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A B S T R A C T

The ectoparasite Varroa destructor is a major contributor to the global decline of honeybee colonies (Apis mel-
lifera), especially in the Northern Hemisphere. However, Varroa-resistant honeybee populations have been re-
ported in various regions around the globe, including Europe and Africa. This resistance is primarily attributed to 
the trait known as Suppressed Mite Reproduction (SMR), which significantly reduces the reproductive success of 
Varroa mites within these colonies. Although this trait is still poorly understood, several efforts have been made 
to unravel the genetic basis of SMR. For example, a study in Belgium determined eight genetic variants in the 
honeybee genome that are associated with the infertility of mites in drone brood (Drone Brood Resistance or 
DBR). As these eight variants were found and validated in subpopulations of European subspecies only, there is 
limited knowledge about the occurrence of these markers in African honeybees. Hence, this study was designed 
to determine the allele frequencies of these eight genetic variants in African honeybee populations. More spe-
cifically, we used qPCR assays with dual-labeled probes to analyze bee samples collected from Benin, Ethiopia, 
and Uganda. Our results showed the presence of seven of the eight variants in African Apis mellifera subspecies, 
which may contribute to their innate resistance against the Varroa mite. Moreover, we found significant dif-
ferences in allele frequencies among the three sampled African bee populations, suggesting the presence of 
genetic diversity within these populations, potentially altering their resistance to Varroa. This study revealed 
similar allele frequencies between African honeybees and bee samples from the European iberiensis-subspecies (A 
lineage), while Ethiopian bees showed distinct distributions, indicative of a unique lineage. Overall, the 
occurrence of most DBR-associated genetic variants in African honeybees opens research opportunities to 
elucidate the predictive properties and potential of these genetic variants in the African continent by examining 
genotype-phenotype associations.

1. Introduction

The contribution of honeybees to biodiversity conservation (Al- 
Ghamdi et al., 2017; Bradbear, 2009), ecosystem protection (Sabbahi, 
2022) and the improvement of the commercial value of agricultural 
crops (Calderone, 2012; Garratt et al., 2014; Klein et al., 2007) is sig-
nificant. However, despite their ecological and economic importance, 
honey bee populations are facing substantial declines, especially in the 
Northern Hemisphere (Gray et al., 2019; Smith et al., 2014; 

VanEngelsdorp et al., 2008; Yalçınkaya & Keskin, 2010). This phe-
nomenon may disrupt ecosystems, threaten future food and nutrition 
security and can lead to a severe pollination crisis. Several biotic and 
abiotic stressors associated with managed honey bee colony losses have 
been identified (Neov et al., 2019), with the ectoparasite Varroa 
destructor being the most significant biotic factor (Gray et al., 2019; 
VanEngelsdorp et al., 2008, 2012).

Varroa feeds on the fat tissues and hemolymph of pupae and adult 
bees, causing physical damage (Ramsey et al., 2019) and suppressing the 
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honeybees’ immune response (DeGrandi-Hoffman & Chen, 2015), 
which increases vulnerability to viral infections (Barroso-Arévalo et al., 
2019; Shen et al., 2005). It also acts as an effective vector for numerous 
viruses such as the deformed wing virus (DWV) (Bowen-Walker et al., 
1999; Brutscher et al., 2016; Posada-florez et al., 2019) , leading to 
increased viral loads within the colony (Martin et al., 2012). The syn-
ergistic relationship between viruses such as DWV and the ectoparasite 
V. destructor (Bowen-Walker et al., 1999) has been identified as a major 
cause of colony losses worldwide, along with challenging climatic and 
environmental conditions (Benaets et al., 2017; Currie et al., 2010; 
Kevill et al., 2019; Martin et al., 2012; VanEngelsdorp et al., 2012). 
Consequently, most beekeepers in the Northern Hemisphere have been 
using acaricides to control Varroa infestations in their colonies 
(Brodschneider et al., 2023). However, the continued use of synthetic 
acaricides has led to the development of mite resistance (Rinderer et al., 
2010; Sammataro et al., 2005) and contamination of hive products 
(Büchler et al., 2010; Rinderer et al., 2010). Moreover, these treatments 
only work effectively on susceptible mites and require multiple intensive 
applications, which in their turn disturb the bees’ natural harmony with 
the ecosystem. Therefore, there is an urgent need to use alternative non- 
chemical and non-invasive control methods for the mite’s burden, 
including the use of mite-resistant honey bee lines (Brodschneider et al., 
2023; Büchler et al., 2010; Rinderer et al., 2010).

