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ABSTRACT
Chronic kidney disease (CKD) poses a significant and growing global health challenge, making early detection and slowing
disease progression essential for improving patient outcomes. Traditional diagnosticmethods such as glomerular filtration rate and
proteinuria are insufficient to capture the complexity of CKD. In contrast, omics technologies have shed light on the molecular
mechanisms of CKD, helping to identify biomarkers for disease assessment and management. Artificial intelligence (AI) and
machine learning (ML) could transform CKD care, enabling biomarker discovery for early diagnosis and risk prediction, and
personalized treatment. By integrating multi-omics datasets, AI can provide real-time, patient-specific insights, improve decision
support, and optimize cost efficiency by early detection and avoidance of unnecessary treatments.Multidisciplinary collaborations
and sophisticated ML methods are essential to advance diagnostic and therapeutic strategies in CKD. This review presents a
comprehensive overview of the pipeline for translating CKD omics data into personalized treatment, covering recent advances
in omics research, the role of ML in CKD, and the critical need for clinical validation of AI-driven discoveries to ensure their
efficacy, relevance, and cost-effectiveness in patient care.

Abbreviations: CKD, chronic kidney disease; CNN, Convolutional Neural Network; CVD, cardiovascular disease; DKD, diabetic kidney disease; DL, deep learning; DN, diabetic nephropathy; eGFR,
estimated glomerular filtration rate; eQTL, expression quantitative trait loci; GFR, glomerular filtration rate; ICM, ischemic cardiomyopathy; K-NN, K-nearest neighbors; LDA, linear discriminant
analysis; LR, logistic regression; ML, machine learning; MLP, multilayer perceptron; MR, mendelian randomization; PLS-DA, partial least squares—discriminant analysis; PPI, protein-protein
interactions; RF, random forest; SNP, single nucleotide polymorphisms; SVM, support vector machines; SVM-RFE, support vector machines-feature recursive elimination; T2D, type 2 diabetes; t-SNE,
t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection.
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1 Introduction

Chronic Kidney Disease (CKD) represents a critical challenge for
public health, affecting approximately 10% of the global popula-
tion and is estimated to become the 5th leading cause of death
worldwide by 2050 [1]. Diabetes and hypertension are the main
causes of CKD [2]. Among patients with CKD, cardiovascular
disease (CVD), accounts for nearly 50% of all deaths compared
to 26% in the population with normal kidney function [3]. CKD
is characterized by a gradual decline in kidney function. In the
early stages, symptoms are unclearwhich oftenmakes the disease
go unnoticed. As the disease progresses, patients may experience
a range of non-specific symptoms. Ultimately, if left untreated,
CKD will lead to irreversible kidney damage, necessitating
expensive kidney replacement therapies (KRT) such as dialysis.
This brings a considerable burden on healthcare systems and the
environment but also significantly impacts patients’ quality of life
[4].

Classification of CKD is based on cause, glomerular filtration
rate (GFR) category, and albuminuria category [5]. However,
they often fail to capture the complexity of diverse outcomes
and variations in disease progression and treatment responses.
In contrast, omics approaches offer a comprehensive analysis
of genes, gene transcripts, proteins and metabolites, generating
big data. This shift has greatly increased our understanding of
CKD’s underlying mechanisms and led to the development of
biomarkers for improved risk assessment [6].

At the end of 2023, the Partnership for Health System Sustainabil-
ity and Resilience (PHSSR) EuropeanUnion (EU) expert advisory
group published policy recommendations to enhance the pre-
vention and early detection of non-communicable diseases,
including CKD and CVD [7]. Implementing these recommen-
dations requires significant efforts in identifying and validating
biomarkers for high-risk individuals, facilitating early diagnosis
and risk stratification.

Artificial Intelligence (AI), particularly Machine learning (ML),
is essential in deepening our understanding of these diseases,
speeding up drug discovery, and facilitating drug repurposing.
ML algorithms and big data resources, particularly omics data,
have the potential to uncover novel biomarkers for early CKD
detection and monitoring. While previous review articles have
discussed the potential of big data and ML in nephrology, most
focus on electronic health records (EHR) or provide a broad
overview of kidney diseases. Few reviews address insights from
omics studies in nephrology and kidney disease with particularly
limited coverage of CKD [8–12].

