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Abstract
In this paper, we illustrate how the typical workflow in analyzing psychological data, including 
analysis of variance and null hypothesis significance testing, may fail to bridge the gap between 
research questions and statistical procedures. It fails, because it does not provide us with the 
quantities of interest, which are often average and conditional effects, and it is insufficient, because 
it does not take the expectations of the researcher about these quantities into account. Using a 
running example, we demonstrate that the EffectLiteR framework as well as informative 
hypothesis testing are more suitable to narrow the gap between research questions and statistical 
procedures. Furthermore, we provide two empirical data examples, one in the context of linear 
regression and one in the context of the generalized linear model, to further illustrate the use of 
informative hypothesis testing in the EffectLiteR framework.

Keywords
analysis of variance, ANOVA, null hypothesis significance testing, informative hypothesis testing, constrained 
statistical inference, average effects, conditional effects

When considering which statistical procedure works best for examining a given hypoth­
esis, researchers are often unaware that there is not always a one-to-one mapping 
or simple translation between a research question and a statistical procedure. This is 
because each procedure comes with different advantages and disadvantages and can 
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only answer questions within a specific, limited context. The unawareness regarding 
the limits of statistical procedures plays a major role in the replication crisis (see, e.g., 
Ioannidis, 2005; Yong, 2012) and contributes to what can be called the gap between 
research questions and statistical procedures (see, e.g., Scheel et al., 2021).

In this paper, we will use a simulated data example to illustrate how the typical 
workflow in analysing psychological data can fail to bridge the gap between research 
questions and statistical procedures. We will focus on research questions that involve the 
evaluation of the effect of a focal categorical predictor X on an outcome variable Y taking 
into account several covariates. A typical research question in this context may be “Is 
there a significant effect of X on Y on average?” or “Is the effect of X larger for males 
than for females?”.

The usual approach to analyze this type of data is by using analysis of variance (AN­
OVA; Rutherford, 2001) in combination with null hypothesis significance testing (NHST). 
Technically, ANOVA is just a linear regression model with at least one categorical focus 
predictor. By using the term NHST, we refer to the following typical setting. Under 
the null hypothesis, we use equality constraints. That is, we test whether one or more 
quantities (such as model parameters or means) are equal to zero (or another constant) 
or whether several quantities are equal to each other. Under the alternative hypothesis, 
we assume that there are no equalities. An example could refer to regression coefficients, 
where H0:β1 = β2 is tested against H1:β1 ≠ β2, or in other words H0:β1 − β2 = 0 is tested 
against H1:β1 − β2 ≠ 0.

ANOVA is one of the most often used statistical procedures in psychology. Unfortu­
nately, using ANOVA in combination with NHST is often insufficient for two main 
reasons. First, ANOVA does not provide us with the quantities of interest, which are 
usually average or conditional effects. And second, it does not take into account the 
expectations of the researcher about these effects of interest, for example their order.

We will introduce two methodological approaches that may be more suitable. These 
are the EffectLiteR framework (Mayer et al., 2016; Mayer & Dietzfelbinger, 2019) and 
informative hypothesis testing (IHT; Hoijtink, 2012; Silvapulle & Sen, 2005). We will 
show how both approaches can be used simultaneously to narrow the gap between 
research questions and statistical procedures. After these demonstrations, we will present 
two empirical data examples, one in the context of linear regression and one in the 
context of the generalized linear model. We provide R (R Core Team, 2020) code as well 
as further supplemental materials on the OSF project site (see Keck et al., 2024).

By reading this paper, we hope that applied researchers will gain awareness about 
the pitfalls of using ANOVA together with NHST. Furthermore, we hope that applied re­
searchers will obtain some familiarity with our proposed method, IHT in the EffectLiteR 
framework, including all its advantages. In order to ease the transition for readers that 
are currently using traditional ANOVA in combination with NHST, this paper will only 
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consider the frequentist framework. We acknowledge that ultimately, a fully Bayesian 
approach may provide even more options and flexibility (in the future).

Simulated Data Example
The running example focuses on a clinical researcher who is interested in the effect of a 
new drug in combination with cognitive behavioral therapy (CBT) to reduce depression. 
The main hypothesis is that CBT in combination with either the old or the new drug is 
more effective than CBT only, and that the new drug with CBT is more effective than the 
old drug with CBT. The simulated data set can be found on the OSF project site under the 
name “runningExampleData.csv” (see Keck et al., 2024).

The researcher sets up a non-randomized experiment with three treatment groups; 
one group receiving CBT only (X = 0), one group receiving CBT together with the old 
drug (X = 1) and one group receiving CBT together with the new drug (X = 2). The 
total sample size is n = 1000. As covariates, the continuous variable depression pre-test 
(Z) and the dichotomous variable “treatment experience” (K) are considered. The latter 
indicates whether any treatment has been received before (K = 1) or not (K = 0). The 
outcome variable Y is the depression post-test. Note that both Z and Y will be treated as 
manifest variables and higher scores denote better mental health. Furthermore, note that 
our running example is a simplification of a non-randomized experiment. In a real world 
setting, more covariates would have to be taken into account.

The expectation of the researcher is that µ2adj > µ1adj > µ0adj, where µ2adj and µ1adj corre­
spond to the treatment experience and pre-test adjusted means of Y for the combination 
of CBT with the new and the old drug, respectively, and µ0adj corresponds to the treat­
ment experience and pre-test adjusted mean of Y for CBT with no drugs. However, as 
will be explained in more detail later on, there are different ways to adjust means that 
researchers may not always be aware of.

After the data collection, the researcher will typically first have a look at some 
descriptive statistics. Table 1 shows the estimates of various (conditional) expectations 
and adjusted means in the simulated example. In line with our data generation, we find 
that there are no (significant) baseline differences in depression pre-test Z between the 
levels of X and K. This is also reflected by an F-test: F(5, 994) = 0.2724, p = .928, where 
we compared a model with main effects for X and K and their interaction effect (X:K) to 
the intercept-only model. Often, the researcher will also visualize the data, for example 
as can be seen in Figures 1 and 2. Figure 1 shows a boxplot of the post-test Y for the dif­
ferent treatment groups X. Figure 2 depicts the linear regression of post-test Y on pre-test 
Z in the different combinations of treatment group X and treatment experience K. We 
see that the slopes do not differ much between the grid elements. In other words, there 
seems to be no three-way interaction between either X or K and the two continuous vari­
ables Y and Z. Again, this can be confirmed using an F-test; F(2, 988) = 1.637, p = .199.
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ANOVA Versus EffectLiteR
For the data generation as well as the data analysis, the following model is used1 :

post‐testi= β0 + β1 ⋅ group1i + β2 ⋅ group2i + β3 ⋅ treatexp1i + β4 ⋅ pre‐testi +
β5 ⋅ group1i ⋅ treatexp1i + β6 ⋅ group2i ⋅ treatexp1i +
β7 ⋅ group1i ⋅ pre‐testi + β8 ⋅ group2i ⋅ pre‐testi +
β9 ⋅ treatexp1i ⋅ pre‐testi + εi .

(1)

Note that this model does not include a three-way interaction term. The control group 
is X = 0. The variables group1i and group2i are dummy variables which indicate by a 
value of 1, if a subject belongs to group X = 1 or X = 2, respectively, and are 0 otherwise. 
Similarly, the variable treatexp1i is a dummy variable, which indicates whether a subject 
has treatment experience (K = 1) or not (K = 0).

Then, the researcher will formulate the hypotheses of interest. As in our example, the 
focus is usually on the “main effect” of the treatment and following the classical NHST 
approach, H0:µ2adj = µ1adj = µ0adj will be tested against H1:µ2adj ≠ µ1adj ≠ µ0adj. However, as 
mentioned before, the µ’s may correspond to different types of adjusted means, which 

Figure 1

Boxplot of Depression Post-Test Y Grouped by the Three Levels of X

1) Note that EffectLiteR uses a different notation with so-called intercept and effect functions based on gammas 
instead of betas. The interested reader is referred to Keck et al. (2021).
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will be explained in the next section. Furthermore, the alternative hypothesis does not 
correspond to the initial expectation of the researcher, where the adjusted means are 
ordered: µ2adj > µ1adj > µ0adj. We will also argue that the researcher is actually interested in 
the so-called average effect of the treatment, as will be explained in more detail later on. 
After specifying the hypotheses, the researcher will fit the model. In the sequel, we will 
first give a theoretical overview of ANOVA, before coming back to our running example 
and the results of the fitted model.

