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Abstract

In this paper, we study association schemes on the anisotropic points of classical
polar spaces. Our main result concerns non-degenerate elliptic and hyperbolic
quadrics in PG(n, q) with q odd. We define relations on the anisotropic points
of such a quadric that depend on the type of line spanned by the points and
whether or not they are of the same “quadratic type”. This yields an imprimitive
5-class association scheme. We calculate the matrices of eigenvalues and dual
eigenvalues of this scheme.
We also use this result, together with similar results from the literature concern-
ing other classical polar spaces, to exactly calculate the spectrum of orthogonality
graphs on the anisotropic points of non-degenerate quadrics in odd character-
istic and of non-degenerate Hermitian varieties. As a byproduct, we obtain a
3-class association scheme on the anisotropic points of non-degenerate Hermitian
varieties, where the relation containing two points depends on the type of line
spanned by these points, and whether or not they are orthogonal.
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Dedicated to the memory of Kai-Uwe Schmidt.

1 Introduction

Distance-regular graphs are the combinatorial generalisation of distance-transitive
graphs, and as such exhibit a great deal of regularity. Some of the most famous fami-
lies of distance-regular graphs arise from finite geometries, since geometries typically
satisfy strong regularity conditions, and often have a lot of symmetries. These families
include the Grassmann graphs, dual polar graphs, and collinearity graphs of gener-
alised polygons. More information can be found in [1]. All of the above examples are
graphs whose vertices are subspaces contained in some geometry. However, there are
also interesting graphs whose vertices are subspaces outside of the geometry. Graphs
of the latter type will be the focus of this paper.

Distance-regular graphs form a subclass of association schemes, which are the
combinatorial generalisation of generously transitive group actions. We are interested
in association schemes defined on the anisotropic points of polar spaces embedded in
finite projective spaces. Such schemes have been investigated in [1, §12] and in [2–
7]. Most of these association schemes are described as follows. Take a non-degenerate
quadric or Hermitian variety Q in PG(n, q) and let P denote the set of anisotropic
points to Q, excluding the nucleus in case Q is a parabolic quadric and q is even.
Define relations on the points of P where the relation containing a pair of distinct
anisotropic points (X,Y ) depends on | ⟨X,Y ⟩ ∩ Q|. These relations often constitute
an association scheme. Most of the known results can be found in [8, §3.1] and we
also present an overview in Section 3. It is striking that the association schemes have
been investigated, and their matrices of (dual) eigenvalues have been determined, for
all non-degenerate quadrics and Hermitian varieties Q in PG(n, q), except for the case
where q is odd and Q is an elliptic or hyperbolic quadric. Up to our knowledge, this
has only been addressed in [1, §12.2] in the 3-dimensional case, see [9, p. 335] for the
intersection numbers in the elliptic case and [10, §3] for the matrix of eigenvalues in
the hyperbolic case, and in [8, §3.1.3] for the case q = 3. In this paper, we complete
the picture. We prove that if Q is a non-degenerate elliptic or hyperbolic quadric
in PG(n, q) with q odd, then the scheme on the anisotropic points of Q, where the
relation containing a pair of distinct anisotropic points (X,Y ) depends on

• how ⟨X,Y ⟩ intersects the quadric Q,
• whether or not X and Y are of the same “quadratic type” (see Definition 2.3),

constitutes a 5-class association scheme (or a 4-class one in case q = 3). The (dual)
eigenvalues of this scheme are presented in Table 4. Note that the relations respect the
equivalence relation defined by the quadratic type of the anisotropic points. Hence,
the association scheme is imprimitive. We can restrict ourselves to the subscheme
where we take anisotropic points of one quadratic type. This yields a primitive 3-class
association scheme, except when q = 3, in which case we obtain the 2-class association
scheme described in [8, §3.1.3].

We use the eigenvalues we computed, together with the previously computed
eigenvalues of similar association schemes, to compute the eigenvalues of the orthog-
onality graph on the anisotropic points of a non-degenerate quadric, for q odd, or
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Hermitian variety embedded in PG(n, q) in Section 5. As a byproduct, we obtain a
3-class association scheme on the anisotropic points of a Hermitian variety by split-
ting the complement of the NU(n + 1, q) graph (see [1, §3.1.6]) into two parts, see
Proposition 3.2.

Overview.

Section 2 contains detailed preliminaries on finite classical polar spaces and asso-
ciation schemes. Section 3 contains an overview of the known association schemes
on anisotropic points of the finite classical polar spaces. In Section 4 we consider
the scheme on the anisotropic points of the non-degenerate elliptic and hyperbolic
quadrics embedded in PG(n, q) with q odd, determine its eigenvalues, and give some
combinatorial descriptions of the eigenspaces. Section 5 contains the eigenvalues of
the aforementioned orthogonality graphs on anisotropic points of non-degenerate
Hermitian varieties and, in case q is odd, quadrics embedded in PG(n, q).

2 Preliminaries

Throughout this article, q will denote a prime power, and Fq the finite field of order
q. If q is odd, we denote the set of non-zero squares of Fq as Sq, and the set of non-
squares of Fq as Sq. For two sets A,B ⊆ Fq, we write A ·B = {ab || a ∈ A, b ∈ B}. It
is generally known that Sq · Sq = Sq · Sq = Sq and Sq · Sq = Sq · Sq = Sq.

The n-dimensional projective space over Fq will be denoted as PG(n, q). Its points
correspond to the vector lines of Fn+1

q . Recall that the number of points in PG(n, q)
equals

θn(q) :=
qn+1 − 1

q − 1
= qn + qn−1 + . . .+ q + 1.

Given subspaces π1, . . . , πk of PG(n, q), we denote their span (i.e. the smallest subspace
of PG(n, q) containing π1, . . . , πk) by ⟨π1, . . . , πk⟩.

2.1 Classical polar spaces

Polar spaces are a class of incidence geometries, which can be defined in several ways.
The definition due to Buekenhout and Shult [11] is as follows. A point-line geometry is
a tuple (P,L) of non-empty sets, where we call the elements of P points, the elements
of L lines, and every line is a subset of the points. We call two points collinear if there
is a line containing both of them. A (singular) subspace π is a set of pairwise collinear
points that fully contains any line intersecting it in at least two points. Its rank is the
largest integer r such that there exist subspaces ∅ ⊊ π1 ⊊ . . . ⊊ πr ⊊ π.

Definition 2.1 A polar space of rank r is a point-line geometry (P,L) such that

• given a line ℓ and a point P /∈ ℓ, P is collinear with either a unique point of ℓ or all
points of ℓ,

• the maximum rank of its subspaces is r − 1,

• no point is collinear with all others,
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• every line contains at least three points.

The subspaces of rank r − 1 are called generators.

We will now discuss the construction of the finite classical polar spaces. These are
polar spaces embedded in projective spaces over finite fields. For an in-depth treaty of
the subject, we refer the reader to [8, §2], [12, §§1, 2, 5.1], [13, §7], or [14]. The subspaces
of finite classical polar spaces are projective subspaces and their rank corresponds to
their projective dimension. Most of the classical polar spaces arise from a polarity.

Definition 2.2 A polarity of a projective space is an involution ⊥ acting on the subspaces
of the projective space that reverses inclusion, i.e. two subspaces π and ρ satisfy π ⊆ ρ if and
only if ρ⊥ ⊆ π⊥. A subspace π is called totally isotropic with respect to the polarity ⊥ if
π ⊆ π⊥.

Let P and L denote the sets of totally isotropic points and lines of a polarity,
respectively. If L is non-empty and P is not a hyperplane, then (P,L) is a polar space.
Throughout the paper, if Q is a polar space embedded in a projective space PG(n, q),
we call the points of Q the isotropic points, and the points of PG(n, q) not lying in
Q anisotropic. We remark that in spaces of dimension at most 3, L might be empty.
However, we will still treat the point set P as an embedded polar space.

Let σ be an involutary field automorphism of Fq. Then σ is either the identity, or q
is a square and σ : α → α

√
q. A map B : Fn+1

q × Fn+1
q → Fq is called sesquilinear if it

is additive in both components and B(αx, βy) = αβσB(x, y) for all scalars α, β ∈ Fq

and all vectors x, y ∈ Fn+1
q . Moreover, B is called reflexive if there exists a scalar γ

such that B(x, y) = γB(y, x)σ for all x, y ∈ Fn+1
q . We call B

• a symmetric (bilinear) form if σ = id and γ = 1,
• an alternating (bilinear) form if σ = id, γ = −1, and B(x, x) = 0 for all x ∈ Fn+1

q ,
• a Hermitian form if σ ̸= id and γ = 1.

In addition, B is non-degenerate if for every non-zero vector x ∈ Fn+1
q there exists a

vector y ∈ Fn+1
q such that B(x, y) ̸= 0. A non-degenerate reflexive form B gives rise

to the polarity ⊥ on the subspaces of Fn+1
q (which are the same as the subspaces of

PG(n, q)) defined by

W⊥ =
{
x ∈ Fn+1

q || (∀y ∈ W ) (B(x, y) = 0)
}
.

In case the characteristic of the underlying field is odd, all polar spaces arise from a
polarity in this way. In case the characteristic is even, this is no longer true. However,
there is still a unified way to describe the different types of classical polar spaces in
both odd and even characteristic.

2.1.1 Quadrics

We first discuss the polar spaces related to symmetric forms. To incorporate fields of
even characteristic, we need to take a slightly different approach.
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Let κ be a quadratic form on the vector space Fn+1
q . The set Q of points X in

PG(n, q) whose coordinate vectors x satisfy κ(x) = 0 is called a quadric. We call
κ degenerate if it can be linearly transformed into a quadratic form depending on
less than n + 1 variables, and non-degenerate otherwise. The quadric Q is called
(non-)degenerate accordingly. If Q is non-degenerate, and fully contains some lines
of PG(n, q), then the points of Q together with these lines constitute a polar space,
although as remarked before, we will treat all non-degenerate quadrics as embedded
polar spaces.

Associated to κ is the bilinear form B(x, y) = κ(x+ y)− κ(x)− κ(y). Despite the
non-degeneracy of κ, this bilinear form can still be degenerate. If q is odd, B is never
degenerate, and Q consists of the isotropic points of the polarity arising from B. If q
is even and n is odd, B is non-degenerate, but every point is isotropic with respect to
the associated polarity. If q and n are both even, then B is degenerate.

If q is odd, then for any projective point X one of the following three options holds:
(1) every vector representative x ofX satisfies κ(x) ∈ Sq, which we denote by κ(X) =

Sq,
(2) every vector representative x ofX satisfies κ(x) ∈ Sq, which we denote by κ(X) =

Sq,
(3) every vector representative x of X satisfies κ(x) = 0, which we denote by κ(X) =

0, or equivalently X ∈ Q.

Definition 2.3 Given a quadratic form κ on Fn+1
q and a point X in PG(n, q), we call κ(X)

the (quadratic) type of X.

There are three classes of non-degenerate quadrics. Call two quadrics Q1 and Q2

of PG(n, q) isomorphic if there is a collineation of PG(n, q) mapping Q1 to Q2.
• If n is even, PG(n, q) contains up to isomorphism a unique non-degenerate
quadric, defined by the quadratic form

κ(x) = x0x1 + . . .+ xn−2xn−1 + x2
n.

This quadric is called parabolic, and denoted Q(n, q). It constitutes a polar space
of rank n

2 . If q is even, then the bilinear form B(x, y) = κ(x + y) − κ(x) − κ(y)
is degenerate. Indeed, if x = (0, . . . , 0, 1), then B(x, y) = 0 for all y ∈ Fn+1

q .
The projective point X corresponding to x = (0, . . . , 0, 1) is called the nucleus of
Q(n, q).

• If n is odd, PG(n, q) contains up to isomorphism two non-degenerate quadrics.
They are both defined by a quadratic form

κ(x) = x0x1 + . . .+ xn−3xn−2 + f(xn−1, xn),

for some non-degenerate quadratic form f . If f is irreducible, the quadric is called
elliptic, and denoted as Q−(n, q). It is of rank n−1

2 . If f is reducible, the quadric
is called hyperbolic, and denoted as Q+(n, q). It is of rank n+1

2 .
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We will often discuss the different quadrics simultaneously. We will denote them
as Qε(n, q), with ε ∈ {0,±1}; the notations ± and ±1 will be used interchangeably.
The quadric is hyperbolic, parabolic, or elliptic when ε equals +1, 0,−1, respectively,
where we always assume that ε ≡ n (mod 2).

We will give the formula for the number of points on Qε(n, q).

Result 2.4 ([12, Theorem 1.41]) The number of points on Qε(n, q) equals

1

q − 1

(
q

n+ε
2 − 1

)(
q

n−ε
2 + 1

)
= θn−1(q) + εq

n−1
2 .

Therefore, the number of anisotropic points equals

q
n−1
2

(
q

n+1
2 − ε

)
.

Next we describe the intersection of quadrics with subspaces.

Definition 2.5 Let π and ρ be two disjoint subspaces in PG(n, q) and let S be a subset of
the points of π. The cone ρS with vertex ρ and base S is the set of points⋃

P∈S

⟨P, ρ⟩ .

By convention, ρS = S if ρ = ∅ and ρS = ρ if S = ∅.

A cone ρQ with as base a quadric Q is again a quadric. This quadric is degenerate
unless ρ = ∅ and Q is non-degenerate. If Q is a quadric in PG(n, q), then for every
subspace π, Q∩ π is a quadric in π. We will use the notation ΠmQε(n, q) to denote a
quadric whose vertex is m-dimensional and whose base is a Qε(n, q).

Result 2.6 ([12, §1.7]) Consider the non-degenerate quadric Qε(n, q) in PG(n, q). Suppose
that n and q are not both even, so that there exists a polarity ⊥ associated to Qε(n, q). Let π
be a subspace of PG(n, q).

(1) If π ⊂ Qε(n, q), then π⊥ ∩Qε(n, q) ∼= πQε(n− 2 dim(π)− 2, q).