This review examines the unique characteristics of various omic
layers, key consortia supporting CKD omics research, and the
evolving landscape of ML for deriving insights from complex
omics datasets. Additionally, we emphasize the need for rigorous
preclinical and clinical validation of ML findings to ensure their
clinical relevance and the development of models to estimate
the cost-effectiveness of AI-driven discoveries in clinical practice.
These combined multidisciplinary efforts are essential steps
toward achieving personalized medicine in CKD (Figure 1).

2 The Promise of Omics in CKD Clinics and
Research

2.1 The Omics Landscape of CKD

Omics data have significantly advanced our understanding of the
biological mechanisms driving the high heterogeneity of CKD.
Here, we summarize key insights across various omics studies
conducted in CKD patients.

2.1.1 Genetic Polymorphisms

Genome-wide association studies have identified genetic poly-
morphisms linked to CKD, particularly single nucleotide poly-
morphisms (SNPs), with ancestry-dependent variations [13].
Genes such as non-muscle myosin heavy chain 9 (MYH9),
apolipoprotein L1 (APOL1), apolipoprotein E (APOE), SPARC-
related modular calcium-binding 2 (SMOC2), Telomerase reverse
transcriptase (TERT), collagen type IV (COL4), and uromodulin
(UMOD), among others, have been implicated in CKD risk across
diverse population [14]. Moreover, recent Mendelian random-
ization (MR) studies have linked genetic variants to CKD onset
and progression, identifying causal risk factors [15]. Expression
quantitative trait loci (eQTL) analyses have further highlighted
novel targets, including lysosomal β-glucosidase, TGF-β, and
DAB2 [16, 17].

2.1.2 Epigenomics

Epigenetic mechanisms such as DNA methylation, histone
modifications, and non-coding RNAs play vital roles in CKD,
mediating genetic-environment interactions [18, 19]. The most
well-known epigenetic marks include DNA methylation of
cytosines, post-translational modifications (PTMs) of histones,
and non-coding RNAs (ncRNA) [20, 21]. Current findings suggest
that methylation risk scores could improve CKD classification
and predict disease progression [22, 23], while studies show that
diabetic kidney disease (DKD) involves hyperglycemia-induced
epigenetic modifications affecting mitochondrial function and
immune activation [23].

2.1.3 Transcriptomics

Transcriptomics studies in CKD and more specifically dia-
betic nephropathy (DN) have focused on messenger RNA
(mRNA), microRNA (miRNA) [24, 25], and different ncRNA
[26–28]. Advances from microarrays and bulk RNA-seq to
single-cell RNA-seq (scRNA-seq) and spatial transcriptomics,
have enabled the identification of key kidney cell types and
their responses to injury [29, 30]. Recently, a scRNA-seq
study explored kidney-protective mechanisms, identifying target
cells of mineralocorticoid receptor antagonists [31]. Another
recent study demonstrated that SGLT2 inhibitors benefit DKD
patients by suppressing mTORC1 signaling in kidney tubules,
thereby reducing transcript levels in key metabolic pathways
[32].

2 of 14 Proteomics, 2025

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400108 by U
niversiteitsbibliotheek G

ent, W
iley O

nline L
ibrary on [03/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 1 The multi-omics ML pipeline in chronic kidney disease (CKD). Achieving early disease detection, risk prediction, and personalized
medicine in CKD requires an interdisciplinary approach. Integrating available omics datasets from various experimental and clinical studies is essential.
ML is promising to extract insights from complex omics datasets, but external validation is necessary to ensure clinical relevance and assess cost-
effectiveness. Optimization of the entire pipeline (data availability, standardized disease, and preclinical and clinical validation) is of utmost importance
to allow developing novel tools and improving patient outcomes in CKD. Created with BioRender.com.

2.1.4 Proteomics andMetabolomics

Classic CKD metabolic markers including urea, creatinine, and
uric acid, as well as proteins such as albumin, and cystatin
C, remain essential in clinics, while emerging proteomic and
metabolomic biomarkers have been proposed for implementa-
tion into clinical practice [33, 34]. Novel proteomic biomarkers,
including retinol-binding protein 4, alpha-1 anti-chymotrypsin,
apolipoprotein C-III, apolipoprotein L1, haptoglobin, and vit-
ronectin, have been associated with kidney function and the
diagnosis of CKD [35, 36]. Recent proteome-wideMR studies have
identified novel therapeutic targets for CKD across diverse ances-
tral groups and 21 blood proteins as potential therapeutic targets
for DKD [37, 38]. Futhermore, Si et al. identified 32 potential CKD
drug targets by integrating proteome and transcriptome data,
validating 20 novel causal proteins, including GCKR, IGFBP-5,
sRAGE, GNPTG, and YOD1 [39].