Multiple Varroa-resistant honey bee populations that survive without 
mite treatments have been reported in different parts of Europe, such as 
Norway (Oddie et al., 2017), Avignon (France) (Le Conte et al., 2007), 
Gotland (Sweden) (Fries et al., 2006) and Amsterdam Water Dune 
population in the Netherlands (Blacquière et al., 2019). In most of these 
honey bee populations, the bees’ resilience against the ectoparasite is 
mainly explained by the heritable trait known as Suppressed Mite 
Reproduction (SMR), which significantly hinders the reproductive suc-
cesses of Varroa mites within these colonies (Blacquière et al., 2019; 
Locke et al., 2012; Oddie et al., 2017).

In 2019, eight single nucleotide polymorphisms (SNPs) in the honey 
bee exome were found to be associated with Varroa non-reproduction in 
drone brood, also referred to as Drone Brood Resistance (DBR) (Broeckx 
et al., 2019). The eight-variant model from this study successfully pre-
dicted 88 % of the drone phenotypes (reproduction or non-reproduction 
of included mite), based on their genotypes only. However, this study 
was limited to the drones from a single hybrid A. m. mellifera − derived 
queen from Amsterdam Dune population in the Netherlands. A subse-
quent population-wide screening on Flemish honey bee colonies (mainly 
Apis mellifera carnica) validated the relevance of the eight genetic vari-
ants (SNPs), enabling the construction of an adjusted eight variant 
model that successfully predicted 69.4 % of the drone phenotypes 
correctly (Lefebre et al., 2024a). Interestingly, this latter study could 
reduce the previously identified eight genetic variants to a three-variant 
model, enabling the successful prediction of up to 76 % of the drone 
phenotypes, which facilitates large-scale colony screening. Neverthe-
less, the study of Lefebre et al. (2024a) revealed variations in the pre-
dictive properties of certain variants. Some variants that were identified 
as protective indicators in the single Dutch A. m. mellifera − derived 
colony became risk indicators in the Flemish screening considering 
mainly A. m. carnica, and vice versa. In a follow-up study (Lefebre et al., 
2024b), the allele frequencies of the eight genetic markers were assessed 
in over 360 A. mellifera colonies throughout Europe, and the results 
suggested that the variant type allele frequencies are mainly correlated 
with the subspecies of A. mellifera or its phylogenetic lineage. These 
findings indicate that the predictive properties of the genetic variants 
may differ across bee populations, underscoring the need to study their 
occurrence and variability in genetically and environmentally diverse 
honey bee subspecies.

The presence of V. destructor has also been confirmed in many Afri-
can countries (Pirk et al., 2016). Unlike European subspecies, honeybees 
in African countries such as Uganda, Kenya and Ethiopia suffer less from 
Varroa mite infestations (Begna et al., 2016; Chemurot, 2017; Muli et al., 

