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Abstract
This study examines the adaptation of transformer models to two non-normative Dutch language
variants: early modern Dutch and contemporary social media Dutch. Both share linguistic fea-
tures that set them apart from standard Dutch, including spelling inconsistencies, semantic shifts
and out-of-domain vocabulary. To address this, we explore two domain adaptation techniques to
adapt models to these language variants: (1) continued full-model pre-training and (2) training
specialized adapters integrated into existing models. We evaluate these adaptation techniques on
sentiment and emotion detection in early modern Dutch comedies and farces and on emotion and
irony detection in Dutch tweets. Our results show that both adaptation methods significantly
improve performance on historical and social media Dutch tasks, with the greatest gains occurring
when domain-relevant datasets are used. The effectiveness of model adaptation is task-dependent
and sensitive to the selection of pre-training data, emphasizing domain relevance over data quantity
for optimizing downstream performance. We hypothesize that contemporary Dutch encoder mod-
els already capture informal language but lack historical Dutch exposure, making adaptation more
impactful for the latter. Additionally, we compare adapted encoder models to generative decoder
models, which are state-of-the-art in many NLP tasks. While generative models fail to match the
performance of our adapted models for historical Dutch, fine-tuned generative models outperform
adapted models on social media Dutch tasks. This suggests that task-specific fine-tuning remains
crucial for effective generative modelling. Finally, we release two pre-training corpora for Dutch
encoder adaptation and two novel task-specific datasets for early modern Dutch on Hugging Face.

1. Introduction
Natural Language Processing (NLP) has seen remarkable progress in the last years, particularly
due to the development of transformer-based encoding and decoding language models. These break-
throughs have predominantly centered on and benefited well-resourced languages, like English. This
leaves low-resourced, under-represented and highly specialized languages or language forms at the
periphery. Efforts to address this imbalance have resulted in the development of multilingual mod-
els to include less prioritized or dominant languages, like mBART (Tang et al. 2020) and mT5
(Xue et al. 2021), as well as domain-specific models such as BioBERT (Lee et al. 2019), LEGAL-
BERT (Chalkidis et al. 2020) or FinBERT (Araci 2019), which improve NLP performance in English
biomedical, legal and financial domains, respectively. These models exemplify how domain adap-
tation can effectively enhance model performance on specialized linguistic settings by leveraging
knowledge from a related source domain.

While domain adaptation in NLP is generally associated with adapting to specialized fields such
as biomedicine or law, its principles are equally relevant to adapt existing language models to lin-
guistic variation across registers and language varieties, including social media language, historical



language, or dialects. Exhibiting distinct linguistic characteristics, vocabularies, and styles, these
language variations can significantly impact model performance. Adapting to such settings involves
additional training on corpora that are more representative of the target language variant. However,
adaptation remains highly constrained by the usual bottlenecks in NLP research: the availability
of machine-readable training data, both in quantity and quality. This challenge is even more sig-
nificant for non-normative language variants, which often lack sufficient resources and are generally
overshadowed by the focus on standard language in NLP. By leveraging the linguistic knowledge
embedded in existing models, domain adaptation techniques enable the effective use of limited, spe-
cialized datasets for model fine-tuning. Rather than training models from scratch, this approach
capitalizes on the general language understanding of pre-trained models and facilitates their adap-
tation to niche linguistic domains with minimal data requirements. In this way, adaptation serves
as a crucial technique for bridging the gap between well-resourced and under-represented language
varieties, ensuring broader applicability of NLP models across diverse linguistic landscapes.

For Dutch, a mid-resourced language, adaptation has pushed forward language-specific NLP
engineering like for many other languages, with models like BERTje (de Vries et al. 2019) and
RobBERT (Delobelle et al. 2020) trained on Dutch corpora outperforming English language models
on many tasks. Similarly, recently released Dutch-specific generative models such as GEITje (Vanroy
2024b), Reynaerde (Van den Avenne 2024) and Fietje (Vanroy 2024a) attest the adaptation of
generative architectures to Dutch. Despite these successes, Dutch NLP remains constrained by the
limited size and scope of available training data. For instance, corpora like OSCAR (Ortiz Su’arez
et al. 2019), which are widely used for Dutch model development, predominantly consist of web-
crawled resources like news articles, books, and encyclopedic content with a strong emphasis on
standard Dutch. While web-crawled data indubitably includes some social media (and possibly
historical) content, the exact amount remains unclear, as these corpora lack a specific focus on
scraping such data. This ambiguity complicates the assessment of social media data’s contribution
to model training and, consequently, their effectiveness in non-normative social media contexts.
Furthermore, recent measures by social media platforms such as X and Facebook to restrict web
scraping and mandate the use of (paid) APIs further limit access to substantial and representative
social media datasets.

For historical Dutch, limited data accessibility and a lack of linguistic knowledge present even
greater challenges for existing Dutch-specific models, as these factors complicate the processing and
interpreting of historical texts. In particular, non-normative language characteristics of historical
Dutch become manifest in its spelling variability, out-of-domain vocabulary, semantic shifts, and
syntactic inconsistencies. Spelling variations are frequent, with a word like “ik” (EN: I) also ap-
pearing as “ick” or “ic”. Out-of-domain vocabulary includes terms like “smakwambes”, which are
no longer present in contemporary Dutch. Semantic shifts add further complexity, as meanings can
change drastically over time. For instance, “wijf” historically referred to a “woman” or “wife”, but
it has contracted a derogatory connotation in contemporary Dutch. Finally, historical Dutch also
exhibits syntactic patterns that differ from those of standardized contemporary Dutch. For exam-
ple, the verb “wachten” (EN: to wait) could take a direct object (“iemand wachten”, EN: awaiting
someone), whereas contemporary Dutch requires a preposition (“wachten op iemand”, EN: waiting
for someone). Social media language shares many of these characteristics. Spelling variability ap-
pears in the form of creative abbreviations, like “w8” instead of ”wacht” (EN: wait). Social media
also introduces out-of-domain vocabulary, such as slang, emoji, and borrowed terms, which do not
occur in standard Dutch corpora. Moreover, neologisms are adopted significantly faster in social
media language than in standardized language, meaning that the domain is more strongly affected
by temporal shifts than the language norm. Semantic shifts occur rapidly in social media contexts,
mirroring the temporal changes observed in historical Dutch. For instance, an ellipsis (...) has no
sentimental or emotional connotation in standard language, but is often used to express frustration
on social media by recent generations. In addition, social media texts frequently break grammatical
conventions and consist of telegram-style messages, where subjects are omitted.



Both non-normative varieties of Dutch are – to different extents – affected by orthographic vari-
ability, distinct vocabularies, syntactic peculiarities and semantic change, all of which can complicate
the application of existing Dutch NLP tools. Therefore, we explore the adaptation of Dutch trans-
formers to non-normative historical and social media Dutch language varieties and aim to answer
the following research questions:

• RQ1: Does expanding background knowledge by adapting Dutch pre-trained encoder models
to non-normative language variants improve performance on downstream tasks?

• RQ2: What is the impact of pre-training data quantity and data relevance on the adaptation
to non-normative Dutch? How much and which type of data do you need before continued
model pre-training outperforms adapter-only training?

• RQ3: How do adapted encoder models match up against generative decoder models? Do
generative models need further adaptation?

We investigate two methodologies for model adaptation: adapter-only training and continued
full model pre-training. Since continued model training typically performs better on larger datasets
due to the greater number of trainable parameters, we investigate how training resource character-
istics, such as data quantity and relevance, influence the point at which adapter-only training is
outperformed by continued full-model pre-training. We evaluate adaptation by measuring adapted
model performance on downstream tasks for two different domains. Doing so, we can assess how do-
main and task-specific knowledge affect model performance. More concretely, the tasks we focus on
consist of emotion and sentiment detection in early modern Dutch comedies and farces and emotion
and irony detection in Dutch tweets. In our evaluation, we account for the two employed adaptation
methods and the selection of pre-training corpora. Finally, we compare adapted encoder models to
generative large language models (LLMs), testing both established multilingual models like Llama
3 (Grattafiori 2024) and language-specific models like GEITje (Vanroy 2024b). With this research,
we contribute to the exploration of domain-specific NLP for Dutch, a language where the full poten-
tial of recent methodological advances remains under-explored. By investigating whether adapted
encoder models can compete with generative LLMs for highly specific Dutch language variants, we
aim to determine if adaptation for transformer-based models proves to be a worthwhile methodology
to optimize the performance of existing NLP tools on downstream tasks in non-standard language.
This research not only enhances our understanding of parametrization for adjacent but largely out-
of-domain language variants, but also provides guidance for the development of future NLP tools
for other similar language domains.