Moreover, recent metabolomic analyses have shown a global
suppression of mitochondrial activity in DKD and DN, along

with the identification of disease-specific patterns associated
with the diagnosis and early detection of these conditions [40,
41]. Metabolites such as 3-hydroxyisobutyrate (3-HIBA) and 3-
methylcrotonylglycine were significantly negatively associated
with eGFR slope, while citric and aconitic acid were positively
associated, even after adjusting for clinical variables [42]. Addi-
tionally, pantothenic acid (PA) and the CoA biosynthesis pathway
were identified as biomarkers for early DKD detection and
progression [43].

2.1.5 Spatial Omics

Recent advances in spatial multi-omics technologies have
revealed novel insights into the intricate interplay of molecular,
cellular, and tissue-level mechanisms driving CKD. Abedini
et al. utilized spatial transcriptomics to study CKD, uncov-
ering localized pathways of fibrosis and inflammation that
are pivotal to disease progression [44]. Similarly, spatial pro-
teomic, epigenomic, and metabolomic approaches have revealed
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molecular heterogeneity across distinct anatomical regions, iden-
tifying pleckstrin-homology-domain-containing A1 (PLEKHA1)
as a potential biomarker associated with CKD development
[45]. Moreover, a spatial multi-omics study of long-standing
DKD identified regionally distributed molecular clusters and
cell-specific responses, including differentially expressed lipid
metabolites in the inner medullary regions [46].

2.2 Open and Collaborative Research in CKD

The rapid expansion of omics technologies has generated vast
amounts of experimental data, much of which remains under-
utilized despite their potential. This observation underscores the
need for accessible, well-curated databases to support efficient
data storage, management, and sharing. In CKD, kidney-specific
omics databases provide valuable insights into disease mecha-
nisms and potential molecular targets, significantly advancing
medical research [9, 47, 48]. Data sharing not only reduces
redundant analyses and associated costs but also facilitates the
study of complex datasets derived from otherwise challenging
samples, such as invasive kidney biopsies.

The recently published atlas of healthy and injured human
kidneys combines transcriptomic, epigenomics, and 3D imaging
data from various kidney biopsy biobanks and databases [29]. It
relies on the Kidney Precision Medicine Project (KPMP), which
provides open access to standard and multi-omics data from
kidney biopsies [26, 49, 50]. Other significantmulti-omics sources
include the Human BioMolecular Atlas Program (HuBMAP) and
the Human Cell Atlas (HCA) although its kidney atlas is not
yet publicly accessible [51, 52]. Several web applications allow
for the analysis of kidney-specific transcriptomics datasets at
varying levels of complexity and flexibility, such as the Nephroseq
platform the NEPTUNE-Study NephQTL, Human Kidney eQTL
Atlas NephroCell and Kidney Interactive Transcriptomics [53–
58].More recently, theNIH-NIDDKAtlas-D2K platformwas built
to integrate kidney and genito-urinary tract histology and tran-
scriptomics data from the GUDMAP and ReBuilding a Kidney
(RBK) consortia [59].

Genetic associations with kidney function have been explored
using public datasets such as CKDGen PheWeb and the UK
Biobank [55, 60–63]. While no blood or urine CKD-specific
proteomics databases were identified, the MassIVE repository
and the preclinical Kidney omics database may provide valuable
resources [64, 65]. The latter, in particular, contains a database of
1160 urinary exosome proteins from healthy volunteers [66, 67].
The Extracellular Vesicles miRNA Database (EVmiRNA; [68])
gathers miRNA profiling from different sources of exosomes and
microvesicles including urine. Urinary exosomes are interest-
ing material for CKD studies, as they directly originate from
urogenital cells [69].

