carcinoma of lung and lung neoplasm malignant; BTC includes gallbladder,
cholangiocarcinoma, bile duct/biliary tract, ampulla of Vater and duodenal
papillary carcinoma; GBM includes glioblastoma and glioblastoma multiforme;
esophageal/gastric includes esophageal adenocarcinoma, esophageal carcinoma,
and esophageal squamous cell carcinoma.

PFor more details please refer to Supplementary Table S5, available at https://doi.
org/10.1016/j.annonc.2024.08.2339.

“These patients were enrolled based on local NGS showing CDKN2A deletion (n = 6)
or MTAP deletion (n = 1) (Supplementary Table S6, available at https://doi.org/10.
1016/j.annonc.2024.08.2339).

experienced DLTs at this dose level). Safety findings are
summarized in Table 2 and Figure 1. Any-grade TRAEs were
reported in 68 patients (85.0%; Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2024.08.
2339) and grade >3 in 11 patients (13.8%; Supplementary
Table S3, available at https://doi.org/10.1016/j.annonc.
2024.08.2339). The most common any-grade TRAEs were
nausea (48.8%), fatigue (31.3%), and vomiting (30.0%)
occurring mostly at the beginning of treatment and being
uncommon past 2 weeks (Supplementary Figure S2, avail-
able at https://doi.org/10.1016/j.annonc.2024.08.2339).
Serious TRAEs were reported in eight patients (10.0%).
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Table 2. Summary of AEs

discontinuation

n (%) Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6 Cohort 7 600 mg b.i.d. Dose
40 mg o.d. 120 mgo.d. 240 mgo.d. 480 mgo.d. 800 mgo.d. 1200 mgo.d. 1600 mgo.d. (N = 10) exploration
(n = 4) (n = 2) (n=17) (n = 17) (n = 18) (n = 18) (n = 4) (n = 80)
Patients with DLTs 0 (0.0) 0 (0.0) 1(14.3) 0 (0.0) 2 (11.1) 2 (11.1) 2 (50.0) 1 (10.0) 8 (10.0)
TEAEs (any grade) 4 (100.0) 2 (100.0) 6 (85.7) 17 (100.0) 18 (100.0) 17 (94.4) 4 (100.0) 10 (100.0) 78 (97.5)
Grade >3 2 (50.0) 0 (0.0) 2 (28.6) 10 (58.8) 5 (27.8) 8 (44.4) 4 (100.0) 5 (50.0) 36 (45.0)
Fatal AEs 0 (0.0) 0 (0.0) 0 (0.0) 3 (17.6) 1 (5.6) 2 (11.1) 0 (0.0) 0 (0.0) 6 (7.5)
Serious AEs 2 (50.0) 0 (0.0) 2 (28.6) 8 (47.1) 6 (33.3) 7 (38.9) 1 (25.0) 3 (30.0) 29 (36.3)
Leading to 0 (0.0) 0 (0.0) 1(14.3) 3 (17.6) 3 (16.7) 1 (5.6) 0 (0.0) 0 (0.0) 8 (10.0)
discontinuation
TRAEs (any grade) 3 (75.0) 2 (100.0) 5 (71.4) 10 (58.8) 17 (94.4) 17 (94.4) 4 (100.0) 10 (100.0) 68 (85.0)
Grade >3 0 (0.0) 0 (0.0) 2 (28.6) 1 (5.9) 1 (5.6) 4(22.2) 3 (75.0) 0 (0.0) 11 (13.8)
Fatal AEs 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Serious AEs 0 (0.0) 0 (0.0) 1(14.3) 1(5.9) 2 (11.1) 3 (16.7) 1(25.0) 0 (0.0) 8 (10.0)
Leading to 0 (0.0) 0 (0.0) 1(14.3) 3 (17.6) 4(22.2) 8 (44.4) 2 (50.0) 4 (40.0) 22 (27.5)
interruption
Leading to dose 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.9) 4(22.2) 6 (33.3) 2 (50.0) 1 (10.0) 14 (17.5)
reduction
Leading to 0 (0.0) 0 (0.0) 1(14.3) 0 (0.0) 1(5.6) 0 (0.0) 0 (0.0) 0 (0.0) 2 (2.5)

AE, adverse event; b.i.d., twice daily; DLT, dose-limiting toxicity; o.d., once daily; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

There were no fatal TRAEs. TRAEs led to treatment inter-
ruption in 22 patients (27.5%), dose reduction in 14 patients
(17.5%), and treatment discontinuation in 2 patients (2.5%;
Table 2).