2014; Strauss et al., 2016). Although the resilience of African bees to 
Varroa is mainly attributed to the SMR trait, which has been observed in 
several bee populations from Ethiopia (Gebremedhn et al., 2019), Kenya 
(Nganso et al., 2018), and South Africa (Strauss et al., 2016), little is 
known about how the eight genetic variants identified by Broeckx et al., 
(2019) are distributed in honeybees across the much diversified African 
ecoregions with their specific genetic backgrounds (Aglagane et al., 
2023; Franck et al., 2001; Themudo et al., 2020). This study determined 
allele frequencies of the eight genetic variants (SNPs) associated with 
DBR in various Apis mellifera subspecies populations of selected Eastern 
and Western African countries. In this way, this study discloses the po-
tential of elucidating the predictive properties and potentials of these 
genetic variants in African honeybee subspecies by examining genotype- 
phenotype associations. In this way, this study discloses the potential of 
elucidating the predictive properties and prospects of these genetic 
variants in African honeybee subspecies. By examining genotype- 
phenotype associations in future studies, this work could facilitate 
large-scale screening for Varroa-resistant colonies in Africa.

2. Materials and methods

2.1. Sample collection and transportation

Adult worker bee samples were collected from different colonies in 
Ethiopia (ET, N = 20), Uganda (UG, N = 30) and Benin (BJ, N = 30), 
located in East-, East-, and West Africa, respectively. In Ethiopia, sam-
ples were collected during the active season between August and 
October 2017, from 10 apiaries (two colonies each) across three 
different agroecological zones: highland, lowland, and mid-highlands 
(Haftom et al., 2019). For Uganda, samples of adult bees were 
collected from two agroecological zones: the eastern and western 
highlands (Chemurot, 2017). Samples from Benin were collected across 
the entire country (Amakpe, 2016). After collection, the sample vials, 
with (BJ, UG) or without (ET) ethanol, were shipped to the Laboratory of 
Molecular Entomology and Bee Pathology (L-MEB) (UGent, Belgium) for 
analysis, either at room temperature (BJ, UG) or on dry ice (ET). Once 
the samples arrived at L-MEB, they were stored at − 20 ◦C until further 
analysis. Detailed information on sample collection, transport, and 
storage of samples from Ethiopia, Uganda and Benin can be found in 
Gebremedhn et al., (2020), Chemurot, (2017) and Amakpe, (2016), 
respectively.

2.2. Sample preparation and DNA extraction

For each sampled colony, 30 hind legs from 30 different worker bees 
were dissected from the thorax using sterile tweezers and pooled in an 
Eppendorf tube with screw cap. For the samples collected from Benin 
and Uganda, the ethanol was removed, and the hind legs were rehy-
drated by washing them three times overnight with 800 µL 1 × PBS. 
After removing the last volume of PBS, 180 µL ATL buffer (QIAamp® 
DNA Micro Kit (Qiagen)) was added and the samples were incubated 
overnight at 56 ◦C with 20 µL proteinase K (20 mg/mL). Next, genomic 
DNA (gDNA) was extracted from the pooled legs following the manu-
facturer’s instructions. Finally, the DNA was eluted in 50 µL DNase/ 
RNase free water.

2.3. Determination of allele frequencies using qPCR with dual-labeled 
probes

For each gDNA sample, eight qPCR assays with dual-labeled probes 
(Boúúaert et al., 2021) were performed in a total reaction volume of 10 
µL, containing 1 × KEY buffer, 250 nM of each primer, 250 nM of each 
dual-labeled probe, 200 µM of each dNTP, 0.5 U TEMPase Hot Start DNA 
Polymerase (VWR) and 20 ng gDNA (Boúúaert et al., 2021). Per geno-
typing assay, a SNP-specific calibration curve with standards of 0 %, 10 
%, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % Vt allele 
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(variant type allele) was run in duplicate (constructed similarly as in 
Lefebre et al. (2024b). The qPCR assays were run on the Bio-Rad 
C1000TM Thermal Cycler with CFX96TM Real-Time System with the 
following cycling settings: 95 ◦C for 14′40″, 60 × (95 ◦C for 20″ and 40″ of 
the assay-specific annealing temperature) (Boúúaert et al., 2021).