2. Related Research
In this Section, we describe related work on adaptation in language modelling. In Section 2.1,
we elaborate on key concepts, methods and scenarios in which adaptation has previously been
employed in NLP with regards to non-standard language. Then, in Section 2.2 we describe the
development of generative AI and the implication for model adaptation. Finally, in Section 2.3
we discuss traditional approaches for adapting data through normalization techniques contrary to
model refinement techniques like model adaption.

2.1 Adaptation of Transformer Models

Adaptation in NLP revolves around the transfer of a pre-trained model to two types of knowledge:
domain knowledge and task knowledge. Increasing a model’s domain knowledge refers to the im-
provement of its understanding of new language data of interest. This results in the model creating
better representations of the linguistic features, style and structure typical for this particular type of



content. Domain adaptation often serves as the foundation for developing models that perform well
across a wide variety of use cases, leveraging large-scale unlabelled corpora to enhance performance
in related domains (Devlin et al. 2019, Gururangan et al. 2020). In contrast, increasing a model’s
task knowledge relates to improving its performance at a specific objective the model is supposed
to achieve, such as general NLP downstream tasks like sentiment and emotion detection or named
entity recognition. This usually involves fine-tuning pre-trained models on labelled data tailored to
the task at hand in order to create expert systems. Domain adaptation has been explored across a
variety of language contexts, each presenting unique challenges and opportunities for advancing NLP.
These scenarios range from broad, general applications of adaptation to highly specialized ones and
span languages from high-resourced and extensively researched, such as English, to low(er)-resourced
and less commonly studied languages, such as Dutch. Given this study on adapting to historical
and social media language, we discuss related work on adaptation accordingly.

Research has advanced NLP for non-standard English in recent years through domain adaptation
(Gururangan et al. 2020, Manjavacas and Fonteyn 2022a) and the development of domain-specific
models. Examples for the latter include social media English models such as BERTweet (Nguyen
et al. 2020), Twitter-RoBERTa (Barbieri et al. 2020) and the multilingual Twitter-XLM-RoBERTa
model (Barbieri et al. 2022), and historical English models like HistBERT (Qiu and Xu 2022)
and MacBERTh (Manjavacas and Fonteyn 2022b), which have notably improved performance on
downstream tasks involving non-normative language variants of English. For Dutch, contrastingly,
handling non-normative language is mostly dependent on fine-tuning standard Dutch models like
BERTje (de Vries et al. 2019), RobBERT (Delobelle et al. 2020) or multilingual models on down-
stream tasks. This method enables models to adapt their parameters to the task at hand, enhancing
performance by increasing task-specific knowledge. Nevertheless, it does not substantially improve
their domain-specific knowledge. Compared to English, no Dutch domain-specific model exclusively
focusing on social media language has been developed yet. However, GysBERT (Manjavacas and
Fonteyn 2022b), a domain-specific BERT-based model for historical Dutch, was developed using
texts from 1500 to 1950, spanning the majority of the machine-readable Dutch literary tradition.
Still, GysBERT remains the sole endeavour of its kind for the Dutch language.

Based on related work, three trends are identified. Firstly, (1) new encoder models are created
from scratch with specialized tokenizers and are specifically trained for the target domain (Manjava-
cas and Fonteyn 2022b) or language (Delobelle et al. 2020, de Vries et al. 2019). Although building
such models allows for the most specialized tokenization and makes use of all available parameters
to model the target domain, there are some downsides to this approach. Due to the limited size of
the corpus, generalization may be limited and overall language modelling may fail to capture some
nuances by relying too much on memorization. In addition, training models from scratch requires
a sufficiently large and qualitative corpus alongside intensive pre-training to learn language mod-
elling from scratch. These resources may not be available for all specialized domains, especially for
historical data. The second method (2) takes an already pre-trained monolingual or multilingual
model with their corresponding tokenizer, which can already model the language relatively well,
and continues pre-training on a new, specialized dataset to adapt all existing weights to represent
the language of the domain (Qiu and Xu 2022, Barbieri et al. 2022). Just as the first method, this
approach also updates all weights of the base model to create a new domain-adapted model. A
third alternative to this, involves (3) training of adapters. This approach shares the same training
objectives, unsupervised training through continued pre-training. However, as opposed to training
from scratch (1) and continued pre-training (2), the weights of the source model are not updated
to the target domain but are kept intact. Instead, a set of new trainable parameters is introduced
to learn to map domain-generic to domain-specific embeddings. The MAD-X framework (Pfeiffer
et al. 2020), for example, incorporates two invertible adapters into the model: one placed at the
embedding layer and another at the output layer. These adapters have parameters that are inverses
of each other, allowing them to be updated together efficiently while preserving the integrity of
the original model’s parameters. In their setup, they create specialized adapters that turn multi-



lingual pre-trained models into language-specific models. Their experiments suggest that training
adapters is computationally more efficient than full-model pre-training, as it involves updating only
a small set of additional parameters rather than the entire model. Despite using fewer parameters,
the performance of adapter-based models on downstream tasks is competitive to that of models
undergoing full-model pre-training, particularly for languages that are well-represented in the pre-
training corpus (Pfeiffer et al. 2020). Interestingly, other research also found that adapter-training
to languages that are poorly represented in the pre-training data can even outperform full-model
pre-training (He et al. 2021). This makes them a promising approach for adapting models to under-
represented language variants. To our knowledge, these invertible adapters have only been applied
for cross-lingual adaptation from multilingual models and monolingual specialization from English to
English dialects (Held et al. 2023, Xiao et al. 2023), leaving adapting monolingual Dutch models to
intralingual variants, like non-normative (historical or social media) language, as a novel application.

2.2 Generative AI

Expert transformer-based encoder models have dominated the field in the last decade. Nonetheless,
the landscape of NLP has been rapidly shifting with the emergence of decoder-only generative large
language models (LLMs), such as GPT-3 (Brown 2020), which have demonstrated to be flexible,
generalizable and performant across a wide range of tasks without requiring task-specific architec-
tures. These LLMs are trained on massive, diverse corpora, enabling them to generalize to many
domains, often with only minimal fine-tuning or prompt engineering (Bommasani 2022). This ver-
satility stems from their extensive pre-training on massive datasets, instruction fine-tuning, and
reinforcement learning through human feedback. Tasks can be addressed through zero-shot prompt-
ing, where only task instructions and input text are provided, or improved with in-context learning,
where labelled examples are included directly in the prompt to guide the model’s predictions. In
theory, this capability should make these models promising for fully automatic classification tasks,
even in under-represented languages like Dutch. These models, however, are still predominantly
trained and evaluated on English corpora, leaving a gap in understanding their effectiveness for
other languages, including Dutch (Huang et al. 2024, Liu et al. 2024). A recent study has shown
that without fine-tuning, generative models like Llama 2 and GPT-3.5-Turbo often produce out-
puts that are inconsistent and fail to conform to the specific formatting required for classification
tasks (De Langhe et al. 2024). These inconsistencies make it difficult to map outputs directly to
predefined classification labels, requiring manual intervention to clean or restructure results. This
challenge is further compounded by the limited availability of resources for instruction-tuning in
Dutch. Generative models are predominantly instruction-tuned using English data or translated
datasets. As a result, their ability to generalize effectively to Dutch and follow instructions in the
prompt is constrained. Limited to a zero-shot setting with only in-context examples and no addi-
tional fine-tuning, these experiments prompt the question of whether fine-tuning could bridge the
performance gap.

Recently, the development of Dutch-specific generative models like GEITje (Vanroy 2024b), Fietje
(Vanroy 2024a), and Reynaerde (Van den Avenne 2024) has expanded the potential for generative
modelling within the Dutch language. However, these models have predominantly been trained on
general-domain corpora, such as Wikipedia and web-scraped content, which are largely representa-
tive of standardized Dutch. This focus limits their capabilities in handling non-normative language
forms, such as historical language or modern day informal language variation commonly seen on
social media. Emerging studies (Manjavacas and Fonteyn 2022b) indicate that domain-specific
adaptation is critical for addressing the orthographic, lexical, and syntactic idiosyncrasies of such
texts—factors often absent from the general corpora used to pre-train these new models.