The PRIME-CKD Consortium [56] (prime-ckd.com) aims to
promote clinical research in CKD by validating biomarkers and
developing procedures for personalized medicine in CKD. The
Biomarker Enterprise to Attack Diabetic Kidney Disease consor-
tium (BEAt-DKD) personalized medicine and omics approaches
to prevent diabetes, the leading cause of CKD, while the PRIOR-
ITY Study addressed DKD prevention [70–72]. The recent SIG-

NAL project (Body fluid proteome SIGnatures for persoNALised
intervention to prevent cardiovascular and renal complications in
diabetes) seeks to identify proteomic signatures for personalized
interventions in diabetes-related complications.

Papadopoulos et al. listed various omics data repositories, noting
that only Nephroseq remains active among seven kidney-specific
initiatives, while RGED is under updates [48, 73]. General omics
repositories continue to function, except for the Multi-Omics
Profiling Expression Database (MOPED), highlighting that larger
repositories are better suited for long-term data preservation [9,
48].

3 Statistical and Machine Learning Approaches
for CKD

This section outlines key trends in applying statistics and ML
to CKD omics data, addressing CKD’s unique challenges while
raising awareness in the CKD community of the clinical benefits
these advancements offer.

3.1 Supervised Learning

Supervised learning, especially classification and regression, is
key in predicting CKD-related phenotypes, stages, and conditions
like T2D, DKD, and DN. Various methods, from linear models to
advanced non-linear approaches, are summarized in Table 1.

Logistic regression (LR) is widely used for supervised classifica-
tion due to its simplicity and interpretability. Fan et al. applied
LRmodels to urine proteomics data to differentiate between CKD
types, while identifying 5-MTP, homocysteine, and citrulline as
CKD biomarkers from plasma and urine metabolic data [74, 75].
Kammer et al. applied Bayesian LR to amulti-omics DKD dataset
to predict eGFR decline, finding KIM-1 and NTproBNP as key
predictors [76].

Good et al. developed the CKD273 classifier, a Support Vector
Machine (SVM) model based on a 273-peptide urine panel, to
distinguish kidney disease from controls, validated in multiple
following studies [6, 77–79].

Numerous CKD studies have compared ML algorithms on omics
data for disease prediction and staging. Huang et al. used SVM,
Random Forest (RF), and AdaBoost on serum metabolomics,
identifying sphingomyelin C18:1 and phosphatidylcholine diacyl
C38:0 as biomarkers in CKD in prediabetes or T2D patients [80].
Zhong et al. analyzed seven DKD transcriptomics datasets with
the least absolute shrinkage and selection operator (lasso) LR, RF,
and SVM-Recursive Feature Elimination (SVM-RFE), disclosing
TNC, PXDN, TIMP1, and TPM1 as markers linked to oxidative
stress and inflammation [81]. Similarly, Yan et al. used lasso and
RF on proteomics to highlight KLK1, CSPG4, PLAU, SERPINA3,
and ALB as urine biomarkers of DN [82]. Liu et al. applied
five ML models (Linear Discriminant Analysis (LDA), SVM, RF,
LR, Partial Least Squares—Discriminant Analysis (PLS-DA)) on
serum metabolomics and proteomics, distinguishing DKD from
healthy controls and identifying α2-macroglobulin, cathepsin D,
CD324, and glycerol-3-galactoside as biomarkers [83].

4 of 14 Proteomics, 2025

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400108 by U
niversiteitsbibliotheek G

ent, W
iley O

nline L
ibrary on [03/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 Summary of studies reporting the use of supervised learning algorithms for the prediction of CKD-related conditions.

Method Variable type Sample type Outcome variable Reference

LR Proteomics Urine DKD vs Diabetes;
DKD stages

[74]

PCA, PLS-DA, LR Metabolomics Plasma
Urine

CKD vs healthy [75]

K-NN, PCA, SVM, LR, decision
trees

Proteomics
Metabolomics
Lipidomics

Plasma Fast eGFR progression vs stable
eGFR course

[76]

SVM Proteomics Urine Kidney disease vs healthy [77]
SVM, Cox regression Proteomics Urine CKD stages;

CV events
[6]

Priority-Lasso, multivariate LR,
SVM, RF, AdaBoost

Metabolomics Serum CKD vs non-CKD [6, 80]

Lasso, RF, SVM-RFE Transcriptomics Kidney Tissue CKD vs healthy [111]
Lasso, RF Proteomics Urine T2D vs healthy [82]
LDA, SVM, RF, LR, PLS-DA Proteomics

Metabolomics
Serum DKD vs health;

DKD stages
[83]