(2) If ε ∈ {±1}, δ ∈ {0,±1}, and π ∩ Qε(n, q) ∼= Πm1Qδ(m2, q), then π⊥ ∩ Qε(n, q) ∼=
Πm1Qδε(n− 2m1 −m2 − 3, q).

(3) If ε = 0, then π ∩ Q(n, q) ∼= Πm1Q(m2, q) if and only if π⊥ ∩ Q(n, q) ∼= Πm1Q±(n −
2m1 −m2 − 3, q).

(4) If q is odd, then π intersects Qε(n, q) in a cone with vertex π ∩ π⊥ and base a non-
degenerate quadric.

A quadric Q intersects every line that is not totally isotropic in at most 2 points.
Lines that contain 0, 1, or 2 points of Q are called passant, tangent, or secant,
respectively.
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2.1.2 Hermitian varieties

Consider the polarity ⊥ associated to the non-degenerate Hermitian form

B(x, y) = x0y
q
0 + . . .+ xny

q
n

defined on Fn+1
q2 . The set of isotropic points of this polarity is called the Hermitian

variety and denoted as H(n, q2). This gives us an embedded polar space of rank
⌈
n
2

⌉
.

The related form κ(x) = B(x, x) is called pseudo-quadratic.

Result 2.7 ([12, Theorem 2.8]) The number of points on H(n, q2) equals

1

q2 − 1

(
qn+1 + (−1)n

) (
qn − (−1)n

)
= qn

qn − (−1)n

q + 1
+ θn−1(q

2).

Therefore the number of anisotropic points equals

qn
qn+1 + (−1)n

q + 1
.

2.1.3 Symplectic polar spaces

Symplectic polar spaces arise from polarities associated to non-degenerate alternating
forms. With respect to these forms, every point is isotropic. Since we are interested in
the geometry of anisotropic points, we will not discuss the symplectic polar spaces.

2.2 Circle geometries

Circle geometries (sometimes also called Benz planes) are a class of point-line geome-
tries. The lines of a circle geometry are often called circles. For a survey on circle
geometries, see e.g. Hartmann [15] or Delandtsheer [16, §5].

We first introduce the concept of a parallel relation for a point-line geometry. This
is an equivalence relation on the point set; its equivalence classes are called parallel
classes. We call two points parallel if they are in the same parallel class of some parallel
relation.

Definition 2.8 A circle geometry is a point-line geometry (P,L) with at most 2 parallel
relations, such that the following properties hold:

(1) Given 3 pairwise non-parallel points, there is a unique circle containing these three
points.

(2) Given a circle c, a point P ∈ c, and a point Q /∈ c, not parallel with P , there is a unique
circle through P and Q, which is tangent to c, i.e. it intersects c only in P .

(3) Every parallel class contains a unique point of each circle.

(4) Two parallel classes from different parallel relations intersect in a unique point.

(5) Each circle contains at least 3 points.

(6) There exists a circle and a point not on this circle.
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A circle geometry with 0, 1, or 2 parallel relations is called a Möbius plane (or inversive
plane), Laguerre plane, or a Minkowski plane, respectively.

Remark 2.9 In a Möbius plane, no two points are parallel. In this case, (1) should be read as
“Given 3 points, there is a unique circle containing these three points.” Likewise, for Möbius
planes, in (2), Q is allowed to be any point not on c, and (3) is a vacuous statement. Property
(4) is only relevant for Minkowski planes.

It is a classic result that every circle in a finite circle geometry has the same number
of points. If this number is q + 1, then q is called the order of the circle geometry.
In particular, a Möbius plane of order q is a 3-(q2 + 1, q + 1, 1) design. The classical
construction of a finite circle geometry of order q is taking a quadric Q in PG(3, q)
which is either Q±(3, q) or Π0Q(2, q), taking as P the points of this quadric, excluding
the vertex in case of a degenerate parabolic quadric, and as L the non-degenerate
plane sections of the quadric. Circle geometries arising in this way are called miquelian
since they are characterised by an extra regularity condition known as the theorem of
Miquel, see e.g. [16, §5.8, 5.10].

The three types of miquelian circle geometries all have interesting alternative
representations.
(1) Let P be the set of points of PG(1, q2). The projective line PG(1, q) can be

considered to be a subset of PG(1, q2) in a canonical way, namely the set of the
points of PG(1, q2) having a coordinate vector in F2

q. The images of PG(1, q)
under the action of PGL(2, q2) are called the Baer sublines of PG(1, q2). Let L
be the set of Baer sublines of PG(1, q2). Then the point-line geometry (P,L) is
isomorphic to the miquelian Möbius plane of order q.

(2) For any function f : A → B define its graph to be the set {(x, f(x)) || x ∈ A} ⊂
A × B. Let P be the set (Fq ∪ {∞}) × Fq, and for every polynomial f(X) =
aX2 + bX + c of degree at most 2 define f(∞) = a. Let L be the set of graphs of
the polynomials of Fq[X] of degree at most 2, seen as functions Fq ∪ {∞} → Fq.
Then (P,L) is isomorphic to the miquelian Laguerre plane of order q.

(3) Let P be PG(1, q) × PG(1, q) and let L be the set of graphs of the elements of
PGL(2, q). Then (P,L) is isomorphic to the miquelian Minkowski plane of order
q.

2.3 Association schemes

In the literature, there is some variation in the definition of an association scheme.
In this paper we will use the most restrictive definition; other authors might call this
a symmetric association scheme. We will review the basic properties of association
schemes. These can be found for instance in [1, §§2.1-2.2] or [17, §3].

Association schemes have a combinatorial and an algebraic definition, which are
equivalent. We start with the combinatorial definition. First, let us introduce some
convenient notation.
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Definition 2.10 Suppose that P is a set, X ∈ P, and R ⊆ P×P. Then we use the following
notation.

R(X) = {Y ∈ P || (X,Y ) ∈ R} .

Definition 2.11 Consider a set P and a partition R0, . . . , Rd of P×P. We call this partition
a d-class association scheme if it satisfies the following properties:

• R0 = {(X,X) || X ∈ P},
• every relation Ri is symmetric in the sense that Ri = {(Y,X) || (X,Y ) ∈ Ri},
• for all i, j ∈ {0, . . . , d}, and for every X,Y ∈ P, |Ri(X)∩Rj(Y )| only depends on which

relation Rk contains (X,Y ). We denote |Ri(X) ∩ Rj(Y )| by pki,j if (X,Y ) ∈ Rk, and

call the integers pki,j the intersection numbers.

The relations Ri can be equivalently expressed by their adjacency matrices

Ai : P × P → R : (X,Y ) 7→

{
1 if (X,Y ) ∈ Ri,

0 otherwise.

By I and J we denote the identity matrix and the all-one matrix, respectively.
The dimensions should be clear from context. Then the algebraic definition of an
association scheme is as follows.

Definition 2.12 Consider a set of non-zero {0, 1}-matrices A0, . . . , Ad defined on P × P.
We call this set a d-class association scheme if

• A0 + . . .+Ad = J ,

• A0 = I,

• all matrices Ai are symmetric,

• there exist integers pki,j called the intersection numbers such that for all i, j

AiAj =

d∑
k=0

pki,jAk.

If A = {A0, . . . , Ad} is an association scheme, then the subspace of RP×P spanned
by the elements of A, which we denote as R[A], is closed under matrix multiplication.
Hence, it constitutes an algebra with respect to the ordinary matrix multiplication,
called the Bose-Mesner algebra of A.

Result 2.13 Let A = {A0, . . . , Ad} be an association scheme on the set P. Then R[A] admits
a basis E0, . . . , Ed such that

• E0 = 1
|P|J ,

• the Ej matrices are idempotent and pairwise orthogonal, i.e. EiEj = δi,jEi,

• for all i, j ∈ {0, . . . , d} there exists a number pi(j) such that AiEj = pi(j)Ej .

9



Note in particular that the column spaces of the Ej matrices, which we denote by
Vj , form an orthogonal decomposition of RP that diagonalises all Ai matrices. The
matrix P defined by P(j, i) = pi(j) is called the matrix of eigenvalues of A. Note
that P is the transition matrix between the Ai-basis and the Ej-basis. The matrix
Q = |P|P−1 is called the matrix of dual eigenvalues of A. It is well known that the
first column of both P and Q is the all-one vector. In particular, this implies the
following result.

Result 2.14 For each j > 0,
∑

i pi(j) = 0.

Define ni = p0i,i to be the valency of the Ri-relation, and define mj = rk(Ej),
which is the dimension of Vj .

Result 2.15 Let ∆n and ∆m be the diagonal matrices with diagonal (n0, . . . , nd) and
(m0, . . . ,md) respectively. Then

∆mP = Q⊤∆n.

Now we describe a way to calculate the eigenvalues of the association scheme.
Define for each i ∈ {0, . . . , d} the {0, . . . , d}×{0, . . . , d} matrix Bi given by Bi(k, j) =
pki,j . This matrix is called the intersection matrix of Ri. There exists a basis w0, . . . , wd

of Rd+1, unique up to reordering and rescaling, that diagonalises all the intersection
matrices.

Result 2.16 Let w0, . . . , wd be the columns of Q. Up to rescaling, w0, . . . , wd is the unique
basis of Rd+1 such that for all i, j ∈ {0, . . . , d}

Biwj = pi(j)wj .

Hence, simultaneously diagonalising the intersection matrices yields the eigenvalues
of A.

An association scheme A = {R0, . . . , Rd} on P is called imprimitive if the union of
some relations of A is an equivalence relation, and this union is not one of the trivial
equivalence relations R0 or P × P; else it is called primitive. If P ′ ⊂ P is one the
equivalence classes of such a union in a primitive association scheme, then the relations
Ri ∩ (P ′ × P ′) on P ′, after removing the empty relations, constitute an association
scheme. Such a scheme is called a subscheme of A.

If A and A′ are association schemes on P, and every relation of A′ is a union of
relations of A, then we call A′ a fusion scheme of A and A a fission scheme of A′.

A particular class of association schemes that received a lot of attention are the
2-class association schemes, since these are equivalent to strongly regular graphs. Note
that if A0, A1, A2 is an association scheme, then A0 = I and A2 = J − I − A1.
Hence, all information is contained in the matrix A1. All parameters of the association
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scheme can be calculated from the parameters n1, p
1
1,1, and p21,1. Therefore, instead

of discussing the association scheme and its parameters, it is common to only refer to
the graph induced by relation R1, and denote this as a SRG(|P|, n1, p

1
1,1, p

2
1,1).

It is often desirable to give a combinatorial interpretation of the eigenspaces of an
association scheme. We can relate sets to eigenspaces as follows.

Definition 2.17 Given a set S ⊆ P, define its characteristic vector χS ∈ RP as

χS(X) =

{
1 if X ∈ S,

0 otherwise.

Its dual degree set is the set

dds(S) =
{
j ∈ {1, . . . , d} || EjχS ̸= 0

}
.

In other words, dds(S) tells us in which eigenspaces Vj the vector χS has a non-zero

component (but note that 0 /∈ dds(S) by definition despite E0χS = |S|
|P|1).

Sets with small dual degree sets are especially interesting. Such sets can be found
e.g. using a weighted version Hoffman’s ratio bound, see e.g. [17, Theorem 2.4.2]. A
matrix A is compatible with a graph (P, R) if the rows and columns of A are labelled
by P and A(X,Y ) ̸= 0 only if (X,Y ) ∈ R. A set S is a clique, or coclique, in the graph
(P, R) if any pair, respectively no pair, of elements of S occurs in R.

Result 2.18 (Delsarte’s ratio bound) Let Ri be a single relation in an association scheme
on P with adjacency matrix Ai. Suppose that Ai1 = n1 and that τ is the smallest eigenvalue
of Ai. If S is a clique in (P, Ri), then

|S| ≤ n

−τ + 1.

In case of equality, χS is orthogonal to the τ -eigenspace of Ai.

Result 2.19 (Weighted Hoffman’s ratio bound) Let (P, R) be a graph and A a compatible
symmetric matrix. Suppose that A1 = n1 and that τ < n is the smallest eigenvalue of A. If
S is a coclique in (P, R), then

|S| ≤ |P|
n
−τ + 1

.

In case of equality, χS is contained in the span of 1 and the τ -eigenspace of A.

We call a clique or coclique attaining equality in the appropriate above bound aDel-
sarte clique or weighted Hoffman coclique respectively. A weighted Hoffman coclique
in case the matrix A is just the adjacency matrix of R is simply called a Hoffman
coclique.

A class-fixing automorphism of an association scheme is a permutation g of the
set P such that (X,Y ) ∈ Ri ⇐⇒ (Xg, Y g) ∈ Ri for all X,Y ∈ P and i ∈ {0, . . . , d}.
Such automorphsims can be useful to find sets of characteristic vectors generating
certain eigenspaces.
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Lemma 2.20 Let S be a non-empty subset of P. Let G be a group of class-fixing automor-
phisms such that for any X,Y ∈ P, the number | {g ∈ G || X,Y ∈ Sg} | only depends on the
relation containing (X,Y ). Then ⟨χSg ∥ g ∈ G⟩ =

⊕
j∈dds(S)∪{0} Vj .

Proof Consider the matrix M ∈ RP×G where the column indexed by g equals χSg . Then

⟨χSg ∥ g ∈ G⟩ = ColSp(M) = ColSp(MM⊤).

Since M is a 01-matrix, for any X,Y ∈ P, MM⊤(X,Y ) counts the number of positions in
which the rows of M corresponding to X and Y both have a 1. Therefore, MM⊤(X,Y ) =
| {g ∈ G || X,Y ∈ Sg} |. By our assumptions, MM⊤ lies in the Bose-Mesner algebra of A.
Therefore, there are coefficients a0, . . . , ad with MM⊤ =

∑
j ajEj and ColSp(MM⊤) =⊕

j, aj ̸=0 Vj . Since G is a group of class-fixing automorphisms, Sg has the same dual degree

set for all g ∈ G. It follows that
{
j || aj ̸= 0

}
= dds(S) ∪ {0}. □

3 The known association schemes on anisotropic
points

3.1 Schurian schemes

Let G be a group acting on a finite set P. Then G naturally acts on P × P, and
the orbits of the latter group action are called the orbitals of G acting on P. We say
that G acts generously transitively on P if G acts transitively and the orbitals are
symmetric. It is well known that in this case the orbitals of the group action constitute
an association scheme. Such an association scheme is usually called Schurian.