ANOVA

ANOVA is one of the most popular statistical techniques in the social and behavioral 
sciences. It is a framework or collection of methods based on a linear regression model, 
where at least one predictor is categorical in nature. Usually, this categorical predictor 
describes the different conditions of an experiment, or the different (treatment) groups 
in an intervention study. The ANOVA framework (Edwards, 1993) includes one-way and 
multi-way ANOVA, univariate and multivariate (M)ANOVA, ANOVA using within-sub­
jects and/or between-subjects factors, and AN(C)OVA where covariates are included in 
the model.

The problem with ANOVA is that we only obtain regression coefficients as well 
as main and interaction effects, which are often difficult to interpret. Especially the 
interpretation of a main effect in the presence of an interaction effect is far from trivial. 

Figure 2

Slopes of the Linear Regression of the Post-Test Y on the Pre-Test Z for the Different Combinations of Group X and 
Treatment Experience K
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This is because different sum of squares (SS) can be used in ANOVA for hypothesis 
testing. Depending on the SS, the main effect is defined in a different way and thus, 
a different null hypothesis is tested (for an overview, see, e.g., Fox, 2016; Graefe et al., 
2022; Maxwell et al., 2018). There are several types of SS, namely Type I, Type II and 
Type III.2 To understand the main differences between these different types, consider a 
model of the form Y ∼ A + B + A:B. An ANOVA table based on Type I SS will contain 
the following three model comparisons: Y ∼ A versus Y ∼ 1,3 Y ∼ A + B versus Y ∼ A, 
and Y ∼ A + B + A:B versus Y ∼ A + B. In other words, Type I SS corresponds to an 
incremental procedure, where single terms are added to the model one by one and the 
model is then compared to the previous model without the new term. For Type II, the 
ANOVA table will contain the following model comparisons: Y ∼ A + B versus Y ∼ B, 
Y ∼ A + B versus Y ∼ A, and Y ∼ A + B + A:B versus Y ∼ A + B. The main characteristic 
of the Type II procedure is the principle of marginality: If a term is removed from the 
model, then all higher-order terms involving this term will be removed too. Finally, the 
Type III procedure leads to the following set of model comparisons: Y ∼ A + B + A:B
versus Y ∼ B + A:B, Y ∼ A + B + A:B versus Y ∼ A + A:B, and Y ∼ A + B + A:B versus 
Y ∼ A + B. It is always the full model versus a model where a single term is deleted.

Type III SS are used per default in many popular software programs like SPSS (IBM 
Corp, 2020). Thus, researchers will typically use Type III SS without further deliberation, 
even though there is a great controversy in the literature about when to use which 
SS (e.g., Hector et al., 2010; Herr & Gaebelein, 1978; Macnaughton, 1998). Graefe et al. 
(2022) conducted simulation studies considering the different types of SS in balanced, 
proportional and non-orthogonal designs. They found that in balanced designs, using 
either one of the three SS yields main effects that can be interpreted unambiguously. 
However, in proportional designs, this is only true when using Type I and II SS. In case of 
Type III SS, the main effect is biased if there are interactions. Finally, in non-orthogonal 
designs, the main effect is always biased when using Type I SS. And when there are 
interactions, Types II and III also yield biased main effects. Nevertheless, for the sake of 
illustration, we will use ANOVA to analyse our simulated dataset.

Using the centered version of the pre-test variable Z, the model for our running 
example is fitted as follows in R:

2) There are also Type IV SS, but they are rarely used.

3) The ‘1’ at the right-hand side represents the intercept.
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Listing 1

Specification of ANOVA Models Including All Two-Way Interactions

# this R code can be found under 01Anova.R on the OSF project site

# read in data
Data <- read.csv("runningExampleData.csv")

# center pre-test for better interpretation of regression coefficients
Data$pretest.cent <- Data$pretest - mean(Data$pretest)
# treat group and treatexp as categorical variables
Data$group <- factor(Data$group)
Data$treatexp <- factor(Data$treatexp)

# load packages
library(car) # for Anova () function

# fit regression model with all 2-way interaction effects
lmod.treat <- lm(posttest ~ (group + treatexp + pretest.cent)^2, data = Data)
summary(lmod.treat)

# Type I ANOVA table
anova(lmod.treat)

# Type II ANOVA table
Anova(lmod.treat, type = 2)

# Type III ANOVA table
# attention: we must use an orthogonal or a sum-to-zero coding scheme
options(contrasts = c("contr.sum", "contr.poly"))
lmod.sum <- lm(posttest ~ (group + treatexp + pretest.cent)^2, data = Data)
summary(lmod.sum)
Anova(lmod.sum, type = 3)

The anova( ) function is a function in base R, whereas the Anova( ) function belongs 
to the car package (Fox et al., 2022). The former uses Type I SS, whereas the latter can 
handle Type II and III SS. Furthermore, R uses treatment coding per default, which has 
to be changed to a zero-to-sum coding scheme (for example sum coding) when using 
Type III SS. This prevents main and interaction effects from overlapping. For more infor­
mation about coding schemes, see, for example, Cohen et al. (2003) and Hardy (2003). 
Note, however, that in some statistical packages (for example SAS), coding schemes are 
automatically taken care of. Table 2 shows the ANOVA results when using the three 
different SS. In Table 3, the results of the linear model using treatment coding can be 
seen. Appendix Table A1 shows the results of the linear model when using sum coding.
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Table 3

Linear Regression Model Results Using Treatment Coding

Source Coefficient Estimate (SE) t-value p-value

Intercept β̂0 0.007 (0.071) 0.091 0.928

IX = 1 β̂1 0.380 (0.109) 3.490 < 0.001***

Group

IX = 2 β̂2 0.410 (0.101) 4.070 < 0.001***

Treatexp β̂3 0.084 (0.123) 0.680 0.497

Pre-test β̂4 0.073 (0.067) 1.096 0.273

IX = 1 β̂5 0.113 (0.206) 0.548 0.584

Group:treatexp

IX = 2 β̂6 0.420 (0.154) 2.729 0.006**

IX = 1 β̂7 0.031 (0.096) 0.327 0.743

Group:pre-test

IX = 2 β̂8 0.217 (0.078) 2.771 0.006**

Treatexp:pre-test β̂9 -0.009 (0.070) −0.127 0.899

Table 2 shows that the results differ depending on which SS was used. Notably, the 
results concerning the interaction terms are the same when using Type II and III SS. 
Generally, the results of the highest order terms (in our case the two-way interactions) 
are identical between Type II and III SS, but the results of the lower order terms differ. 
Furthermore, the result of the highest order term when using Type I SS (in our case the 
treatexp:pretest interaction) corresponds to the result of this term when using Type II 
and III SS. This term is shown in the last line before the residuals in the results tables and 
is the only term that has identical results between all three types of SS. Lastly, note that 
when using Type III SS, the p-values of the terms with df = 1 correspond to the p-values 
of these terms in the linear model when using sum coding (see Table 2 and Appendix 
Table A1). This is because t2 = F  if df = 1.

Using treatment contrasts and assuming Z is mean centered, we can interpret the 
regression coefficients in Table 3. Recall that X = 0 is the control group. The intercept β0
corresponds to the mean of Y in the control group given K = 0 and Z = 0 (see Appendix 
B for more details), while β1 denotes the difference between the means of Y in the groups 
X = 1 and the control group, given K = 0 and Z = 0:

β1 = E(Y |X = 1, K = 0, Z = 0) − E(Y |X = 0, K = 0, Z = 0) . (2)
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Similarly, β2 denotes the difference between the means of Y in the groups X = 2 and the 
control group, given K = 0 and Z = 0:

β2 = E(Y |X = 2, K = 0, Z = 0) − E(Y |X = 0, K = 0, Z = 0) . (3)

The difference between the means of Y of K = 0 and K = 1 (given the control group 
X = 0 and Z = 0) corresponds to β3:

β3 = E(Y |X = 0, K = 1, Z = 0) − E(Y |X = 0, K = 0, Z = 0) . (4)

And β4 denotes the expected change in Y for a unit change in Z in the control group if 
K = 0:

β4 = E(Y |X = 0, K = 0, Z = z + 1) − E(Y |X = 0, K = 0, Z = z) . (5)

The change in the effect of X = 1 versus X = 0 (β1) between K = 1 and K = 0 while 
keeping Z constant is denoted by β5. Similarly, β6 describes the change in the effect of 
X = 2 versus X = 0 (β2) between K = 1 and K = 0 while keeping Z constant. The change 
in the effect of X = 1 versus X = 0 (β1) for a unit change in Z when K = 0 is represented 
by β7. Similarly, β8 denotes the change in the effect of X = 2 versus X = 0 (β2) for a unit 
change in Z when K = 0. Finally, β9 describes the change in the effect of K = 1 versus 
K = 0 for a unit change in Z when X = 0.