K-NN, PCA, SVM, LR, decision
trees

Proteomics Plasma
Urine

CKD vs healthy;
Different CKD conditions

[84]

Lasso, RF, Naïve Bayes, K-NN,
Extreme Gradient Boosting

Single-Cell
Transcriptomics

Heart Tissue
and CKD
Peripheral
Blood

Mononuclear
Cells

CKD-related ICM [85]

DL, LR, RF, SVM Metabolomics Plasma
Urine

Rapid eGFR decliners vs.
non-rapid eGFR decliners

[86]

MLP, CNN, DDA, multinomial
LR, Naïve Bayes, RF, SVM

Metabolomics n.r. CKD stages and healthy [88]

Lasso, LR, hierarchical
clustering, PCA, RF, SVM,
multinomial LR, MLP, CNN

Metabolomics Serum CKD stages vs healthy [87]

Abbreviations: LR, logistic regression; PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; K-NN, K-nearest neighbors; SVM,
support vector machine; SVM-RFE, support vector machine-recursive feature elimination; RF, random forest; DL, deep learning; MLP, multilayer perceptron;
CNN, convolutional neural network; n.r., not reported.

Glazyrin et al. foundK-Nearest Neighbors (K-NN) effective in dif-
ferentiating CKD conditions from plasma and urine proteomics
data [84], while Naïve Bayes outperformed other models for
identifying CKD-related ischemic cardiomyopathy (ICM) [85].

Deep learning (DL) has emerged as a powerful tool for analyzing
high-dimensional, non-linear, and heterogeneous multi-omics
datasets. Hirakawa et al. applied DL on plasma and urine
metabolomics to predict eGFR change rates, outperforming LR,
RM, and SVM, and identifying biomarkers like systolic blood
pressure, albumin-to-creatinine ratio, and sixmetabolites, includ-
ing urinary 1-methylpyridin-1-ium (NMP) [86]. Comparisons
showed that Multilayer Perceptrons (MLP), and RF achieved
the highest accuracy for CKD stage classification based on
metabolomics data [87, 88].

3.2 Unsupervised Learning

Unsupervised learning uncovers hidden patterns in high-
dimensional, unlabeled omics data, which is especially useful
when disease classifications are unclear. In CKD studies, Eoli
et al. applied nonnegativematrix factorization (NMF), identifying
nine clusters related to kidney function, T2D, and body weight
[89]. Wilson et al. used canonical correlation analysis and
clustering on single-nucleus RNA-seq data from human DN,
discovering early kidney responses, such as increased potassium
secretion, decreased paracellular calcium and magnesium
reabsorption, and angiogenic signaling [90]. Reznichenko et al.
employed Self-Organizing Maps and hierarchical clustering
on transcriptomics, identifying four distinct molecular disease
categories and a 25-protein signature [57].

Other unsupervised methods include dimensionality reduction
techniques, such as Principal Component Analysis (PCA), t-
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distributed Stochastic Neighbor Embedding (t-SNE), and Uni-
form Manifold Approximation and Projection (UMAP), which
reveal hidden structures and aid in visualization. PCA, a linear
method, reduces complexity by identifying components that
capture maximum variance, while UMAP and t-SNE, both non-
linear, preserve local and global structures. PCA has been widely
applied to omics data to identify CKD-related groups, (e.g.,
[75, 84, 87] while UMAP and t-SNE have also been applied
to single-cell transcriptomics data [29, 82]. The resulting latent
representations were then input to clustering algorithms like
k-means and Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), which partition data based on distance or
density, respectively.

3.3 Multi-Omics Data Integration

Combining multi-omics data from high-throughput technologies
is essential for unraveling complex biological mechanisms that
single-omics methods fail to explain. This integration results
in significant data heterogeneity and high dimensionality, often
with small sample sizes, which pose statistical and computational
challenges. To address these challenges, matrix decomposition-
based methods, particularly DIABLO Singh et al., uncover latent
factors that represent key biological variations across various
omics datasets [91]. DIABLO has identified mechanisms and
biomarkers in various disease conditions including T2D, a CKD
risk factor, where it showed strong predictive performance when
integrating RNA-seq, DNA methylation, SNPs, and phenotypic
data [92–95].