Given a (pseudo-)quadratic form κ on a vector space V , an isometry is a linear
transformation f ∈ GL(V ) such that κ ◦ f = κ. Isometries naturally act on the set
of anisotropic points of a quadric or Hermitian variety. This action is not necessarily
transitive on the set of all anisotropic points. Let B denote the bilinear or sesquilinear
form associated to κ. If q is odd and κ is a quadratic form, then the action of the
isometries has two orbits on the anisotropic points, namely the points with κ(X) = Sq

and the points with κ(X) = Sq. If q is even and κ defines a parabolic quadric, then
every isometry fixes the nucleus of the quadric, but acts transitively on the set of the
other anisotropic points. In the other cases, the isometries do act transitively on the
anisotropic points.

The action of the isometries on one of its orbits of anisotropic points gives rise
to an association scheme. These association schemes were studied in [5] for the non-
degenerate quadrics, except for the case where q and n are even, and in [3, 6] for the
non-degenerate Hermitian varieties.

Take one orbit of the action of the isometries on the anisotropic points. Then the

relation containing (X,Y ) depends on the value B(x,y)B(y,x)
κ(x)κ(y) , with x and y coordinate

vectors of X and Y respectively. The number of relations grows in q, which makes a
general expression for the matrix of eigenvalues of such an association scheme quite
involved. Therefore, we will not include these matrices here.

12



3.2 Geometrically defined schemes from quadrics in even
characteristic

Let q be even and let P be the set of anisotropic points of a quadric Qε(n, q), excluding
the nucleus N in case n is even. Let R0 as usual denote the identity relation. If X and
Y are distinct points of P, let them be in relation R1, R2, or R3 if | ⟨X,Y ⟩ ∩Qε(n, q)|
is 1, 2 or 0, respectively. In case n is even, split R1 into two parts,

R1a = {(X,Y ) ∈ R1 || N /∈ ⟨X,Y ⟩} , R1n = {(X,Y ) ∈ R1 || N ∈ ⟨X,Y ⟩} .

We note that in case n = 2, relation R1a is empty. In case q = 2, lines contain 3 points,
hence relations R1n and R2 are empty.

• If n is odd, then the non-empty relations in R0, R1, R2, R3 constitute an
association scheme.

• If n is even, then the non-empty relations in R0, R1a, R1n, R2, R3 constitute an
association scheme.

This was first stated in [1, Theorem 12.1.1], although the authors forgot to split
relation R1 into two parts in case n > 2 is even. This mistake was later corrected in
[7]. The matrices of eigenvalues and the dimension of the corresponding eigenspaces
can be found in [7] or [8, §3.1.1].

In case n = 2m+ 1 is odd, the matrices are given by

P =


1 q2m − 1 1

2q
m (qm + ε) (q − 2) 1

2q
m+1 (qm − ε)

1 εqm−1 − 1 1
2εq

m−1(q + 1)(q − 2) − 1
2εq

m(q − 1)

1 −εqm − 1 0 εqm

1 εqm − 1 −εqm 0



Q =


1 q2 q2m−1

q2−1
q

2(q+1) (q
m − ε)

(
qm+1 − ε

)
q−2

2(q−1) (q
m + ε)

(
qm+1 − ε

)
1 εq2 qm−1−ε

q2−1 − 1
2εq

qm+1−ε
q+1

1
2ε(q − 2) q

m+1−ε
q−1

1 εq qm−ε
q−1 0 −ε qm+1−ε

q−1

1 −εq qm+ε
q+1 ε qm+1−ε

q+1 0


Remark 3.1 The association schemes arising from Qε(3, q) for ε = ±1 have interesting alter-
native interpretations. Every plane in PG(3, q) intersects Qε(3, q) either in a Q(2, q) or in
a Π0Qε(1, q). The polarity associated to the quadric maps the set of anisotropic points to
the set of planes with non-degenerate intersections. Therefore, in an alternative interpreta-
tion of the association scheme, the vertices of the association scheme are the circles of the
miquelian Möbius (if ε = −1) or Minkowski (if ε = +1) plane, and given a pair of circles
(c1, c2), |c1 ∩ c2| determines the relation containing (c1, c2). In particular, this means that
the association scheme arising from Q−(3, q) can be seen as an association scheme on the
Baer sublines of PG(1, q2), and the association scheme arising from Q+(3, q) can be seen as
an association scheme on PGL(2, q). The eigenvalues of this association scheme on PGL(2, q)
were also determined by Bannai [18, p. 172].
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In case n = 2m is even, the matrices are given by

P =



1 q
(
q2m−2 − 1

)
q − 2 1

2q
2m−1(q − 2) 1

2q
2m

1 −
(
qm−1 + 1

)
(q − 1) q − 2 1

2q
m−1(q − 2) 1

2q
m

1
(
qm−1 − 1

)
(q − 1) q − 2 − 1

2q
m−1(q − 2) − 1

2q
m

1 0 −1 1
2q

m − 1
2q

m

1 0 −1 − 1
2q

m 1
2q

m


Q =

1 1
2q (q

m + 1) θm−2(q)
1
2q

(
qm−1 + 1

)
θm−1(q)

1
2 (q − 2)θ2m−1(q)

1
2 (q − 2)θ2m−1(q)

1 − 1
2 (q

m + 1) 1
2 (q

m − 1) 0 0

1 1
2q (q

m + 1) θm−2(q)
1
2q

(
qm−1 + 1

)
θm−1(q) − 1

2θ2m−1(q) − 1
2θ2m−1(q)

1 1
2
qm+1
qm−1 θm−2(q) − 1

2
qm−1+1
qm−1 θm−1(q)

1
2qm−1 θ2m−1(q) − 1

2qm−1 θ2m−1(q)

1 1
2
qm+1
qm−1 θm−2(q) − 1

2
qm−1+1
qm−1 θm−1(q) − 1

2
q−2
qm θ2m−1(q)

1
2
q−2
qm θ2m−1(q)


3.3 Geometrically defined schemes from quadrics in odd

characteristic

Let q be odd, and let Qε(n, q) be a non-degenerate quadric in PG(n, q) with quadratic
form κ and polarity ⊥. As discussed in Section 3.1, there are two classes of anisotropic
points, depending on whether κ(X) = Sq or κ(X) = Sq. Let P denote one of these
classes, and say that two distinct points X,Y of P are in relation R1, R2, or R3 when
| ⟨X,Y ⟩ ∩ Qε(n, q)| equals 1,2, or 0, respectively.

If ε = ±1, the two classes of anisotropic points of Qε(n, q) are interchangeable.
If n = 3, then Brouwer, Cohen, and Neumaier [1, Theorem 12.2.1] proved that
(P, {R0, R1, R2, R3}) constitutes an association scheme. In case ε = −1, the intersec-
tion matrices were determined by Fisher, Penttila, Praeger, and Royle [9, p. 335], and
in case ε = +1, the matrix of eigenvalues was determined by the first author [10, §3].

If ε = 0, then (P, {R0, R1, R2 ∪ R3}) constitutes an association scheme, as was
observed by Wilbrink [4, §7.D]. In this case, the two classes of anisotropic points are
not interchangeable. The class containing an anisotropic point X depends on whether
X⊥ intersects Q(n, q) in a hyperbolic or elliptic quadric. Suppose that P consists
of the points whose polar hyperplane intersects Q(n, q) in a Qε(n − 1, q). Then R1

determines a

SRG

(
1

2
q

n
2

(
q

n
2 + ε

)
,
(
q

n
2 − ε

) (
q

n
2 −1 + ε

)
,

2(qn−2 − 1) + εq
n
2 −1(q − 1), 2q

n
2 −1

(
q

n
2 −1 + ε

))
.

The spectrum of this graph is given in Table 1.
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Eigenvalue
(
q

n
2 − ε

)(
q

n
2
−1 + ε

)
−εq

n
2
−1 − 1 ε(q − 2)q

n
2
−1 − 1

Multiplicity 1 q−2
2

θn−1(q)
q
2

(
q

n
2 − ε

)
q
n
2

−1
+ε

q−1

Table 1 Spectrum of a strongly regular graph related to the parabolic quadrics.

By applying the polarity, we can also interpret this association scheme as being
defined on the hyperplanes intersecting Q(n, q) in a Qε(n − 1, q), where two distinct
hyperplanes π and ρ are in relation R1 if and only if π ∩ ρ ∩ Q(n, q) is a degenerate
quadric. This also yields a strongly regular graph in case q is even, where the same
formulae for the parameters apply. More information about these graphs can be found
in [8, §3.1.4].

3.4 Geometrically defined schemes from Hermitian varieties

Every line of PG(n, q2) is either contained in the Hermitian variety H(n, q2) or inter-
sects it in 1 or q+1 points. We say that two distinct anisotropic points X and Y are in
relation R1 or R2 if ⟨X,Y ⟩ intersects H(n, q2) in 1 or q+1 points, respectively. These
relations, together with the identity, define an association scheme. The strongly regu-
lar graph defined by R1 is denoted as NU(n+ 1, q2). This scheme was first described
by Chakravarti [2] for n = 2, 3. The construction in general dimension can be found
e.g. in [8, §3.1.6]. Define ε = (−1)n. The matrices of this scheme are given by

P =


1 (qn − ε)

(
qn−1 + ε

)
qn−1 qn−ε

q+1 (q2 − q − 1)

1 −εqn−1 − 1 εqn−1

1 εqn−2(q2 − q − 1)− 1 −εqn−2(q2 − q − 1)



Q =


1 q2−q−1

(q+1)(q2−1)

(
qn+1 + ε

)
(qn − ε) q3

(q+1)(q2−1)

(
qn−1 + ε

)
(qn − ε)

1 −ε q2−q−1
(q+1)(q2−1)

(
qn+1 + ε

)
ε q2−q−1
(q+1)(q2−1)

(
qn+1 + ε

)
− 1

1 εq2 qn−1+ε
q2−1 − 1 −εq2 qn−1+ε

q2−1


If X and Y are anisotropic points and X ⊥ Y , then (X,Y ) ∈ R2. This allows us

to split R2 into the relations R2⊥ = {(X,Y ) ∈ R2 || X ⊥ Y } and R2̸⊥ = R2 \ R2⊥.
Gordon and Levingston [19, p. 264] observed that in case n = 2, R0, R1, R2⊥, R2̸⊥
constitutes an association scheme. We will prove in Section 5.1 that this holds in
general dimension. In particular this forms a fission scheme of the association scheme
related to the stongly regular graph NU(n+ 1, q2).

Proposition 3.2 For general values of n ≥ 2, the above defined relations R0, R1, R2⊥, R2̸⊥
constitute an association scheme on the anisotropic points of H(n, q2).

Remark 3.3 (1) One should be cautious in case q = 2. In that case R2̸⊥ = ∅. In case n = 2,
the graph corresponding to relation R2⊥ is not connected, but consists of 4 disjoint
triangles.
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(2) Ferdinand Ihringer privately communicated to us that Andries Brouwer independently
proved Proposition 3.2 in a work in progress.

We postpone the proof of this proposition to Section 5.1.

4 Geometrically defined schemes from quadrics in
odd dimension and odd characteristic

Let q be an odd prime power. Let n be odd, and let Q denote Qε(n, q), with ε ∈ {±1}.
Let B, κ, and ⊥ denote respectively the bilinear form, quadratic form, and polarity
associated to Q. Let P denote the set of anisotropic points. We partition P × P into
relations Ri, where R0 = {(X,X) || X ∈ P} is the identity relation, and the relation
between two distinct points X and Y is based on how ⟨X,Y ⟩ intersects Q, and on
κ(X) · κ(Y ). The definition of the relations can be found in Table 2.

| ⟨X,Y ⟩ ∩ Q| κ(X) · κ(Y )

R1 1 Sq

R2 2 Sq

R3 0 Sq

R4 2 Sq

R5 0 Sq

Table 2 The relations of the
association scheme.

Note that the relation given by | ⟨X,Y ⟩∩Q| = 1 and κ(X)×κ(Y ) = Sq is missing.
This is due to the fact that this relation is always empty, or in other words due to
the fact that | ⟨X,Y ⟩ ∩ Q| = 1 =⇒ κ(X) · κ(Y ) = Sq. Note that these relations are
symmetric.

Our goal is to prove that the relations from Table 2 together with R0 constitute an
association scheme on P, and to find the matrices of eigenvalues and dual eigenvalues.

Recall that for i ∈ {0, . . . , 5} and X ∈ P

Ri(X) = {Y ∈ P || (X,Y ) ∈ Ri} .

Definition 4.1 Given (X,Y ) ∈ Rk ⊆ P × P we denote the size of Ri(X) ∩ Rj(Y ) by

pki,j(X,Y ).

In a series of lemmas we will derive the values of all these pki,j(X,Y ). It will be
shown that they are independent from the chosen pair (X,Y ), so we can omit (X,Y )
in the notation pki,j(X,Y ). To make to lemmas and their proofs less notation-heavy, we

will already use pki,j . Since the relations Rk are symmetric we know that pki,j(X,Y ) =

pkj,i(Y,X).
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Remark 4.2 If q = 3, then relation R2 is empty. For this case the proofs of this section
show that {R0, R1, R3, R4, R5} forms a 4-class association scheme. Note that in particular all
values pki,j with 2 ∈ {i, j} and k ̸= 2 have a factor q−3. Also, the dimension of the eigenspace
V4 for the 5-class association scheme has a factor q − 3. So, the P and Q matrix for the 4-
class association scheme that we find for q = 3, are found by removing the column and row
corresponding to the relation R2 and the eigenspace V4 in the matrices that we obtain in
Section 4.3.

