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ABSTRACT

High-yielding dairy cows encounter metabolic chal-
lenges in early lactation. Typically, BHB, measured at 
a specific time point, is employed to diagnose the meta-
bolic status of cows based on a predetermined threshold. 
However, in early lactation, BHB is highly dynamic, 
with high interindividual variability in its time profile. 
This could limit the effectiveness of the single measure-
ment and threshold-based diagnosis and could contribute 
to the disparities in reports linking metabolic status with 
productive and reproductive outcomes. This research 
examines the trajectories of BHB to unveil intercow 
variations and identify latent metabolic groups. We 
compiled a dataset from 2 observational studies involv-
ing a total of 195 lactations from multiparous Holstein 
Friesian cows. The dataset encompasses measurements 
of BHB, nonesterified fatty acids (NEFA), and insulin 
from blood samples collected at 3, 6, 9, and 21 DIM, 
along with weekly determinations of milk composition 
and fatty acids (FA) proportions in milk fat. In both 
experiments, milk yield (MY) and feed intake were 
recorded daily during the first month of lactation. We 
explored interindividual and intraindividual variations in 
metabolic responses using the trajectories of blood BHB 
and evaluated the presence of distinct metabolic groups 
based on such variations. For this purpose, we employed 
the growth mixture model, a trajectory clustering tech-
nique. Our findings unveil novel insights into the diverse 
metabolic responses among cows, encompassing both 

trajectory patterns and the magnitude of blood BHB con-
centrations. Specifically, we identified 3 latent metabolic 
groups: the quickly increasing BHB (QuiBHB) cluster 
(≈10%) exhibited a higher initial BHB concentration 
than other clusters, peaked on d 9 (average maximum 
BHB of 2.4 mM) and then declined by d 21; the slowly 
increasing BHB (SloBHB) cluster (≈23%) started with a 
lower BHB concentration, gradually increased until d 9, 
and reached the highest BHB concentration at d 21 (1.6 
mM serum BHB at the end of the experimental period); 
and the low BHB (LoBHB) cluster (≈67%) began with 
the lowest serum BHB concentration (serum BHB <0.75 
mM) and remained relatively stable throughout the sam-
pling period. Notably, the 3 metabolic groups exhibited 
significant physiological disparities, which were evident 
in blood NEFA and insulin concentrations. The QuiBHB 
and SloBHB cows exhibited higher NEFA and lower in-
sulin concentrations as compared with the LoBHB cows. 
Interestingly, these metabolic differences extended to 
MY and DMI during the first month of lactation. The 
elevated BHB concentrations observed in QuiBHB cows 
were linked with lower DMI and MY as compared with 
SloBHB and LoBHB cows. Accordingly, these animals 
were considered metabolically impaired. Conversely, 
SloBHB cows displayed higher MY along with increased 
DMI, and thus the elevated BHB might be indicative of 
an adaptive response for these cows. The QuiBHB cows 
also displayed higher proportions of UFA, MUFA, and 
total C18:1 FA in milk during the first week of lactation. 
Prediction of the QuiBHB cows using these FA and test 
day variables resulted in moderate predictive accuracy 
(area under the receiver operating characteristic curve 
>0.7). Given the limited sample size for the development 
of prediction models and the variation in DIM among 
samples in the same week, the result is indicative of the 
predictive potential of the model and room for model 
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optimization. In summary, distinct metabolic groups of 
cows could be identified based on the trajectories of 
blood BHB in early lactation.
Key words: metabolic status, β-hydroxybutyrate, 
trajectory, fatty acid

INTRODUCTION

In the transition from late pregnancy to early lactation, 
dairy cows undergo significant metabolic and physi-
ological changes. Early lactation milk production to a 
large extent relies on the mobilization of triglycerides 
(TAG) from adipose tissues into nonesterified fatty ac-
ids (NEFA; Bauman and Bruce Currie, 1980; Bauman, 
2000). Blood NEFA could be used by the mammary gland 
as an energy source for milk synthesis or directly incor-
porated into milk fat (Drackley et al., 2001; Ingvartsen, 
2006). In the liver, NEFA either undergo β-oxidation 
followed by complete oxidation in the tricarboxylic acid 
cycle (TCA) or incomplete oxidation into ketone bod-
ies such as BHB, acetoacetate, and acetate, or NEFA are 
re-esterified into TAG (White, 2015). Finally, NEFA are 
transported to peripheral tissues, which often experience 
insulin insensitivity (Sano et al., 1993; Sasaki, 2002; De 
Koster and Opsomer, 2013) and which rely on NEFA and 
ketone bodies as an energy source (Lucy, 2001, 2008; 
White, 2015). The latter is of particular importance to 
some tissues (e.g., the brain) that cannot easily transport 
the hydrophobic NEFA across cells (Pownall, 2001) and 
therefore cannot use them as an energy source. Accord-
ingly, when glucose availability is limited due to copious 
and prioritized milk production, these tissues rely on 
hydrophilic and easily transportable ketone bodies as 
alternative energy sources (Laffel, 1999). These modifi-
cations in energy metabolism and partitioning are evolu-
tionary adaptation mechanisms of cows to cope with the 
negative energy balance during early lactation. Therefore, 
elevated levels of ketone bodies in the blood, commonly 
evaluated by blood BHB concentration, are considered 
a normal phenomenon in early lactation (Baumgard et 
al., 2017; Horst et al., 2021). However, excess ketone 
bodies in the blood, known as hyperketonemia (HYK) or 
ketosis, could indicate NEFA overload beyond the liver's 
adaptive capacity (White, 2015). Moreover, a positive 
association has been reported between HYK (blood BHB 
≥1.2mmol/L) and the risk of infectious and metabolic 
disorders, and up to 60% of cows might be exposed to 
HYK in early lactation (McArt et al., 2011).

However, a high interanimal variation is observed in 
cows’ metabolic adaptation to metabolic challenges in 
early lactation (Herdt, 2000; Kessel et al., 2008; Pryce 
et al., 2016). This has been observed among cows kept 
under similar management conditions, revealing the 
biological variation among cows (Kessel et al., 2008; 

Gross and Bruckmaier, 2015, 2019). Such observations 
signal the potential for phenotyping cows into metabolic 
performance groups for management as well as breed-
ing purposes. In addition to variation in the blood BHB 
concentration, there is also high intracow variation in the 
metabolic profile of cows in early lactation as revealed 
by the dynamics of blood metabolites level (McArt et al., 
2012). For instance, it has been shown that cows differed 
in the time of the onset and duration of ketosis, marked by 
the variation in the trajectories of blood NEFA and BHB 
(McArt et al., 2012). However, to our knowledge, no 
studies have so far considered the time profiles of meta-
bolic biomarkers in the blood to classify cows into dif-
ferent metabolic groups. The objective of this study was 
to identify metabolic groups among early-lactating cows 
using the trajectories of BHB in blood and characterize 
them in terms of other blood metabolites, fatty acids (FA) 
in milk fat, and production parameters. Furthermore, the 
broader use of blood parameters for identifying metabol-
ic status is limited given the invasiveness and practical 
challenges associated with blood collection. Building on 
previous findings that highlighted the predictive ability 
of FA in milk fat for assessing the metabolic status of 
cows in early lactation (Jorjong et al., 2015; Girma et 
al., 2023; Heirbaut et al., 2023), this study also aimed to 
explore the potential of milk FA in conjunction with test 
day variables for predicting trajectory clusters.