Data analysis was performed with the Bio-Rad CFX Manager 3.1 
Software and Microsoft Excel. For each pooled worker bee sample, the 
percentage of variant allele (%Vt) was calculated using retrograde 
regression analysis of the ratio [end RFU FAM/end RFU TR] of the 
sample compared to those in the biquadratic intraplate calibration 
curve. The results were further refined by applying the ratio [end RFU 
TR/end RFU FAM], consistent with the method used by Lefebre et al. 
(2024b).

2.4. Data analysis

Data representation and statistical analysis was performed in R 
(version 4.4.1) and RStudio (version 2023.12.1 + 402) with the ggplot2 
package (v 3.5.1). Differences in allele frequencies of the variants among 
samples from Benin, Ethiopia and Uganda were determined using the 
non-parametric Kruskal-Wallis test. If significant, post-hoc Dunn’s tests 

with Bonferroni-correction were applied. Principal Component Analysis 
(PCA) was performed using the FactoMineR (v 2.11) and factoextra (v 
1.0.7) packages in R. Cos2 and contribution values were used to deter-
mine how the variables (i.e. SNPs) contributed to the principal compo-
nents (Fig. S1). The k-means method was used for cluster analysis. The 
optimal number of clusters was determined using the Within Sum of 
Square (WSS)-, silhouette-, and gap statistic methods (Fig. S2).

3. Results

3.1. Allele frequency distributions

The screening revealed high variant type allele frequencies for SNP2 
(avg. 75–84 %) and SNP8 (avg. 99–100 %) across all African honeybee 
samples (Fig. 1, Table S1). In contrast, SNP1 (avg. 0–1.2 %), SNP6 (avg. 
0–6.5 %), and SNP7 (avg. 0 %) showed very low variant type allele 
frequencies in the African honeybee samples. Moreover, significant 
differences in variant type allele frequencies for SNP1, SNP3, SNP5 and 
SNP6 were observed between the countries of origin of the African 
samples (Benin (BJ), Ethiopia (ET) and Uganda (UG)) (Fig. 1, Table S2). 
The most notable difference was found for SNP5, which showed very 

Fig. 1. Variant type allele frequencies (%Vt) for the eight DBR-associated genetic variants (SNPs) in pooled worker bee samples from Benin (BJ; N = 30), Ethiopian 
(ET; N = 20) and Ugandan (UG; N = 30) colonies. Bonferroni-corrected significance levels: ns = not significant; p ≤ 0.05*; p ≤ 0.01**; p ≤ 0.001***; p ≤ 0.0001****.
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high variant type allele frequencies in Ethiopian bees (ET; avg. 85.3 %) 
compared to those from Benin (BJ; avg. 46.9 %) and Uganda (UG; avg. 
36.6 %)) (P < 0.0001).

3.2. Allele frequency patterns in African honeybees compared to 
European lineages

To assess similarities in allele frequency distributions between the 
investigated African honeybee samples and European honeybee lineages 
(A, C, and M) screened by Lefebre et al. (2024b), we performed Principal 
Component Analysis (PCA) and clustering analysis using data from 
Lefebre et al. (2024b). Their study revealed strong correlations between 
variant type allele frequencies (%Vt) for certain SNPs and the samples’ 
subspecies or genetic lineage.

To extend the current analysis, the allele frequency data set from 
genetic lineages sampled in the European study of Lefebre et al. (2024b)
were incorporated: A line (A. mellifera iberiensis; N = 7), M line (A. m. 
mellifera; N = 37) and C line (A. mellifera adami; N = 2, A. mellifera 
carnica; N = 62, A. mellifera carpatica; N = 4 and A. mellifera ligustica; N 
= 27). This broader dataset enabled us to evaluate how the variant type 
allele frequencies of the eight genetic markers correlate with the 
different genetic lineages in Europe, helping to identify the related lin-
eages for the sampled African populations. Thus, in the current study, 
PCA was performed on this entire data set of 219 pooled worker bee 
samples (139 from Europe, 80 from Africa).