Remember that in our example, the researcher assumed an ordering of adjusted 
means: µ2adj > µ1adj > µ0adj. After obtaining a significant main effect of the group variable, 
the researcher will usually use contrasts to compare the means in depth. Note that in 
the NHST setting, if no hypothesis about the adjusted means has been specified right 
from the start, this is called post-hoc testing and should only be used in a descriptive 
or an exploratory manner. Furthermore, we have to control for familywise error rates 
(Keselman et al., 2011), which can be done by the emmeans package (Lenth et al., 2022). 
Concerning our simulated data example, we specify the contrasts in R as follows:
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Listing 2

Specification of Contrasts

# this R code can be found under 02emmeans.R on the OSF project site
library(emmeans)

# post-hoc tests / contrasts
emmeans(lmod.treat, "group")
emmeans(lmod.treat, "group", weights = "proportional")

emmeans(lmod.treat, "group", contr = "trt.vs.ctrl")
emmeans(lmod.treat, "group", contr = "trt.vs.ctrl", weights = "proportional")

emmeans(lmod.treat, "group", contr = "eff")
emmeans(lmod.treat, "group", contr = "eff", weights = "proportional")

The contrasts are based on the marginal means of Y, which are averaged over the levels 
of K at the mean of Z. Table 4 shows the marginal means of Y when using equal and 
when using proportional weights. Using proportional weights implies that the marginal 
means of Y are averaged over the marginal distribution of K at the mean of Z. This leads 
to slightly different results in our example compared to using equal weights.4

Table 4

Marginal Means (MMs) of the Depression Post-Test Y With Standard Errors in Parentheses and 95 % Confidence 
Intervals

Equal Weights Proportional Weights

Group MM (SE) Lower CL Upper CL MM (SE) Lower CL Upper CL

X = 0 0.048 (0.062) −0.073 0.169 0.044 (0.060) −0.073 0.162

X = 1 0.485 (0.083) 0.323 0.646 0.475 (0.079) 0.320 0.629

X = 2 0.668 (0.046) 0.578 0.758 0.643 (0.047) 0.551 0.735

The first set of contrasts (see Table 5) compares the treatment groups with the control 
group, where the estimates of the differences in marginal means of Y in the levels of X 
are computed. The second set of contrasts (see Table 6) gives us effect contrasts, where 
the marginal means of Y are compared with the equally weighed cell means of Y for 
Z = 0. Both contrasts have also been computed using proportional weights.

4) Note that the differences would be much larger if the marginal distribution of K was more unbalanced and if there 
were strong interactions between X and K.
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Table 5

Treatment Versus Control Contrasts Between Marginal Means of Y

Equal Weights Proportional Weights

Contrast Estimate (SE) Df t-ratio p-value Estimate (SE) t-ratio p-value

MMX = 1 − MMX = 0 0.436 (0.103) 990 4.235 < .001*** 0.430 (0.099) 4.355 < .001***

MMX = 2 − MMX = 0 0.620 (0.077) 990 8.059 < .001*** 0.599 (0.076) 7.859 < .001***

Table 6

Effect Contrasts Between Marginal Means of Y

Equal Weights Proportional Weights

Contrast Estimate (SE) Df t-ratio p-value Estimate (SE) t-ratio p-value

MMX = 0 − MMX = . −0.352 (0.052) 990 −6.798 < .001*** −0.343 (0.050) −6.824 < .001***

MMX = 1 − MMX = . 0.084 (0.061) 990 1.387 .166 0.087 (0.058) 1.500 .134

MMX = 2 − MMX = . 0.268 (0.046) 990 5.822 < .001*** 0.256 (0.046) 5.620 < .001***

Considering the results, it would seem that the expectations of the researcher are 
satisfied in the data. That is, the marginal mean of group X = 2 is higher than the 
marginal mean of group X = 1 and the marginal mean of group X = 1 is higher than the 
marginal mean of group X = 0 (see Table 4). Therefore, it seems that there is a greater 
improvement in the depression post-test Y for CBT with the new drug compared to CBT 
with the old drug and that there is a greater improvement for CBT with the old drug 
compared to CBT only. The contrasts agree with this observation. Here, the treatment 
contrast between group X = 2 and group X = 0 is larger than the treatment contrast 
between group X = 1 and X = 0 (see Table 5). Furthermore, the effect contrast is largest 
for group X = 0 and smallest for group X = 1 (see Table 6).

EffectLiteR

Given the different choices for SS when using ANOVA, it becomes clear that main effects 
are not defined precisely and unambiguously when using ANOVA. However, they are 
defined precisely and unambiguously in the causal inference literature (see, e.g., Angrist 
et al., 1974; Neyman, 1990; Pearl, 2009; Rubin, 1974, 2005; Steyer et al., 2000). Common 
types of effects are the so-called average effects (for example, the effect of a treatment 
averaged over treatment experience), conditional effects (for example, the effect of a 
treatment for those without treatment experience only), effects on the treated, effects on 
the untreated, and so forth. Unfortunately, although the mathematical definition of these 
effects is well understood, they can be quite complicated and tedious to compute.
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EffectLiteR is a framework and an R package that is built upon the clear definitions 
of effects in the causal inference literature (Imbens & Rubin, 2015; Steyer et al., 2014). 
Researchers can use EffectLiteR to estimate various effects of interest as well as their 
standard errors, when the treatment variable is categorical and the outcome variable is 
continuous. In addition, Wald or F-tests are used to test different hypotheses, for example 
that (all) average effects are equal to zero, or that (all) conditional effects are equal to 
zero in the population. For an in-depth introduction into EffectLiteR, see Mayer et al. 
(2016). In contrast to ANOVA, EffectLiteR directly provides the kind of effects that most 
applied researchers are interested in.

An average effect is defined as the unconditional expectation of the difference be­
tween expected outcomes under treatment and under control. It corresponds to the 
average causal effect if there are no further unobserved confounding variables and the 
regression of the post-test Y on the pre-test Z, given a combination of treatment experi­
ence K and treatment group X, is in fact linear. Furthermore, an average effect consists 
of the difference of adjusted means. Considering our running example and groups X = 1
and X = 0, this is (Mayer et al., 2016):

AE10= E[E(Y |X = 1, K, Z) − E(Y |X = 0, K, Z)] (06)
= E[E(Y |X = 1, K, Z)] − E[E(Y |X = 0, K, Z)] (07)
= AdjM1 − AdjM0 . (08)

After obtaining the descriptive statistics, the researcher can first fit the EffectLiteR model 
to compute the adjusted means and the effects of interest, but disregard the test statistics 
and p-values. For our running example, this can be done as follows in R:

Listing 3

Specification of EffectLiteR Model

# this R code can be found under 03EffectLite.R on the OSF project site
    
library(EffectLiteR)

elrmod <- effectLite(
  y = "posttest",
  x = "group",
  k = "treatexp",
  z = "pretest.cent",
  interactions = "2-way",
  method = "lm",
  data = Data
)

print(elrmod)
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The full output is shown in Appendix C. The average effects and adjusted means can 
be found on lines 91–103 and are depicted in Table 7. Note that the average effects 
correspond to the differences in adjusted means and the subscripts refer to the groups 
which are compared:

AE10= AdjM1 − AdjM0, (09)
AE20= AdjM2 − AdjM0 . (10)

Table 7

Average Effects and Adjusted Means, as Estimated by EffectLiteR

Group Adjusted Mean (SE) Average Effect (SE)

X = 0 0.044 (0.060)

X = 1 0.475 (0.079) 0.430 (0.099)

X = 2 0.643 (0.047) 0.599 (0.076)

Furthermore, the adjusted means computed by EffectLiteR are very close, but not identi­
cal, to the marginal means with proportional weights computed by emmeans. This is 
because slightly different computations are used.5

While ANOVA tests whether main effects are significantly different from zero, Effect­
LiteR tests whether average effects are significantly different from zero. The number of 
average effects depends on the number of levels of the group variable. In our example, 
there is one control and two treatment groups, resulting in two average effects. In 
short, the EffectLiteR approach is more suitable than the ANOVA approach for testing 
research questions that focus on average effects. There are just a few rare cases, such 
as balanced designs, where the results are identical. For further applications of the 
EffectLiteR approach, see, for example, Flunger et al. (2019), Mayer et al. (2020), Mueller 
et al. (2015), Rek et al. (2022), and Sadovich (2020).