4.1 Some general counting arguments

Definition 4.3 For each X ∈ P, define ni(X) = |Ri(X)|.

The number ni(X) is independent of X. This follows for example from the fact
that the projective orthogonal group stabilising Q acts transitively on P and respects
the relations Ri. Hence, we denote these numbers just as ni.

Lemma 4.4

n1 = qn−1 − 1

n2 =
1

4
q

n−1
2

(
q

n−1
2 + ε

)
(q − 3)

n3 =
1

4
q

n−1
2

(
q

n−1
2 − ε

)
(q − 1)

n4 =
1

4
q

n−1
2

(
q

n−1
2 + ε

)
(q − 1)

n5 =
1

4
q

n−1
2

(
q

n−1
2 − ε

)
(q + 1)

Proof Take a point X ∈ P. A line through X is tangent if and only if it intersects X⊥ in a
point ofQ. SinceQ intersectsX⊥ in a non-singular parabolic quadric, there are |Q(n−1, q)| =
θn−2(q) tangent lines through X. The number of secant lines through X then equals

1

2
(|Q| − θn−2(q)) =

1

2

(
qn−1 + εq

n−1
2

)
,

where we used Result 2.4. The number of passant lines through X is therefore

θn−1(q)− θn−2(q)−
1

2

(
qn−1 + εq

n−1
2

)
=

1

2

(
qn−1 − εq

n−1
2

)
.

Now take a line ℓ through X. If ℓ is tangent, then it contains q− 1 points of P in relation
R1 with respect to X. If ℓ is secant, then it contains q−1

2 points of P of both types, hence
q−3
2 points in relation R2, and

q−1
2 points in relation R4 with respect to X. If ℓ is a passant

line, then in contains q+1
2 points of each type, hence, q−1

2 points in relation R3 with respect

to X and q+1
2 points in relation R5 with respect to X.

It is now easy to calculate the ni numbers. □

This is especially useful since the following identity holds. Note that this identity
is well-known for association schemes, but we yet have to show that {R0, . . . , R5}
constitutes an association scheme.
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Lemma 4.5 Take (X,Y ) ∈ Rk, then for any i

ni =

5∑
j=0

pki,j(X,Y ) =

5∑
j=0

pkj,i(X,Y ).

Proof We prove the first equality, the second one is completely analogous.

ni = |Ri(X)| =

∣∣∣∣∣∣
5⋃

j=0

Ri(X) ∩Rj(Y )

∣∣∣∣∣∣ =
5∑

j=0

pki,j(X,Y ). □

A non-isotropic plane can intersect Q in 5 possible ways. We will introduce some
terminology which will be convenient in the arguments below.

Definition 4.6 We say that a plane π in PG(n, q) is of type ti if the plane intersects Q
exactly in a point Q ∈ Q and i lines through Q, i ∈ {0, 1, 2}. The other planes π intersect
Q in a conic C. A point X of π \ C lies on either 2 or 0 tangent lines to C in π, and is
accordingly called external or internal respectively. The external points of π are either the
points of π of square type or of non-square type. Accordingly, we say that π is of type tSq

or
of type tSq

respectively.

Lemma 4.7 Suppose that ℓ is a line, which isn’t totally isotropic. In case that ℓ is tangent to
Q suppose that the anisotropic points of ℓ are of type s ∈ {Sq, Sq}. Table 3 shows the number
of planes of each type through ℓ.

Proof First suppose that ℓ intersects Q in a unique point P . Then ℓ ⊆ P⊥. If a plane π
through ℓ intersects Q in a singular plane section, then P must be a singular point of this
plane section, since it lies on a tangent line. This happens if and only if π ⊆ P⊥. Since there
are θn−2(q) planes through ℓ, of which θn−3(q) lie in P

⊥, there are θn−2(q)−θn−3(q) = qn−2

planes π through ℓ intersecting Q in a conic. Since the non-isotropic points of ℓ lie on a
tangent line in such a plane π, the type of π is ts.

Now let σ be a hyperplane in P⊥, not through P . Then σ intersects Q in a quadric
isomorphic to Qε(n − 2, q). Let T denote ℓ ∩ σ. Then there is a one-to-one correspondence
between the planes of type ti through ℓ and the lines in σ through T that intersect Q in
i points. As in the proof of Lemma 4.4, one can calculate that σ contains θn−4(q) tangent

lines, 1
2

(
qn−3 + εq

n−3
2

)
secant lines, and 1

2

(
qn−3 − εq

n−3
2

)
passant lines through T .

Now suppose that ℓ intersects Q in δ+1 points, with δ ∈ {±1}. Then ℓ∩Q is isomorphic
to Qδ(1, q). Hence, ℓ⊥ ∩ Q is isomorphic to Qεδ(n− 2, q). Moreover, every plane π through
ℓ intersects ℓ⊥ in a unique point T . The intersection of π and Q is singular if and only if

T ∈ Q ∩ ℓ⊥. Hence, there are |Qεδ(n − 2, q)| = θn−3(q) + εδq
n−3
2 singular planes through

ℓ, necessarily of type tδ+1. Lastly, consider the case where T /∈ Q. Since T ∈ ℓ⊥, we know

that ℓ ⊂ T⊥. Moreover, T /∈ T⊥ since T /∈ Q, thus ℓ = T⊥ ∩ π. Therefore, the tangent
lines through T in π are exactly the lines through T in π that intersect ℓ in a point of Q.
Thus, π is of type tκ(T ) if δ = 1 and tSq·κ(T ) if δ = −1. Since ℓ⊥ intersects Q in a quadric

isomorphic to Qεδ(n− 2, q), it contains equally many non-isotropic points of both quadratic
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|ℓ
∩
Q
|=

1
|ℓ
∩
Q
|=

1
|ℓ
∩
Q
|=

2
|ℓ
∩
Q
|=

0

s
=

S
q

s
=

S
q

t 0
1 2

( q
n
−
3
−

εq
n
−

3
2

)
1 2

( q
n
−
3
−

εq
n
−

3
2

)
0

1
q
−
1

( q
n
−

1
2

+
ε)( q

n
−

3
2

−
ε)

t 1
θ n

−
4
(q
)

θ n
−
4
(q
)

0
0

t 2
1 2

( q
n
−
3
+

εq
n
−

3
2

)
1 2

( q
n
−
3
+

εq
n
−

3
2

)
1

q
−
1

( q
n
−

1
2

−
ε)( q

n
−

3
2

+
ε)

0

t S
q

q
n
−
2

0
1 2

( q
n
−
2
−

εq
n
−

3
2

)
1 2

( q
n
−
2
+

εq
n
−

3
2

)
t S

q
0

q
n
−
2

1 2

( q
n
−
2
−

εq
n
−

3
2

)
1 2

( q
n
−
2
+

εq
n
−

3
2

)

Table 3 The number of planes of a certain type through a non-isotropic line

types. Therefore the number of planes of type tSq
through ℓ equals the number of planes of

type tSq
through ℓ. Since there are θn−2(q) planes through ℓ, this number equals

1

2

(
θn−2(q)−

(
θn−3(q) + εδq

n−3
2

))
=

1

2

(
qn−2 − εδq

n−3
2

)
. □

Next we prove that pki,j(X,Y ) = pkj,i(X,Y ) whenever k ≥ 2. This follows from the
next lemma.

19



Lemma 4.8 Suppose that X and Y are different points outside of Q, such that ⟨X,Y ⟩ is
not a tangent line. Then there exists a collineation stabilising Q that swaps X and Y .

Proof Since the line ℓ = ⟨X,Y ⟩ is non-singular, ℓ is disjoint to ℓ⊥. Let e0, . . . , en denote the
standard basis of Fn+1

q . We may suppose that ℓ = ⟨e0, e1⟩ and ℓ⊥ = ⟨e2, . . . , en⟩. Thus, the
quadratic form κ defining Q is of the form κ(X) = f(X0, X1) + g(X2, . . . , Xn). It suffices
to prove that there exists a φ ∈ GL(2, q) such that f ◦ φ = αf for some α ∈ F∗

q and such
that the collineation on ℓ induced by φ swaps X and Y . Indeed, since for each constant
α ∈ F∗q there exists a ψ ∈ GL(n − 1, q) such that g ◦ ψ = αg, the collineation induced by
(X0, . . . , Xn) 7→ (φ(X0, X1), ψ(X2, . . . , Xn)) then satisfies the properties of the lemma.

We may assume that f(X0, X1) = X2
0 − νX2

1 for some ν ∈ F∗q , with ν a square if
and only if Q is hyperbolic, and X = ⟨e0⟩. If Y = ⟨e1⟩, then we can use φ(X0, X1) =(
X1,

X0
ν

)
. Otherwise, Y = ⟨e0 + αe1⟩ for some α ∈ F∗q . Then we can use φ(X0, X1) =

(X0 − ανX1, αX0 − X1). Note that in this case φ being invertible is equivalent to Y =
⟨e0 + αe1⟩ /∈ Q. □

Remark 4.9 We remark that the proof above assumes that both n and q are odd. The result
doesn’t hold for n even and q odd. In that case, the group of collineations stabilising Q(n, q)
has two orbits on the anisotropic points, depending on their quadratic type or equivalently
on whether their polar hyperplane intersects Q(n, q) in an elliptic or hyperbolic quadric.
The proof above fails in this case because then the quadratic form g determines a parabolic
quadric Q(n− 2, q), and for α ∈ Fq, there exists a ψ ∈ GL(n− 1, q) with f ◦ ψ = αf if and
only if α ∈ Sq.

4.2 Computation of the intersection numbers

Throughout this subsection, assume that X and Y are distinct points of P and let ℓ
denote the line joining X and Y .

Lemma 4.10 For (X,Y ) ∈ Ri we have the following equalities:

0 = pi1,4 = pi1,5 = pi2,4 = pi2,5 = pi3,4 = pi3,5 for i = 1, 2, 3 and

0 = pi1,1 = pi1,2 = pi1,3 = pi2,2 = pi2,3 = pi3,3 = pi4,4 = pi4,5 = pi5,5 for i = 4, 5.

Proof We know that κ(X) · κ(Y ) = (κ(X) · κ(Z)) · (κ(Y ) · κ(Z)). The statements then
immediately follow from the observations Sq · Sq = Sq · Sq = Sq, and Sq · Sq = Sq. □

Lemma 4.11 ([1, §12.2, p. 380]) Let C be a conic in PG(2, q) with corresponding quadratic
form κ, and let X,Y /∈ C be distinct points in PG(2, q) such that ⟨X,Y ⟩ is a tangent to C.
The number of points Z such that both ⟨X,Z⟩ and ⟨Y,Z⟩ are secant lines and κ(X) · κ(Z) =
Sq = κ(Y ) · κ(Z) equals

(q−3)(q−5)
8 .
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Lemma 4.12 For (X,Y ) ∈ R1 we have the following equalities.

p11,1 = 2(qn−2 − 1)

p11,2 =
1

2
qn−2(q − 3)

p11,3 =
1

2
qn−2(q − 1)

p12,2 =
1

8
q

n−1
2

(
q

n−1
2 − 3q

n−3
2 + 2ε

)
(q − 3)

p12,3 =
1

8
qn−2(q − 1)(q − 3)

p13,3 =
1

8
q

n−1
2

(
q

n−1
2 − q

n−3
2 − 2ε

)
(q − 1)

p14,4 =
1

8
q

n−1
2

(
q

n−1
2 − q

n−3
2 + 2ε

)
(q − 1)

p14,5 =
1

8
qn−2(q + 1)(q − 1)

p15,5 =
1

8
q

n−1
2

(
q

n−1
2 + q

n−3
2 − 2ε

)
(q + 1)

Proof From Lemma 4.7, we know the number of planes of each type through ℓ. We will
compute how much each of these planes contributes to the numbers p11,1, p

1
1,2, p

1
2,2, and

p14,4. Then we can compute the remaining intersection numbers p1i,j using Lemma 4.4 and
Lemma 4.5. First note that ℓ contains q − 2 anisotropic points distinct from X and Y , all
of which are in relation R1 with respect to X and Y . Let P denote ℓ ∩ Q. Take a plane π
through ℓ.

• If π is of type t0, then any point of π\ℓ is in relation R3 or R5 with respect to X and Y .

• If π is of type t1, then there are q(q − 1) anisotropic points in π \ ℓ, all in relation R1

with respect to X and Y .

• If π is of type t2, all anisotropic points of π \ ℓ lie on a secant line through X and on a
secant line through Y . Take a secant line ℓ′ in π. Then ℓ′ contains q−1

2 points of each
quadratic type. Since each anisotropic point of π lies on a tangent line through P that
intersects ℓ′ in an anisotropic point, and all anisotropic points on a tangent line are of
the same type, π contains q q−1

2 anisotropic points of each type. Hence, there are q q−3
2

points in R2(X) ∩R2(Y ), and q q−1
2 points in R4(X) ∩R4(Y ).

• If π is a non-singular plane, then it intersects Q in a conic, and there are unique tangent
lines ℓX , ℓY ̸= ℓ going through X and Y , respectively. There is only one point of π \ ℓ
in R1(X) ∩R1(Y ), namely ℓX ∩ ℓY .

Now we count the number of points of π in R1(X)∩R2(Y ). These points lie necessarily
on ℓX . There are q−1

2 secant lines through Y in π. Of these secant lines, ⟨Y, ℓX ∩Q⟩
is the unique one intersecting ℓX in an isotropic point. Thus π contains q−3

2 points of
R1(X) ∩R2(Y ).