The cos2 – and contribution values of the PCA indicated that the first 
two principal components or dimensions (Dim 1 and Dim 2) capture a 
substantial portion of the total variation observed in the dataset, as both 
explain nearly 55.2 % (39.2 % and 16 %, respectively) of the total 
variance (Fig. S1, Fig. 2). In the first dimension (Dim 1), SNP1, SNP4, 
SNP6, and SNP8 were the most significant contributing variants, while 
SNP2 and SNP5 contributed most to the second dimension (Dim 2) 
(Fig. S1; arrows on Fig. 2). Since almost no differences in percentages of 
variant type allele for SNP3 and SNP7 were observed between subspe-
cies in the European screening (Lefebre et al., 2024b), or in the African 
sample groups (Fig. 1), we opted to consider only the first two di-
mensions for further analyses (Fig. 2).

The two-dimensional PCA showed high grouping of the African 
honeybee samples in the PCA biplot (Fig. 2). In the first dimension (Dim 
1), representing SNP1, SNP4, SNP6 and SNP8, all African honeybee 
samples showed coordinates similar to the samples from the A lineage 

(A. mellifera iberiensis) and some samples from the M lineage (A. m. 
mellifera). In contrast, the samples from Benin, Ethiopia and Uganda 
differ the most from those of the C lineage in this first dimension. Based 
on these findings, it is possible that the African samples share high ge-
netic similarities with the European A lineage (A. mellifera iberiensis).

In the second dimension (Dim2), which represents SNP2 and SNP5, 
the honeybee samples from Ethiopia show slightly higher coordinates 
than those from Benin and Uganda. This difference may be attributed to 
the significantly higher percentages of variant allele for SNP5 in the 
Ethiopian samples. When compared to European samples of the A 
lineage (ssp. iberiensis), the honeybee African samples showed higher 
coordinates in the second dimension (Fig. 2). This difference may be 
attributed to the very low percentages of variant type allele for SNP2 in 
samples of the ssp. iberiensis, which contrasts with the high percentages 
of variant type alleles for this SNP in the African honeybee samples (cf. 
Fig. 1).

The optimal number of clusters for grouping the screened samples 
based on PCA coordinates was determined using the Within Sum of 
Square (WSS), Silhouette and Gap statistic method (Fig. S2). All three 
methods indicated that the optimal number of clusters is two (k = 2) 
(Fig. 3). However, to assess whether the clusters or grouping of the 
honeybee samples remained consistent across different values of k, we 
performed the clustering analysis using k = 2, k = 3 and k = 4 (Fig. 3).

When k-means clustering with k = 2 was applied, all African samples 
were grouped together with all samples from the A lineage (ssp. iber-
iensis). This may suggest a possible genetic connection between both 
lines. Additionally, some samples from the M lineage (ssp. mellifera) and 
a few samples from the C lineage were also included in this cluster 
(Fig. 3; k = 2). Clustering with k = 3 results in three distinct groups: one 
cluster containing mainly C lineage samples, another cluster predomi-
nantly containing samples belonging to the M and A lineages, and a third 
cluster mainly containing the samples from Africa (Fig. 3). Notably, the 
African samples continue to group with some samples from the A 
lineage.

Increasing the number of clusters to 4 (k = 4) renders a cluster 
mainly containing samples from the C lineage, a cluster containing 
samples from lineages C and M, one cluster containing samples from the 
A lineage and some samples from Benin and Uganda, and one cluster 
with all remaining African honeybee samples (Fig. 3). However, when 
the analysis expanded to k = 4, all Ethiopian bees clustered separately 
from the A, C, and M lineages.