Another sparsity-inducing method accounting for multiple data,
Priority-Lasso, prioritizes certain variable groups (e.g., clinical or
omics data) in model fitting. High priority is often given to easily
or inexpensively collected data, especially in clinical settings
where certain types are routinely available. Huang et al. used
Priority-Lasso as part of a three-step feature selection procedure
before a classification task using several ML models to predict
CKD incidence [80].

3.4 Network Discovery and Analysis

Network-based algorithms can facilitate the modeling and analy-
sis of vast, highly diverse biomedical knowledge by representing
data as interconnected graphs, where nodes correspond to
entities, such as genes or diseases, and edges capture their
relationships. Resources like PPI networks (e.g., STRING) and
GOpathways are essential for CKD research, providing validation
for findings and serving as prior knowledge for ML [39, 96].
These networks can be directly analyzed to extract findings, as
performed by Masoudi-Sobhanzadeh et al. who detected key
nodes of CKD PPI networks by an optimization approach [97].

Correlation methods effectively identify pairwise associations
from omics data. Ahmed et al. used Mutual Information to
analyze gene networks in DKD, uncovering clusters of dysregu-
lated genes in immune pathways, consistent with prior research
on inflammation’s role in DKD [98]. Langfelder and Horvath
developed theWeightedCorrelationNetworkAnalysis (WGCNA)
R package, which offers a collection of correlation-basedmethods

for gene expression network inference and analysis [99]. This
package has been widely employed in CKD studies (e.g., [81,
100, 101]) performing differential gene expression (DEG) analysis,
consensus clustering for gene module identification, and net-
work inference. The analysis of these networks has successfully
identified biomarkers of CKD progression through methods like
lasso, SVM-RFE, and RF, all integrated within the WGCNA
package.

While advancements in network inference have led to more
sophisticated methods, their application to CKD remains limited
[102]. The graphical lasso (glasso) method infers sparse networks
from data, estimating a precision matrix whose entries are zero
if the corresponding variables are conditionally independent
given the others in the network [103]. Ma et al. extended
Glasso method to jointly estimate networks of different groups
of CKD patients from lipidomics data, identifying subnetworks
that differentiate CKD progressors from non-progressors [104].
A similar methodological approach was proposed by Danaher
et al. with the Joint Graphical Lasso method, estimating sparse
networks across patient subgroups using dual penalties [105].

When integrating diverse data types, mixed graphical models
can be employed. Altenbuchinger et al. combined metabolomics
with clinical data to identify associationswith CKD comorbidities
[106].

These methods elucidate biological associations, but they do not
imply causation. Undirected networks can provide a foundation
for discovering causal relationships through complementary
methodologies [107], while Bayesian approaches and MR studies
can infer causality directly [108].

After deriving a network, analyzing relationships is essential for
insights. Centrality measures, such as closeness and between-
ness, alongside community detection methods like the Leiden
algorithm, may identify key nodes as potential drug targets
[109] or clusters of biologically meaningful nodes [110]. Pathway
identification reveals significant biological pathways enriched
with differentially expressed genes, supported by databases like
KEGG and Reactome [111]. Pathfinding algorithms can detect
optimal relationships among biomedical entities by identifying
the shortest or longest path connecting two nodes. In CKD,
the Minimum Weight Spanning Tree was applied to find the
minimum spanning tree of cytokine relationships, highlighting
IL-1β’s central role inCKD inflammation [112]. Eachmethodology
reveals distinct properties of network nodes. Figure 2 illustrates
key features of a specific network based on the type of analysis
applied.

3.5 Biomarker Selection

Identifying biomarkers of disease development and progression
requires appropriate strategies that can shift through the high
dimensionality of omics datasets to pinpoint the most relevant
molecular features distinguishing between disease groups. This
can be achieved through, for example, using variable filter-
ing techniques based on independent relevance measures (e.g.,
variance, correlation), supervised and unsupervised models, or
network analysis techniques, as outlined above.
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FIGURE 2 Hypothetical graph illustrating key topological features
of a network. The blue node indicates a high degree of centrality, while
the red node represents high betweenness centrality. Given a disease-
associated node A, and a predicted target B, the shortest path between
nodes A and B is highlighted in green, while the longest path is shown in
yellow. The dashed purple lines indicate sample clusters.