Since π contains q−1
2 secant lines through X and equally many through Y , π contains(

q−1
2

)2
points lying on a secant line through X and a secant line through Y . Note that

the conic π∩Q contains 3 points lying on a tangent line through X or Y , so q−2 points

lying on both a secant line through X and Y . Therefore, π contains
(
q−1
2

)2
− (q − 2)
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points of (R2(X)∩R2(Y ))∪ (R4(X)∩R4(Y )). By Lemma 4.11,
(q−3)(q−5)

8 of these are
in R2(X) ∩R2(Y ), which leaves(

q − 1

2

)2

− (q − 2)− (q − 3)(q − 5)

8
=

(q − 1)(q − 3)

8

points in R4(X) ∩R4(Y ).

This yields the following equalities.

p11,1 = q − 2 + (q2 − q)θn−4(q) + qn−2 ,

p11,2 = qn−2
(
q − 3

2

)
,

p12,2 =
1

2

(
qn−3 + εq

n−3
2

) q(q − 3)

2
+ qn−2 (q − 3)(q − 5)

8
,

p14,4 =
1

2

(
qn−3 + εq

n−3
2

) q(q − 1)

2
+ qn−2 (q − 1)(q − 3)

8
.

Using Lemma 4.4, Lemma 4.5 and Lemma 4.10, we can compute the remaining intersection
numbers. □

The next lemma generalises [1, Theorem 12.2.1].

Lemma 4.13 For (X,Y ) ∈ R2 we have

p22,2 =
1

8
q

n−3
2

((
q

n−1
2 − ε

)
(q − 3)2 + 4εq(q − 5)

)
,

and for (X,Y ) ∈ R3 we have

p32,2 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 3)2 .

Proof Let ℓ be the line ⟨X,Y ⟩, and let ε′ be such that ℓ ∩ Q is a Qε′(1, q). Then we know

that ℓ⊥ is disjoint to ℓ and that ℓ⊥ ∩Q is a quadric Qεε′(n− 2, q). Let W , V1 and V2 be the
underlying vector spaces of PG(n, q), ℓ and ℓ⊥, respectively. We know W = V1 ⊕ V2.

Let B be the bilinear form introduced in the introduction, connected to κ, and let x and y
be vector representatives of the points X and Y , respectively. For a point Z with z as a vector
representative, the lines ⟨X,Z⟩ and ⟨Y,Z⟩ are secant lines if and only if (B(x, z))2−κ(x)κ(z) ∈
Sq and (B(y, z))2 − κ(y)κ(z) ∈ Sq. The vector z can uniquely be written as v1 + v2 with

v1 ∈ V1 and v2 ∈ V2. Since V1 = V ⊥
2 , we have that B(x, z) = B(x, v1) and B(y, z) = B(y, v1).

Also, note that κ(z) = κ(v1) + κ(v2).
Now we define the following set:

S = {(v1, v2) ∈ V1 × V2 ∥ ∀w ∈ {x, y} : (B(w, v1))
2 − κ(w)(κ(v1) + κ(v2)) ∈ Sq and

κ(x)(κ(v1) + κ(v2)) ∈ Sq} .

Note that κ(x)(κ(v1) + κ(v2)) ∈ Sq if and only if κ(y)(κ(v1) + κ(v2)) ∈ Sq. Since (0, 0) /∈ S
we know that |S| = (q − 1)pθ2,2 with θ = 5−ε′

2 . We will determine |S|. Define the following
set for all α ∈ F∗

q :

Tα = {v1 ∈ V1 ∥ ∀w ∈ {x, y} : (B(w, v1))
2 − ακ(w) ∈ Sq} .
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Using this notation, we find that

|S| =
∑
a∈Fq

|{(v1, v2) ∈ V1 × V2 ∥ ∀w ∈ {x, y} : (B(w, v1))
2 − aκ(w) ∈ Sq, aκ(x) ∈ Sq and

a = κ(v1) + κ(v2)}|

=
∑

a∈κ(X)

|{(v1, v2) ∈ V1 × V2 ∥ ∀w ∈ {x, y} : (B(w, v1))
2 − aκ(w) ∈ Sq and

a = κ(v1) + κ(v2)}|

=
∑

a∈κ(X)

∑
v1∈Ta

|{v2 ∈ V2 ∥ a = κ(v1) + κ(v2)}|

=
∑

a∈κ(X)

 ∑
v1∈Ta

κ(v1)=a

|{v2 ∈ V2 ∥κ(v2) = 0}|+
∑

v1∈Ta

κ(v1 )̸=a

|{v2 ∈ V2 ∥ a = κ(v1) + κ(v2)}|



=
∑

a∈κ(X)

 ∑
v1∈Ta

κ(v1)=a

((
q

n−1
2 − εε′

)(
q

n−3
2 + εε′

)
+ 1
)
+

∑
v1∈Ta

κ(v1 )̸=a

(
qn−2 − εε′q

n−3
2

)
= q

n−3
2

(
q

n−1
2 − εε′

) ∑
a∈κ(X)

∑
v1∈Ta

1 + εε′q
n−1
2

∑
a∈κ(X)

∑
v1∈Ta

κ(v1)=a

1

= q
n−3
2

(
q

n−1
2 − εε′

) ∑
a∈κ(X)

|Ta|+ εε′q
n−1
2

∑
a∈κ(X)

|{v1 ∈ Ta ∥κ(v1) = a}| .

If α ∈ κ(X), then ακ(x) ∈ Sq and hence there are q−3
2 elements ν ∈ Fq such that ν2−ακ(x) ∈

Sq (this is a classic result in algebra, also reflected in the parameters of the Paley graph).
Furthermore, v1 is uniquely determined by B(x, v1) and B(y, v1) since {x, y} is a basis of
V1 ∼= F2q and B is anisotropic on V1. Hence, |Tα| = 1

4 (q − 3)2 if α ∈ κ(X). For α ∈ κ(X), we
also find that

{v1 ∈ Tα ∥κ(v1)α}

=
{
v1 ∈ V1 ∥ ∀w ∈ {x, y} : (B(w, v1))

2 − κ(v1)κ(w) ∈ Sq, and κ(v1) = α
}

= {v1 ∈ V1 ∥ ⟨X,V ⟩ and ⟨Y, V ⟩ are secant lines, V = PG(v1), and κ(v1) = α}
= {v1 ∈ V1 ∥ v1 /∈ {⟨x⟩ , ⟨y⟩}, ℓ is a secant line, and κ(v1) = α}

=

{
∅ ε′ = −1

{v1 ∈ V1 ∥ v1 /∈ {⟨x⟩ , ⟨y⟩} and κ(v1) = α} ε′ = 1
.

Thus, if ε′ = 1 and α ∈ κ(X), we find that |{v1 ∈ Tα ∥κ(v1) = α}| equals 2 · q−5
2 since there

are q−1
2 − 2 vector lines where κ takes values from κ(X), and on each vector line where κ

takes values from κ(X) it takes the value α twice. Consequently,

|S| = q
n−3
2

(
q

n−1
2 − εε′

) 1

4
(q − 3)2

(
q − 1

2

)
+ εε′q

n−1
2

(
1 + ε′

2

)
(q − 5)

(
q − 1

2

)
=

1

2
(q − 1)q

n−3
2

(
1

4

(
q

n−1
2 − εε′

)
(q − 3)2 +

1

2
ε
(
1 + ε′

)
q(q − 5)

)
=

1

8
(q − 1)q

n−3
2

((
q

n−1
2 − εε′

)
(q − 3)2 + 2ε

(
1 + ε′

)
q(q − 5)

)
.
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The result follows. □

Lemma 4.14 For (X,Y ) ∈ R2 we have the following equalities.

p21,1 = 2q
n−3
2

(
q

n−1
2 − ε

)
p21,2 =

1

2

(
q

n−1
2 − ε

)(
q

n−3
2 (q − 3) + 2ε

)
p21,3 =

1

2
q

n−3
2

(
q

n−1
2 − ε

)
(q − 1)

p22,2 =
1

8
q

n−3
2

((
q

n−1
2 − ε

)
(q − 3)2 + 4εq(q − 5)

)
p22,3 =

1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q − 1) (q − 3)

p23,3 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q − 1)2

p24,4 =
1

8
q

n−3
2

((
q

n−1
2 − ε

)
(q − 1) + 4εq

)
(q − 1)

p24,5 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q + 1) (q − 1)

p25,5 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q + 1)2

Proof We follow the same strategy as in the proof of Lemma 4.12. The intersection number
p22,2 was already computed in Lemma 4.13. If we compute p21,1, p

2
1,3, and p

2
3,3 + p25,5, we can

apply Lemma 4.4, Lemma 4.5, and Lemma 4.10 to find all intersection numbers.
From Lemma 4.7 we know the number of planes of each type through ℓ. Take a plane π

through ℓ.

• If π is of type t2, then any anisotropic point of π lies on a secant line through X or a
secant line through Y .

• If π is a plane of type tκ(X), then it contains two tangent lines through X and two
tangent lines through Y . Since distinct tangent lines intersect in an anisotropic point,
π contains 4 points of R1(X) ∩R1(Y ). Likewise, the intersection point of any line and
a passant line is an anisotropic point. Since X and Y lie on q−1

2 passant lines in π,

this implies that π contains 2 q−1
2 points of R1(X) ∩ R3(Y ), and

(
q−1
2

)2
points of

(R3(X) ∩R3(Y )) ∪ (R5(X) ∩R5(Y )).

• If π is of type tSq·κ(X), X and Y both lie on zero tangent lines and q+1
2 passant lines in

π. Therefore, π contains no points of R1(X) and
(
q+1
2

)2
points of (R3(X) ∩R3(Y )) ∪

(R5(X) ∩R5(Y )).

This yields the following equalities.

p21,1 =
1

2

(
qn−2 − εq

n−3
2

)
· 4 ,

p21,3 =
1

2

(
qn−2 − εq

n−3
2

)
· 2
(
q − 1

2

)
,

p23,3 + p25,5 =
1

2

(
qn−2 − εq

n−3
2

)(q − 1

2

)2

+
1

2

(
qn−2 − εq

n−3
2

)(q + 1

2

)2

.
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As stated above, the rest of the calculations follow from Lemma 4.4 Lemma 4.5 and
Lemma 4.10. Note that p20,2 = 1. □

Lemma 4.15 For (X,Y ) ∈ R3 we have the following equalities.

p31,1 = 2q
n−3
2

(
q

n−1
2 + ε

)
p31,2 =

1

2
q

n−3
2

(
q

n−1
2 + ε

)
(q − 3)

p31,3 =
1

2

(
q

n−1
2 + ε

)(
q

n−1
2 − q

n−3
2 − 2ε

)
p32,2 =

1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 3)2

p32,3 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1) (q − 3)

p33,3 =
1

8
q

n−3
2

((
q

n−1
2 + ε

)
(q − 1)2 − 4εq(q − 3)

)
p34,4 =

1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1)2

p34,5 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1) (q + 1)

p35,5 =
1

8
q

n−3
2

((
q

n−1
2 + ε

)
(q + 1)− 4εq

)
(q + 1)

Proof We repeat the procedure from above. Recall that we computed p32,2 in Lemma 4.13.

Now we compute p31,1, p
3
1,2 and p32,2 + p34,4. Take a plane π through ℓ.

• If π is of type t0, then any anisotropic point of π lies on a passant line through X or a
passant line through Y .

• If π is a plane of type tκ(X), then it contains two tangent lines through X and two
tangent lines through Y . Since distinct tangent lines intersect in an anisotropic point,
π contains 4 points of R1(X) ∩ R1(Y ). Now take a tangent line ℓX through X. There
are q−1

2 secant lines through Y , one of which intersects ℓX in a point of Q. Hence, π

contains 2
(
q−1
2 − 1

)
points of R1(X)∩R2(Y ). Lastly, X and Y each lie on q−1

2 secant

lines in π. Thus, π contains
(
q−1
2

)2
points lying on a secant line through X and a secant

line through Y . Recall that the conic Q ∩ π contains 4 points lying on a tangent line
through X or Y , hence q − 3 points lying on secant lines through X and Y . Therefore,

π contains
(
q−1
2

)2
− (q − 3) points of (R2(X) ∩R2(Y )) ∪ (R4(X) ∩R4(Y )).

• If π is of type tSq·κ(X), X and Y both lie on zero tangent lines and q+1
2 secant lines in

π. Every point of Q∩ π lies on secant lines through X and Y . Therefore, π contains no

points of R1(X) and
(
q+1
2

)2
− (q + 1) points of (R2(X) ∩R2(Y )) ∪ (R4(X) ∩R4(Y )).

Using Lemma 4.7, we obtain the following equalities.

p31,1 =
1

2

(
qn−2 + εq

n−3
2

)
· 4 ,

p31,2 =
1

2

(
qn−2 + εq

n−3
2

)
· 2
(
q − 3

2

)
,

25



p32,2 + p34,4 =
1

2

(
qn−2 + εq

n−3
2

)((q − 1

2

)2

− (q − 3)

)

+
1

2

(
qn−2 + εq

n−3
2

)((q + 1

2

)2

− (q + 1)

)
.

The remaining intersection numbers can be calculated using Lemma 4.4, Lemma 4.5, and
Lemma 4.10. Recall that p30,3 = 1. □

Lemma 4.16 For (X,Y ) ∈ R4 we have the following equalities.

p41,4 =
1

2

(
q

n−1
2 − ε

)(
q

n−1
2 − q

n−3
2 + 2ε

)
p41,5 =

1

2
q

n−3
2

(
q

n−1
2 − ε

)
(q + 1)

p42,4 =
1

8
q

n−3
2

((
q

n−1
2 − ε

)
(q − 1) + 4εq

)
(q − 3)

p42,5 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q + 1) (q − 3)

p43,4 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q − 1)2

p43,5 =
1

8
q

n−3
2

(
q

n−1
2 − ε

)
(q + 1) (q − 1)

Proof We will start by computing p41,5 and p43,5 + p45,3. Take a plane π through ℓ.

• If π is of type t2, then it contains no passant lines.

• If π is of type tκ(X), then it contains two tangent lines through X, q−1
2 passant lines

through X, and q+1
2 passant lines through Y . Since each point of a passant line is

anisotropic, π contains 2 q+1
2 points of R1(X)∩R5(Y ) and q−1

2 · q+1
2 points of (R3(X)∩

R5(Y )) ∪ (R5(X) ∩R3(Y )).