MATERIALS AND METHODS

In this paper, 2 datasets from 2 different experi-
ments are compiled. Experiment 1 was undertaken at 
the research farm of ILVO (Flanders Research Institute 
for Agriculture, Fisheries, and Food, Melle, Belgium) 
from October 2018 until October 2020. This research 
monitored multiparous Holstein Friesian cows (n = 120 
lactations) starting from 1 wk before calving until the 
third week of lactation. Experiment 2 was undertaken by 
Ghent University at Hooibeekhoeve (Geel, Belgium), a 
Belgian dairy research farm from January 2021 to Janu-
ary 2023. In this experiment, 86 lactations of 73 unique 
multiparous Holstein Friesian cows were monitored 
starting from 4 wk before calving through the first 35 
d after calving. The combined dataset consists of blood 
parameters: BHB, NEFA, insulin, and milk parameters 
including milk yield, milk fat, protein and lactose, milk 
BHB as well FA in milk fat. Moreover, additional farm 
data including parity, disease events, and feed intake 
were included. The experiment conducted at the research 
farm of ILVO (Flanders Research Institute for Agricul-
ture, Fisheries, and Food, Melle, Belgium) was carried 
out following approval (2018/329) granted by the Ethical 
Committee of the institute. Likewise, the research con-
ducted at Hooibeekhoeve was undertaken with approval 
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from the institutional animal care and use committees of 
the Faculty of Veterinary Medicine and the Faculty of 
Bioscience Engineering, Ghent University (2020-078). 
The experimental protocols, management, and housing 
of both experiments are described in the following sec-
tions.

Housing and Ration

The detailed protocol of experiment 1 has been re-
ported previously (Heirbaut et al., 2023), and a summary 
is presented here. Dry and lactating cows were housed 
separately in a naturally ventilated freestall barn with a 
slatted floor. From imminent calving (e.g., pelvic liga-
ment relaxation, teat filling) until d 3 after calving, cows 
were housed in maternity pens with straw bedding within 
the same building. In case of disease, cows stayed for 
a longer period in these pens. From 3 wk before calv-
ing, cows received the partial mixed ration (PMR) of 
the lactating cows supplemented with a dry cow mineral 
premix and 1 kg of balanced concentrate per cow per day. 
The Belgian-Dutch net energy system (Van Es, 1975) and 
intestinally digestible protein-rumen undegradable pro-
tein balance-system (DVE-OEB) were used to formulate 
the ration (Van Duinkerken et al., 2011). Individual feed 
intake was monitored throughout the trial using roughage 
intake control (RIC) feeding bins (Insentec, Hokofarm 
Group, Marknesse, the Netherlands), except during the 
period around calving. During lactation, concentrate in-
take was monitored at the automatic concentrate provid-
ers (Greenfeed, C-Lock Inc., Rapid City, SD; DeLaval, 
Tumba, Sweden) and in the herringbone milking parlor 
(DeLaval, Tumba, Sweden). The cows had access to wa-
ter ad libitum.

In experiment 2, 73 multiparous cows were monitored 
for around 9 wk. Cows entered the study at 4 wk before 
calving and were group-housed in a barn with a slatted 
floor. Subsequently, the cows were transferred to indi-
vidual straw pens within the same barn. After the initial 
days postpartum, the cows were relocated to a slatted 
floor pen with a capacity for 8 cows, maintaining a stock-
ing density of less than 1 cow per cubicle. After calv-
ing, experimental cows went to the trial group with RIC 
feeding bins (Insentec, Hokofarm Group, Marknesse, the 
Netherlands) until 35 d of lactation. The diet consisted 
of a PMR supplemented with individually distributed 
balanced concentrate which was given according to milk 
production through an automatic concentrate provider 
(DeLaval, Tumba, Sweden). The composition of the 
ration could vary slightly depending on the nutritional 
characteristics of the available roughage, but the nutri-
tional content of the PMR remained constant. The PMR 
was formulated at the herd level following the Belgian-

Dutch net energy system (Van Es, 1975), and DVE-OEB 
(Van Duinkerken et al., 2011) was used to formulate the 
ration. Moreover, a constant roughage-to-concentrate 
ratio was maintained during the trial and met the dietary 
structural needs at the herd level (De Brabander et al., 
2002). The feed was supplied fresh once a day in the RIC 
bins, which were completely emptied every day, and the 
leftovers were quantified. Cows had ad libitum access 
to water. The chemical composition of the diets used in 
both experiments is summarized in Supplemental Table 
S1 (see Notes; Girma et al., 2024a)

Sampling and Measurements

Blood Sampling and Analysis. In both experiments, 
blood samplings were undertaken on d 3, 6, 9, and 21 af-
ter calving. Samples were taken from the coccygeal ves-
sels (days, 3, 6, and 9) or the jugular vein (at 21 DIM) in 
the morning at 1000 h using an 18G needle and Venoject 
System (Terumo). Blood was collected in serum blood 
tubes (10 mL; SST II Advance Tubes, BD Diagnostics, 
Plymouth, United Kingdom) and kept at room tempera-
ture for 30 min before centrifugation. Samples were then 
centrifuged at 1,500 × g for 15 min at room temperature, 
after which serum samples were divided into aliquots and 
stored at −20°C.

Serum BHB and NEFA were analyzed using Randox 
RANBUT kits (reference no. RB1008) and Randox 
NEFA kits (reference no. FA115), respectively, employ-
ing enzymatic assays. For the analysis of insulin from 
the serum samples, the Bovine Insulin ELISA kit from 
Mercodia (Bio-connect Diagnostics) was used. All analy-
ses of blood parameters in experiment 1 were carried out 
in the laboratory of Dierengezondheidszorg Vlaanderen, 
Torhout, Belgium). All blood parameters of experiment 
2 were analyzed by the Laboratory for Animal Nutrition 
and Animal Product Quality (Ghent University, Ghent, 
Belgium).