Informative Hypothesis Testing (in the EffectLiteR Framework)
As mentioned before, the researcher may have specific expectations about the data. In 
our example, the researcher expects that the average effect of CBT with the new drug is 
larger than the average effect of CBT with the old drug, which in turn is larger than zero:

5) The adjusted means are computed by averaging over K and Z simultaneously, which takes a possible dependency 
between them into account. The marginal means with proportional weights are computed by first averaging over 
Z and then averaging over K. This works as follows: In the first step, the mean of Z is plugged in to obtain a grid 
of estimated marginal means (a so-called EMM-grid). In the second step, their weighted row- or column-sums are 
computed.
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AE20 > AE10 > 0. (11)

After plugging in the definitions of AE20 and AE10 (see Equations 9 and 10), this corre­
sponds to:

AdjM2 − AdjM0 > AdjM1 − AdjM0 > 0. (12)

By adding AdjM0 to each part of the equation, this can be simplified to:

AdjM2 > AdjM1 > AdjM0 . (13)

In other words, the researcher expects a complete ordering of the adjusted means of the 
treatment groups: It is assumed that the adjusted mean of group X = 2 is larger than the 
adjusted mean of group X = 1 and that the adjusted mean of group X = 1 is larger than 
the adjusted mean of group X = 0.

Hypotheses that reflect the expectations of the researcher are known as informative 
hypotheses and both Bayesian and frequentist procedures for IHT are available (Barlow 
et al., 1972; Hoijtink, 2012; Robertson et al., 1988; Silvapulle & Sen, 2005; Vanbrabant, 
2020). In this paper, we will focus on the frequentist approach. IHT is not widely 
adopted by applied researchers in the social sciences yet. This is unfortunate for multiple 
reasons. First, compared to classical NHST, IHT allows to formulate hypotheses in a way 
that can be closer to typical research questions. These typical research questions often 
contain specific directions or orders regarding regression coefficients, group means or 
effects of interest. Using NHST, it is not possible to directly test hypotheses about these 
orders or directions when there is more than one constraint, whereas IHT allows for it. 
Second, compared to NHST, IHT can lead to a substantial gain of power (up to 50%; see 
Vanbrabant et al., 2015). This is because the parameter space is restricted according to the 
directions and orders that are defined in the hypothesis.

If the researcher would like to implement IHT about adjusted means, a precise way to 
formulate the hypotheses of interest would be:

H0:AdjM2 = AdjM1,  AdjM1 = AdjM0, (14)

and

H1:AdjM2 > AdjM1,  AdjM1 > AdjM0, (15)

where at least one of the inequality constraints must be strictly true, whereas the other 
one may be an equality. Informative hypotheses can be tested via an informative Wald 
test, where constrained parameter estimates are used that have been obtained by means 
of quadratic programming. Appendix Section D explains the difference between a regular 
and an informative Wald test and Appendix Section E describes how to compute the 
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p-values for an informative Wald test. Informative test statistics (in the EffectLiteR 
framework) as well as the approaches for calculating their p-values are described with 
more technical details in Keck et al. (2021). Furthermore, simulation studies assessing the 
relevant practical properties can be found in Keck et al. (2022, 2023).

Regarding our running example, we use the following R syntax to compute the 
informative Wald test:

Listing 4

Informative Hypothesis Testing in EffectLiteR

# this R Code can be found under 04IHT.R on the OSF project site

elrmod <- effectLite(
  y = "posttest",
  x = "group",
  k = "treatexp",
  z = "pretest.cent",
  interactions = "2-way",
  method = "sem", # must be "sem" for effectLite_iht()
  fixed.cell = TRUE , fixed.z = TRUE,
  homoscedasticity = TRUE,
  data = Data
)

effectLite_iht(
  object = elrmod,
  constraints = "adjmean2 > adjmean1; adjmean1 > adjmean0"
)
# $test.stat
# [1] "Fbar"
# $Wald.info
# [1] 62.87448
# $pvalue
# [1] 1.054712e-14

For technical reasons, we must use the argument method = "sem" in order to 
use the effectLite_iht( ) function. In addition, we have specified the arguments 
fixed.cell = TRUE, fixed.z = TRUE, and homoscedasticity = TRUE, 
in order to obtain similar results as when using method = "lm". The effect-
Lite_iht( ) function contains a constraints = argument that can be used to 
specify the informative hypothesis. Here, the keyword adjmean0 refers to the adjus­
ted mean of the X = 0 group, while adjmean1 and adjmean2 refer to the adjusted 
means of the X = 1 and X = 2 group, respectively. The constraints = argument 
corresponds to the alternative hypothesis as presented in Equation (15). The function 
returns the value of the informative Wald test, and a p-value. For our simulated dataset, 
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we obtain Waldinf o = 62.87, p < .001, which allows us to discard H0 in favor of the ordered 
hypothesis H1. This coincides indeed with the expectations of the researcher.

Instead of formulating the informative hypothesis in terms of the adjusted means, we 
could as well formulate the hypothesis in terms of the average effects, as in Equation 
(13):

Listing 5

Informative Hypothesis Testing Using Average Effects

# this R Code can be found under 04IHT.R on the OSF project site

effectLite_iht(object = elrmod, constraints = "Eg2 > Eg1; Eg1 > 0")
# $test.stat
# [1] "Fbar"
# $Wald.info
# [1] 62.87448
# $pvalue
# [1] 1.054712e-14

Here, the keyword Eg1 represents the average effect of X = 1 compared to X = 0, deno­
ted by AE10 in Equation (9). Similarly, the keyword Eg2 represents the average effect 
of X = 2 compared to X = 0, denoted by AE20 in Equation (10). The result is identical: 
Waldinf o = 62.87, p < .001.

Type A and Type B Hypotheses

In IHT, a distinction is often made between two types of hypotheses, which are called 
Type A and Type B hypotheses. The null and alternative hypotheses in our example are 
Type A hypotheses, which are usually of main interest. When testing Type A hypotheses, 
H0A (see Equation 14) states that all restrictions are equality restrictions, whereas the 
alternative hypothesis H1A (see Equation 15) states that at least one inequality restriction 
is strictly true. Here, the researcher would typically like to obtain a significant result, as 
this indicates that at least some of the constraints are not equality constraints and thus 
must be inequality constraints. In contrast, the Type B null hypothesis H0B states that 
all inequality restrictions hold, whereas the Type B alternative hypothesis H1B states that 
at least one inequality restriction is violated. When testing Type B hypotheses, the re­
searcher would typically like to obtain a non significant result, because that would imply 
that we cannot reject the null hypothesis (and thus the expectations of the researcher) 
based on the data.

If the researcher observes that the expected constraints are satisfied in the data, 
testing Type A hypotheses suffices. However, if one or more of the assumed constraints 
are violated in the data, but only to a very small extent, which might be due to sampling 
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variability, the researcher should conduct a Type B hypothesis test before conducting a 
Type A hypothesis test and correct for multiple testing. We recommend to pre-register 
this approach.

In our example, Type B hypotheses should be tested if at least one of the two 
constraints, either AdjM2 > AdjM1 or AdjM1 > AdjM0, is violated to a small extent in 
the data. For example, instead of obtaining the estimates that satisfy the constraints 
(AdjM0 = 0.044, AdjM1 = 0.475 and AdjM2 = 0.643, see Table 7), suppose we would 
obtain AdjM2 = 0.470, meaning that the constraint AdjM2 > AdjM1 would be violated 
to a very small extent. In that case, the researcher should start with testing the Type B 
hypotheses:

H0B:AdjM2 > AdjM1,  AdjM1 > AdjM0, (16)

and

H1B:AdjM2 ≯ AdjM1,  AdjM1 ≯ AdjM0 . (17)

In case the detected violation of a constraint is small, hypothesis test Type B might still 
be non significant, in which case the researcher can proceed to test hypothesis test Type 
A. If hypothesis test Type B is significant, then it is clear that the data is contradicting 
the hypothesis. Therefore, there is no need for testing hypothesis test Type A.

The following syntax illustrates how we can test this Type B hypothesis for our 
running example:

Listing 6

Type B Informative Hypothesis Test

# this R Code can be found under 04IHT.R on the OSF project site

effectLite_iht(
  object = elrmod,
  constraints = "adjmean2 < adjmean1; adjmean1 < adjmean0"
)
# $test.stat
# [1] "Fbar"
# $Wald.info
# [1] 4.309257e-12
# $pvalue
# [1] 0.6304712

We formulated the Type B hypothesis in terms of the adjusted means, but we could as 
well have used the averaged effects. Unsurprisingly, when testing H0B against H1B, we 
obtain Waldinf o < 0.001, p = .630. We are unable to reject the null hypothesis, and this 
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allows us to proceed and test the Type A hypothesis. Lastly, note that testing a Type B 
hypothesis before testing a Type A hypothesis rarely seems to alter the conclusions, as 
can be seen from the simulations conducted by Kuiper et al. (2015).