4. Discussion

4.1. Allele frequency distributions

Our results reveal that three variants, particularly SNP2 (75–84 %), 
SNP5 (36.6 %-85.3 %) and SNP8 (99–100 %), identified as risk variants 
in the hybrid A. m. mellifera − derived colony by Broeckx et al., (2019), 
are highly prevalent in the honey bee populations from Ethiopia, 
Uganda and Benin. On the other hand, the present study revealed low 
allele frequencies for SNP6 and SNP7 in the African bee populations, 
which were protective indicators in the single A. m. mellifera − derived 
colony (Broeckx et al., 2019). Risk variants in A. m. mellifera (M lineage) 
and A. m. carnica (C lineage) are associated with a higher likelihood of 
successful Varroa mite reproduction in drone brood, which in turn 
promotes the growth of the Varroa mite population (Broeckx et al., 
2019; Lefebre, Broeckx, et al., 2024). Considering the resilience of Af-
rican bees to Varroa mite infestations (Begna et al., 2016; Chemurot, 
2017; Muli et al., 2014; Strauss et al., 2016), the SNPs with high and low 
variant allele frequencies in African bees may serve as protective and 
risk indicators, respectively, for these subspecies. Shifts in the properties 
of these variants—whether they act as risk indicators or protective 
indicators—may be dependent of the subspecies (Lefebre et al., 2024a). 
In line with this hypothesis, two genetic variants previously identified as 
risk indicators by Broeckx et al. (2019) in the A. m. mellifera − derived 

Fig. 2. PCA of variant type allele frequencies of the eight genetic variants 
associated with DBR, for the African samples from Benin, Ethiopia and Uganda, 
extended with data from European lineages (from (Lefebre et al., 2024b)). This 
PCA focuses only on the first two principal components (Dim1 and Dim2). El-
lipses are drawn at 80% confidence interval.
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colony, annotated as SNP2 and SNP8 (Boúúaert et al., 2021), were found 
to have shifted to protective indicators in Flemish A. m. carnica of the C 
lineage. Conversely, a variant described as a protective indicator in the 
original study (Broeckx et al. 2019), annotated as SNP6 (Boúúaert et al., 
2021), also shifted to being a risk indicator in Flemish A. m. carnica 
(Lefebre et al., 2024a). These results suggest that the roles of these 
variants differ across honeybee populations and vary across subspecies 
or even genetic lineages, highlighting the need for phenotype-genotype 
association studies.

This study also showed significant differences in variant type allele 
frequencies of the different variants among African bee samples of 
different origin (Table S2). This may indicate genetic variation within 
these populations (Andrews, 2010), which aligns with the previous 
studies that indicate the presence of high genetic diversity of bees in 
Africa (Aglagane et al., 2023; Franck et al., 2001; Themudo et al., 2020). 
Genetic variation is a crucial factor for colony survival under various 
environmental stressors (Leclercq et al., 2018; Themudo et al., 2020) 
and may enhance the resilience of African bees against the Varroa mite 
and associated pathogens. In the European study, variability in variant 
type allele frequencies of the different variants has also been reported 
among different honey bee subspecies and within the same subspecies, 
but sampled across different geographical locations (Lefebre et al., 
2024b). Based on these findings, the variability in variant type allele 
frequencies of the different variants in African bees may be attributed to 
the difference in environmental conditions and their interaction with the 
bees’ genetic background. In line with this, the samples from Ethiopia 
showed slightly higher coordinates in the PCA for Dim 2 compared to 
those from Benin and Uganda, likely due to significantly higher per-
centages of variant alleles for SNP5 found in Ethiopian bees. These 
findings confirm that Ethiopian bees may possess distinct genetic traits 
that differentiate them from other African honeybee populations.

4.2. Allele frequency patterns in African honeybees compared to 
European lineages

According to Lefebre et al. (2024b), the allele frequencies of the eight 
genetic variants associated with DBR are closely linked to the subspecies 
or lineage of A. mellifera. Therefore, the present study analyzed the 

relatedness of African honey bee samples to European lineages (A, C, 
and M lineage) (Lefebre et al., 2024b; Themudo et al., 2020; Tihelka 
et al., 2020) by incorporating allele frequency data of the variants from 
European populations and subsequent exploration by PCA.