2.3 From Data Modification to Model Refinement

So far we have discussed adaptation primarily from the perspective of model architectures and
pre-training. A different approach for adapting to non-normative language in NLP is through
“translating” such language into its standard form, a process often referred to as normalization.
While the goal of normalization aligns with model adaptation in its aim to improve model perfor-
mance on non-standard language, its methods differ significantly: rather than adapting the model
to the data, normalization modifies the data to conform to forms the model is already familiar with
and can effectively process. Adaptation through normalization typically involves techniques like
spelling correction, lexical replacement and syntactic restructuring to align input data with stan-
dard language forms. Regarding adapting non-normative Dutch language through normalization,
research has focused on normalizing historical language forms to their modern standard counter-
part. For example, normalizing historical Dutch texts to modern spelling conventions has been
explored in both rule-based (van Cranenburgh and van Noord 2022) and data-driven transformer-
based encoding-decoding approaches (Wolters and Van Cranenburgh 2024). Also normalization
in Dutch user-generated content (UGC) on social media has previously been explored with rule-
based orthographical (Schulz et al. 2016), statistical (De Clercq et al. 2013) and transformer-based
sequence-to-sequence methods for lexical normalization (Ashmawy et al. 2023). Normalizing data to
align better with pre-existing model expectations might improve performance on semantic tasks such
as sentiment, emotion, and irony detection. However, this approach inherently projects standardized
perspectives on non-normative language, leading to the loss of linguistic nuance and potential mis-
representations of the authentic context of the original content. Consequently, normalization seems
less suitable than model adaptation to support tasks requiring a thorough understanding of the
unique semantic and stylistic features of non-standard language. Focusing on refining its knowledge
of the characteristics of such language, model adaptation techniques ensure a more representative
and context-aware modelling approach. Conclusively, advancements in model architectures, such as
adaptation, offer a promising alternative. By leveraging these advancements, model adaptation can
unlock new opportunities for tailoring NLP systems to challenging linguistic contexts.

3. Adapting Transformer Models

In this Section, we describe the encoder-only models (3.1), the pre-training methodology (3.2) and
data (3.3) used for model adaptation.

3.1 Model Selection

In our experimental setup, we explore the adaptation of two prominent pre-trained encoder models
for Dutch: BERTje (de Vries et al. 2019) and RobBERT-v3 (Delobelle and Remy 2023). These
BERT-based and RoBERTa-based models are then separately fine-tuned on historical Dutch and
social media data using continued full-model pre-training and adapter-heads, and successively eval-
uated on downstream tasks within each domain. To complement these experiments, we include an
additional model tailored to historical Dutch: GysBERT (Manjavacas and Fonteyn 2022b). While
GysBERT is trained on data from 1500 to 1950 and covers diverse literary and non-fictional genres,
25% of it originates from DBNL, while the other 75% comes from OCRed historical newspapers,
books and journals with varying quality originating from Delpher. Even though efforts were made
to select qualitatively enough OCRed texts by using a perplexity model trained on DBNL data, the
predominance of such data in GysBERT can be an argument for further adapting it to the dramatic
style of 17th-18th century, which is the target language of the downstream tasks for historical Dutch.
Further, since GysBERT is specialized for historical contexts, we exclude it from adapting to social
media tasks to make a logical comparison between models within their respective domains. Finally,

https://www.delpher.nl/


the impact of adaptation is assessed by comparing the performance of the models in their adapted
settings against their baseline results on the respective tasks.

3.2 Methodology

As relayed in Related Work (see Section 2.1), there are three ways of performing adaptation for
encoder models: full-model training of new models from scratch, continued training of existing pre-
trained models and leveraging adapters for existing pre-trained models. As monolingual models for
standardized Dutch are already available, these models contain relevant linguistic knowledge and
can serve as a starting point for adapting to non-normative Dutch language. This suggests that pre-
training from scratch is likely neither efficient nor required, as it would introduce an unnecessary
computational load. In this work, we, therefore, do not experiment with pre-training from scratch
and instead we focus on the adaptation of existing models with both continued full-model pre-training
and adapter training.

These forms of adaptation work through continuing pre-training using corpora representative
of the target domain to capture linguistic idiosyncrasies and contextual nuances specific to the
data. For BERT-based models, like BERTje, this process relies on two pre-training objectives:
Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). MLM masks a selection
of tokens in a sentence and trains the model to predict them based on their surrounding context.
NSP, by contrast, determines whether one sentence logically follows another. RoBERTa models, like
RobBERT, on the other hand, utilize only MLM, as its creators demonstrated that NSP has minimal
impact on downstream task performance (Liu et al. 2019). This finding informed our decision to
adopt MLM as the sole objective for continued pre-training across all models, promoting consistency
while also reducing computational overhead. MLM is the same objective for both adapter-training
and continued full-model pre-training. Continued pre-training involves updating all the weights of
the base model. In contrast, adapter training keeps the base model’s weights frozen while updating
only the additional weights added to the embedding layer and just before the output layer. In our
experiments, we keep the training objectives (MLM) and all parameters consistent across the two
fine-tuning methods, with the only difference being which and how many weights are updated.

The training process was tailored to reflect the characteristics of our data. The maximum se-
quence length was reduced to 256 tokens to accelerate training and accommodate the short length
of our data, which includes single sentences from historical texts and tweets (the latter being inher-
ently capped at 280 characters). For optimization, we employed AdamW as optimizer (Loshchilov
and Hutter 2019) with a learning rate of 1e-4 and a weight decay of 0.01. The batch size was set
to 64, distributed across 4 GPUs to maximize efficiency. To monitor training progress, evaluations
were conducted every 2500 steps on a held-out development set comprising 1% of the total data.
Early stopping was implemented to prevent overfitting, with training halting after three consecu-
tive evaluations without a reduction in development loss, or at a maximum of 25 epochs. Notably,
most models, especially those trained on larger datasets, terminated early due to the early stopping
criteria, thereby avoiding overfitting while maintaining robust results. A more detailed overview of
the model adaptation process and the 22 trained systems for historical and social media Dutch this
resulted in can be found in Appendix A, including the reported training steps, evaluation loss and
model perplexity.

3.3 Pre-Training Data

3.3.1 Historical Dutch

To adapt language models for historical Dutch, particularly for downstream tasks focusing on early
modern Dutch comedies and farces from the EmDComF corpus (Debaene et al. 2024), we introduce
the nLit-DBNL corpus. This corpus consists of 4 progressively expanding pre-training datasets,
balancing domain specificity and data volume. The datasets are available on Hugging Face under



Figure 1: Texts per century (%) from the open-access historical Dutch data provided by DBNL.

LT3/nLit-DBNL. The 4 pre-training datasets are constructed as follows: (1) nLit-EmDComF con-
tains only texts from EmDComF (Debaene et al. 2024), ensuring maximum relevance to the target
language domain; (2) nLit-EmDrama expands (1) by including additional contemporaneous drama
texts (1600-1800) from the Digitale Bibliotheek voor de Nederlandse Letteren (DBNL); (3) nLit-
EMod further expands (2) by incorporating texts from all literary genres from that same period, in-
troducing more stylistic and topical variety while maintaining historical proximity; (4) nLit-DBNL+
includes all available DBNL texts spanning 900-1900, maximizing data volume but also introduc-
ing greater linguistic variation and potential noise. The 1600-1800 period was selected for (2) and
(3) because it represents a large portion of DBNL’s available data (Figure 1), aligns chronologically
with EmDComF (1650-1725), and is expected to be linguistically more consistent with early modern
Dutch. Expanding beyond this time frame in (4) introduces broader linguistic variation, reflecting
the evolution of Dutch but reducing domain relevance to early modern theatre texts. To enhance
data quality and consistency, we applied two pre-processing steps. First, OCR post-correction was
performed to address transcription errors in EmDComF, where approximately 50% of the texts
originate from OCR-scanned sources. We used the best performing mBART sequence-to-sequence
correction model, fine-tuned on a parallel OCR-to-gold EmDComF dataset (Debaene et al. 2025).
This model, evaluated on a held-out test set (n=15,897), fully corrected 9% of all samples while bal-
ancing error reduction and avoiding overgeneration. Second, deduplication was applied to remove
identically repeated data points, as these are irrelevant for masked language modelling (MLM), such
as repeated character names, structural cues, and titles, ensuring more consistent pre-training data.

Since these datasets span multiple historical periods and genres, their relevance to early modern
Dutch theatre varies. The further a dataset expands beyond EmDComF, the less relevant it becomes
but the larger it gets. The vocabulary overlap between EmDComF and the other datasets decreases,
as shown in Table 1, where nLit-EmDrama retains 62% of EmDComF’s vocabulary, nLit-EMod
retains 11%, and nLit-DBNL+ retains only 5%, indicating a potential loss of domain specificity and
linguistic drift. Similarly, the percentage of overlapping lines in Table 1 reflects data expansion,
which may enhance generalization but also introduce noise. The nLit-DBNL+ pre-training corpus
is structured to systematically explore these trade-offs. By incrementally expanding the datasets in
size while decreasing domain specificity, we aim to assess the impact of domain-specific pre-training

https://huggingface.co/datasets/LT3/nLit-DBNL


on early modern Dutch theatre tasks and examine when additional data becomes counterproductive.
This structured approach provides a nuanced evaluation of data quality versus volume, contributing
to historical NLP research for Dutch.