Further Types of Informative Hypotheses

It is also possible to formulate informative hypotheses using other types of constraints 
(see e.g. Hoijtink, 2012). For example, effect sizes can be incorporated as in:

H1:β2 − β1 > d ⋅ σ, (18)

where d is an effect size according to Cohen (1988) and σ is the sample standard 
deviation of Y. Note that in this subsection, β2 and β1 are generic expressions for any 
type of effect and could either correspond to regression coefficients, or in the EffectLiteR 
setting, to average or conditional effects. The latter are defined as (Mayer et al., 2016):

CE10 |K = 0, Z = 0= E(Y |X = 1, K = 0, Z = 0) − E(Y |X = 0, K = 0, Z = 0), (19)

CE20 |K = 0, Z = 0= E(Y |X = 2, K = 0, Z = 0) − E(Y |X = 0, K = 0, Z = 0) . (20)

Then, Equation 18 corresponds to:

H1:CE20 |K = 0, Z = 0 − CE10 |K = 0, Z = 0 > d ⋅ σ . (21)

From a substantive point of view, this means that the researcher assumes that the 
difference between the conditional effect of receiving CBT together with the new drug 
(X = 2), given K = 0, Z = 0, and the conditional effect of receiving CBT together with the 
old drug (X = 1), given K = 0, Z = 0, is greater than d standard deviations. This may give 
some indication about the relevance of the difference between the two effects.

“About equality” constraints can be used to test informative hypotheses such as:

H1: | β2 − β1 | > d ⋅ σ, (22)

which corresponds to:

H1:β2 − β1 > d ⋅ σ,  β2 − β1 < − d ⋅ σ . (23)

Finally, range constraints are a generalization of “about equality” constraints. They can 
be used to test informative hypotheses like:

H1:β2 − β1 > η1,  β2 − β1 < η2, (24)
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where the difference between β2 and β1 is supposed to lie in an interval with lower 
bound η1 and upper bound η2. Of course, combinations of all types of informative 
hypotheses are also possible.

Comparison With Equivalence Testing

Equivalence testing (Schuirmann, 1987; Seaman & Serlin, 1998; Wellek, 2010) is a special 
case of IHT. This is because hypotheses in equivalence testing are formulated using 
effect sizes, which is also an option in IHT. More specifically, hypotheses in equivalence 
testing are based on “smallest effect sizes of interest” (SESOIs), which are used to define 
a range of effect sizes that are of practical interest to the researcher. Equivalence testing 
became popular in reaction to the replication crisis and is often used in replication 
studies (see, e.g., Anderson & Maxwell, 2016; Lakens, 2017; Simonsohn, 2015). Here, 
researchers aim to show that an observed effect is small enough to conclude that its 
replication was unsuccessful. Generally, equivalence testing can be conducted within the 
framework of IHT, but IHT allows for a broader range of hypotheses that can be tested.

Regarding our running example, one may apply equivalence testing as follows. Let 
us assume that our running example is a replication study. We are interested to show 
that the difference between the raw means of Y in the groups X = 1 and X = 2 is small 
enough to conclude that it is not of practical relevance. In other words, we want to test 
whether the raw means of Y in the groups X = 1 and X = 2 are equivalent (hence the 
term equivalence testing).6 Furthermore, let us assume that the original study had the 
same sample size as our running example.

For determining a SESOI, we can use one of multiple approaches (see e.g., Lakens et 
al., 2018). For a discussion on when to use which approach, see Baguley (2009). Here, we 
will use the popular small telescopes approach (Simonsohn, 2015). It defines the SESOI 
as the effect size that would give a certain power (say 33%) to the original study. Thus, 
it indicates the extent to which the replication results are consistent with an effect size 
large enough to have been detected in the original study (Simonsohn, 2015). We use the 
value of 33% power, which is typical for the approach. In our running example, this leads 
to equivalence bounds of −0.115 and 0.115.

We can then use the TOST (two one-sided tests) procedure (Goertzen & Cribbie, 
2010; Lakens et al., 2018; Meyners, 2012; Quertemont, 2011; Rogers et al., 1993). It is 
implemented in the TOSTER package (Lakens & Caldwell, 2022). The procedure tests 
the effect estimate, in our case the difference between the raw means, against values at 
least as extreme as the lower and the upper equivalence bounds. The computations are 
implemented in R as follows:

6) It is also possible to use the adjusted instead of the raw means. However, in that case the function to obtain the 
equivalence bounds in Listing 7 would have to be adapted.
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Listing 7

Equivalence Testing and IHT

# this R code can be found under 05TOST.R on the OSF project site
library(TOSTER)
library(pwr)

# frequency table for group
table(Data$group)
n1 <- 200 # sample size group ’1’
n2 <- 500 # sample size group ’2’

# determining the equivalence bounds via the small telescopes approach
d.33 <- (pwr.t.test(
  n = (n1 + n2) / 2,
  d = NULL,
  sig.level = 0.05,
  power = 0.33,
  type = "two.sample",
  alternative = "two.sided"
))$d
# d.33 = 0.1150074

m1 <- mean(Data$posttest[Data$group == 1])
# 0.438377
m2 <- sd(Data$posttest[Data$group == 1])
# 1.017934
sd1 <- mean(Data$posttest[Data$group == 2])
# 0.7120272
sd2 <- sd(Data$posttest[Data$group == 2])
# 1.047107
m2 - m1
# 0.5795566

# using the raw means and sd
tsum_TOST(
  m1 = m1, m2 = m2, sd1 = sd1, sd2 = sd2,
  n1 = n1, n2 = n2, eqb = d.33, alpha = 0.05, var.equal = FALSE
)
# partial output:
# TOST Results
#                    t       df     p.value
# t-test        -8.429    533.1     < 0.001
# TOST Lower    -6.756    533.1           1
# TOST Upper   -10.101    533.1     < 0.001

The difference between the raw means is (about) 0.58 and the equivalence bounds are 
set to ΔL = − 0.115 and ΔU = 0.115. Using the TOST procedure includes two Welch 
t-tests. The test against the upper equivalence bound tests H0: 0.58 − ΔU = 0 against 
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H1: 0.58 − ΔU ≠ 0 and the test against the lower equivalence bound tests H0: 0.58 − ΔL = 0
against H1: 0.58 − ΔL ≠ 0.

In our example, the test against the upper equivalence bound is significant, 
t(533.1) = − 10.101, p < .001, whereas the test against the lower equivalence bound is 
non significant, t(533.1) = − 6.756, p = 1.0. Since the conclusion of equivalence can only 
be drawn if both tests are significant, we cannot reject the presence of a difference in raw 
means between the groups X = 1 and X = 2. The classical test from NHST is significant, 
t(533.1) = − 8.429, p < .001, indicating that the two groups X = 1 and X = 2 statistically 
differ with respect to their raw means.

In the following sections, we present two empirical data examples that serve to fur­
ther demonstrate IHT in the EffectLiteR framework. The first example is in the context 
of linear regression and the second example is in the context of the generalized linear 
model.

Empirical Example on Linear Regression
The empirical example in this section is based on Keck et al. (2022). We used the 
“ACTG175” data set (Hammer et al., 1996), which comes with the R package speff2trial 
(Juraska, 2022) and originates from a randomized trial. For the sake of our illustration, 
we have changed the names of the variables with names that are more common in 
psychology. More precisely, let us assume that the treatment groups correspond to a 
group receiving an old, established vocational training program (X = 0) and a group 
receiving a promising, novel vocational training program (X = 1). The outcome variable 
Y is a measure of job satisfaction, and, being measured by a freehand continuous line 
scale, ranges from 0 till 787. As covariates, we consider a categorical variable indicating 
whether a subject has already completed vocational trainings in the past or not, and a 
continuous variable describing job satisfaction at baseline. We analyse a subset of the 
data from subjects currently holding a full-time job and exclude all other subjects as well 
as cases with missing data, which leads to a total sample size of n = 236. Note that our 
approach has not been fully tested to handle missing data, which is why we exclude the 
incomplete cases from the data set. The full R code for this example (including renaming 
the variable names) can be found on the OSF website (see Keck et al., 2024). Below, we 
only show the most relevant parts for the sake of illustration. To fit this model using 
EffectLiteR, we can use the following R code:
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Listing 8

Fitting the Model Using EffectLiteR

# This R code can be found under 06ex1.R on the OSF project site

elrmod <- effectLite(
  y = "jobsatisfaction",
  x = "treatment",
  k = "past.training",
  z = "baseline",
  method = "sem",
  fixed.cell = TRUE, fixed.z = TRUE,
  homoscedasticity = TRUE,
  data = Data
)
elrmod@results@adjmeans
#      Estimate      SE  Est./SE
# adjmean0 259.4614 12.83423 20.21636
# adjmean1 299.8482 12.18761 24.60271

We again used method = "sem" as this is needed for the effectLite_iht() 
function. We can observe that the adjusted means for the control group (X = 0) and 
treatment group (X = 1) are AdjM0 = 259.46 and AdjM1 = 299.85 respectively.