Because first-generation non-MTA-cooperative PRMT5
inhibitors were associated with myelosuppression, we
evaluated cytopenias as TEAEs of interest. These events (any
grade; grade >3) were anemia (15.0%; 6.3%), lymphopenia
(6.3%; 3.8%), neutropenia (3.8%; 2.5%), and leukopenia
(3.8%; 1.3%). Thrombocytopenia was reported in one pa-
tient (any grade 1.3%; grade >3 none). None of the cyto-

penia events were dose limiting, and none led to treatment
discontinuation.

Efficacy

Nine ORs were observed at 800 mg o.d., 1200 mg o.d., and
600 mg b.i.d. across eight tumor types, namely NSCLC
(squamous and non-squamous), PDAC, cholangiocarcinoma,
gallbladder cancer, esophageal cancer, melanoma, renal cell
carcinoma (RCC), and ovarian Sertoli—Leydig cell tumor
(SLCT; Figure 2). The objective response rate in these

Treatment-emergent AE versus Treatment-related AE
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Figure 1. Incidence and severity of AEs (TEAEs occurring in 25% of patients).

AE, adverse event; COVID-19, coronavirus disease 2019; CTCAE, Common Terminology Criteria for Adverse Events; TEAE, treatment-emergent adverse event.
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Figure 2. Antitumor activity of AMG 193. Waterfall plot showing response duration and change in tumor burden.

ACC, adenoid cystic carcinoma; AciCC, acinic cell carcinoma; AE, adverse event; b.i.d., twice daily; CCA, cholangiocarcinoma; CRC, colorectal cancer; ERMS, embryonal
rhabdomyosarcoma; GBM, glioblastoma multiforme; GIST, gastrointestinal stromal tumor; MESO, mesothelioma; NE, not evaluated; NET, neuroendocrine tumor;
NSCLC, non-small cell lung cancer; PD, progressive disease; PDAC, pancreatic duct adenocarcinoma; PPC, primary peritoneal cancer; PR, partial response; o.d., once
daily, RCC, renal cell carcinoma; SCLC, small cell lung cancer; SCT, testicular sertoli cell tumor; SD, stable disease; SLCT, Sertoli-Leydig cell tumor.

patients at active dose levels (n = 42) was 21.4% [95%
confidence interval (Cl): 10.3% to 36.8%], and the disease
control rate was 54.8% (95% Cl: 38.7% to 70.2%) (Table 3).
Median TTR was 3.6 months (range: 3.6-3.7 months) and
1.8 months (range: 1.7-3.5 months) at 800 mg o.d. and
1200 mg o.d., respectively, suggesting shorter TTR at higher
doses. Median DOR was 8.3 months (95% Cl: 2.7 months-
NE), and median DoDC was 9.2 months (95% Cl: 4.9-11.8
months) across all dose exploration cohorts. The longest
DOR reported was 12.9 months for a patient with RCC and
11.0 months for a patient with an ovarian SLCT. At data cut-
off, responses were ongoing at data cut-off, and five of the
nine responders remained on treatment.

Pharmacokinetics

Preliminary PK data (10 May 2024) for AMG 193 were
available for 80 patients on cycle 1 day 1 and 67 patients on
cycle 1 day 15. The mean (standard deviation) plasma
concentration-time profile of AMG 193 is shown in
Supplementary Figure S3, available at https://doi.org/10.
1016/j.annonc.2024.08.2339. AMG 193 demonstrated a
dose-proportional increase in plasma exposure within the
dose range of 40-1200 mg o.d. The plasma concentration
with 1600 mg o.d. was below the mean concentration
observed at 1200 mg, possibly due to reduced absorption.
Steady-state plasma concentrations were achieved within 2
weeks with o.d. dosing, with minimal accumulation. The PK
parameter estimates are provided in Supplementary
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Table S4, available at https://doi.org/10.1016/j.annonc.
2024.08.2339.