(1) (2) (3) (4)

(1) nLit-EmDComF 100.0 - - -
(2) nLit-EmDrama 61.73 100.0 - -
(3) nLit-EMod 11.13 18.03 100.0 -
(4) nLit-DBNL+ 4.94 8.02 44.42 100.0

(1) (2) (3) (4) (5)

(1) nLT-Tweets 100.0 - - - -
(2) nLT-Tweets 74.84 100.0 - - -
(3) nLT-Tweets 19.80 26.46 100.0 - -
(4) nLT-Tweets 8.57 11.45 43.26 100.0 -
(5) nLT-Tweets 3.23 4.31 16.30 37.68 100.0

Table 1: Vocabulary overlap in Historical (left) and Social Media (right) pre-training datasets (%).

Dataset nLit-DBNL+ nLT-Tweets

Lines % Lines %

(1) 367,636 3.08 367,636 0.77
(2) 553,396 4.64 553,396 1.17
(3) 3,647,708 30.56 3,647,708 7.69
(4) 11,937,488 100.00 11,937,488 25.16
(5) - - 47,440,915 100.00

Table 2: Overlapping lines in the Historical and Social Media pre-training datasets.

3.3.2 Social Media Dutch

For Dutch social media, we present and release the nLT-Tweets corpus on Hugging Face. This
previously unreleased background corpus is constructed using the Twitter (now X) Research API.
We collected Dutch tweets identified via the platform’s built-in language detection, excluding all
retweets to focus on original content. Our approach utilized two lists of search terms: common
words and stop words. The list of common words, originally compiled by Hazenberg and Hulstijn
(Hazenberg and Hulstijn 1992) to support second-language learning in Dutch, includes 2,000 of
the most frequent words in a collection of written Dutch. For stop words, we made use of the
predefined list of 340 Dutch stop words in Spacy (Honnibal et al. 2020). By combining these
lists, we ensured broad coverage of highly frequent content topics (via common words) while also
incorporating general-purpose terms that are not overly topic-specific (via stop words). Given the
significant overlap between the two lists, we took additional steps to refine the corpus. Lastly scraped
in January 2023, the tweets were deduplicated, normalized by stripping newlines, and anonymized
by removing @-mentions. Links to pictures and external websites were also excluded to minimize
noise. This process resulted in a final dataset of 47,440,915 unique lines of text (tweets). Contrary
to the creation of the historical pre-training corpora, no other metadata was used to further filter
out data points more closely related to the domain of the downstream tasks of emotion and irony
detection. In accordance with the historical Dutch pre-training datasets, however, we transposed the
data size sampling by number of lines to analyse the impact of data quantity on model performance
in this domain, which resulted in five pre-training datasets, as seen in Table 2. In this sampling, the
distribution of vocabulary overlap between the datasets shows similar tendencies as in the historical
pre-training data, but is on average more similar (Table 1). We hypothesize that more similar
content is present throughout the sets, which could have an impact on downstream performance
after domain adaptation.

https://huggingface.co/datasets/LT3/nLT-Tweets


4. Performance on Downstream Tasks
4.1 Task Data

In the following sub-sections, we describe the data used to evaluate our models for downstream
tasks. For historical Dutch, we evaluate on detecting sentiment and emotion in early modern Dutch
comedies and farces. For social media Dutch, we evaluate on the tasks of irony detection and
emotion detection in tweets. As social media data can contain personal data, we made sure to use
anonymized data. This involves the same pre-processing as we used for cleaning the social media
pre-training corpus.

4.1.1 Sentiment Analysis - Historical

For the historical downstream tasks, we present two datasets for multiclass sentiment and emotion
detection in early modern Dutch originating from the EmDComF corpus (Debaene et al. 2024).
Out of this corpus, 9 plays were selected (4 comedies and 5 farces) and sequentially annotated at
the sentence level after automatic sentence splitting was applied using NLTK (Bird et al. 2009),
as plays in EmDComF are unstructured .txt files. This also means that annotators had access to
the context in which sentences follow each other. For an overview of the annotated plays, we refer
to Appendix B. Sentiment was annotated with fine-grained “very negative”, “negative”, “neutral”,
“positive” and “very positive” labels by 3 expert annotators. Measuring inter-annotator agreement
(IAA) on a farce consisting of 326 sentences resulted in an α score (Krippendorff 2011) of 0.700. For
this work, however, we merge the sentiment labels to three categories, ignoring the strength of the
sentiment, which results in an increased α score of 0.774, almost indicating satisfactory agreement
(≥0.80). Finally, annotating 9 plays this way resulted in a dataset of 7,332 sentences annotated with
sentiment. The sentiment label distribution is shown in Figure 2a. The dataset is split into a train
set of 5278 samples (72%), dev set of 587 samples (8%) and test set of 1467 samples (20%) and is
available on Hugging Face at floriandebaene/EmDComF_primary-emotion.

(a) Sentiment Analysis (b) Emotion Detection

Figure 2: Label Distributions for Historical Tasks

4.1.2 Emotion Detection - Historical

The second downstream task for historical Dutch is multiclass emotion detection. For this task,
we used the same 7,332 sentences as we labeled for sentiment detection and enriched these with
the following emotion labels: “Love”, “Joy”, “Fear”, “Anger”, “Sadness” and “Neutral”. Measuring

https://huggingface.co/datasets/floriandebaene/EmDComF_primary-emotion


IAA resulted in a moderate alpha score of 0.773 across all classes. More concretely, satisfactory
agreement was found for neutral (α = 0.812), moderate agreement for love (α = 0.788), joy (α =
0.738), fear (α = 0.732), sadness (α = 0.688) and almost moderate agreement for anger (α = 0.667;
< 0.67). The final emotion label distribution in the whole dataset is shown in Figure 2b. The data
is split into a train set of 5278 samples (72%), dev set of 587 samples (8%) and test set of 1467
samples (20%), available on Hugging Face at floriandebaene/EmDComF_sentiment. In this work,
we will establish SOTA on both historical tasks and make the datasets open access.

4.1.3 Emotion Detection - Social Media

The first downstream task in the social media domain is multiclass emotion detection. For this
purpose, we utilize the EmotioNL dataset (De Bruyne et al. 2021), which originally consists of 2,000
texts: 1,000 tweets and 1,000 captions from Flemish reality TV-shows. From this dataset, we only
make use of the 1,000 tweets, as the other texts already align more with standardized language. This
previously unpublished corpus is now publicly available on Hugging Face at LT3/EmotioNL_Tweets.
The tweets in this dataset were scraped using emoticons and emojis as search terms to attain a
high number of emotional texts. These 1,000 tweets are labelled as “Love”, “Joy”, “Fear”, “Anger”,
“Sadness” or “Neutral” and follow the class distribution described in Figure 3a. For this task, Cohen’s
kappa (Cohen 1960) was calculated for 300 tweets, resulting in an overall moderate agreement
(κ =0.504) across all classes. In addition, the agreement was also calculated per class, finding a
substantial agreement for anger (κ = 0.608) and sadness (κ = 0.682) and fair agreement for fear (κ
= 0.313), joy (κ = 0.380) and love (κ = 0.210). For the neutral category, a moderate agreement
was found (κ = 0.513). To ensure effective model evaluation, the dataset is split into a training set
(700 samples), a development set (100 samples), and a test set (200 samples). The current state-
of-the-art for fine-tuning pre-trained models is achieved using RobBERT v2 (Delobelle et al. 2020),
which reaches a macro-averaged F1-score of 40% (De Bruyne et al. 2021). However, recent tests
with zero-shot generative models have demonstrated improved performance for generative models,
with GPT-3.5-turbo attaining 46% F1-score (De Langhe et al. 2024). For this SOTA, 10-fold cross-
validation was used during evaluation for RobBERT, meaning that 10 models were trained within a
single experimental setup. As we explore many different experimental settings, using 10-fold cross-
validation would significantly increase the computational cost of our experiments. Therefore, we use
a single held-out test set instead of 10-fold CV and will not be able to compare to this exact score,
but we still include fine-tuned RobBERT as one of the systems in our evaluation.

(a) Emotion Detection (b) Irony Detection

Figure 3: Label Distributions for Social Media Tasks

https://huggingface.co/datasets/floriandebaene/EmDComF_sentiment


4.1.4 Irony Detection - Social Media

The second downstream task in the social media domain is irony detection. The dataset used for this
task is the only available dataset for Dutch irony detection. It was originally collected by scraping
tweets on the search terms #irony, #sarcasm and #not (Van Hee et al. 2016). After removing these
irony-related search terms, the tweets were annotated by student workers into two categories “ironic”
and “not ironic”. An agreement study on 200 tweets by 3 annotators affirms substantial agreement
for this annotation task with an α score (Krippendorff 2011) of 0.7905. The final dataset comprises
5,566 samples, following the distribution described in Figure 3b. For training and evaluation, the
data is split into a training set (4,008 samples, 72%), a development set (445 samples, 8%), and a
test set (1,113 samples, 20%).