Our first hypothesis of interest is that the adjusted mean of the treatment group 
(X = 1) is larger than the adjusted mean of the control group (X = 0). This is a Type 
A hypothesis and we have observed that our constraint is indeed satisfied in the data. 
Therefore, we can test our hypothesis of interest right away without testing a Type B 
hypothesis first. We test

H0:AdjM1 = AdjM0 (25)

against

H1:AdjM1 > AdjM0 (26)

using IHT and against

H1:AdjM1 ≠ AdjM0 (27)

using NHST. To test this informative hypothesis, we can use the following R code:
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Listing 9

Informative Hypothesis Test Using Adjusted Means

# This R code can be found under 06ex1.R on the OSF project site

effectLite_iht(object = elrmod, constraints = "adjmean1 > adjmean0")
# $test.stat
# [1] "Fbar"
#
# $Wald.info
# [1] 5.206926
#
# $pvalue
# [1] 0.01170985

The hypothesis is expressed in terms of adjusted means (for X = 0 and X = 1), but 
because the average effect (AE10) is simply the difference between these two adjusted 
means, we can also formulate our hypothesis test as follows:

Listing 10

Informative Hypothesis Test Using the Average Effect

# This R code can be found under 06ex1.R on the OSF project site

effectLite_iht(object = elrmod, constraints = "Eg1 > 0")
# $test.stat
# [1] "Fbar"
#
# $Wald.info
# [1] 5.206926
#
# $pvalue
# [1] 0.01170985

Here, as before, the keyword Eg1 represents the average effect AE10. In both cases, we 
obtain Waldinf o = 5.21, p = .012, allowing us to reject the null hypothesis in favor of 
the alternative. Note that if we would ignore the order, the resulting (non-informative) 
Wald statistic would still be 5.21 (because the constraints are satisfied in the data). But 
the p-value would be twice as large (in this case). This demonstrates the greater power 
which is typically obtained when using IHT compared to NHST.

The second hypothesis of interest is that the difference in adjusted means between 
the treatment (X = 1) and control group (X = 0) for subjects who have already comple­
ted vocational trainings in the past (K = 1) is larger than zero. Again, this is a Type A 
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hypothesis, but this time regarding a conditional effect, which is defined as (Mayer et al., 
2016):

CE10 |K = 1= E[E(Y |X = 1, K = 1, Z) |K = 1] − [E(Y |X = 0, K = 1, Z) |K = 1] (28)
= AdjM1 |K = 1 − AdjM0 |K = 1 . (29)

To obtain the adjusted means for the combinations of the levels of X and K, the following 
R code can be used:

Listing 11

Fitting the Model Using EffectLiteR

# This R code can be found under 06ex1.R on the OSF project site

elrmod@results@adjmeansgk
#         Estimate    SE   Est./SE
# adjmean0gk0 210.3477 45.02987  4.671293
# adjmean1gk0 287.6858 34.86036  8.252521
# adjmean0gk1 265.0214 13.34676 19.856606
# adjmean1gk1 301.2251 12.98068 23.205644

We can observe that our constraint is satisfied in the data: AdjM1 |K = 1 = 301.23 is larger 
than AdjM0 |K = 1 = 265.02. Therefore, we do not need to test a Type B hypothesis first, 
before testing our hypothesis of interest. We test

H0:AdjM1 |K = 1 = AdjM0 |K = 1 (30)

against

H1:AdjM1 |K = 1 > AdjM0 |K = 1 (31)

using IHT and against

H1:AdjM1 |K = 1 ≠ AdjM0 |K = 1 (32)

using NHST:
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Listing 12

Informative Hypothesis Test Regarding a Conditional Effect

# This R code can be found under 06ex1.R on the OSF project site

# in terms of adjusted means
effectLite_iht( object = elrmod, constraints = "adjmean1gk1 > adjmean0gk1")
# $test.stat
# [1] "Fbar"
#
# $Wald.info
# [1] 3.781235
#
# $pvalue
# [1] 0.02653014

# in terms of conditional effects
effectLite_iht(object = elrmod, constraints = "Eg1gk1 > 0")
# $test.stat
# [1] "Fbar"
#
# $Wald.info
# [1] 3.781235
#
# $pvalue
# [1] 0.02653014

Using both IHT and NHST, we obtain Waldinf o = Waldreg = 3.78. Furthermore, we obtain 
p = .026 when using IHT and p = .052 when using NHST. In this case, the greater power 
of IHT compared to NHST does make a difference concerning the significance of the 
results.

Empirical Example on the Generalized Linear 
Model

The empirical example in this section is based on Keck et al. (2023). We used the “Prob­
lemDrinking” data set, which is available on the OSF project site (“problemDrinking.sav”) 
(see Keck et al., 2024). It stems from a randomized study investigating the effectiveness 
of mobile messaging interventions on problematic drinking behavior (Muench et al., 
2017). We consider three groups, namely a control group (X = 0), which receives weekly 
self-tracking texts, a group obtaining static tailored texts (X = 1) and a group obtaining 
adaptive, that is individually tailored texts (X = 2). The outcome variable Y is the reduc­
tion of the sum of weekly drinks. We treat Y as a count variable. As covariates, we 
consider the sum of weekly drinks at baseline, age and gender.
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The full R script of this example, “07ex2.R”, can be found in the project’s OSF reposi­
tory (see Keck et al., 2024). Note that the computation of the average and conditional 
effects in this section is based on Poisson regression and thus differs from the computa­
tion in linear regression. At the time of writing, the EffectLiteR package does not include 
(out of the box) support for Poisson outcome variables yet. Instead, we provided a script 
“effectLite_pois.R” that will take care of the computations for this particular example, 
and is used in the “07ex2.R” script.

We start with using glm() to fit the Poisson model:

Listing 13

Using glm() to Fit a Poisson Model

# This R code can be found under 07ex2.R on the OSF project site

fit.glm <- glm(formula = drinksum_post ~ treat + drinksum_pre + age + gender +
           treat:drinksum_pre + treat:age + treat:gender +
           drinksum_pre:age + drinksum_pre:gender + age:gender,
           family = "poisson"(link = "log"), data = Data)

Our first hypothesis of interest is that the average effect of receiving adaptive tailored 
texts (X = 2) is larger than the average effect of receiving static tailored texts (X = 1). We 
first compute the adjusted means:

Listing 14

Adjusted Means for the Three Groups

# This R code can be found under 07ex2.R on the OSF project site

get_adjmeans(fit.glm)
# adjmean0 adjmean1 adjmean2
# 22.02197 17.24442 15.26413

From these adjusted means, we can compute the average effects. For X = 1, the average 
effect (in terms of reduction) is AE10 = 4.78 (the difference between adjmean0 and 
adjmean1), while for X = 2, the average effect is AE10 = 6.76 (the difference between 
adjmean0 and adjmean2). This is in line with our expectations, and we can proceed 
with a Type A hypothesis test. We test

H0:AE20 = AE10 (33)

against
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H1:AE20 > AE10 (34)

using IHT and against

H1:AE20 ≠ AE10 (35)

using NHST.

Listing 15

Informative Wald Statistic for This Hypothesis

# This R code can be found under 07ex2.R on the OSF project site

Wald.reg.ave <- getStat(fit.glm, type = "regular", effect = "average")
Wald.reg.ave[1]
# 27.93786

# p-value regular Wald
1 - pchisq (Wald.reg.ave[1], df = 1)
# 1.252745e-07

Wald.info.ave <- getStat(fit.glm, type = "informative", effect = "average")
Wald.info.ave[1]
# 27.93786

# informative p-value (warning: takes about 14-18 hours)
# pvalue <- get_informative_pvalue(object = fit.glm, data = Data, R = 1000,
#                     effect = "average",
#                     Wald.orig = Wald.info.ave [1])
# pvalue
# 0

The informative Wald statistic equals Waldinf o = 27.94. Because the constraint is satisfied 
in the data, the regular (non-informative) Wald statistic is the same (Waldreg = 27.94). 
The p-value for the regular Wald test is easy to compute, and is very small (p < .001). 
The computation of the p-value for the informative test takes a long time (about 14–18 
hours), but results again in a very small p-value (p < .001).