• If π is of type tSq·κ(X), then it contains no tangent lines through X, q+1
2 passant lines

through X, and q−1
2 passant lines through Y . This again yields q−1

2 · q+1
2 points of

(R3(X) ∩R5(Y )) ∪ (R5(X) ∩R3(Y )).

By Lemma 4.8, p43,5 = p45,3. Using Lemma 4.7 this implies that

p41,5 =
1

2

(
qn−2 − εq

n−3
2

)
· 2
(
q + 1

2

)
,

2p43,5 =
(
qn−2 − εq

n−3
2

)(q − 1

2

)(
q + 1

2

)
.

The remaining intersection numbers can be calculated from Lemma 4.4, Lemma 4.5, and
Lemma 4.10. □

Lemma 4.17 For (X,Y ) ∈ R5 we have the following equalities.

p51,4 =
1

2
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1)

p51,5 =
1

2

(
q

n−1
2 + ε

)(
q

n−1
2 + q

n−3
2 − 2ε

)
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p52,4 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1) (q − 3)

p52,5 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q + 1)(q − 3)

p53,4 =
1

8
q

n−3
2

(
q

n−1
2 + ε

)
(q − 1)2

p53,5 =
1

8
q

n−3
2

((
q

n−1
2 + ε

)
(q + 1)− 4εq

)
(q − 1)

Proof We begin by calculating p51,4 and p52,4 + p54,2. Take a plane π through ℓ.

• If π is of type t0, it contains no secant lines.

• If π is of type tκ(X), then it contains two tangent lines through X, q−1
2 secant lines

through X, and q+1
2 secant lines through Y . Take a tangent line ℓX through X.

Then there is a unique secant line through Y intersecting ℓX in a point of Q, namely

⟨Y, ℓX ∩Q⟩. Hence, π contains 2
(
q+1
2 − 1

)
points ofR1(X)∩R4(Y ). There are q−1

2 · q+1
2

points of π lying on secant lines through X and Y . These include all the points of the
conic Q∩π except for the two points lying on a tangent line through X. Thus, π contains
q−1
2 · q+1

2 − (q − 1) points of (R2(X) ∩R4(Y )) ∪ (R4(X) ∩R2(Y )).

• If π is of type tSq·κ(X), then it contains no tangent lines through X, q+1
2 passant lines

through X, and q−1
2 passant lines through Y . Similarly as in the previous point π

contains q−1
2 · q+1

2 − (q − 1) points of (R2(X) ∩R4(Y )) ∪ (R4(X) ∩R2(Y )).

By Lemma 4.8, p52,4 = p54,2. Using Lemma 4.7 this yields

p51,4 =
1

2

(
qn−2 + εq

n−3
2

)
· 2
(
q − 1

2

)
,

2p52,4 =
1

4

(
qn−2 + εq

n−3
2

)
(q − 1)(q − 3) .

The remaining intersection numbers once again follow from Lemma 4.4, Lemma 4.5, and
Lemma 4.10. □

4.3 The matrices of eigenvalues and dual eigenvalues

We will describe how to compute the eigenvalues of the association scheme in an
efficient way. We will use the notation from Section 2.3. In addition, the following
notation will also be helpful.

Definition 4.18 Given a vector v ∈ RP , let vSq ∈ RP denote the vector defined by

vSq : P → R : X 7→

{
v(X) if κ(X) = Sq,

−v(X) if κ(X) = Sq.

First of all, the first eigenspace V0 of the scheme is spanned by the all-one vector
1, and Ai1 = ni1. Since the scheme is imprimitive, respecting an equivalence relation
with two classes, the vector 1Sq spans another 1-dimensional eigenspace of the scheme,
say V1. Note that Ai1

Sq equals ni1
Sq if i ≤ 3 and −ni1

Sq if i ≥ 4.
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Consider the intersection matrices B1, . . . , B5 and recall that the columns of Q
form the (up to reordering and rescaling) unique basis that simultaneously diagonalises

all intersection matrices. Note that for i ≤ 3, Bi =

(
Ci O
O Di

)
for some Ci ∈ R4×4 and

Di ∈ R2×2. Similarly, for i ≥ 4, Bi =

(
O Ci

Di O

)
for some Ci ∈ R4×2 and Di ∈ R2×4.

The spectrum of B4 is symmetric around zero. Indeed, for v ∈ R4 and w ∈ R2, it
holds that

B4

(
v
w

)
= λ

(
v
w

)
⇐⇒ B4

(
v
−w

)
= −λ

(
v

−w

)
.

Moreover, λ is an eigenvalue of B4 if and only if λ2 is an eigenvalue of B2
4 =(

C4D4 O
O D4C4

)
, and C4D4 has the same non-zero eigenvalues as D4C4 with the same

multiplicities. Since C4 and D4 are both non-constant matrices with constant row
sums, they must have rank 2. We conclude that any basis that diagonalises B4, after
reordering, must be of the form

v0 =

(
1
1

)
, v1 =

(
1
−1

)
, v2 =

(
u2

w2

)
, v3 =

(
u2

−w2

)
, v4 =

(
u4

0

)
, v5 =

(
u5

0

)
,

where the top and bottom parts of these vectors lie in R4 and R2 respectively, where
v2 has a positive eigenvalue and u2, w2 ̸= 0, and where u4, u5 ∈ ker(D4).

We can now compute the missing eigenvalues of B4. Let Tr denote the trace func-
tion on square matrices, i.e. the sum of the elements on the main diagonal. If a matrix
A has eigenvalues λi with respective multiplicities mi, then

Tr(Ak) =
∑
i

miλ
k
i , (1)

for every non-negative integer k. We find that

Tr(C4D4) = Tr(D4C4) =

3∑
i=0

5∑
j=4

pi4,jp
j
4,i = n2

4 +

(
1

4
q

n−3
2 (q2 − 1)

)2

.

Thus, the eigenvalues of v2 and v3 are ± 1
4q

n−3
2 (q2 − 1).

The eigenvalues of B5 are easy to compute from the eigenvalues of B4 using the

fact that A5 =

(
O J
J O

)
−A4.

We now turn our attention to the matrices Bi with i ≤ 3, and sketch how to
compute their eigenvalues. Since v2 is an eigenvector of Bi for some eigenvalue λ, u2

and w2 are λ-eigenvectors of Ci and Di respectively. In particular, every eigenvalue of
Di is an eigenvalue of Ci, and v2 and v3 have the same eigenvalue with respect to Bi.
This eigenvalue is easy to compute as it equals Tr(Di) − ni. It remains to determine
the eigenvalues of Ci for u4 and u5. We have already computed two eigenvalues of
Ci. The other two eigenvalues can be computed from Tr(Ci) and det(Ci) since these
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equal the sum and product of the eigenvalues of Ci respectively. This allows us to find
the sets {pi(4), pi(5)} for i ≤ 3. It remains to determine which of these eigenvalues in
each of these sets correspond to the same eigenspace. This can be done easily using
Result 2.14.

From these arguments, the matrix P can be computed. To compute Q, it suffices
to compute the multiplicities m0, . . . ,m5 and use Result 2.15. We have already deter-
mined that m0 = m1 = 1. Moreover, v is a vector of the eigenspace V2 if and only if
vSq is a vector of V3. Therefore, m2 = m3. Furthermore, the multiplicities mi form
the top row of Q and since QP = |P|I, it follows that(

m0 . . . m5

)
P =

(
|P| 0 . . . 0

)
.

This yields linear equations from which m2 = m3, m4, and m5 can be computed.
All these computations result in the following theorem.

Theorem 4.19 Consider the quadric Qε(n, q) with ε = ±1, and q odd. The relations
R0, . . . , R5 defined by Table 2 constitute an association scheme on the anisotropic points of
Qε(n, q). The matrices of eigenvalues and dual eigenvalues of this scheme are presented in
Table 4.

Remark 4.20 This association scheme is imprimitive. It has two isomorphic primitive sub-
schemes, obtained by restricting to anisotropic points of one quadratic type. Such a subscheme
has 3 classes if q > 3 and 2 classes if q = 3. The matrix of eigenvalues of this subscheme can
be deduced from the matrix P in Table 4 by removing the last two columns and removing
rows 1 and 3. In case that n = 3, these are the schemes mentioned in Section 3.3.

Of special interest is the case where n = 3. By applying the polarity, we can
interpret this association scheme as being defined on the non-degenerate plane sections
of Qε(3, q). This gives us an association scheme on the circles of the miquelian Möbius
or Minkowski plane of order q, depending on whether ε = − or ε = + respectively.
The investigation of known circle geometries was actually the initial motivation for
this paper. In particular, we can use the alternative representation of the miquelian
Möbius and Minkowski planes to give alternative interpretations of this association
scheme.

If ε = −1, then we can interpret this scheme as being defined on the Baer sublines
of PG(1, q2). Take two distinct Baer sublines. If they lie in the same PSL(2, q2) orbit,
then they are in relation R1, R2, or R3 depending on whether they intersect in 1, 0,
or 2 points respectively. It they lie in different PSL(2, q2) orbits, they are in relation
R4 or R5 depending on whether they intersect in 0 or 2 points respectively.

If ε = +1, then we can interpret this scheme as being defined on the elements of
PGL(2, q). The relation containing two elements f, g depends on whether they lie in
the same coset of PSL(2, q) and on how many fixed points f ◦g−1 has. This scheme was
already described, and its matrices of eigenvalues and dual eigenvalues determined, by
the first author [10, §3].

29



P
=

                   1
q
n
−
1
−

1
1 4
q

n
−

1
2

( q
n
−

1
2

+
ε) (q

−
3
)

1 4
q

n
−

1
2

( q
n
−

1
2

−
ε) (q

−
1
)

1 4
q

n
−

1
2

( q
n
−

1
2

+
ε) (q

−
1
)

1 4
q

n
−

1
2

( q
n
−

1
2

−
ε) (q

+
1
)

1
q
n
−
1
−

1
1 4
q

n
−

1
2

( q
n
−

1
2

+
ε) (q

−
3
)

1 4
q

n
−

1
2

( q
n
−

1
2

−
ε) (q

−
1
)
−

1 4
q

n
−

1
2

( q
n
−

1
2

+
ε) (q

−
1
)
−

1 4
q

n
−

1
2

( q
n
−

1
2

−
ε) (q

+
1
)

1
εq

n
−

3
2

−
1

1 4
εq

n
−

3
2

(q
+

1
)(
q
−

3
)

−
1 4
εq

n
−

3
2

(q
−

1
)2

1 4
εq

n
−

3
2

(q
−

1
)(
q
+

1
)

−
1 4
εq

n
−

3
2

(q
−

1
)(
q
+

1
)

1
εq

n
−

3
2

−
1

1 4
εq

n
−

3
2

(q
+

1
)(
q
−

3
)

−
1 4
εq

n
−

3
2

(q
−

1
)2

−
1 4
εq

n
−

3
2

(q
−

1
)(
q
+

1
)

1 4
εq

n
−

3
2

(q
−

1
)(
q
+

1
)

1
εq

n
−

1
2

−
1

−
εq

n
−

1
2

0
0

0

1
−
εq

n
−

1
2

−
1

0
εq

n
−

1
2

0
0

                   

Q
=

                    1
1

q
2
q
n
−

1
−
1

q
2
−
1

q
2
q
n
−

1
−
1

q
2
−
1

q
−
3

2
(q

−
1
)

( q
n
−

1
2

+
ε)( q

n
+

1
2

−
ε) q

−
1

2
(q

+
1
)

( q
n
−

1
2

−
ε)( q

n
+

1
2

−
ε)

1
1

q
2
ε
q
n
−

3
2

−
1

q
2
−
1

q
2
ε
q
n
−

3
2

−
1

q
2
−
1

ε
q
−
3

2
(q

−
1
)

( q
n
+

1
2

−
ε)

−
ε

q
−
1

2
(q

+
1
)

( q
n
+

1
2

−
ε)

1
1

ε
q

q
−
1

( q
n
−

1
2

−
ε)

ε
q

q
−
1

( q
n
−

1
2

−
ε)

−
ε

2
q
−
1

( q
n
+

1
2

−
ε)

0

1
1

−
ε

q
q
+
1

( q
n
−

1
2

+
ε) −

ε
q

q
+
1

( q
n
−

1
2

+
ε)

0
ε

2
q
+
1

( q
n
+

1
2

−
ε)

1
−
1

ε
q

q
−
1

( q
n
−

1
2

−
ε) −

ε
q

q
−
1

( q
n
−

1
2

−
ε)

0
0

1
−
1

−
ε

q
q
+
1

( q
n
−

1
2

+
ε) ε

q
q
+
1

( q
n
−

1
2

+
ε)

0
0

                    

Table 4 The matrices of eigenvalues and dual eigenvalues of the association scheme.
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4.4 Combinatorial description of the eigenspaces.

We already know that V0 = ⟨1⟩ and V1 =
〈
1Sq

〉
. We can say more about the

eigenspaces. For a subspace π of PG(n, q), let χπ denote the characteristic vector of
the anisotropic points contained in π. We will look for cliques and cocliques reaching
equality in Delsarte’s or (weighted) Hoffman’s ratio bound (Results 2.18 and 2.19)
and use Lemma 2.20 to describe certain eigenspaces of the association scheme. In this
regard, it is important to observe that the orthogonal group PGOε(n + 1, q) associ-
ated to Qε(n, q) acts transitively on all subspaces of PG(n, q) that intersect Qε(n, q)
in isomorphic quadrics, see [12, Theorem 1.49]. In particular, PGOε(n, q) acts transi-
tively on the passant lines, the tangent lines, and the secant lines of Qε(n, q). It follows
that the action of PGOε(n+ 1, q) on the set of anisotropic points P yields a group of
automorphisms that satisfies the condition of Lemma 2.20.