Biomarkers

SDMA reduction is a PD biomarker of PRMTS5 inhibition.
While pretreated biopsy samples had high SDMA expres-
sion, posttreatment tumor biopsies from eight MTAP-
deleted patients were observed to have near complete
elimination of SDMA levels at dose levels of 480 mg, 800
mg, and 1200 mg (Figure 3A and B), confirming robust
intratumoral target engagement. Interestingly, paired tumor
biopsies from one patient in the 800 mg o.d. cohort, who
was enrolled with local CDKN2A loss and later confirmed via
IHC to have MTAP intact, revealed that intratumoral SDMA
levels were not completely inhibited (H-score: 55); consis-
tent with the synthetic lethal inhibition of PRMTS5 in tumors
with confirmed MTAP homozygous deletion.

The dose-response relationship was evaluated measuring
serum SDMA levels and by grouping patients into low (40-
120 mg o.d.), medium (240-480 mg o.d.), and high (>800
mg total dose) dose cohorts. PD modeling of SDMA levels
across the first five treatment cycles demonstrated a sig-
nificant dose-response relationship across these three co-
horts (Figure 3C).

Molecular responses (—100% ctDNA change from base-
line) were observed at doses >480 mg (Figure 3D). Of the
19 patients with stable disease (SD), 16 patients had >50%
reduction from baseline in ctDNA, and 8 patients
with partial response (PR) had >90% ctDNA reduction
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exploration
(n = 74)

Dose

Active dose levels
(800/1200 mg daily)
(n = 42)

600 mg b.i.d.
(n=9)

Cohort 7
1600 mg o.d.
n = 4)

1200 mg o.d.
(n = 17)

Cohort 6

Cohort 5
800 mg o.d.
(n = 16)

Cohort 4
480 mg o.d.
(n = 16)

Cohort 3
240 mg o.d.
(n = 6)

120 mg o.d.

Cohort 2
(n=2)

Cohort 1
40 mg o.d.
(n = 4)

Table 3. Overview of efficacy

9 (12.2)
26 (35.1)
1(1.4)
22 (29.7)
3 (4.1)
14 (18.9)

9 (21.4)
14 (33.3)
1(2.4)
10 (23.8)
2 (4.8)

7 (16.7)

Unconfirmed PR

PD

NE
Not done

Confirmed PR
ORR, % (95% Cl)
DCR, % (95% Cl)

BOR, n (%)
SD

12.2 (5.7-21.8)
47.3 (35.6-59.3)
8.3 (2.7-NE)

21.4 (10.3-36.8)

11.1 (0.3-48.2)
55.6 (21.2-86.3)

0.0 (0.0-60.2)
NE (NE-NE)

29.4 (10.3-56.0)

18.8 (4.0-45.6)
50.0 (24.7-75.3)
NE (5.7-NE)

0.0 (0.0-84.2) 0.0 (0.0-45.9) 0.0 (0.0-20.6)

0.0 (0.0-60.2)
0.0 (0.0-60.2)

54.8 (38.7-70.2)
8.3 (2.7-NE)

50.0 (6.8-93.2)

- (=)

58.8 (32.9-81.6)
8.3 (2.7-NE)

43.8 (19.8-70.1)

33.3 (4.3-77.7)
= (=)

- (=)

50.0 (1.3-98.7)

- (=)

Median DOR,

months (95% Cl)
Median DoDC,

9.2 (4.9-11.8)

NE (NE-NE) 3.2 (2.8-NE) 4.9 (3.6-NE) 9.3 (3.9-NE) 11.8 (4.5-NE) 5.3 (NE-NE) NE (NE-NE) 11.8 (5.5-NE)

- (=)

months (95% Cl)
Of note, four out of six patients enrolled based on local CDKN2A deletion that were confirmed to have intact MTAP based on central IHC testing, had progressive disease as their best response. These patients were excluded from the efficacy

analysis (Figure 2A; Supplementary Table S6, available at https://doi.org/10.1016/j.annonc.2024.08.2339).
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b.i.d., twice daily; BOR, best overall response; Cl, confidence interval; DCR, disease control rate; DoDC, duration of disease control; DOR, duration of response; IHC, immunohistochemistry; MTAP, methylthioadenosine phosphorylase; NE, not

estimable; o.d., once daily; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

(Figure 3E). The average reduction in ctDNA levels for pa-
tients with progressive disease was significantly less than
that observed in patients with SD or PR (Figure 3E), indi-
cating an association between the degree of ctDNA reduc-
tion and RECIST response and that disease stabilization was
a result of AMG 193 antitumor activity rather than indolent
disease.