According to Dim 1, which explains most of the variance (39.2 %) 
and represents SNP1, SNP4, SNP6 and SNP8, most of the African sam-
ples grouped closely to those from the ssp. Iberiensis lineage A. In line 
with this, the variant type allele frequencies of six variants (SNP1, SNP3, 
SNP4, SNP6, SNP7, and SNP8) are similar between the African honeybee 
samples and those reported for ssp. Iberiensis from Portugal (Lefebre 
et al., 2024b). These results probably demonstrated the genetic simi-
larities between African honeybees and ssp. Iberiensis (Andrews, 2010), 
the latter being known for its high resistance to Varroa mites in Portugal, 
primarily attributed to the SMR trait (Mondet et al., 2020). A key dif-
ference between the two populations is that the variant type allele fre-
quency for SNP2 is significantly high (75–84 %) in African honeybees, 
while it is completely absent in ssp. Iberiensis (0 %) (Lefebre et al., 
2024b). In line with this, in the second dimension, which primarily 
represents SNP2 and SNP5, the African samples exhibited higher co-
ordinates than samples from ssp. Iberiensis, indicating notable genetic 
differences (Andrews, 2010). Therefore, while these two groups shared 
some genetic traits, African honeybees may possess unique protective 
alleles that enhance their resistance to Varroa mites.

The O, M, and C lineages are destributed throughout the Middle East, 
Northern and Western Europe, and Southeastern Europe, respectively 
(Aglagane et al., 2023; Franck et al., 2001; Themudo et al., 2020; 
Tihelka et al., 2020). The honey bee A lineage is prevalent throughout 
nearly all African regions, except Ethiopia (Aglagane et al., 2023; Franck 
et al., 2001; Themudo et al., 2020; Tihelka et al., 2020), as well as in 
Portugal and southwestern Spain (Tihelka et al., 2020).

At k = 2, all African samples formed a distinct cluster together with 
all samples from the European A lineage (Lefebre et al., 2024b). At k = 3, 
the African samples formed clusters alongside some samples from the A 
lineage and a few from the M lineage. However, at k = 4, some samples 
from Benin and Uganda continued to align closely with the A lineage, 
while a few were associated with the M lineage. Similarly, the phylo-
genetic analyses conducted by Amakpe et al., (2018) clustered honey 
bee samples from Benin within the evolutionary A lineage. According to 

Fig. 3. k-means clustering of African and European honeybee samples in the first two PCA dimensions (Dim1 and Dim2). The optimal number of clusters k = 2 (see 
Fig. S2 for all three methods). However, clustering was performed with k = 2, k = 3 and k = 4 to assess whether the clusters remained consistent across different 
values of k.
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Kasangaki et al., (2017), there are two honey bee races, A. m. adansonii 
and A. m. cutellate, in Uganda, both of which belong to the A lineage of 
honeybees (Frazier et al., 2024). However, at k = 4, the genetic relat-
edness of the African honeybee samples did not remain consistent. 
Notably, at k = 4, none of the Ethiopian samples showed relatedness to 
the known lineages of honeybees (A, C, and M), while some samples 
from Benin and Uganda did cluster together with mainly samples from 
the A-lineage. In line with this, the samples from Ethiopia showed higher 
coordinates in the second dimension (Dim2) than those from Benin and 
Uganda. These results may indicate that the Ethiopian bees are distinct 
at the lineage level, and that they differ from populations in neighboring 
geographic regions. These findings strengthen the claim that Ethiopian 
honeybees belong to a unique lineage known as the Y lineage (Aglagane 
et al., 2023; Franck et al., 2001; Themudo et al., 2020). Recent studies 
on the classification and distribution of honey bee subspecies in Ethiopia 
using morphometric and genetic analyses also proposed a unique sub-
species called A. m. simensis (Hailu et al., 2020; Meixner et al., 2011), 
belonging to the unique Y lineage (Tihelka et al., 2020).