Milk Sampling and Analysis. In experiment 1, dairy 
cows were milked twice daily at 0530 h and 1630 h in 
a 2 × 7 herringbone milking parlor, and their milk yield 
(kg/d) was recorded electronically. To determine milk 
performance, milk samples (27 mL) were collected from 
the cows in a representative way during the morning 
milking daily from d 3 to 23 after calving. Samples were 
stored at 4°C and contained preservatives, specifically 
sodium azide (maximum concentration 0.02% m/m) and 
bronopol (maximum concentration 0.005% m/m).

In experiment 2, cows were milked using an automatic 
milking system (AMS; DeLaval, Tumba, Sweden), and 
milk yield was recorded per milking. The 24-h daily milk 
yield was calculated from an average of all milkings 
recorded in the last 96 h using an approach suggested 
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for AMS (Lazenby et al., 2003). Milk subsamples (15 
mL) were collected once weekly every Thursday from 
the morning milking and stored in the refrigerator at 
4°C until transport and analysis. The samples contained 
preservatives, specifically sodium azide (maximum 
concentration of 0.02% m/m) and bronopol (maximum 
concentration of 0.005% m/m).

Milk samples from both experiments were analyzed for 
milk fat, protein, lactose, urea, BHB, SCC, SFA, UFA, 
MUFA, and total C18:1 by Qlip laboratory (Zutphen, 
the Netherlands), which performed routine DHI analysis 
using Fourier-transform infrared spectrometry (FTIR; 
Milkoscan FT6000, Foss Electric). Milk fat and protein 
were determined according to ISO 9622:2013 (Interna-
tional Organization for Standardization, 2013). Milk FA 
were estimated based on the mid-infrared spectra from 
in-house established equations.

Data Analysis

Data Compilation and Cleaning. The current report 
employed the data collected after calving in both ex-
periments. Experiment 1 originally enrolled 102 unique 
cows, among which 18 cows were monitored for 2 con-
secutive lactations. Data from 3 cows were excluded 
because of the cows’ death, and the final data involved 
99 unique cows. Moreover, BHB and NEFA data were 
missing for 1 cow on the d 9 sampling. In the case of ex-
periment 2, out of 86 lactations, 2 cows’ complete data 
were missing, as the cows had been removed from the 
experiment due to death or abortion. Moreover, 4 cows 
had 1 missing data point for either of the blood parame-
ters from the 4 repeated samplings, whereas 6 cows had 
more than 2 missing blood parameters. For the current 
study, we selected cows that had at least 2 records of 
blood parameters after calving. With this cleaning, from 
experiment 2, we kept 78 lactations from 65 unique 
cows for further analysis. The combined data of the 2 
experiments had 195 lactations from 164 unique cows. 
The daily milk yield data of these cows were accessed 
from the electronic database for both experiments. The 
2 experiments were different in the protocol for milk 
sample collection to determine the milk parameters pro-
file. To compile milk performance data, the Thursday 
data were filtered from the daily milk performance data 
of experiment 1 to align with the milk sample collection 
protocol of experiment 2.

Clustering Cows Using Trajectories of Blood BHB. 
In this paper, we used the longitudinal data of blood BHB 
to cluster cows based on the trajectories of this metabo-
lite. Before the clustering procedure, data imputation 
for missing blood parameters and outlier management 
was undertaken using the “tsrobpre” package (Narajew-

ski et al., 2021) in R version 4.3.0 (R Foundation for 
Statistical Computing), which was developed specifi-
cally for time series data. Following this, we conducted 
a mixture model analysis to identify metabolic groups 
with distinct trajectories of BHB during the experimen-
tal period. Outcome variables of repeated measures are 
usually analyzed using a growth curve model or mixed 
model analysis with the assumption of a homogeneous 
population that can be represented by a single popula-
tion mean trajectory (Muthén, 2004). However, in some 
cases, a group of individuals might have distinct trajec-
tories (intraindividual variation) that cannot be repre-
sented by a single population curve. In such instances, 
mixture modeling techniques prove valuable because 
they can uncover latent groups characterized by distinct 
trajectories. These techniques model multiple growth 
curves as functions of time, revealing classes of indi-
viduals that share similar developmental patterns of the 
outcome variable that may not be readily apparent in 
the raw data (Muthén, 2008; van der Nest et al., 2020). 
From the available longitudinal clustering methods, we 
employed the growth mixture model (GMM), which 
was reported to have better performance compared 
with other methods (Martin and von Oertzen, 2015; 
N. Den Teuling [Eindhoven University of Technology, 
Eindhoven, North Brabant, the Netherlands], S. Pauws 
[Tilburg University, Tilburg, Noord-Brabang, the Neth-
erlands], and E. van den Heuvel [Eindhoven Univer-
sity of Technology], unpublished data). The GMM can 
identify latent classes in a population that have distinct 
trajectories for the selected parameter(s) in a specified 
time window (Nguena Nguefack et al., 2020). In doing 
so, GMM considers the interindividual and intraindi-
vidual variation in the parameter of interest (Muthén, 
2008; van der Nest et al., 2020). The overall explora-
tion of clustering followed the steps recommended for 
model-based trajectory clustering (van der Nest et al., 
2020). In each step, models with various model speci-
fications were built and compared using the Bayesian 
information criterion, which is the most commonly used 
evaluation metric for model-based clustering methods. 
Cluster distribution, the average posterior probability 
of assignment, and graphical analysis were employed to 
further refine optimal cluster determination. The steps 
followed  in this process are summarized in Supplemen-
tal Table S2 (see Notes; Girma et al., 2024a). In brief: 
(1) The GMM was first checked with a single trajectory 
whether or not to include cow as a random factor. In this 
step, including cow as a random factor was determined 
advantageous as the model performance was improved. 
(2) The model was built with 1 to 6 clusters to check 
whether the BHB data could be represented by a single 
trajectory or if latent metabolic groups were present 
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with different trajectories. In this step, the presence of 
more than 1 latent class was observed and the optimal 
cluster number was determined to be 3. (3) A model with 
3 clusters was checked for different model specifica-
tions, which included the determination of constant or 
varying residual variance among clusters and the deter-
mination of similar or varying random factor variance 
among clusters. (4) Step 3 was repeated and DIM was 
introduced as random factor in the model. (5) In the last 
step, a polynomial DIM was introduced in the model as 
a fixed covariate. The polynomial term did not improve 
model metrics and also did not affect the distribution of 
cows in the 3 clusters. The “lcmm,” “flexmix,” and “la-
trend” packages in R were used to develop and evaluate 
the GMM with different specifications (Leisch, 2004; 
Proust-Lima et al., 2017; Den Teuling, 2023). The final 
GMM had 3 trajectory clusters with different intercepts, 
fixed variances of slopes, and varying variances of re-
siduals for each cluster.