DISCUSSION

AMG 193 is a novel MTA-cooperative PRMT5 inhibitor
designed to induce synthetic lethality in MTAP-deleted solid
tumors while sparing hematologic toxicity. This phase |
study determined the MTD of AMG 193 to be 1200 mg o.d.
Nausea, vomiting, and fatigue were the predominant DLTs,
while hematological toxicity was rare and not dose-limiting.
Overall, the tolerability of AMG 193 was favorable based on
the low rate of TRAEs resulting in treatment modification or
discontinuation. Consistent with the MTA-cooperative
mechanism of action, complete intratumoral inhibition of
PRMT5 function in MTAP-deleted tumors was observed
across several dose levels (>480 mg). Finally, the pre-
liminary antitumor activity of AMG 193 in multiple MTAP-
deleted solid tumors is encouraging and warrants further
evaluation. Based on the totality of data including safety,
preliminary efficacy, PK, PD, and exposure-response
modelling, 1200 mg o.d. is anticipated to achieve maximal
antitumor activity with acceptable safety and was therefore
selected to be investigated in dose expansion.

These findings contrast with results from studies on first-
generation non-cooperative PRMT5 inhibitors (PF-
06939999, GSK3326595, JNJ-64619178)*>*> whereby
PRMTS5 function was inhibited indiscriminately in both tu-
mor and healthy cells irrespective of MTAP status. Myelo-
suppression, typically thrombocytopenia events'***?* were
dose limiting for first-generation PRMTS5 inhibitors and likely
precluded escalation to dose levels likely necessary for
robust PRMT5 inhibition and antitumor activity, as
demonstrated by the limited number of clinical responses
observed. As a result of the dose-limiting myelosuppression,
the clinical development of first-generation PRMTS5 in-
hibitors was limited, and in the absence of a wider thera-
peutic window, their development was discontinued. In
contrast, cytopenia events were infrequent with AMG 193
treatment and not dose limiting. In particular, thrombocy-
topenia due to AMG 193 was only observed in one patient
across all dose-exploration cohorts, confirming a safety
profile of AMG 193 that is different from those of first-
generation PRMTS5 inhibitors.

AMG 193 was well tolerated, and TRAEs more commonly
encountered, at a frequency of >15%, were nausea, fatigue,
decreased appetite, and vomiting. These AEs were
manageable and typically reversible either with standard
antiemetic prophylaxis (e.g. odansetron for nausea and
vomiting) or reversed promptly with dose reduction. Toler-
ability typically improved with time on therapy beyond 2
weeks and was rarely cumulative in nature. While the
pathophysiology of nausea and fatigue remains unclear at
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Figure 3. Biomarker analysis of target engagement (SDMA) and antitumor activity (ctDNA). (A) Left: GIST: MTAP IHC showed no MTAP expression in tumor cells,
though endothelial cells in capillaries were positive for MTAP; SDMA IHC revealed strong nuclear SDMA staining in the pre-Tx sample, with a notable loss of SDMA
expression in the post-Tx sample. Right: metastatic mesothelioma: MTAP IHC reveals nuclear and cytoplasmic MTAP expression in viable tumor cells across both pre-

and post-Tx samples. SDMA IHC indicates
(B) Longitudinal view of SDMA H-score in
and (E) Best % ctDNA change by BOR fo

strong nuclear positivity in the pre-Tx sample, while the post-Tx sample exhibits heterogeneous SDMA staining in tumor cells.
MTAP-deleted or MTAP wildtype tumor cells. (C) Serum SDMA % reduction from baseline. (D) Best % ctDNA change by dose
llowing AMG 193 treatment.