In this study, we examined the allelic frequencies and distribution of 
eight SNPs in African A. mellifera subspecies and performed clustering 
analysis based on these frequencies and the data from Lefebre et al., 
(2024a). The observed clustering patterns most probably originate from 
the genetic relatedness between the honey bee subspecies, as genetically 
related subspecies typically exhibit similar allele frequency distributions 
for genetic variants (Lefebre et al., 2024b). In other words, while our 
analysis is based on a limited number of SNPs, the obtained results 
already reflect the potential genetic relationships between the analyzed 
samples. Future studies with a more comprehensive set of genetic 
markers would be valuable for a more robust analysis of genetic relat-
edness among these subspecies.

5. Conclusions

This study provides deep insights into the allele frequencies of eight 
genetic variants (SNPs) associated with DBR in European bees within 
Eastern and Western African honey bee populations. It reveals the 
presence of seven out of eight variants in African A. mellifera subspecies, 
suggesting these variants may contribute to their natural resistance to 
Varroa mite infestations. African honeybees were found to cluster 
together with samples from the A lineage, specifically the subspecies 
A. m. iberiensis. Overall, the presence of most DBR-associated genetic 
variants in African honeybee populations opens opportunities to eluci-
date the predictive properties and potential of these genetic variants in 
honey bee subspecies on the African continent.

Although this study revealed the occurrence and allele frequencies of 
genetic variants (SNPs) associated with SMR in African bees, phenotype- 
genotype associations were not studied. Hence, further research should 
investigate the predictive power of the selected SNPs for Varroa-resistant 
honeybee lines through phenotype-genotype analysis. This additional 
work would provide a more comprehensive understanding of the rela-
tionship between these genetic markers and the SMR trait in African 
honeybee populations.
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Dražić, M. M., Evans, G., Fedoriak, M., Forsythe, I., de Graaf, D., Gregorc, A., 
Soroker, V. Loss rates of honey bee colonies during winter 2017/18 in 36 countries 
participating in the COLOSS survey, including effects of forage sources J. Apic. Res. 
58 4 2019 479 485 10.1080/00218839.2019.1615661.

Haftom, H., Haftu, A., Goitom, K., Meseret, H., 2019. Agroclimatic zonation of Tigray 
region of Ethiopia based on aridity index and traditional agro-climatic zones. 
J. Agrometeorol. 21 (2), 176–181.

Hailu, T.G., D’Alvise, P., Tofilski, A., Fuchs, S., Greiling, J., Rosenkranz, P., 
Hasselmann, M., 2020. Insights into Ethiopian honey bee diversity based on wing 
geomorphometric and mitochondrial DNA analyses. Apidologie 51 (6), 1182–1198. 
https://doi.org/10.1007/s13592-020-00796-9.

Kasangaki, P., Nyamasyo, G., Ndegwa, P., Kajobe, R., Angiro, C., Kato, A., Masembe, C., 
2017. Mitochondrial DNA (mtDNA) markers reveal low genetic variation and the 
presence of two honey bee races in Uganda’s agro-ecological zones. J. Apic. Res. 56 
(2), 112–121. https://doi.org/10.1080/00218839.2017.1287997.

Kevill, J.L., De Souza, F.S., Sharples, C., Oliver, R., Schroeder, D.C., Martin, S.J., 2019. 
DWV-A Lethal to Honey Bees (Apis mellifera): A Colony Level Survey of DWV 
Variants (A, B, and C) in England, Wales, and 32 States across the US. Viruses 11 
(426). https://doi.org/10.3390/v11050426.

Klein, A., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., 
Tscharntke, T., 2007. Importance of pollinators in changing landscapes for world 
crops. Proc. R. Soc. B Biol. Sci. 274 (1608), 303–313. https://doi.org/10.1098/ 
rspb.2006.3721.

Le Conte, Y., De Vaublanc, G., Crauser, D., Jeanne, F., Rousselle, J.C., Bécard, J.M., 2007. 
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