4.2 Fine-tuning Methodology

4.2.1 Pre-Trained Encoder Models

Transformer encoding models like BERT and RoBERTa can be fine-tuned for classification tasks
by replacing the language modelling head with a dedicated classification head. In BERT-based
models, this head processes the [CLS] token, a special token that encodes a representation of the
entire input sentence, and forwards it through a single layer of neurons to map the representation
to the desired output classes. For RoBERTa models, the classification head consists of two layers
of neurons, providing an additional level of task-specific modelling that can enhance performance.
Once the model maps the sentence meaning to the predefined classes, the output logits are converted
to probabilities using a softmax function. The class with the highest probability is then selected as
the model’s prediction.

During training, both the weights of the pre-trained encoder and the classification head are
updated to optimize task-specific performance. Cross-entropy loss is used as the objective function
to minimize prediction errors. All models are fine-tuned with a batch size of 16, distributed across
2 GPUs, using AdamW as optimizer with a learning rate of 5e-6, a weight decay of 0.01, and 200
warm-up steps. Fine-tuning is performed for up to 30 epochs, with performance evaluated every
100 steps on a task-specific held-out development set. To prevent overfitting and ensure training
efficiency, early stopping is applied when the macro-averaged F1-score on the development set fails
to improve for three consecutive evaluations.

In our experiments, we evaluate two types of pre-trained encoder models: (1) models where the
weights of the entire encoder are fine-tuned and (2) models where only the adapter weights are
trained. Adapters, when added to the pre-trained encoder models, increase the total number of
parameters. To ensure a fair comparison between models with and without adapters, we freeze the
adapter weights during fine-tuning, updating only the weights of the encoder and classification head.
This setup allows us to isolate the impact of the adapters during the pre-training phase while keeping
the fine-tuning procedure consistent across both configurations. Alongside the adapted models (with
and without adapters), we also evaluate baseline models, which are pre-trained encoders without
adapters.

4.2.2 Generative Decoder Models

As detailed in Section 2, generative models often produce outputs that are inconsistent and fail
to conform to the specific formatting required for classification tasks. To address these challenges,
fine-tuning offers a practical solution for aligning generative models with task-specific requirements.
By fine-tuning, we can adapt models to handle Dutch-specific tasks and ensure their outputs con-
form to predefined formats without requiring extensive manual intervention. However, the large
size of generative models presents significant computational challenges for traditional full-model
fine-tuning. Given that the modifications needed for many classification tasks are often limited to
learning the output format, fine-tuning the entire model is cumbersome, inefficient and unneces-



sarily resource-intensive. To overcome these limitations, we employ Quantized Low-Rank Adapters
(QLoRA) (Dettmers et al. 2023), a method that reduces the computational cost and memory require-
ments of fine-tuning while maintaining high performance. Low-rank adapters approximate updates
to a model’s weights using rank decomposition, representing the changes (∆W ) as the product of
two smaller matrices:

∆W = A ·B

Here, A and B are low-rank matrices with significantly fewer parameters than the original weight
matrix. By training only these matrices, the majority of the pre-trained parameters remain frozen,
significantly reducing the memory and computational demands of fine-tuning. Unlike invertible
adapters, which are inserted between attention layers and increase computational overhead, low-rank
adapters operate in parallel with the base model layers, ensuring minimal impact on training speed.
When combined with quantization, which optimizes weight precision, QLoRA offers a highly efficient
solution for adapting large models with minimal performance loss (Dettmers et al. 2023). Fine-
tuning was performed with 6 predefined random seeds to strike a balance between reproducibility
and fluctuations in model performance due to different initializations.

In our experimental setup, we leverage both in-context learning and adapter-based fine-tuning
to enhance the generative models’ ability to produce outputs in the desired format. Specifically, we
sample an additional labelled example for each label from the training set and embed them into the
prompt to leverage in-context examples when training the generative models. Fine-tuning is then
performed using LoRA adapters with 4-bit quantization, an alpha value of 16, and a rank of 128 to
capture the complexity of tasks such as emotion and irony detection. Although this rank is higher
than typical LoRA configurations, it remains computationally efficient compared to training the full
embedding matrix of models like RoBERTa, which have an embedding size of 768. All generative
models are trained with a learning rate of 2e-5 for five epochs using the full training set, without
early stopping, with a batch size of 4 (1 sample per GPU). Gradient accumulation steps are set to
3, meaning that weights are updated every 12 samples. This setup ensures robust training while
maintaining computational efficiency.

For our experiments, we train both widely used English language models, such as Llama 3
(Grattafiori 2024), and Dutch-specific models, including GEITje and Fietje (Vanroy 2024b, Vanroy
2024a), and Reynaerde (Van den Avenne 2024). To maximize performance and ensure consistency
with task instructions, we select instruction-tuned versions of all models. The language of the prompt
also influences generative models’ performance. For this study, we prompt all generative models in
English to maintain consistency and optimally leverage prior instruction tuning, which often includes
tasks such as sentiment analysis, emotion detection, and irony classification performed on English
datasets. The prompts for all tasks are included in Appendix C.

4.3 Results

To assess the model performance on downstream tasks, we use macro-averaged F1-score as our pri-
mary evaluation metric. While irony detection and sentiment analysis only consider two or three
labels, emotion detection includes 5 emotion labels along with a neutral label. Given the class im-
balances present in all tasks, we employ macro-averaging to ensure equal weighting across all labels.
The reported F1-scores represent the average performance across 6 random seed initializations. Ad-
ditionally, we provide Δ coefficients, which quantify the statistically estimated improvement over the
baseline using a mixed-effects model implemented with statsmodels (Seabold and Perktold 2010).
The mixed-effects model accounts for variability across different models and random seeds to pro-
vide a more reliable estimate of performance differences. To assess whether these improvements are
statistically significant, we include two-tailed p-values alongside the Δ coefficients. These p-values
indicate the probability of observing the reported performance differences under the assumption
that there is no real effect of model adaptation. Lower p-values suggest stronger evidence that
the adaptation methods contribute to meaningful performance gains. We use standard significance



thresholds, namely: p < 0.05*, p < 0.01**, and p < 0.001***, where smaller values denote stronger
statistical confidence in the observed improvements. In this experimental setup, we evaluate a total
of 588 fine-tuned encoding models (60 baseline models and 528 adapted models). To provide a clear
overview of the results, we split up the evaluation to answer our specific research questions and refer
to Appendix D for an overview of all detailed scores. First, we discuss whether model adaptation
improves performance in general by averaging across pre-training dataset, adaptation method and
base models. Secondly, we investigate what role data relevance and data volume plays in the two
different adaptation methods by averaging across base models. Thirdly, we explore which models
perform best at each task, including both pre-training data size, method and base model in our
analysis, and compare this to the performance of the generative models at these tasks.

4.3.1 Model Adaptation versus Baselines

Model adaptation through continued pre-training significantly improves downstream performance
in both historical and social media domains. Table 3 presents macro-averaged F1-scores, averaged
across random seed initializations, pre-training datasets per domain, and base models. The results
indicate that adaptation yields statistically significant improvements in most cases, with adapters
generally outperforming continued full-model pre-training (cfmp). Adapters demonstrate more sta-
ble performance across tasks, as reflected in their lower standard deviation across tasks compared
to cfmp. This stability contributes to their superior average performance for historical emotion
detection, social media emotion detection, and social media irony detection, where adaptation has
negligible impact but adapters still outperform cfmp. For the historical domain, both adaptation
methods lead to statistically significant performance gains of nearly 2% F1-score, highlighting the
effectiveness of domain-specific pre-training. However, in the social media domain, the impact of
adaptation is task-dependent. While emotion detection benefits from a substantial and statistically
significant increase of over 6% F1-score, irony detection shows minimal and insignificant improve-
ment, with cfmp even performing worse than the baseline. The negative Δ coefficient for cfmp on
irony detection suggests that additional pre-training data may have introduced noise rather than
meaningful improvements. These findings emphasize the importance of selecting pre-training data
that aligns with the linguistic properties of the specific task, rather than assuming broad domain
adaptation will yield uniform benefits.

method task F1 ∆ std

baseline emotion 0.4208 - 0.0318
adapter emotion 0.4387 0.0179* 0.0418
cfmp emotion 0.4277 0.0069 0.0528
baseline sentiment 0.6745 - 0.0170
adapter sentiment 0.6887 0.0142*** 0.0203
cfmp sentiment 0.6913 0.0168*** 0.0276

(a) Historical

task F1 ∆ std

emotion 0.2927 - 0.0498
emotion 0.3558 0.0631*** 0.0389
emotion 0.3506 0.0579*** 0.0404
irony 0.7213 - 0.0122
irony 0.7219 0.0006 0.0119
irony 0.7129 -0.0084* 0.0111