Statistical Analysis

Descriptive analyses were conducted to summarize 
data. To describe the distribution of metabolic clusters 
across parity groups and experiment (farm) chi-squared 
was used. Clusters were compared for their milk param-
eters, and feed intake during the experimental period. 
As repeated measures from the same cow could be 
correlated (e.g., Gröhn et al., 1999), the assumption of 
independence would be violated if the analysis did not 
account for such correlations. Thus, the between-cow 
variation was checked for its significance, and a mixed 
model approach was followed to compare all milk yield 
and composition parameters, feed intake, and blood 
metabolites among clusters. Where repeated measures 
were done weekly, cow was taken as a random factor 
and parity was included as an additional covariate. In 
the case of daily measured parameters, cow was taken as 
a random factor, and parity and DIM were included as 
additional fixed covariates. The inclusion of DIM as a 
random factor was also explored for mixed model analy-
ses of DMI, MY, BHB, NEFA, and insulin, whereas the 
inclusion of experiment (farm) as a random factor was 
explored for all mixed model analyses. The DIM as a 
random factor was significant (P < 0.001) and included 
in the DMI, MY, and BHB models, whereas the experi-
ment was included in the DMI, C16:0, UFA, MUFA, 
total C18:1, and insulin models. Furthermore, to account 
for the nonlinear association between DIM and both 
daily MY and DMI within the first 35 d of lactation, a 
quadratic term for DIM was incorporated into the mixed 
models of both parameters.

Predicting Metabolic Clusters

The potential for the prediction of metabolic clusters 
using milk FA and test day variables has been explored. 
The FA, quantified using FTIR, encompassed C4:0, C6:0, 
C16:0, C18:0, total C18:1, UFA, and MUFA. The test 
day variables incorporated factors such as parity, DIM, 
and FTIR-predicted milk composition parameters includ-
ing fat, protein, and BHB. Parity was categorized into 3 
groups: parity 2, parity 3, and parity ≥4. A one-versus-all 
approach was followed to predict each cluster, and multi-
class classification was done to predict the 3 clusters. For 
this, models were created using a 5-fold cross-validation 
technique, repeated 100 times. Stratified sampling was 
applied within each fold to ensure that cows from all clus-
ters were sampled in proportion to the original dataset. 
The “groupdata2” package in R was employed for this 
purpose (Olsen, 2023). Given the imbalanced distribution 
of the quickly increasing BHB (QuiBHB) and slowly in-
creasing BHB (SloBHB) cows, an ensemble imbalanced 
data management technique called underbagging was 
used to predict these clusters. The technique employed 
the random forest algorithm as a weak learner and was 
executed using the “ebmc” package in R (Chen, 2022). 
In the case of the low BHB (LoBHB) cows’ prediction, a 
random forest algorithm was employed without an imbal-
anced data management technique, as these cows were 
not the minority. The multiclass classification model was 
built using random forest algorithm, whereas the “Smote-
Classif” function of the “UBL” package (Paula et al., 
2023) in R was used to balance the data. Considering that 
the milk parameters data were collected weekly during 
the first 3 wk of lactation, distinct models were developed 
for each week’s data separately.

RESULTS

Metabolic Clusters

Figure 1 illustrates the BHB trajectories of the 3 clus-
ters. We refer to the 3 metabolic clusters as the QuiBHB, 
SloBHB, and LoBHB clusters. The QuiBHB cluster 
exhibits a higher initial BHB concentration compared 
with the other clusters, peaking on d 9 and then declining 
by d 21. The SloBHB cluster begins with a lower BHB 
concentration, gradually increasing until d 9, and main-
taining a higher BHB concentration at d 21. The LoBHB 
cluster starts with the lowest serum BHB concentration, 
remaining relatively stable throughout the sampling pe-
riod. As such, both the trajectory and the concentration of 
serum BHB throughout the first 3 wk in lactation differ 
between the clusters.
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The distribution of cows across the 3 metabolic clus-
ters and parity groups is presented in Table 1. Two-thirds 
of the cows are classified into the LoBHB group, and 
among these, second parity cows were around half of the 
cows classified in this group. The lowest number of cows 
were classified into the QuiBHB groups and two-thirds 
of the cows in this group were parity 3 or higher.

Trajectories of Blood Metabolites

Figure 2 displays the NEFA time profiles of the 3 met-
abolic clusters identified using blood BHB trajectories. 
The QuiBHB cows had consistently higher mean NEFA 
concentrations until at least 9 DIM, whereas SloBHB 
cows showed intermediate levels until 9 DIM, but reached 
comparable concentrations with QuiBHB cows around or 

after 21 DIM. The LoBHB cows exhibited lower blood 
NEFA concentrations throughout the sampling period. 
Notably, NEFA concentrations started declining from 6 
or 9 DIM for LoBHB and QuiBHB cows, but for SloBHB 
cows, the average concentration after 21 DIM was similar 
to the concentration within the first week after calving.

In Figure 3, the serum insulin time profiles for cows 
in the 3 metabolic clusters are shown. LoBHB cows had 
higher insulin concentrations compared with the other 
clusters throughout the sampling period. Until 9 DIM, 
SloBHB cows had higher insulin concentrations than 
QuiBHB cows, but the difference narrowed, and both 
clusters showed comparable insulin concentrations by 21 
DIM.

Milk Yield, Composition, and Fatty Acids Profile

Table 2 and Table 3 present summaries of milk yield, 
composition, and milk fatty acid comparisons among 
the metabolic clusters during the 3 weekly observations 
following calving. Table 2 presents milk parameters for 
which the interaction between clusters and week was not 
significant (P < 0.05) whereas Table 2 presents param-
eters for which the interaction was significant (P < 0.05). 
No difference was observed among clusters in milk fat 
content and the concentration of C4:0 and C16:0 FA 
in milk fat, whereas the LoBHB cows had lower milk 
protein compared with the other clusters’ cows. The 
QuiBHB cows had a higher ratio of milk fat to protein as 
compared with the LoBHB cows, but no difference was 
observed between the SloBHB and other clusters’ cows. 
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Figure 1. Mean and SE of the time profile of blood BHB concentration for metabolic clusters identified by growth mixture models using the 
trajectories of BHB. Mixed model analysis was done to describe the association between DIM, clusters, parity, and their interaction with milk yield 
per day. QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the first 3 wk; SloBHB = clusters of 
cows with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = clusters of cows with low and stable blood BHB in the 
first 3 wk after calving.