The second hypothesis of interest is that the difference in adjusted means between 
the group receiving individually tailored texts (X = 2) and the control group (X = 0) is 
larger for females (K = 0) than for males (K = 1). This is a Type A hypothesis concerning 
conditional effects, which are defined as (Mayer et al., 2016):
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CE20 |K = 0= E[E(Y |X = 2, K = 0, Z) |K = 0] − E[E(Y |X = 0, K = 0, Z) |K = 0] (36)
= AdjM2 |K = 0 − AdjM0 |K = 0, (37)

CE20 |K = 1= E[E(Y |X = 2, K = 1, Z) |K = 1] − E[E(Y |X = 0, K = 1, Z) |K = 1] (38)
= AdjM2 |K = 1 − AdjM0 |K = 1 . (39)

We can compute the adjusted means for the various combinations of X and K as follows:

Listing 16

Adjusted Means for the Different X and K Levels

# This R code can be found under 07ex2.R on the OSF project site

get_adjmeansgk(fit.glm)
# adjmean0gk0  adjmean1gk0  adjmean2gk0  adjmean0gk1  adjmean1gk1  adjmean2gk1
#    22.78305     17.89236     14.79266     22.21254     17.24841     18.87397

We observe that our constraint is again satisfied in the data, since CE20 |K = 0 = 7.99
(adjmean2gk0 - adjmean0gk0) is larger than CE20 |K = 1 = 3.34 (adjmean0gk1 - 
adjmean2gk1). Therefore, we directly test:

H0:CE20 |K = 0 = CE20 |K = 1 (40)

against

H1:CE20 |K = 0 > CE20 |K = 1 (41)

using IHT and against

H1:CE20 |K = 0 ≠ CE20 |K = 1 (42)

using NHST. To compute the informative and regular Wald statistics, we can use the 
following code:
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Listing 17

Informative and Regular Wald Test for Conditional Effects

# This R code can be found under 07ex2.R on the OSF project site

Wald.reg.cond <- getStat(fit.glm, type = "regular", effect = "conditional")
Wald.reg.cond[1]
# 1.75101

# p-value regular Wald
1 - pchisq(Wald.reg.cond[1], df = 1)
# 0.1857499

Wald.info.cond <- getStat(fit.glm, type = "informative", effect = "conditional")
Wald.info.cond[1]
# 1.75101

# informative p-value (warning: takes about 4–5 hours)
# pvalue <- get_informative_pvalue(object = fit.glm, data = Data, R = 1000,
#                                   effect = "conditional",
#                                   Wald.orig = Wald.info.cond[1])
# pvalue
# 0.104

The Wald statistics are Waldreg = Waldinf o = 1.75. The p-value for the regular Wald 
statistic is p = .186. The p-value for the informative Wald statistic is p = .104. Again, 
computing the latter p-values takes a long time. In both cases, we cannot reject the null 
hypothesis.

Discussion
This paper provided a condensed outline of the theoretical motivation for using IHT in 
the EffectLiteR framework as well as practical instructions on how to apply this method 
in the context of linear regression and the generalized linear model. We hope that this 
paper will stimulate researchers to question the common practice of using ANOVA in 
combination with NHST to compare groups. Our critique of this procedure is mainly 
focused on two aspects: The first point of criticism is focused on the unclear definitions 
of effects due to the different possible choices of sum of squares (SS) in ANOVA. In 
contrast, when using our proposed method, effects of interest are defined in a precise 
and unambiguous way. The second point of criticism refers to the expected order of the 
effects that is ignored when using NHST. In contrast, when using our proposed method, 
the order of the effects can be considered directly in the hypotheses.

Snippets of R code were shown in the various code listings included in the paper to 
illustrate how the EffectLiteR package can be used to test informative hypothesis about 
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adjusted means, average, and conditional effects. The full R code for all examples is 
available on the OSF project site (see Keck et al., 2024). Only for the generalized linear 
model example did we provide custom R code that needs to be adapted by the user. In 
future work, we plan to create easy to use functions (within EffectLiteR) that can handle 
IHT in the context of generalized linear models.

Together with our past work (Keck et al., 2021, 2022, 2023), we have provided thor­
ough technical explanations as well as useful practical information and instructions for 
applied researchers who wish to use IHT in the EffectLiteR framework. We have built a 
solid foundation of our method when using regression models and would like to expand 
our method to Structural Equation Modeling (SEM) in the future. Some of the ground 
work for this has already been done in Keck et al. (2021), where we used SEM for 
parameter estimation when considering stochastic group weights (Mayer & Thoemmes, 
2019). Further implementing our method in SEM will be especially useful since most 
variables of interest in the social and behavioral sciences, such as “quality of life” or 
“socio-economic status”, are latent in nature and should not be treated as manifest.

Another potential area for further development is extending the presented approach 
to a Bayesian framework. In this manuscript, we focused on the frequentist approach. 
Here, the EffectLiteR model is estimated using either OLS or ML in the example with 
the continuous dependent variable, and IWLS in the example with the count dependent 
variable. Furthermore, informative test statistics are used. Both aspects have Bayesian 
counterparts: The regression models used can be estimated using Bayesian techniques. 
For an example of a Bayesian EffectLiteR application using blavaan (Merkle et al., 2021), 
see Mayer et al. (2017). Furthermore, informative hypotheses can be considered in a 
Bayesian framework using Bayes factors (e.g., Hoijtink, 2012; Van Lissa et al., 2020). 
Combining Bayesian EffectLiteR and Bayesian informative hypothesis testing is promis­
ing and may provide even more flexibility, in particular when more and specific prior 
information is available that can be incorporated in the analysis.
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Appendices

Appendix A

Results of the Linear Model Using Effect Coding

Table A1

Linear Regression Model Results Using Sum Coding

Source Coefficient Estimate (SE) t-value p-value

Intercept β̂0 0.400 (0.038) 10.652 < .001***

IX = 1 β̂1 −0.352 (0.052) −6.798 < .001***

Group

IX = 2 β̂2 0.084 (0.061) 1.387 .166

Treatexp β̂3 −0.131 (0.038) −3.478 < .001***

Pre-test β̂4 0.152 (0.036) 4.252 < .001***

IX = 1 β̂5 0.089 (0.052) 1.715 .087

Group:treatexp

IX = 2 β̂6 0.032 (0.061) −0.533 .594

IX = 1 β̂7 −0.083 (0.050) −1.660 .097

Group:pre-test

IX = 2 β̂8 −0.051 (0.056) −0.912 .362

Treatexp:pre-test β̂9 0.004 (0.035) 0.127 .899

Appendix B

Interpretation of Regression Coefficients

In general, the expected value of Y given X, K and Z is defined as:

E(Y |X, K, Z)= β0 + β1 ⋅ XX = 1 + β2 ⋅ XX = 2 + β3 ⋅ KK = 1 + β4 ⋅ Z +
β5 ⋅ XX = 1 ⋅ KK = 1 + β6 ⋅ XX = 2 ⋅ KK = 1 +
β7 ⋅ XX = 1 ⋅ Z + β8 ⋅ XX = 2 ⋅ Z + β9 ⋅ KK = 1 ⋅ Z .

(B1)

Furthermore, β0 is generally defined as follows:

β0= E(Y |X = 0, K = 0, Z = 0) . (B2)

In our running example, Z is mean-centered, which implies that E(Z) = 0. Moreover, 
E(Y |X = 0, K = 0) is defined as:

E(Y |X = 0, K = 0) = E[E(Y |X = 0, K = 0, Z) |X = 0, K = 0] (B3)
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= E[β0 + β4 ⋅ Z |X = 0, K = 0] (B4)

= β0 + β4 ⋅ E(Z |X = 0, K = 0) . (B5)

In our running example, E(Z) = E(Z |X = 0, K = 0) = 0. As a consequence, E(Y |X = 0, K = 0) = β0.

Appendix C

EffectLiteR Output

--------------------- Variables ---------------------
 
Outcome variable Y: posttest
Treatment variable X: group (Reference group: 0)
Categorical covariates K: treatexp
Continuous covariates in Z = (Z1): Z1 = pretest.cent
 
Levels of Treatment Variable X

X group (original) Indicator

0 0 I_X=0

1 1 I_X=1

2 2 I_X=2

 
Levels of Unfolded Categorical Covariate K

K treatexp Indicator

0 0 I_K=0

1 1 I_K=1

 
Cells

group (original) K Cell

1 0 0 00

2 0 1 01

3 1 0 10

4 1 1 11

5 2 0 20

6 2 1 21
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--------------------- Regression Model ---------------------
 
E(Y|X,K,Z) = g0(K,Z) + g1(K,Z)*I_X=1 + g2(K,Z)*I_X=2
 g0(K,Z) = g000 + g001 * Z1 + g010 * I_K=1 + g011 * I_K=1 * Z1
 g1(K,Z) = g100 + g101 * Z1 + g110 * I_K=1 + g111 * I_K=1 * Z1
 g2(K,Z) = g200 + g201 * Z1 + g210 * I_K=1 + g211 * I_K=1 * Z1
 
Intercept Function g0(K,Z) [Reference group: 0]
 

Coefficient Estimate SE Est./SE p-value

g000 0.006 0.071 0.091 0.928

g001 0.073 0.067 1.096 0.273

g010 0.084 0.123 0.680 0.497

g011 -0.009 0.070 -0.127 0.899

 
Effect Function g1(K,Z) [group: 1 vs. 0]
 