(b) Social Media

Table 3: Performance comparison of model adaptation methods against baselines on the downstream
tasks per domain, averaged across random seeds, datasets and models. F1 represents classification
performance. Δ denotes the estimated improvement from a mixed-effects model over the baseline.
Standard deviation (std) quantifies variability in performance. Statistical significance levels: p <
0.05*, p < 0.01**, and p < 0.001***.



dataset emotion irony
adapter cfmp adapter cfmp

F1 ∆ F1 ∆ F1 ∆ F1 ∆

1 0.3417 0.0490** 0.3989 0.1062*** 0.7211 -0.0001 0.7128 -0.0085*
2 0.3501 0.0574*** 0.3607 0.0680*** 0.7222 0.0009 0.7033 -0.0180***
3 0.3649 0.0722*** 0.3238 0.0311** 0.7242 0.0029 0.7277 0.0064
4 0.3622 0.0695*** 0.3141 0.0213 0.7167 -0.0046 0.7093 -0.0119***
5 0.3600 0.0673*** 0.3555 0.0628*** 0.7252 0.0039 0.7115 -0.0097**

Table 4: Effect of dataset and model adaptation methods on Social Media downstream tasks against
the baseline, averaged across random seeds and models. F1 represents classification performance.
Δ denotes the estimated improvement from a mixed-effects model over the baseline. Statistical
significance levels: p < 0.05*, p < 0.01**, and p < 0.001***.

dataset emotion sentiment
adapter cfmp adapter cfmp

F1 ∆ F1 ∆ F1 ∆ F1 ∆

1 0.4467 0.0259** 0.4330 0.0122 0.6900 0.0155*** 0.6985 0.0240***
2 0.4538 0.0330*** 0.4444 0.0236* 0.6901 0.0156*** 0.6994 0.0249***
3 0.4297 0.0089 0.4245 0.0037 0.6904 0.0159*** 0.6858 0.0113**
4 0.4244 0.0036 0.4091 -0.0117 0.6842 0.0097*** 0.6814 0.0069*

Table 5: Effect of dataset and model adaptation methods on Historical downstream tasks against
the baseline, averaged across random seeds and models. F1 represents classification performance.
Δ denotes the estimated improvement from a mixed-effects model over the baseline. Statistical
significance levels: p < 0.05*, p < 0.01**, and p < 0.001***.

4.3.2 Impact of Pre-training Datasets

Up to this point, our analysis has focused on model adaptation methods without considering differ-
ences in pre-training datasets or base models. Now, we examine the effect of the pre-training datasets
while still averaging across base models, aiming to determine the optimal pre-training setting for
downstream performance. For the social media domain (Table 4), where no pre-training data
relevance distinctions were made, we observe task-dependent effects of domain adaptation. Cfmp
does not require the largest datasets to achieve optimal performance, as the smaller pre-training
datasets often yield better results. For emotion detection, dataset (1) produces the highest cfmp
F1-scores, whereas for irony detection dataset (3) achieves best performance. In contrast, adapter-
based adaptation does benefit from larger datasets. Adapter models perform best on dataset (3) for
emotion detection and dataset (5) for irony detection, suggesting that adapters require more exten-
sive domain exposure to reach peak performance. Interestingly, while the adapters consistently and
significantly improve emotion detection, their performance remains on par with the baseline, neither
improving nor degrading results. However, cfmp significantly worsens performance for irony detec-
tion on all datasets but (3), where the gains remain negligible. These results indicate that domain
adaptation for the social media Dutch tasks is task-sensitive, with emotion detection benefiting from
adaptation, while irony detection shows little to no improvement. Additionally, cfmp models require
less data for effective adaptation, whereas adapter models rely on larger datasets for optimal results.

In the historical domain (Table 5), increasing the quantity of pre-training data does not always
translate to optimal adaptation. In fact, it can reduce adaptation effectiveness. For cfmp, the best
performance is achieved with dataset (2) for both emotion and sentiment analysis, while for adapter



models dataset (2) is optimal for emotion detection, and dataset (3) slightly outperforms both
(2) and (1) for sentiment analysis. Dataset (1) emerges as the second-best performer across all
historical tasks. Notably, dataset (2) includes the EmDComF corpus and extends it with additional
drama texts from 1600-1800, making it the most effective pre-training dataset for both adaptation
methods. This suggests that both genre and time-bound data are particularly beneficial for adapting
to both tasks set in early modern Dutch comedies and farces, leading to improved downstream
performance. Expanding the dataset beyond dataset (2) to create datasets (3) and (4) introduces
additional pre-training data from different time periods and genres, which appear irrelevant for
emotion detection but does benefit sentiment analysis, albeit to a lesser extent. This suggests that
domain relevance generally outweighs dataset size in our adaptation experiments. However, despite
the lower results from the largest datasets, all adapted models still generally outperform their non-
adapted counterparts, underscoring the effectiveness of adaptation.

task method split model F1 ∆

emo baseline - gysbert 0.4462 -
emo adapter 2 gysbert 0.4974 0.0512
emo cfmp 2 gysbert 0.4956 0.0493
sent baseline - gysbert 0.6946 -
sent adapter 1 gysbert 0.7166 0.0220
sent cfmp 1 gysbert 0.7266 0.0320**

(a) Historical

task split model F1 ∆

emo - robbert 0.3297 -
emo 4 robbert 0.3905 0.0608
emo 1 robbert 0.4135 0.0838*
irony - bertje 0.7264 -
irony 5 robbert 0.7258 -0.0006
irony 3 robbert 0.7315 0.0050

(b) Social Media

Table 6: Competitive comparison on the downstream tasks per domain using the best-performing
setting for each method, averaged across random seeds. F1 represents classification performance.
Δ denotes the estimated improvement from a mixed-effects model over the baseline. Statistical
significance levels: p < 0.05*, p < 0.01**, and p < 0.001***. Significance should here be interpreted
with caution, as it is based on 6 random seeds.

4.3.3 Best Model Adaptation Configurations

Extending our analysis to consider differences between individual base models, we present the best-
performing pre-training configurations in Table 6. These results provide insights into how different
adaptation methods interact with specific models across both historical and social media domains.
For the historical domain (Table 6a), GysBERT consistently emerges as the best-performing
model, achieving the highest F1 scores across both adaptation methods. This suggests that Gys-
BERT’s initial design and pre-training already provide a strong foundation for historical Dutch NLP
tasks, making it better suited for adaptation to early modern Dutch than RobBERT or BERTje.
Looking at specific tasks, sentiment analysis achieves optimal performance with dataset (1), yielding
a significant F1-score improvement of 3% over baseline GysBERT. This suggests that for historical
sentiment analysis, highly curated, domain-specific data is sufficient for effective adaptation. In
contrast, emotion detection, a more nuanced and complex task, benefits from a larger dataset (2),
which provides a more diverse linguistic context and results in a 5% performance increase over the
baseline. However, in this highly competitive comparison where F-1 scores are based on only 6 re-
sults, this particular performance increase is not found statistically significant. In the social media
domain (Table 6b), RobBERT achieves the best results in most scenarios, outperforming BERTje
in adapted models. The only exception is irony detection, where BERTje outperforms RobBERT in
the baseline. However, after adaptation, RobBERT consistently achieves higher scores for both irony
and emotion detection, demonstrating that it benefits more from domain adaptation than BERTje.
For emotion detection, cfmp adaptation achieves the highest performance on dataset (1) using Rob-
BERT, resulting in an 8% increase in F1-score compared to the best-performing baseline. This



substantial improvement highlights that cfmp effectively refines the model for detecting emotional
nuances in social media texts. For irony detection, the best performance is obtained using cfmp
on dataset (3). However, the performance differences for irony detection across different datasets
remain minimal, indicating that the choice of pre-training data is less critical for this task.

A fine-grained analysis of pre-training data and base model selection reveals that the optimal
adaptation strategy depends on both the task and the model at hand. While adapter training
generally performs better on average (Table 3), the highest task-specific performance is typically
achieved with cfmp, which enables deeper integration of domain knowledge. Three out of four tasks
reach peak performance using cfmp, with historical emotion detection as the only exception, where
the difference is minimal. Additionally, performance gaps between adapter training and cfmp for
historical emotion detection, sentiment analysis, and irony detection remain within 0.01 F1-score,
suggesting that both methods offer competitive results. These results indicate that the effectiveness
of adaptation also depends on the model’s prior familiarity with the domain. Models like GysBERT
for historical Dutch and RobBERT for social media Dutch achieve state-of-the-art performance
after continued pre-training, reinforcing the importance of domain familiarity. While adapter-based
training provides a modular and computationally efficient approach, cfmp generally delivers superior
results, particularly for models with pre-existing domain strengths. Ultimately, the choice between
these methods should consider both the model’s baseline capabilities and the linguistic complexities
of the task.