Table 1. Distribution of cows in the 3 metabolic clusters by parity 
groups1

Cluster

Parity

 

Farm (experiment)

2 3 ≥4 HBH ILVO

QuiBHB 5 18 64 5 14
SloBHB 8 15 35 21 24
LoBHB 6 12 32 52 79
Statistics χ2 = 4.10, P-value = 0.392 χ2 = 2.32, P-value = 0.298
1Metabolic clusters are identified using the trajectories of blood BHB 
concentration: QuiBHB = clusters of cows with quickly increasing BHB 
after calving which remained elevated for the first 3 wk; SloBHB = 
clusters of cows with slowly increasing blood BHB observed in the first 
3 wk after calving; LoBHB = clusters of cows with low and stable blood 
BHB in the first 3 wk after calving.
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During week 1 (3 to 9 DIM), we observed no difference 
in daily milk yield among the clusters. However, in both 
week 2 (10 to 16 DIM) and week 3 (17 to 24 DIM), the 
SloBHB cows demonstrated a higher daily milk yield 
in comparison to the QuiBHB group. Figure 4 provides 
additional result of the milk yield per day comparison 
among clusters during the first 35 DIM.

Although the LoBHB cows exhibited similar daily 
milk yield as the SloBHB cows, we observed a tendency 

toward greater yield (P = 0.096, week 2; P = 0.056, week 
3) when compared with the QuiBHB group. In week 1, 
the QuiBHB cows yielded a greater fat- and protein-
corrected milk (FPCM) yield than the LoBHB cows, but 
by week 3, their FPCM yield was the lowest. In week 
2, no significant disparity was observed in FPCM yield 
among the clusters.

In week 1, the QuiBHB cows displayed a higher pro-
portion of both UFA and MUFA in milk fat compared 

Girma et al.: CLUSTERING DAIRY COWS USING β-HYDROXYBUTYRATE

Figure 2. Mean and SE of the time profile of blood NEFA concentration for metabolic clusters identified by growth mixture models using the 
trajectories of BHB. A mixed model analysis was done to describe the association between DIM, clusters, parity, and their interaction with milk yield 
per day. QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the first 3 wk; SloBHB = clusters of 
cows with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = clusters of cows with low and stable blood BHB in the 
first 3 wk after calving.

Figure 3. Mean and SE of the time profile of blood insulin concentration for metabolic clusters identified by growth mixture models using the 
trajectories of BHB. Mixed model analysis was done to describe the association between DIM, clusters, parity, and their interaction with milk yield 
per day. QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the first 3 wk; SloBHB = clusters of 
cows with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = clusters of cows with low and stable blood BHB in the 
first 3 wk after calving.
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with the other 2 clusters. However, in week 2 and week 
3, the UFA and MUFA proportions in milk fat were not 
different between QuiBHB and SloBHB cows. During 
week 2, we found a tendency for higher UFA proportion 
(P = 0.086) in QuiBHB cows, and across all weeks, the 
QuiBHB cows tended to have greater proportions of 
MUFA compared with SloBHB cows (P = 0.098, 0.066, 
and 0.093 for weeks 1, 2, and 3, respectively). The con-
centration of total C18:1 FA was highest among QuiBHB 
cows during week 1, but no difference was observed be-
tween SloBHB and LoBHB cows. In week 2, the LoBHB 
cows displayed the lowest proportion of total C18:1, 

whereas no variation was observed between the other 2 
clusters. In week 3, the QuiBHB cows exhibited higher 
total C18:1 concentrations compared with the LoBHB 
cows. Additionally, during the same period, we found a 
tendency for SloBHB cows to have higher total C18:1 
concentrations (P = 0.092) in comparison to the LoBHB 
group.

Dry Matter Intake

Figure 5 illustrates the daily DMI of cows in the 3 
metabolic clusters for the first 30 DIM, along with the 

Girma et al.: CLUSTERING DAIRY COWS USING β-HYDROXYBUTYRATE

Table 2. Summary of milk fat and protein content and fat-to-protein ratio for the 3 metabolic clusters identified 
using the trajectories of blood BHB concentration1,2

Parameter

Metabolic cluster

 

P-value

QuiBHB SloBHB LoBHB Cluster Week Parity

Fat (%) 5.44 (0.203) 5.20 (0.133) 5.06 (0.079) 0.201 <0.001 0.897
Protein (%) 3.39 (0.063)b 3.52 (0.041)b 3.63 (0.025)a <0.001 <0.001 0.624
F:P 1.59 (0.056)a 1.48 (0.037)ab 1.40 (0.022)b 0.004 0.925 0.729
C4:0 (g/kg milk) 2.12 (0.090) 2.07 (0.059) 1.99 (0.035) 0.278 <0.001 0.873
C16:0 (g/kg milk) 13.1 (0.658) 13.3 (0.258) 13.3 (0.426) 0.972 0.003 0.708
a,bWithin a row, mean values with a different superscript among metabolic clusters differ significantly (P < 0.05).
1All parameters were quantified by FTIR. Clusters were compared for all parameters using mixed model analysis. 
Averages over the 3 wk in milk are reported, as no interaction effect between metabolic cluster and week in milk 
were observed. Mean and SE (in parentheses) of parameters per cluster are reported.
2QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the first 3 wk; 
SloBHB = clusters of cows with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = 
clusters of cows with low and stable blood BHB in the first 3 wk after calving; F:P = fat-to-protein ratio.

Figure 4. Mean and SE of the daily milk yield of cows in the 3 metabolic clusters identified by growth mixture models using the trajectories of 
BHB. A mixed model analysis was done to describe the association between DIM, clusters, parity, and their interaction. Clusters were compared for 
milk yield following a spotlight analysis, and different superscripts (a,b) represent differences between clusters in milk yield per day (P < 0.05). In 
this respect, 3 periods could be distinguished: A (3–15 DIM) without significant cluster differences, B (16–24 DIM), and C (25–35 DIM), each with 
differences between clusters as indicated by different superscript letters associated with the cluster names. The blue dots separate periods A, B, and 
C. QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the first 3 wk; SloBHB = clusters of cows 
with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = clusters of cows with low and stable blood BHB in the first 3 
wk after calving.
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results of the mixed effect model analysis, which con-
sidered DIM, parity, and their interaction as explanatory 
factors for DMI. As expected, DMI per day increased 
in all metabolic groups. However, QuiBHB cows had a 
lower DMI during the first 35 DIM, whereas SloBHB 
and LoBHB cows showed comparable DMI. The inter-
action effect between cluster and DIM was observed in 
the case of LoBHB and SloBHB cows, with the latter 
gradually exhibiting slightly higher DMI after the fourth 
week of lactation.