Proposition 4.21 Let S1 denote the set of n−1
2 -spaces that intersect Qε(n, q) exactly in a

totally isotropic n−3
2 -space. For every π ∈ S1, π ∩P is a Delsarte clique for the relation R1.

Moreover, ⟨χπ ∥π ∈ S1⟩ = V ⊥
9+ε
2

.

Proof If we apply Delsarte’s ratio bound to relation R1, we obtain the bound

qn−1 − 1

q
n−1
2 + 1

+ 1 = q
n−1
2 .

The eigenspace of eigenvalue −(q
n−1
2 +1) is V 9+ε

2
. If π ∈ S1, let ρ denote π ∩Qε(n, q). Then

every line ℓ contained in π is either contained in ρ and therefore totally isotropic, or intersects
ρ in a unique point and therefore tangent. It follows that any two anisotropic points of π

span a tangent line, and that π contains θn−1
2

(q)− θn−3
2

(q) = q
n−1
2 anisotropic points.

Now consider the matrix M ∈ RP×S1 with the vectors χπ, π ∈ S1, as columns. By
considering the automorphisms, we see that the number of spaces π ∈ S1 through two points
X,Y ∈ P only depends on which relation Ri contains (X,Y ). Moreover, this number equals
0 if i > 1, hence MM⊤ is a linear combination of I and A1. Therefore, the column space of
MM⊤ is spanned by all or all but one of the eigenspaces of A1. Note that the column spaces
of M and MM⊤ coincide and equal ⟨χπ ∥π ∈ S1⟩. By equality in Delsarte’s ratio bound,
the latter space is orthogonal to V 9+ε

2
. Hence, the only possibility is that ⟨χπ ∥π ∈ S1⟩ =

V ⊥
9+ε
2

. □

Proposition 4.22 Let S2 denote the set of totally isotropic n−3
2 -spaces. For every π ∈ S2,

π⊥ ∩ P is a weighted Hoffman coclique for the relation R 5+ε
2

∪ R 9+ε
2

of size q
n−1
2 (q − ε).

Moreover, ⟨χπ⊥ ∥π ∈ S2⟩ = V0 ⊕ V2 and
〈
χ
Sq

π⊥ ∥π ∈ S2

〉
= V1 ⊕ V3.

Proof If π ∈ S2, then π⊥ intersects Qε(n, q) in a cone πQε(1, q). This implies that π⊥

contains no lines intersecting Qε(n, q) in exactly 1− ε points, and hence that the anisotropic
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points of π⊥ are a coclique for relations R 5+ε
2

and R 9+ε
2

. The number of anisotropic points

in π⊥ equals

θn+1
2

(q)− |πQε(1, q)| = θn+1
2

(q)−
(
θn−3

2
(q) + (1 + ε)q

n−1
2

)
= (q − ε)q

n−1
2 .

We will check that this matches a weighted Hoffman’s ratio bound. Note that any linear
combination of A 5+ε

2
and A 9+ε

2
satisfies the conditions of Result 2.19 with respect to the

relevant graph. The eigenvalues of this linear combination can be easily obtained from the
matrix P from Table 4.

When making a linear combination of A 5+ε
2

and A 9+ε
2

, we want it to have its smallest

eigenvalue on V2. In particular, we need to avoid that the smallest eigenvalue corresponds to
V1. Therefore, we take the linear combination A = (q + ε)A 5+ε

2
+ (q − 2 + ε)A 9+ε

2
. Then 1

is an eigenvector of A with eigenvalue

(q + ε)P

(
0,

5 + ε

2

)
+ (q − 2 + ε)P

(
0,

9 + ε

2

)
=

1

2
q

n−1
2

(
q

n−1
2 − 1

)
(q + ε)(q − 2 + ε)

and A has its smallest eigenvalue

(q + ε)P

(
2,

5 + ε

2

)
+ (q − 2 + ε)P

(
2,

9 + ε

2

)
= −1

2
q

n−3
2 (q − ε)(q + ε)(q − 2 + ε)

on eigenspace V2. Plugging this into Result 2.19 yields a bound (q − ε)q
n−1
2 on cocliques for

R 5+ε
2

∪R 9+ε
2

, which is achieved by the set of anisotropic points in a space π⊥ with π ∈ S. Then
V0 ⊕ V2 = ⟨χπ⊥ ∥π ∈ S2⟩ by Lemma 2.20. Since the bipartite graph (P, R4) has eigenvalues

with opposite sign on V0 and V1, and on V2 and V3, we know that V1 =
{
vSq || v ∈ V0

}
and

V3 =
{
vSq || v ∈ V2

}
. Thus, V1 ⊕ V3 =

〈
χ
Sq

π⊥ ∥π ∈ S2

〉
. □

Remark 4.23 Consider again the case n = 3. As mentioned before, we can interpret this
association scheme as being defined on the circles of the miquelian Möbius or Minkwoski
plane of order q. In this interpretation, two circles are in relation R 5+ε

2
∪R 9+ε

2
if and only if

they are disjoint. Cocliques for this relation are called intersecting families. Large intersecting
families in the known circle geometries have been classified by the first author [10, Theorem
1.3].

Lastly, we study Hoffman cocliques of R1 for Qε(3, q). The corresponding graph
has two isomorphic connected components, corresponding to the two quadratic types.
The unweighted Hoffman ratio bound applied to one of these components tells us that
a Hoffman coclique C in one component must have size

1
2q(q

2 − ε)
q2−1
q+1 + 1

=
q2 − ε

2
.

By a double counting argument, every tangent line ℓ of the correct type (i.e. the
anisotropic points of ℓ are of the quadratic type under consideration) contains a unique
point of C.

First consider the elliptic quadric Q−(3, q). Let T denote the set of tangent lines to
Q−(3, q). A set S of points of PG(3, q) is a T -blocking set if every line of T contains a
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point of S. The minimum size of a T -blocking set is q2+1 and this occurs if and only if
every tangent line meets S in a unique point, see [20]. Therefore, the study of Hoffman
cocliques of R1 is essentially equivalent to the T -blocking sets of minimum size that
only contain anisotropic points. In [20], the authors study minimum size T -blocking
sets and prove that if q is an odd prime, then Q−(3, q) is the only T -blocking set of
minimum size. In particular, this implies that for q prime, the connected components
of the R1 graph on the anisotropic points of Q−(3, q) have no Hoffman cocliques.

Next, we move to the hyperbolic quadric Q+(3, q). A set of points O in a polar
space is called an ovoid if it intersects every generator in exactly one point. If O
intersects every generator in at most one point, we call it a partial ovoid. Partial ovoids
of Q(4, q) have been investigated in several papers. We review the most important
properties and refer the interested reader to [21]. Note that the generators of Q(4, q)
are lines. Let κ and ⊥ denote the quadratic form and polarity associated to Q(4, q),
respectively.

Ovoids of Q(4, q) contain q2 + 1 points. Partial ovoids of Q(4, q) which are not
contained in any ovoid, contain at most q2 − 1 points. Such a partial ovoid whose size
meets the upper bound will be called a maximum partial ovoid. If O is a maximum
partial ovoid of Q(4, q), then there exists a hyperplane π intersecting Q(4, q) in a
Q+(3, q) such that the generators of Q(4, q) that miss O are exactly the generators
contained in π. Let P denote the point π⊥. We call the maximum partial ovoid O
antipodal if every secant line through P intersects O in either 0 or 2 points.

A line ℓ through P is tangent to Q(4, q) if and only if it intersects π in a point of
the quadric Q+(3, q). If ℓ is not tangent, then ℓ is passant or secant depending on the
quadratic type of ℓ∩π. Since we can scale κ if necessary, we may suppose without loss
of generality that the secant lines through P intersect π in a point of square type.

Now suppose that O is an antipodal maximum partial ovoid. Let C denote its
projection from P onto π, i.e. C equals the set {⟨P,R⟩ ∩ π || R ∈ O}. Since O is

antipodal, |C| = |O|
2 = q2−1

2 . Note also that C consists of anisotropic points of π of
square type. Take a tangent line ℓ in π whose anisotropic points are of square type.
Suppose that ℓ intersects Q(4, q) in the point Q. Then ⟨P,Q⟩ is a tangent line, and
all other lines through P in ⟨P, ℓ⟩ are secant lines. It follows that ⟨P, ℓ⟩ meets Q(4, q)
in the union of two lines through Q. Both of these lines must contain a point of O,
say R1 and R2. Since O is antipodal, P , R1, and R2 must be collinear, which means
that P projects R1 and R2 onto the same point of C. Therefore, ℓ contains a unique
point of C. This implies that C is indeed a Hoffman coclique for the relation R1 on
the anisotropic points of Q+(3, q) of square type.

This process is reversible. Suppose that C is a Hoffman coclique for the relation R1

on the anisotropic points of Q+(3, q) of square type. For every point R ∈ C, the line
⟨P,R⟩ is secant to Q(4, q). Let O denote the set of points in which these lines ⟨P,R⟩
intersect Q(4, q). Then O is an antipodal maximum partial ovoid of Q(4, q). Indeed, it
readily follows that O contains q2−1 points and is antipodal. Moreover, a generator ℓ
of Q(4, q) cannot contain 2 points of O. This is clear if ℓ is contained in π, so suppose
that ℓ isn’t. Then the plane ⟨P, ℓ⟩ intersects π in a tangent line. This follows from
the fact that ℓ contains a unique point Q of π = P⊥, hence a unique tangent line
⟨P,Q⟩ through P , which implies that Q is the only isotropic point of ⟨P, ℓ⟩ ∩ π. Then
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⟨P, ℓ⟩ ∩ π cannot contain multiple points of C, which implies that ℓ cannot contain
multiple points of O.

We conclude that Hoffman cocliques of R1 are equivalent to antipodal maximum
partial ovoids of Q(4, q). As observed in [21], a maximum partial ovoid of Q(4, q) is
equivalent to a sharply transitive subset of SL(2, q). Moreover, this maximum par-
tial ovoid is antipodal if and only if the sharply transitive subset is closed under
multiplication with −1. Hence, we have established the following equivalence.

Proposition 4.24 Let q be an odd prime power. The following objects are equivalent.

(1) A Hoffman coclique of the R1 relation on the points of Q+(3, q) of one quadratic type.

(2) An antipodal maximum partial ovoid of Q(4, q).

(3) A sharply transitive subset of SL(2, q) that is closed under multiplication with −1.

A maximum partial ovoid of Q(4, q) can only exist if q is a prime [22]. Examples are
known for q = 3, 5, 7, 11, all of which are antipodal and correspond to sharply transitive
subgroups of SL(2, q). Coolsaet, De Beule, and Siciliano [21] conjecture that a sharply
transitive subset of SL(2, q) can only arise from a sharply transitive subgroup, which
would imply that there are no further examples of maximum partial ovoids of Q(4, q),
antipodal or otherwise.

5 Orthogonality graphs

In this section we determine the spectrum of the adjacency matrices of some orthogo-
nality graphs. These graphs are constructed as follows. Take a polarity ⊥ of PG(n, q).
Take a subset P of the points of PG(n, q). Define a graph G whose vertices are P
and where X is adjacent to Y if and only if X ⊥ Y . We can ensure that the graph is
loopless, by choosing only anisotropic points as vertices. Typically, P consists either
of all anisotropic points or in case ⊥ defines a quadric and q is odd, of the anisotropic
points of one quadratic type.

Orthogonality graphs gained interest in the study of Ramsey-type problems,
more specifically they are “dense”, “clique-free”, and “pseudorandom”. Pseudoran-
dom means that they behave in some way like random graphs. For a regular graph,
this is certainly the case if the second largest eigenvalue in absolute value of the adja-
cency matrix of G is close to the square root of the degree. Clique-free means that
the clique number of the graph is small. Dense means that the graph contains a lot of
edges, or in other words that it has high degree.

The graphs were introduced in this context by Alon and Krivelevich [23]. They
considered the case where q is even, ⊥ is a pseudo-polarity (which means that the
absolute points of ⊥ form a hyperplane), and P consists of all points of PG(n, q)
(which forces the graph to contain loops). Bishnoi, Ihringer, and Pepe [24] studied
the case where q is odd, ⊥ gives rise to a non-degenerate quadric, and P consists of
the anisotropic points of one quadratic type. From the viewpoint of dense clique-free
pseudorandom graphs, this is a meaningful improvement to the original construction
by Alon and Krivelevich. The interested reader is invited to consult [24] for more
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details. We mention that the improvement of [24] was recently matched by Mattheus
and Pavese [25] using a similar construction. They restrict the polarity graph used by
Alon and Krivelevich to a well-chosen subset of about half of the points of the space.

Determining the eigenvalues of the orthogonality graphs is easy when P consists of
all points of PG(n, q), as noted in [23]. When we restrict P to a smaller set of points,
we obtain a subgraph whose eigenvalues interlace the eigenvalues of the bigger graph.
This generally yields a good upper bound on the second largest eigenvalue in absolute
value of the subgraph. However, using the eigenvalues of the association schemes we
encountered in this paper, we can compute the eigenvalues of some orthogonality
graphs on anisotropic points exactly.

Theorem 5.1 The eigenvalues of orthogonality graphs on anisotropic points are listed below.

(1) Hermitian variety H(n, q2), ε = (−1)n, s =
(
qn+1 + ε

)
(qn − ε)

Eig. qn−1 qn−ε
q+1 εqn−1 −εqn−1 −εqn−2

Mult. 1 q
2(q+1)2

s q−2
2(q2−1)

s q3 qn−ε
q2−1

qn−1+ε
q+1

(2) Elliptic or hyperbolic quadric Qε(n, q), q odd

Eig. qn−1 εq
n−1
2 −εq

n−1
2 εq

n−3
2

Mult. 1 qn+1−2qn+1
2(q−1)

− εq
n−1
2

qn+1−1
2(q+1)

q2 qn−1−1
q2−1

(3) Parabolic quadric Q(n, q), q odd, s = qθq(n− 2)

Eig. qn−1 ±q
n−1
2 q

n
2 −1 −q

n
2 −1 0

Mult. 1 1
2 (qn − s)− 1 1

2

(
s− q

n
2

)
1
2

(
s+ q

n
2

)
1

We note that when ⊥ gives rise to a quadric in PG(n, q), q odd, (respectively a
Hermitian variety in PG(n, q2)) and we take P to be the set of anisotropic points of
one quadratic type (respectively all anisotropic points), the eigenvalues of the orthog-
onality graph were described by Bannai, Hao, and Song [5] (and also the same authors
and Wei [6]). In the Hermitian case, we obtain Proposition 3.2 as a corollary from our
computation of the eigenvalues.