b.i.d., twice daily; BOR, best overall response; CnDn, cycle n day n; ctDNA, circulating tumor DNA; cTF, circulating tumor fraction; GIST, gastrointestinal stromal tumor; H&E,
hematoxylin and eosin; H-score, histoscore; IHC, immunohistochemistry; MTAP, methylthioadenosine phosphorylase; NA, not available; NE, not estimable; PD, progressive
disease; PR, partial response; o0.d., once daily; SD, stable disease; SDMA, symmetric dimethylation of arginine; TMS, tumor methylation score; Tx, treatment.
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this time, these adverse events were also observed as a
side-effect to treatment with first-generation, non-selective
PRMTS inhibitors, and therefore may be due to inhibition of
PRMTS in the central nervous system. A fractionated dosing
schedule was explored to determine whether lowering the
peak drug exposure could improve the rate of safety events,
however, no appreciable difference was observed in the
safety profile between twice daily dosing and once daily
dosing. Of note, the first-generation non-selective PRMT5
inhibitors'**>?* demonstrated similar non-hematologic
adverse events, suggesting these toxicities are on-target
and a potential class effect of non-cooperative and coop-
erative PRMTS inhibition.

Antitumor activity based on imaging (RECIST) and mo-
lecular (ctDNA) responses was observed across a variety of
solid tumors, including NSCLC (squamous and non-
squamous), PDAC, BTC, and esophageal cancer at total
daily doses of >800 mg. Among patients with SD, the
observation of robust ctDNA reductions following treatment
supports the likelihood that AMG 193 truly mediated anti-
tumor activity, rather than being confounded by pre-
existing indolent disease. Preliminary DOR and DoDC
results suggest a sustained treatment effect mediated by
AMG 193 on MTAP-deleted tumors, and mechanisms of
resistance are likely to be intrinsic or acquired with time.

Consistent with the tumor-selective mechanism of action
of AMG 193 conferred by MTA cooperativity, near complete
intratumoral reduction in SDMA in MTAP-deleted tumors
was confirmed at well-tolerated doses, while an MTAP
wildtype tumor showed persistent SDMA as evidence of
incomplete intratumoral PRMTS inhibition. Furthermore,
PRMTS activity was more strongly inhibited within the tu-
mor compared with non-tumor based on the degree of
SDMA reduction in paired tumor biopsy tissue samples
versus peripheral blood. In tumor tissue, there was near
complete SDMA loss in all samples while the highest degree
of SDMA reduction in the blood did not exceed 80% from
baseline. These results not only support the tumor-selective
mechanism of action but also suggest that complete intra-
tumoral PRMTS5 inhibition is likely required for antitumor
activity. This hypothesis is supported by the early on-
treatment disease progression of patients enrolled based
on CDKNZ2A loss retrospectively found to have intact MTAP,
likely resulting in incomplete tumoral PRMT5 inhibition.

MTAP is an emerging biomarker with multiple assays for
detecting loss of expression. In this study, patients were
allowed to enroll using multiple tests, including local NGS
tests to evaluate MTAP or CDKN2A loss, or a central IHC test
for MTAP loss. Although a large majority of patients had
concordant assay results, there were six patients enrolled
with a local CDKN2A copy number loss result which retro-
spectively were shown to retain MTAP expression via cen-
tral IHC, none of whom recorded a clinical response. Further
one patient who enrolled based on local NGS MTAP
genomic loss had a discordant central IHC result. Given the
importance of MTAP loss for the mechanism of action and
efficacy of AMG 193, continued characterization and further
development of clinical diagnostics for this emerging

Volume 35 m Issue 12 m 2024

biomarker will be critical
development.

Evaluation of the AMG 193 monotherapy safety and ef-
ficacy profile is ongoing in dose-expansion cohorts in the
FIH study (NCT05094336).”° In addition, AMG 193 is
currently being studied in combination with standard-of-
care chemoimmunotherapy in NSCLC (NCT06333951)%?
and chemotherapy in PDAC (NCT06360354)*® as well as in
combination with the MAT2A inhibitor IDE397

(NCT05975073).%*

to support future clinical

Conclusions

AMG 193 monotherapy had a manageable safety profile
and was tolerable at doses up to 1200 mg o.d., with no
dose-limiting cytopenia events reported. Encouraging anti-
tumor activity across multiple MTAP-deleted tumors was
observed between 800 mg and 1200 mg. This supports
further investigation of AMG 193 as monotherapy or in
combination with standard-of-care therapies.
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