4.3.4 Adapted Encoders Versus Generative Decoders

Having identified the most effective adaptation strategies approaches for encoder models, we now
compare their performance with generative decoder models. Table 7 shows that fine-tuned Llama
3 achieves the highest F1 scores on three out of four tasks, outperforming other models in histor-
ical sentiment analysis, social media emotion detection and irony detection. The only exception
is historical emotion detection, where fine-tuned Fietje and Reynaerde surpass Llama 3 with F1
scores of 27% and 25.5%, respectively. Across all tasks, fine-tuned generative models significantly
outperform their zero-shot counterparts with in-context learning, underscoring the necessity of task-
specific fine-tuning for classification tasks in non-normative varieties of Dutch. However, our results
also reveal that multilingual English-dominant models like Llama 3 still outperform monolingual
Dutch generative models. We hypothesize that this advantage stems from the broader availability
of instruction-tuning data for English-based models, whereas the scarcity of such data limits the
effectiveness of monolingual Dutch generative models for medium- and low-resource languages.

task model F1
finetuned zeroshot

emo fietje 0.2669 0.0105
emo geitje 0.2339 0.0714
emo reynaerde 0.2548 0.0529
emo llama 0.2417 0.1042
sent fietje 0.3899 0.0160
sent geitje 0.3673 0.1056
sent reynaerde 0.3948 0.0556
sent llama 0.4913 0.1331

(a) Historical

task model F1
finetuned zeroshot

emo fietje 0.3998 0.0393
emo geitje 0.3936 0.2652
emo reynaerde 0.3617 0.1488
emo llama 0.4286 0.3444
irony fietje 0.4492 0.0090
irony geitje 0.3060 0.0274
irony reynaerde 0.6235 0.0322
irony llama 0.7595 0.3969

(b) Social Media

Table 7: Classification Scores for Generative Models



Figure 4 contrasts the performance of the generative models with our adapted encoder models
and their baselines. In the historical domain (Figure 4a), generative models perform considerably
worse than the baseline encoders, highlighting their limited ability to handle early modern Dutch.
Conversely, both adaptation methods consistently improve over baseline models for historical senti-
ment and emotion detection. Among the adaptation methods, adapters demonstrate greater stabil-
ity with smaller performance fluctuations, whereas cfmp models achieve high scores when sufficient
high-quality pre-training data is available. For the social media domain (Figure 4b), performance
trends vary by task. Emotion detection benefits from model adaptation, with adapted encoders and
fine-tuned generative models outperforming baselines. In contrast, irony detection shows minimal
differences between baseline and adapted models, suggesting that adaptation has limited impact on
this task. Among generative models, monolingual Dutch variants perform poorly across both tasks,
whereas fine-tuned Llama 3 emerges as the top-performing model, surpassing adapted encoders with
F1 scores of 49.13% for emotion detection and 75.95% for irony detection. The main difference we
can identify between the two social media tasks lies in the annotated dataset construction. For irony
detection, the tweets were originally collected using irony-related hashtags. Although these hashtags
were removed before annotation and were not included in the input for classification models, it is
likely that some of the original tweets (including the irony hashtags) were present in the pre-training
data of the encoder models (RobBERT and BERTje) and generative models like Llama 3. If these
pseudo-labels were available during pre-training, they could artificially inflate model performance,
reducing the need for explicit adaptation. This suggests that fair evaluation for irony detection may
require a novel dataset that eliminates reliance on pre-existing irony markers such as hashtags.

(a) Historical (b) Social Media

Figure 4: Domain Adaptation Methods versus Generative Models.

5. Conclusion & Future Work
Our study demonstrates that model adaptation significantly improves the performance of pre-trained
Dutch encoder models on downstream tasks in both historical and social media domains. Both
adapter training and continued full-model pre-training consistently improve results over general
baselines. The primary difference between these methods lies in their stability: adapter training
produces more consistent results with less fluctuation across different seeds and data sizes, whereas
full-model pre-training achieves the highest absolute performance when sufficient and qualitative
data and computational resources are available. A key finding of our work is that historical Dutch
tasks benefit more from model adaptation than social media tasks across the evaluated models. This
likely stems from the nature of pre-training data, as web-scraped corpora such as OSCAR used for
Dutch language modelling already include a substantial amount of social media data, whereas his-
torical Dutch remains under-represented. Consequently, model adaptation boosts sentiment analysis



and emotion detection in historical Dutch, whereas in the social media domain, only emotion detec-
tion sees significant gains. For irony detection, baseline models already perform strongly, suggesting
that existing pre-training data contains sufficient domain-relevant information.

When comparing generative and encoder-based models, our results highlight the limitations
of current monolingual Dutch generative models. Even though fine-tuning with in-context learn-
ing improves their performance over zero-shot prompting, these models underperform compared to
adapted encoder models, particularly in historical Dutch tasks. Despite Llama 3 being an English-
centric multilingual model, it outperforms Dutch generative models and, in some cases, even adapted
encoder-based models, especially for social media emotion and irony detection. This advantage is
likely due to the availability of extensive instruction-tuning data, which remains scarce for monolin-
gual Dutch generative models. However, none of the generative models come close to matching the
performance of encoder-based models in historical Dutch, suggesting that the linguistic differences
between early modern and contemporary Dutch remain a significant challenge.

Future work should further research domain-specific adaptation strategies across different model
architectures, datasets, and languages. While generative models perform well in social media clas-
sification, exploring their potential for historical Dutch through improved instruction tuning or
domain-specific pre-training could be valuable. Overall, our findings confirm that model adaptation
is essential for improving NLP performance in under-represented Dutch language varieties. While
adapter-based training offers an efficient and stable approach, continued full-model pre-training re-
mains the most effective strategy when sufficient resources are available. Moreover, while generative
models show promise, their effectiveness in low-resource and historical domains remains limited,
necessitating further research into improved adaptation techniques.

Limitations
This study does not explore tokenization and full-model pre-training from scratch, which are alterna-
tive approaches for developing domain-specific or language-specific models (see Section 2). However,
given the wide range of strategies for training models from scratch, this falls beyond the scope of
this work. Nevertheless, initializing vocabulary from existing models (Remy et al. 2023) could help
address lexical gaps caused by spelling variations and out-of-domain vocabulary in non-normative
language. Additionally, due to resource limitations for non-normative Dutch, our analysis focuses
on two domains with only two tasks per domain. During task evaluation, we account for label
imbalance by reporting macro-averaged F1-scores, but we do not investigate how model adaptation
affects performance on individual labels.
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Appendix A. Overview Model Pre-Training

dataset model adapter cfmp

steps eval_loss perplexity steps eval_loss perplexity

1
gysbert 35,000 2.6283 13.85 15,000 2.7153 15.10
robbert 42,500 2.4920 12.08 52,500 2.1481 8.57
bertje 60,000 2.8795 17.80 60,000 2.2191 9.20

2
gysbert 65,000 2.4849 11.99 70,000 2.4210 11.25
robbert 57,500 2.3594 10.58 95,000 1.8092 6.11
bertje 45,000 2.9464 19.04 45,000 2.1789 8.84

3
gysbert 80,000 2.7722 15.99 130,000 2.6461 14.10
robbert 102,500 2.6414 14.03 167,500 1.9526 7.05
bertje 82,500 3.2162 24.93 80,000 2.3470 10.45

4
gysbert 10,000 3.7720 29.28 10,000 3.2553 25.93
robbert 107,500 2.8435 17.18 87,500 2.5003 12.19
bertje 112,500 3.3907 29.69 77,500 2.6872 14.69

Table 8: Model Pre-Training Overview for Historical Dutch.

dataset model adapter cfmp

steps eval_loss perplexity steps eval_loss perplexity

1 robbert 27,500 2.3960 10.98 12,500 2.6537 14.21
bertje 27,500 3.0442 20.99 15,000 3.0120 20.33

2 robbert 32,500 2.3537 10.52 10,000 2.6090 13.59
bertje 82,500 2.9100 18.36 10,000 2.9459 19.03

3 robbert 62,500 2.2664 9.64 10,000 2.5736 13.11
bertje 77,500 2.8550 17.37 10,000 2.9535 19.17

4 robbert 95,000 2.2544 9.53 10,000 2.5830 13.24
bertje 62,500 2.8912 18.01 10,000 2.9640 19.38

5 robbert 135,000 2.2320 9.32 10,000 2.5953 13.36
bertje 140,000 2.8091 16.59 10,000 2.9557 19.21

Table 9: Model Pre-Training Overview for Social Media Dutch.