Prediction of Metabolic Clusters

The predictions of metabolic clusters were explored 
for each cluster separately and for all clusters together 
following a one-versus-all and multiclass classification 
approaches respectively (Figure 6). The models built to 
predict the QuiBHB cows had higher accuracy in terms 
of area under the receiver operating characteristic curve 
(ROCAUC) than the other 2 clusters at all weeks of sam-
pling. The models built using week 1 data performed 
better than the other 2 wk in QuiBHB and SloBHB cows 
predictions, whereas in the prediction of LoBHB cows, 
week 1 and week 2 data models performed equally and 
better than the week 3 data. The LoBHB cows’ predic-
tion models were more sensitive, whereas the QuiBHB 
cows prediction models were more specific than the 
other clusters’ prediction models. The multiclassifcation 
model metrics are the average of each class of predic-
tion metrics from the synthetic minority oversampling 
technique- (SMOTE) balanced data modeled using the 
random forest algorithm. Its overall ROCAUC was better 
in all weeks than the one-to-all models of LoBHB and 
SloBHB, whereas it was lower than the QuiBHB models. 
Furthermore, the multiclass classification model was 
also least sensitive.

DISCUSSION

The objectives of this research were to investigate 
both intercow and intracow variations in the response 
of BHB during early lactation and to determine if inter-
cow variations in the intracow variation (trajectory) of 
BHB could serve as indicators for identifying distinct 
metabolic groups. To achieve this, we employed a trajec-
tory clustering method to unveil latent metabolic groups 
characterized by unique profiles of blood BHB over 
time. Our findings offer novel insights into the diverse 
metabolic responses among cows, as manifested by both 
the trajectory and magnitude of blood BHB concentra-
tions. In particular, we identified 2 specific groups of 
cows (QuiBHB and SloBHB) that exceeded the blood 
BHB threshold of 1.2 mmol/L, which is a critical value 
associated with diagnosing subclinical ketosis (SCK) or 
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HYK (LeBlanc et al., 2005; Duffield et al., 2009). It is 
noteworthy that these groups differed in 2 key aspects: 
(1) the timing at which they surpassed the threshold, 
and (2) the extent of their blood BHB elevation. The 
QuiBHB group demonstrated an immediate elevation 
of mean BHB concentration that continuously exceeded 
the threshold in the current sampling period. The mean 
BHB concentrations at 3, 6, 9, and 21 DIM were 1.26, 
2.24, 2.41, and 1.95 mmol/L, respectively. On the other 
hand, the SloBHB cows only crossed the threshold from 
9 DIM onward. The mean BHB concentration at 3, 6, 
9, and 21 DIM were 0.88, 1.06, 1.32, and 1.48 mmol/L, 
respectively. An important implication of this variation is 
that early sampling (before 6 DIM) would most probably 
detect QuiBHB cows as having SCK, whereas the condi-
tion would remain unnoticed in SloBHB cows. However, 
somewhat later sampling (e.g., from the second week 
in lactation onwards) would result in both groups being 
identified as hyperketonemic, as their mean BHB con-
centrations would surpass the threshold. In view of this, 
threshold-based classification using a single measure-
ment of blood BHB might not be efficient in identifying 
these metabolic groups. This could also be associated 
with the conflicting reports on the association between 
HYK status and downstream production and reproduc-
tion performance.

Nevertheless, these distinct metabolic groups exhibited 
discernible physiological differences. The observed vari-
ations in blood NEFA and insulin concentrations could 
potentially mirror the diversity in body reserve mobiliza-

tion and energy allocation among the distinct metabolic 
groups. The variation in the insulin concentration among 
clusters is inversely related to the concentration of keto-
nemia among the clusters. This is concordant with previ-
ous reports (Hove, 1978; Brockman, 1979), but it is in 
disagreement with studies that reported an association be-
tween hyperinsulinemia and hyperketonemia (Holtenius 
and Holtenius, 1996; Herdt, 2000). Beyond variations in 
blood metabolites within the initial 9 DIM, intriguingly, 
they also diverged in terms of milk yield and DMI. Al-
though QuiBHB cows commenced with comparable milk 
production to the other groups, their rate of increase in 
milk production seemed to decelerate, which was likely 
linked to their lower rate of DMI. Although in all groups 
DMI increased with time after calving, as expected (Bell, 
1995), the QuiBHB cows exhibited the lowest DMI per 
day during the first 35 DIM which aligns with previous 
reports on a negative association between elevated blood 
BHB concentrations and DMI (Ingvartsen, 2006; Allen, 
2020). However, despite their different blood BHB and 
NEFA concentrations, the SloBHB and LoBHB clusters 
did not differ in DMI. These results support the recent 
argument by Horst et al. (2021) regarding the absence 
of a direct inhibitory effect of these metabolites on feed 
intake. Accordingly, the negative association between 
elevated blood BHB and reduced DMI in the QuiBHB 
group may be indirect.

The blood BHB-based trajectory analysis allowed us 
to classify cows into 3 presumably physiologically rel-
evant classes of heterogeneous metabolic adaptation. The 

Girma et al.: CLUSTERING DAIRY COWS USING β-HYDROXYBUTYRATE

Figure 5. Mean and SE of the daily DMI intake of cows in the 3 metabolic clusters identified by growth mixture models using the trajectories of 
BHB. A mixed model analysis was done to describe the association between DIM, clusters, parity, and their interaction. Clusters were compared for 
feed intake following a spotlight analysis, and different superscript letters (a,b) associated with the cluster names represent differences in DMI per 
day (P < 0.05) throughout the entire period. QuiBHB = clusters of cows with quickly increasing BHB after calving which remained elevated for the 
first 3 wk; SloBHB = clusters of cows with slowly increasing blood BHB observed in the first 3 wk after calving; LoBHB = clusters of cows with 
low and stable blood BHB in the first 3 wk after calving.
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metabolic cluster that mobilized high body reserves and 
had elevated BHB immediately after calving (QuiBHB) 
could be considered metabolically less adapted or even 
impaired, as these cows were also characterized by lower 
DMI. Physiologically, the combination of low DMI and 
a higher rate of lipid mobilization could lead to limited 
availability of intermediates of the Krebs cycle (e.g., 
oxaloacetate) for complete NEFA oxidation in the liver, 
resulting in elevated ketone levels and probably TAG ac-
cumulation in the liver. These factors could have contrib-
uted to the lower milk yield in these cows. Interestingly, 
the LoBHB cows produced a comparable amount of milk 
per day to the SloBHB cows and even outperformed the 
QuiBHB cows. This could be attributed to the fact that 
DMI for these cows was not constrained and was com-
parable with the SloBHB cows, which mobilized more 
body reserves as compared with the LoBHB group. This 
could support the new perspective on the impact of hy-

perketonemia on the metabolic health status of the cows 
(Horst et al., 2021) that the (longer term) animal’s re-
sponse in terms of milk yield and DMI could further shed 
light whether a metabolic profile indicates an impaired 
or adapted metabolic status. Moreover, despite the fact 
that the milk yield per day did not differ significantly 
between the SloBHB and the LoBHB group, the milk 
yield was consistently numerically ~1 kg/d higher and 
FPCM yield ~1.5 kg/d higher from the second week in 
lactation onwards, which could suggest hyperketonemia 
as an adaptive mechanism in these cows.