Coefficient Estimate SE Est./SE p-value

g100 0.380 0.109 3.490 0.001

g101 0.031 0.096 0.327 0.743

g110 0.113 0.206 0.548 0.584

g111 0.000 NA NA NA

 
Effect Function g2(K,Z) [group: 2 vs. 0]
 

Coefficient Estimate SE Est./SE p-value

g200 0.410 0.101 4.070 0.000

g201 0.217 0.078 2.771 0.006

g210 0.420 0.154 2.729 0.006

g211 0.000 NA NA NA

 
--------------------- Cell Counts ---------------------
 
Cell Counts
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This table shows cell counts including missings.
See also output under lavaan results for number of observations
actually used in the analysis.
 

treatexp 0 1

group

0 200 100

1 150 50

2 200 300

 
--------------------- Main Hypotheses ---------------------
 
H0: No average effects: E[g1(K,Z)] = E[g2(K,Z)] = 0
H0: No covariate effects in control group: g0(K,Z) = constant
H0: No treatment*covariate interaction: g1(K,Z), g2(K,Z) = constant
H0: No treatment effects: g1(K,Z) = g2(K,Z) = 0
 

F value df1 df2 p-value

No average effects 31.123 2 990 7.79e-14

No covariate effects in control group 0.589 3 990 6.22e-01

No treatment*covariate interaction 4.334 4 990 1.77e-03

No treatment effects 13.433 6 990 1.09e-14

 
--------------------- Adjusted Means ---------------------
 

Estimate SE Est./SE

Adj.Mean0 0.0442 0.0599 0.738

Adj.Mean1 0.4746 0.0786 6.037

Adj.Mean2 0.6430 0.0471 13.651

 
--------------------- Average Effects ---------------------
 

Estimate SE Est./SE p-value Effect Size
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E[g1(K,Z)] 0.430 0.0988 4.35 1.47e-05 0.412

E[g2(K,Z)] 0.599 0.0762 7.86 1.02e-14 0.573

 
--------------------- Effects given a Treatment Condition ---------------------
 

Estimate SE Est./SE p-value Effect Size

E[g1(K,Z)|

X=0]

0.418 0.0930 4.49 7.85e-06 0.400

E[g2(K,Z)|

X=0]

0.554 0.0775 7.14 1.82e-12 0.530

E[g1(K,Z)|

X=1]

0.409 0.0925 4.42 1.10e-05 0.391

E[g2(K,Z)|

X=1]

0.522 0.0810 6.45 1.80e-10 0.500

E[g1(K,Z)|

X=2]

0.447 0.1137 3.93 9.15e-05 0.428

E[g2(K,Z)|

X=2]

0.657 0.0806 8.15 1.11e-15 0.629

 
--------------------- Effects given K = k ---------------------
 

Estimate SE Est./SE p-value Effect Size

E[g1(K,Z)|

K=0]

0.380 0.109 3.49 5.04e-04 0.363

E[g2(K,Z)|

K=0]

0.410 0.101 4.07 5.12e-05 0.392

E[g1(K,Z)|

K=1]

0.493 0.175 2.82 4.94e-03 0.472

E[g2(K,Z)|

K=1]

0.830 0.116 7.14 1.83e-12 0.795

 
--------------------- Effects given X = x, K = k ---------------------
 

Estimate SE Est./SE p-value Effect Size
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E[g1(K,Z)|X = 

0, K = 0]

0.380 0.109 3.50 4.93e-04 0.364

E[g2(K,Z)|X = 

0, K = 0]

0.414 0.101 4.11 4.21e-05 0.397

E[g1(K,Z)|

X=1, K=0]

0.380 0.109 3.49 5.05e-04 0.363

E[g2(K,Z)|

X=1, K=0]

0.409 0.101 4.06 5.19e-05 0.392

E[g1(K,Z)|

X=2, K=0]

0.379 0.109 3.48 5.17e-04 0.363

E[g2(K,Z)|

X=2, K=0]

0.405 0.101 4.02 6.17e-05 0.388

E[g1(K,Z)|

X=0, K=1]

0.493 0.175 2.82 4.91e-03 0.472

E[g2(K,Z)|

X=0, K=1]

0.832 0.116 7.15 1.65e-12 0.796

E[g1(K,Z)|

X=1, K=1]

0.497 0.175 2.84 4.54e-03 0.476

E[g2(K,Z)|

X=1, K=1]

0.860 0.117 7.36 3.82e-13 0.823

E[g1(K,Z)|

X=2, K=1]

0.492 0.175 2.81 5.04e-03 0.471

E[g2(K,Z)|

X=2, K=1]

0.825 0.116 7.09 2.55e-12 0.789

 
--------------------- Hypotheses given K = k ---------------------
 
H0: No average effects given K=0: E[g1(K,Z)|K=0] = E[g2(K,Z)|K=0] = 0
H0: No average effects given K=1: E[g1(K,Z)|K=1] = E[g2(K,Z)|K=1] = 0
 

F value df1 df2 p-value

No average effects given K=0 9.92 2 990 5.44e-05

No average effects given K=1 25.84 2 990 1.15e-11
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Appendix D

Test Statistics

To test hypotheses of interest, EffectLiteR uses the regular Wald test used in NHST:

Waldreg= n(Rβ̂ )′(RÎ 1
−1R′)−1(Rβ̂ ), (D1)

where n is the sample size, R is the constraint matrix specifying the hypothesis of interest, Î 1 is the 
unit information matrix and β̂  is the vector of unconstrained regression parameters that has been 
obtained using maximum likelihood estimation.

When adopting IHT, we have to use the informative Wald test:

Waldinf o= n(Rβ~)′(RÎ 1
−1R′)−1(Rβ~) . (D2)

Note that in contrast to Waldreg, β̂  has been replaced by β~, the vector of constrained regression 
parameters satisfying Rβ ≥ 0 that has typically been obtained using quadratic programming. 
Under the null hypothesis, Waldinf o asymptotically follows a χ̄2 distribution, which is a mixture of 
χ2 distributions. The constraint matrix R looks the same in NHST and IHT.

Appendix E

Calculation of p-Values

The p-values in IHT can be computed as follows (Silvapulle & Sen, 2005, pp. 86):

Pr(χ̄2 ≥ χ̄obs2 )= ∑
i = 0

q
wi(H0, H1)Pr[(ℎ − q + i)χℎ − q + i2 ≥ χ̄obs2 ] . (E1)

The weight wi is some non-negative value denoting the probability that β~ has exactly i elements 
for which the constraints are non-active. The sum of the weights from 0 to q is one. In the linear 
regression case, q is the rank of the design matrix X  under the null hypothesis.

There are two ways to obtain the p-value. The weights approach, where the mixing weights wi
are obtained in a first step and then used in Equation E1, is more economical than the simulation 
approach. Both will be explained in the following.

Weights Approach

In case the residuals are normally distributed, the weights can be computed by using the multivari­
ate normal probability distribution function. For this purpose, the ic.weight() function of the R 
package ic.infer (Grömping, 2010) can be used. If the residuals are not normally distributed, the 
weights can be obtained as follows (Silvapulle & Sen, 2005, p. 79):

1. Transform the sample data set such that it is under the null hypothesis.
2. Calculate β~, subject to a constraint, for example β ≥ 0.
3. Count the number of elements of the vector β~ that satisfy the constraint specified in Step two.
4. Repeat the previous three steps, for example B = 100, 000 times.

Tutorial: Informative Hypotheses in Effectliter 44

Quantitative and Computational Methods in Behavioral Sciences
2024, Article e13059, https://doi.org/10.5964/qcmb.13059

https://www.psychopen.eu/


5. Estimate wi by the proportion of times β~ has exactly i elements for which the constraints are 
non-active, for example i positive elements, with i = 0, . . . , q.

Transforming the sample data set to be under the null hypothesis can be accomplished by ex­
changing the values of the outcome variable of interest by randomly generated values from the 
corresponding distribution.

Simulation Approach

To calculate the p-value for an existing sample value of the F̄ -statistic or the (generalized) informa­
tive Wald statistic, the following four steps have to be taken (Silvapulle & Sen, 2005, p. 98):

1. Transform the sample data set such that it is under the null hypothesis.
2. Calculate the informative test statistic.
3. Repeat the previous steps, for example B = 100, 000 times.
4. Estimate the p-value by means of M/B, with M being the number of times the test statistic in 

the second step exceeded the sample value of interest.

Again, transforming the sample data set to be under the null hypothesis can be accomplished 
by exchanging the values of the outcome variable of interest by randomly generated values from 
the corresponding distribution. Using this approach, the advantage that any error distribution 
may be used for computing the p-value should be carefully weighed with the disadvantage of an 
increased computational cost.
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