Appendix B. Annotated Plays from EmDComF

title year genre author
Klucht van de Bedrooge vryer 1672 Farce Adriaan Boelens
Gulsigheydt 1682 Farce Willem Ogier
De meid juffrouw 1685 Farce Pieter de la Croix
Bellamante, ofte de minsiecke juffer 1689 Comedy Anoniem
De spilpenning of verkwistende vrouw 1693 Comedy Thomas Asselijn
De klugtige schoenlapper, of de nieuwe hondeslager 1702 Comedy Cornelius Schrevelius
De bruiloft van Kloris en Roosje 1707 Farce Dirk Buysero
Quincampoix of de windhandelaars 1720 Comedy Pieter Langendijk
De driftige minnaars, of arglistige juffrouw 1723 Farce Adriana van Rijndorp



Appendix C. Prompts for Generative Finetuning
In these prompts, we present the turn switches between user and systems with placeholders. As these
tokens are different depending on the base model, we automatically replace them with the correct
models during inference. Our prompt examples contain a single example per label, in practice, we
made use of one example for each label, meaning 5 examples for emotion detection.

C.1 Historical - Emotion Detection

[System Prompt] You are specialized in recognizing emotions in historical texts. This means that
you are able to identify and name the most prominent emotion that is expressed in a text. The
possible labels are: ’neutral’, ’joy’, ’sadness’, ’anger’, ’fear’ and ’desire’.
[User] Which emotion is expressed in this text? ### Text: En alzo verspild men zyn tyd en geld.
[System] ### Label: anger
[User] Which emotion is expressed in this text?
### Text: Nu sal ik eerst de Vrede sluiten.
[System] ### Label:

C.2 Historical - Sentiment Analysis

[System Prompt] You are specialized in recognizing sentiment in historical texts. This means that
you are able to identify and name the most prominent sentiment that is expressed in a text. The
possible labels are: ’positive’, ’neutral’ and ’negative’.
[User] Which sentiment is expressed in this text? ### Text: En alzo verspild men zyn tyd en geld.
[System] ### Label: negative
[User] Which sentiment is expressed in this text?
### Text: Nu sal ik eerst de Vrede sluiten.
[System] ### Label:

C.3 Social Media - Emotion Detection

[System Prompt] You are specialized in recognizing emotions in social media. This means that you
are able to identify and name the most prominent emotion that is expressed in a text. The possible
labels are: ’neutral’, ’joy’, ’love’, ’sadness’, ’anger’ and ’fear’.
[User] Which emotion is expressed in this text? ### Text: nog 8 dagen tot ik @user en @user kan
zien ;D heb er zo veel zin in
[System] ### Label: joy
[User] Which emotion is expressed in this text?
### Text: @user wat is ze mooi geworden, geniet ze!
[System] ### Label:

C.4 Social Media - Irony Detection

[System Prompt] You are specialized in detecting irony and sarcasm in social media. This means
that you are not only able to identify verbal irony and sarcasm but also situational irony. The
possible labels are: ’This text is genuine and does not contain any irony or sarcasm.’ and ’This text
contains irony or sarcasm.’
[User] Does this text contain irony or sarcasm? ### Text: Altijd fijn, zon ram volle bus in de
vroege ochtend kank wel van geniete
[System] ### Label: This text contains irony or sarcasm.
[User] Does this text contain irony or sarcasm?
### Text: Op naar den haag voor een stadswandeling met school. Zoveel zin in! haha
[System] ### Label:



Appendix D. Detailed Fine-Tuning Results



task method split model F1 std
emo adapt 1 bertje 0.4364 0.0268
emo adapt 1 gysbert 0.4831 0.0166
emo adapt 1 robbert 0.4206 0.0290
emo cfmp 1 bertje 0.4234 0.0410
emo cfmp 1 gysbert 0.4702 0.0278
emo cfmp 1 robbert 0.4053 0.0415
emo adapt 2 bertje 0.4175 0.0298
emo adapt 2 gysbert 0.4974 0.0181
emo adapt 2 robbert 0.4465 0.0257
emo cfmp 2 bertje 0.4222 0.0205
emo cfmp 2 gysbert 0.4956 0.0429
emo cfmp 2 robbert 0.4154 0.0245
emo adapt 3 bertje 0.4060 0.0101
emo adapt 3 gysbert 0.4824 0.0182
emo adapt 3 robbert 0.4007 0.0310
emo cfmp 3 bertje 0.4063 0.0244
emo cfmp 3 gysbert 0.4810 0.0150
emo cfmp 3 robbert 0.3861 0.0425
emo adapt 4 bertje 0.4056 0.0118
emo adapt 4 gysbert 0.4729 0.0214
emo adapt 4 robbert 0.3947 0.0361
emo cfmp 4 bertje 0.3949 0.0333
emo cfmp 4 gysbert 0.4733 0.0263
emo cfmp 4 robbert 0.3591 0.0644
emo base - bertje 0.3960 0.0075
emo base - gysbert 0.4462 0.0421
emo base - robbert 0.4202 0.0099
sent adapt 1 bertje 0.6760 0.0043
sent adapt 1 gysbert 0.7166 0.0099
sent adapt 1 robbert 0.6775 0.0037
sent cfmp 1 bertje 0.6802 0.0104
sent cfmp 1 gysbert 0.7266 0.0026
sent cfmp 1 robbert 0.6887 0.0072
sent adapt 2 bertje 0.6715 0.0042
sent adapt 2 gysbert 0.7165 0.0064
sent adapt 2 robbert 0.6824 0.0048
sent cfmp 2 bertje 0.6767 0.0095
sent cfmp 2 gysbert 0.7257 0.0048
sent cfmp 2 robbert 0.6958 0.0068
sent adapt 3 bertje 0.6694 0.0060
sent adapt 3 gysbert 0.7150 0.0076
sent adapt 3 robbert 0.6869 0.0094
sent cfmp 3 bertje 0.6581 0.0047
sent cfmp 3 gysbert 0.7244 0.0069
sent cfmp 3 robbert 0.6748 0.0146
sent adapt 4 bertje 0.6665 0.0043
sent adapt 4 gysbert 0.7117 0.0036
sent adapt 4 robbert 0.6744 0.0066
sent cfmp 4 bertje 0.6587 0.0061
sent cfmp 4 gysbert 0.7246 0.0053
sent cfmp 4 robbert 0.6608 0.0087
sent base - bertje 0.6638 0.0051
sent base - gysbert 0.6946 0.0118
sent base - robbert 0.6651 0.0096

Table 10: Model Performance on Historical Dutch tasks, averaged across 6 random seeds.



task method split model F1 std
emo adapt 1 bertje 0.3416 0.0366
emo adapt 1 robbert 0.3418 0.0347
emo cfmp 1 bertje 0.3843 0.0000
emo cfmp 1 robbert 0.4135 0.0000
emo adapt 2 bertje 0.3613 0.0398
emo adapt 2 robbert 0.3390 0.0304
emo cfmp 2 bertje 0.3660 0.0000
emo cfmp 2 robbert 0.3554 0.0000
emo adapt 3 bertje 0.3731 0.0186
emo adapt 3 robbert 0.3567 0.0192
emo cfmp 3 bertje 0.2690 0.0000
emo cfmp 3 robbert 0.3786 0.0000
emo adapt 4 bertje 0.3339 0.0601
emo adapt 4 robbert 0.3905 0.0229
emo cfmp 4 bertje 0.3059 0.0000
emo cfmp 4 robbert 0.3222 0.0000
emo adapt 5 bertje 0.3331 0.0461
emo adapt 5 robbert 0.3870 0.0281
emo cfmp 5 bertje 0.3695 0.0000
emo cfmp 5 robbert 0.3416 0.0000
emo base - bertje 0.2557 0.0137
emo base - robbert 0.3297 0.0446
irony adapt 1 bertje 0.7201 0.0141
irony adapt 1 robbert 0.7221 0.0177
irony cfmp 1 bertje 0.7137 0.0000
irony cfmp 1 robbert 0.7118 0.0000
irony adapt 2 bertje 0.7210 0.0134
irony adapt 2 robbert 0.7233 0.0087
irony cfmp 2 bertje 0.6918 0.0000
irony cfmp 2 robbert 0.7148 0.0000
irony adapt 3 bertje 0.7226 0.0125
irony adapt 3 robbert 0.7257 0.0093
irony cfmp 3 bertje 0.7239 0.0000
irony cfmp 3 robbert 0.7315 0.0000
irony adapt 4 bertje 0.7157 0.0101
irony adapt 4 robbert 0.7177 0.0106
irony cfmp 4 bertje 0.7210 0.0000
irony cfmp 4 robbert 0.6977 0.0000
irony adapt 5 bertje 0.7245 0.0118
irony adapt 5 robbert 0.7258 0.0133
irony cfmp 5 bertje 0.7131 0.0000
irony cfmp 5 robbert 0.7099 0.0000
irony base - bertje 0.7264 0.0072
irony base - robbert 0.7161 0.0145

Table 11: Model Performance on Social Media Dutch tasks, averaged across 6 random seeds.
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