Differences among groups in the occurrence of dis-
ease may have contributed to the difference in MY and 
DMI observed among metabolic clusters. Indeed, within 
the QuiBHB group, 52.6% were diagnosed with 1 or a 
combination of ailments, in contrast to proportions of 
24.4% for SloBHB cows and 17.6% for LoBHB cows. 
The primary clinical diseases considered in this summary 
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Figure 6. Performance metrics (mean of the 100 times repeated 5-fold cross-validations and across each of the classes for the multiclass prediction 
model) of metabolic cluster prediction models. These models used milk fat, protein, BHB, and fatty acids quantified based on FTIR, alongside DIM 
and parity as predictors. Employing a one-to-all approach, separate models were constructed for each cluster. Underbagging with random forest as 
a weak learner was applied for building prediction models of QuiBHB and SloBHB cows, whereas a random forest algorithm with no imbalanced 
data management techniques was employed for LoBHB cows. The multiclass prediction model was developed using the random forest algorithm, 
with the synthetic minority oversampling technique used to balance the data. QuiBHB = clusters of cows with quickly increasing blood BHB after 
calving which remained elevated for the first 3 wk; SloBHB = clusters of cows with slowly increasing blood BHB observed in the first 3 wk after 
calving; LoBHB = clusters of cows with low and stable blood BHB in the first 3 wk after calving; Se = sensitivity; Sp = specificity; PPV = positive 
predictive value; NPV = negative predictive value; PRCAUC = area under the precision receiver curve; ROCAUC = area under the receiver operating 
characteristic curve. The vertical bars on the dots represent the error bar (SE) of each metric.
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encompass ketosis, hypocalcemia, displaced abomasum, 
mastitis, and uterine discharge observed during the first 
45 d after calving (Supplemental Table S3, see Notes; 
Girma et al., 2024a). In a preliminary finding from the 
pairwise comparison of these metabolic groups con-
cerning inflammatory biomarkers, an elevated systemic 
inflammatory status was noted in QuiBHB cows com-
pared with the other groups (Supplemental Figure S1, 
see Notes; Girma et al., 2024b). The figure presents the 
comparison of the groups with regard to acute-phase 
proteins, haptoglobin, serum amyloid A, and the ratio of 
albumin to globulin. Haptoglobin and serum amyloid A 
in blood were higher in the QuiBHB compared with the 
SloBHB and LoBHB cows, indicating higher systemic 
inflammation (Ceciliani et al., 2012; LeBlanc, 2012). On 
the other hand, in view of the hepatic oxidation theory, 
the BHB production in the liver of the SloBHB group 
could have helped to divert NEFA away from the Krebs 
cycle, thereby preserving glucose for essential metabolic 
processes and preventing a reduction in DMI. Within 
his hepatic oxidation theory, Allen (2020) suggested 
that BHB serves as an adaptive mechanism to prioritize 
energy allocation in the body, particularly in situations 
where maintaining DMI is crucial.

Accordingly, the increased blood BHB concentration 
of the SloBHB group consistently demonstrated higher 
milk production coupled with increased DMI as compared 
with the QuiBHB group. These cows seem to be what 
Baumgard (2023), in a webinar presentation, referred to 
as “champion” cows, which eat well and produce well. 
Hence, their higher concentration of BHB (exceeding 1.2 
mM) could be an adaptive response. However, despite 
Baumgard’s speculation of higher insulin concentrations 
in metabolically impaired cows compared with those 
using BHB production as an adaptive response, these 
cows demonstrated the lowest insulin concentration. In 
early lactation, cows experience physiological adapta-
tion geared toward preserving glucose for the energy-
intensive milk production process. These adaptations 
coordinate the preference of peripheral tissues for NEFA 
and BHB as their primary energy sources, a phenomenon 
rigorously controlled through homeorhetic mechanisms 
(Bauman, 2000). Previous studies have reported that the 
effect of high blood BHB concentration on milk yield 
is more pronounced when HYK is detected during the 
first week compared with the second week of lactation 
(Duffield et al., 2009; Chapinal et al., 2012; McArt et al., 
2012). Our findings imply that this distinction may be 
related to the specific metabolic group from which cows 
were identified as having HYK.

The metabolic clusters also exhibited variations in 
the concentrations of UFA, MUFA, and total C18:1 
FA. Particularly, during the initial week of lactation, 
the QuiBHB cows displayed the highest concentrations 

of UFA, MUFA, and total C18:1 FA. In the subsequent 
second and third weeks, the disparity in milk FA between 
the QuiBHB and SloBHB groups narrowed, whereas the 
difference with the LoBHB cows remained consistent. 
These observed distinctions in UFA, MUFA, and total 
C18:1 FA could potentially be linked to variations in 
body fat mobilization, as indicated by blood NEFA con-
centrations. In early lactation, prominent NEFA released 
from body fat reserves include C16:0, C18:0, and C18:1 
cis-9 (Hostens et al., 2012). Furthermore, the possible 
conversion of C18:0 to C18:1 cis-9 within the mammary 
gland via Δ9-desaturase action might affect the propor-
tion of these FA in milk fat (Leroy et al., 2005). Cor-
respondingly, earlier investigations have demonstrated 
elevated proportions of long-chain FA, notably C18:1 
cis-9, in cows diagnosed with subclinical ketosis (Van 
Haelst et al., 2008; Jorjong et al., 2015).