The general strategy to compute the eigenvalues is as follows. Let G be the orthog-
onality graph of ⊥ on the anisotropic points P, and let A be its adjacency matrix.
Given two points X,Y ∈ P, A2(X,Y ) equals the number of common neighbours of X
and Y in G, which equals X⊥ ∩ Y ⊥ ∩ P. In all of the above cases, this only depends
on how ⟨X,Y ⟩ intersects the quadric or Hermitian variety defined by ⊥. Therefore,
A2 lives in the Bose-Mesner algebra of one of the previously encountered association
schemes. Hence, we can determine the eigenvalues of A2 and their multiplicities. For
every eigenvalue λ2 of A2 with multiplicity m, it only remains to determine the mul-
tiplicities of λ and −λ as eigenvalues of A. These latter multiplicities of course sum
to m.

We can obtain information about the spectrum of A by considering Tr(Ak) for some
integers k, cf. Equation (1). This gives a system of linear equations in mi. Moreover,
Tr(Ak) gives the number of ordered closed walks of length k in G. In particular, Tr(A0)
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equals the number of vertices, Tr(A) equals zero, and Tr(A3) equals the number of
ordered triangles. In all cases we encounter, these equations suffice to determine the
spectrum of A.

We now prove the three cases of Theorem 5.1 in three separate subsections.

5.1 The Hermitian case

Consider the case where ⊥ determines a Hermitian variety H(n, q2) with n ≥ 2. Recall
the relations R0, R1, R2 = R2⊥ ∪ R2̸⊥ defined in Section 3.4. Then the orthogonality
graph on the anisotropic points of H(n, q2) is the graph corresponding to relation
R2⊥. Let Ai denote the adjacency matrix corresponding to Ai. Using Definition 2.12,
it suffices to prove that ⟨A0 = I, A1, A2⊥, A2̸⊥⟩ is closed under matrix multiplication.
We do this by proving that all these matrices lie in the algebra generated by A2⊥, and
that this algebra is 4-dimensional.

Let ε denote (−1)n. Then

A2
2⊥ = qn−1 q

n − ε

q + 1
I + qn−1 q

n−2 − ε

q + 1
A1 + qn−2 q

n−1 + ε

q + 1
A2. (2)

Note that A2 = A2⊥ + A2̸⊥ = J − I − A1. Therefore, A1 is a linear combination of
A2

2⊥, I, and J . The matrices I and J are inside the algebra spanned by A2⊥. This is
obvious for I. For J , it follows from the fact that the orthogonality graph is regular
and connected, hence ⟨1⟩ is an eigenspace of A2⊥. The orthogonal projection onto
this eigenspace lives in the algebra spanned by A2⊥, and is a multiple of J . It readily
follows that A0 = I,A1, A2⊥, A2̸⊥ all lie inside the algebra spanned by A2⊥. Since A2⊥
is symmetric, the dimension of this algebra as vector subspace equals the number of
distinct eigenvalues of A2⊥.

We will now derive the spectrum of A2⊥ from the spectrum of A1, which can be
read from the matrix P in Section 3.4. Plugging this into Equation (2), yields that A2

2⊥
has eigenvalues q2(n−1) and q2(n−2) on the orthogonal complement of ⟨1⟩. Therefore
the possible eigenvalues of A2⊥ are

λ0 = qn−1 q
n − ε

q + 1
, λ1 = εqn−1, λ2 = −εqn−1, λ3 = εqn−2, λ4 = −εqn−2.

Let mi denote the multiplicity of λi. First of all, we know that m0 = 1. From the top
row of the matrix Q in Section 3.4, we know that

m1 +m2 =
q2 − q − 1

(q + 1)(q2 − 1)

(
qn+1 + ε

)
(qn − ε) ,

m3 +m4 =
q3

(q + 1)(q2 − 1)

(
qn−1 + ε

)
(qn − ε) .

We count the number of ordered triangles in the graph. By Result 2.7, there are

qn qn+1+ε
q+1 choices for a point X ∈ P, qn−1 qn−ε

q+1 choices for a point Y ∈ P ∩X⊥, and
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qn−2 qn−1+ε
q+1 choices for a point Z ∈ X⊥ ∩ Y ⊥ ∩ P. We may conclude that

4∑
i=0

miλi = 0,

4∑
i=0

miλ
3
i =

(
qn

qn+1 + ε

q + 1

)(
qn−1 q

n − ε

q + 1

)(
qn−2 q

n−1 + ε

q + 1

)
.

Using m0 = 1, this linear system has a unique solution, namely

m1 =
q

2(q + 1)2
(
qn+1 + ε

)
(qn − ε) m2 =

q − 2

2(q2 − 1)

(
qn+1 + ε

)
(qn − ε)

m3 = 0 m4 = q3
qn − ε

q2 − 1

qn−1 + ε

q + 1

Since m3 = 0, A2⊥ indeed has 4 distinct eigenvalues, which proves Proposition 3.2.
We have also proven Theorem 5.1 (1).

Remark 5.2 Recall Remark 3.3 (1). In case q = 2, we see that m2 = 0, and if in addition
n = 2, then λ0 = λ1.

5.2 The elliptic and hyperbolic case

Consider the case where ⊥ determines the quadric Qε(n, q), with n and q odd, and ε =
±1. Let A denote the adjacency matrix of the orthogonality graph on the anisotropic
points of Qε(n, q). Let A0, . . . , A5 denote the adjacency matrices of the association
scheme from Section 4. Then

A2 =(θn−1(q)− |Q(n− 1, q)|) I + (θn−2(q)− |Π0Q(n− 3, q)|)A1

+ (θn−2(q)− |Qε(n− 2, q)|) (A2 +A4) +
(
θn−2(q)−

∣∣Q−ε(n− 2, q)
∣∣) (A3 +A5)

=qn−1I + qn−2A1 + q
n−3
2

(
q

n−1
2 − ε

)
(A2 +A4) + q

n−3
2

(
q

n−1
2 + ε

)
(A3 +A5)

=q
n−3
2

(
q

n−1
2 J + q

n−1
2 (q − 1)I + ε(A3 +A5 −A2 −A4)

)
.

Let V0, . . . , V5 denote the eigenspaces of the Bose-Mesner algebra spanned by
A0, . . . , A5. Using Table 4, we see that A2 takes the eigenvalues q2(n−1) on V0, q

n−3 on
V2, and qn−1 on all the other eigenspaces. Since G is qn−1-regular, A has eigenvalue
qn−1 on V0. Define

λ0 = qn−1, λ1 = εq
n−1
2 , λ2 = −εq

n−1
2 , λ3 = εq

n−3
2 , λ4 = −εq

n−3
2 .

Let mi denote the multiplicity of λi as eigenvalue of A. We already know that m0 = 1.
Moreover,

m1 +m2 = q
n−1
2

(
q

n+1
2 − ε

)
− q2

qn−1 − 1

q2 − 1
− 1, m3 +m4 = q2

qn−1 − 1

q2 − 1
.
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Applying Equation (1) with k = 1 tells us that

qn−1 + ε(m1 −m2)q
n−1
2 + ε(m3 −m4)q

n−3
2 = 0.

Finally, we count the number of ordered triangles (X,Y, Z) in the orthogonality graph.

There are q
n−1
2

(
q

n+1
2 − ε

)
ways to choose X. Then we need to choose a anisotropic

point Y ∈ X⊥. Note that a point Y ∈ X⊥ is anisotropic if and only if ⟨X,Y ⟩ is not a
tangent line. Hence, take an non-tangent line ℓ through X, and let Y denote ℓ ∩X⊥.

From the proof of Lemma 4.4, we know that there are 1
2

(
qn−1 + εq

n−1
2

)
secant lines

through X, and 1
2

(
qn−1 − εq

n−1
2

)
passant lines through X. In the former case, ℓ⊥

intersects Q in a quadric isomorphic to Qε(n − 2, q) and in the latter case a quadric
isomorphic to Q−ε(n− 2, q). Therefore,∑

i

λ3
imi = Tr(A3)

= q
n−1
2

(
q

n+1
2 − ε

)(
1

2

(
qn−1 + εq

n−1
2

)
(θn−2(q)− |Qε(n− 2, q)|)

+
1

2

(
qn−1 − εq

n−1
2

) (
θn−2(q)− |Q−ε(n− 2, q)|

))
= q

3n−5
2

(
q

n+1
2 − ε

) (
qn−1 − 1

)
.

It follows that

m0 = 1, m1 =
qn+1 − 2qn + 1

2(q − 1)
− εq

n−1
2 , m2 =

qn+1 − 1

2(q + 1)
,

m3 = q2
qn−1 − 1

q2 − 1
, m4 = 0.

This proves Theorem 5.1 (2).

5.3 The parabolic case

Consider the parabolic quadric Q = Q(n, q), with n even and q odd. As usual, let
⊥ denote the related polarity. Let P denote the set of all anisotropic points. We can
partition P into the sets

Pε =
{
X ∈ P || X⊥ ∩Q ∼= Qε(n− 1, q)

}
for ε = ±1. Then |Pε| = 1

2q
n
2

(
q

n
2 + ε

)
. Consider the graph G defined on P, where

adjacency is given by being orthogonal. We will determine the eigenvalues of the
adjacency matrix A of G. We can order the points of P in such a way the points of
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P+ proceed the points of P−. Then we can write A as the block matrix

A =

(
A++ A+−
A−+ A−−

)
,

where Aδε is a matrix whose rows are indexed by the points of Pδ and whose columns
are indexed by the points of Pε.

Let 1ε denote the all-one vector indexed by the points of Pε. Take a point X ∈
Pε. Then X⊥ contains q

n
2 −1

(
q

n
2 − ε

)
anisotropic points, equally many from both

quadratic types. Therefore,

Aε,δ1δ =
1

2
q

n
2 −1

(
q

n
2 − ε

)
1ε,

for all ε, δ = ±1. It follows that v1 =

((
q

n
2 − 1

)
1+(

q
n
2 + 1

)
1−

)
and v2 =

(
1+

−1−

)
are eigen-

vectors of A with respective eigenvalues qn−1 and 0. We can extend v1 and v2 to an
orthogonal basis of eigenvectors of A, which means that all other vectors of this basis

are of the form w =

(
w+

w−

)
with wε orthogonal to 1ε for ε = ±1.

As before, we will proceed by examining the spectrum of A2. Since A2(X,Y ) equals
the number of anisotropic points in X⊥ ∩ Y ⊥, we find that

A2(X,Y ) =


q

n
2 −1

(
q

n
2 − ε

)
if X = Y ∈ Pε,

q
n
2 −1

(
q

n
2 −1 − ε

)
if ⟨X,Y ⟩ is a tangent line, X,Y ∈ Pε,

qn−2 otherwise.

Recall the graphs from Section 3.3 defined on Pε, where adjacency is given by lying
on a tangent line. Let Tε denote the corresponding adjacency matrix. Then

A2 = qn−2J + qn−2(q − 1)I + q
n
2 −1

(
−I+ − T+ O

O I− + T−

)
.

Now suppose that 1ε, wε,2, . . . , wε,|Pε| is an orthonormal basis of eigenvectors of Tε for
ε = ±1. Then it readily follows that

v1, v2,

(
w+,2

0

)
, . . . ,

(
w+,|P+|

0

)
,

(
0

w−,2

)
, . . . ,

(
0

w−,|P−|

)
is an orthonormal basis of eigenvectors of A2. Note also that if wε,i has eigenvalue λ
with respect to Tε, then its corresponding eigenvector of A2 has eigenvalue qn−2(q −
1) − εq

n
2 −1(λ + 1). Combining this with Table 1, we see that the spectrum of A2 is

given by
Eigenvalue q2(n−1) qn−1 qn−2 0
Multiplicity 1 qn − 2− qθn−2(q) qθn−2(q) 1

.

39



Define

λ0 = qn−1, λ1 =
√
qq

n
2 −1, λ2 = −√

qq
n
2 −1, λ3 = q

n
2 −1, λ4 = −q

n
2 −1, λ5 = 0.

Let mi denote the multiplicity of λi as eigenvalue of A. Note that m0 = m5 = 1,
m1+m2 = qn−2−qθn−2(q), and m3+m4 = qθn−2(q). We finish the calculations again
by applying Equation (1) with k = 1 and k = 3. To this end, we count the number
of ordered triangles (X,Y, Z) in G, which equals Tr(A3). There are 1

2q
n
2

(
q

n
2 + ε

)
choices for X ∈ Pε. There are q

n
2 −1

(
q

n
2 − ε

)
anisotropic points Y ∈ X⊥. Note that

the line ⟨X,Y ⟩ is not tangent, since it doesn’t meet X⊥ in a point of Q. Hence,

⟨X,Y ⟩⊥∩Q ∼= Q(n−2, q), which means there are qn−2 choices for Z. We conclude that

∑
i

miλ
3
i = Tr(A3) =

∑
ε=±1

1

2
q

n
2

(
q

n
2 + ε

)
q

n
2 −1

(
q

n
2 − ε

)
qn−2 = q2n−3(qn − 1).

The system of linear equations in m0, . . . ,m5 has as unique solution

m0 = m5 = 1, m1 = m2 =
1

2
(qn − qθn−2(q))− 1,

m3 =
1

2

(
qθn−2(q)− q

n
2

)
, m4 =

1

2

(
qθn−2(q) + q

n
2

)
.

This proves Theorem 5.1 (3).
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