The difference in milk FA between QuiBHB and other 
cows in early lactation is of particular interest because, 
notably, QuiBHB cows seem to exhibit an impaired 
metabolic status and a diminished adaptive response. 
Consequently, these cows warrant focused attention, and 
the identification of such cows through easily accessible 
milk biomarkers is of paramount importance. Given the 
potential of milk FA to predict the metabolic status of 
cows in early lactation, we explored the feasibility of 
predicting the metabolic clusters using milk fatty acids 
in conjunction with additional test day variables. It is 
important to note that the sample size in this study is 
limited for constructing robust prediction models, and 
the exploration is primarily intended to assess the iden-
tifiability of these clusters using milk biomarkers. The 
results indicated the potential of milk FA along with test 
day variables to predict cows with impaired metabolic 
status (QuiBHB cows). This prediction was achieved 
with moderately high accuracy (Greiner et al., 2000). 
The accuracy of the prediction models utilizing data 
from week 1 and week 2 were superior to models using 
week 3 data. The accuracies of the SloBHB and LoBHB 
cows’ prediction models were not high for accurate di-
agnosis. This, apart from the small sample size, could be 
associated with the comparable milk FA profile of these 
2 clusters, suggesting that FA-based models may have 
limitations in effectively distinguishing between these 2 
clusters. Indeed, the performance of LoBHB prediction 
models might also be affected by the imbalanced propor-
tion in the number of cows between the LoBHB cluster 
and the other 2 clusters combined. As the imbalanced 
data management techniques (e.g., underbagging) target 
minority groups, we did not apply these techniques in the 
models for LoBHB cows. The multiclass classification 
model was more specific than the other models but it was 
less sensitive and have lower overall accuracy. Indeed, 
this could be associated with the difference in the im-
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balanced data management techniques. Particularly, the 
lower Se and ROCAUC values of the multiclass classifi-
cation indicated the lower performance of the SMOTE 
technique as compared with underbagging to balance 
metabolic groups’ data. In our previous report, we also 
reported models built using underbagging techniques as 
our preliminary exploration proved its superior perfor-
mance among available imbalanced data management 
techniques (Girma et al., 2023).

Obviously, identification of attention cows early in 
lactation only is of importance if a treatment could be ap-
plied. Oral administration of propylene glycol (PG) has 
demonstrated effective resolution of HYK and improved 
milk yield in certain cases (McArt et al., 2011; Lomander 
et al., 2012). However, the results of PG administration 
have not been consistently positive, as evidenced by its 
lack of effect in other instances (Østergaard et al., 2020; 
Capel et al., 2021). These contradictory results could be 
related to the existence of 2 types of HYK animals, as 
suggested from this experiment. The rationale behind 
PG administration for HYK cows is that on one hand, 
it stimulates gluconeogenesis by directly entering the 
TCA cycle to enhance acetyl CoA oxidation, and on 
the other hand, the propionate in PG stimulates insulin 
release, subsequently suppressing fat mobilization and 
thereby reducing ketone bodies in the bloodstream. In 
light of this, QuiBHB cows might benefit from PG ad-
ministration due to their lower feed intake, indicative of 
potential low blood glucose concentrations, which was 
further reflected in their reduced milk production rates. 
However, PG administration might not be advantageous 
for SloBHB cows; in fact, it even could have negative 
effects, considering that their HYK status might be an 
adaptive response aimed at conserving glucose for milk 
synthesis. Moreover, PG administration could be specu-
lated to include a risk for detrimental effects on intake by 
SloBHB cows in line with the hepatic oxidation theory 
(Allen, 2020). According to this theory, adenosine tri-
phosphate production from glucose oxidation in the TCA 
cycle, potentially increased by PG administration, could 
lead to decreased feed intake, triggering body fat mobili-
zation and increased ketone bodies.

A limitation of the current study is that the association 
of precalving BCS with the identified trajectory clusters 
could not be systematically investigated. During the ex-
periments, BCS was recorded using a camera from DeLa-
val (Tumba, Sweden). However, a significant amount of 
data were missing before calving due to logistical chal-
lenges, as dry cows did not frequently pass the camera in 
the stable. However, each cow’s mean BCS was comput-
ed for the first 3 d after calving, and metabolic clusters 
were compared for their mean BCS during this period. 
The mean BCS did not vary among metabolic clusters 
(Supplemental Table S4, see Notes; Girma et al., 2024a). 

However, it was apparent that QuiBHB cows were either 
well-conditioned (BCS >3.0) or over-conditioned (BCS 
≥4.0), whereas (in contrast to other clusters) this cluster 
did include under-conditioned cows (BCS <3.0; Supple-
mental Figure S2, see Notes; Girma et al., 2024b). This 
observation aligns with previous reports where higher 
BCS is associated with hyperketonemia (e.g., Duffield, 
2000). Nevertheless, it should be noted that the number 
of over-conditioned cows was very small (≈3%) in the 
current experiment.

Overall, our research sheds light on the intercow and 
intracow variations in metabolic responses during early 
lactation and demonstrates the potential for clustering 
cows into different metabolic groups based on these vari-
ations. In particular, identified metabolic groups were 
shown to have variations in milk performance, blood 
metabolites, DMI, and body reserve mobilization. How-
ever, in the context of the current dataset, it is important 
to note that not only did the trajectories differ between 
the QuiBHB and SloBHB groups, but also the BHB con-
centration. Accordingly, this warrants further research to 
elucidate whether the difference in trajectory serves as 
a critical factor distinguishing these 2 groups. Because 
the number of cows observed in this study was relatively 
low, we were not able to include additional risk factors 
for elevated BHB to further characterize the metabolic 
clusters. Our research relied on blood samples collected 
frequently during the first 9 DIM with additional samples 
intended to characterize the end of the transition period 
(21 DIM). Future research might include additional sam-
pling between 9 and 21 DIM and probably before calving 
to fully elucidate the trajectories of metabolic markers 
during the transition period. Characterizing the meta-
bolic clusters with disease prevalence and reproductive 
performance is also worth further consideration using 
larger datasets.

CONCLUSIONS

In this study, cows in early lactation were clustered 
into 3 metabolic groups using the time profile of blood 
BHB concentration. A trajectory clustering approach 
was employed to cluster cows based on the intercow and 
intracow variation of blood BHB in repeated measures. 
The resulting metabolic clusters exhibited notable differ-
ences in blood metabolites, milk composition, fatty acid 
composition in milk fat, milk yield, DMI, and disease oc-
currence. These variations are indicative of the variation 
in body fat mobilization and energy partitioning among 
physiological needs, which play pivotal roles in the adap-
tive response of high-yielding cows for metabolic stress 
in early lactation. Beyond the dissimilar trajectories of 
blood BHB, noteworthy variations were evident in the 
actual concentrations of blood BHB. Addressing these 
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distinctions requires further investigation to unravel their 
individual or combined significance in relation to the 
health, productivity, and reproductive outcomes of the 
cows. Identification of metabolic clusters was feasible 
using milk parameters and test day variables.
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