Sparsity-inducing models are among the most popular for high-
dimensional,multicollinear omics data, optimizingmodel perfor-
mancewhile selecting biologicallymeaningful features. The lasso
[113] uses an L1-norm penalty to enforce sparsity by shrinking
less important model coefficients to zero, selecting only the most
relevant variables. Lasso regression has been applied in CKD and
DN studies to select metabolomics and transcriptomics features
as potential biomarkers [80–82, 87, 100]. The lasso method has
also been combined with RF, which ranks feature importance,
and the Boruta algorithm, a RF-based wrapper method, to
identify candidate genes associated with CKD-ICM [85].

4 Translational Value of Omics-Derived Findings

4.1 Validation Studies

Biological validation is essential after identifying diagnostic and
prognostic markers through ML, yet many studies lack verifica-
tion in external cohorts or experiments. This step is crucial to
confirm clinical relevance. Most CKD ML studies target disease
progression [114], risk prediction [115], biomarker discovery, and
pathophysiology [116], often using EHR or, more recently, omics
data. Typically, models are developed with a training dataset
and evaluated on a testing dataset, often from single-center data
(internal validation). External validation with independent data
is usually lacking and noted as a study limitation. Exceptionally,
a diagnostic model for CKD-ICM based on 13 candidate genes
was validated both internally and externally, using different GEO
datasets than the ones used to develop the model [85]. Xie
et al. identified differentially expressed genes associated with
neutrophil extracellular traps (NETs) in human DKD kidney
biopsy datasets and validated the results using single-nucleus
(sn) RNA sequencing datasets [116]. Chen et al. performed
multi-omics data integration using an assay for transposase-
accessible chromatin-seq and scRNA-seq GEO datasets and
scRNA-seq in human kidneys, to evaluate the transcriptional
dynamics in fibrotic kidneys across mouse and human [117].

Additionally, the Nuclear Factor 1 X-type (NFIX) promoting
the apoptosis-related gene Interferon alpha-inducible protein
27 (IFI27) expression found by multimodal data was validated
in an in vivo Adenoma-Associated Virus (AAV)-injected and
unilateral ureteral obstruction mouse model, showing that the
IFI27 level within the kidney was associated with fibrosis [117].
Also, Zhong et al. validated four diagnostic markers for DKD
(tenascin C, peroxidasin, tissue inhibitor metalloproteinases 1,
and tropomyosinin), using a human transcriptome GEO dataset
and in a mouse model of DM and DKD [81]. Despite the surge in
CKD-related-omics studies, external validation remains limited.
Only through interdisciplinary collaboration, standardized pre-
clinical models, and accessible high-quality -omics data can we
ensure societal return on investment and patient benefit.

4.2 AI-Discovered Drugs

Following preclinical validation, ML-derived biomarkers must be
assessed in clinical trials to confirm their safety, efficacy, and
clinical utility, ensuring they reliably predict or monitor disease
progression and treatment response for patient care. Jayatunga
et al. recently evaluated the clinical trial success rates of AI-
discovered drugs [118]. Their analysis was based on 75 clinically
tested compounds since 2015 when screening the pipelines
from over 100 AI-native biotech companies. AI-discovered drugs
included AI-discovered small molecules, biologicals, and vac-
cines, AI-repurposed drugs, as well as compounds addressing
AI-discovered drug targets. The phase I success rate of around 87%
is impressive and higher than the industry standard. This number
is however based on a small sample size with 21 of 24 compounds
being successful in phase I trials. The number of AI-discovered
drugs with results from phase II clinical programs is even smaller
with four out of 10 compounds (40%) being considered successful,
which is in the range of success rates for the pharmaceutical
industry in general. Around half of the studies of AI-discovered
drugs were conducted in the field of oncology. This is in line with
data consolidated byAndrii Buvailowho investigated the pipeline
programs of some of the largest AI-native biotech companies
over the last 5 years [https://www.biopharmatrend.com/ai-drug-
discovery-pipeline/]. There are a few AI-native biotechs with
development programs in the field of nephrology including
Insilico Medicine, BenevolentAI, Schrödinger, and Valo Health.
BenevolentAI has one co-development program together with
AstraZeneca ongoing in the context of chronic kidney disease,
however only being in the discovery phase so far. Insilico
Medicine is testing a Traf2- and Nck-interacting protein kinase
(TNIK) inhibitor in the context of kidney fibrosis as well as the
prolyl hydroxylases (PHD)1/2 inhibitor for anemia in chronic kid-
ney disease. Schrödinger is running a co-development program
together with Bristol Myers Squibb with a focus on renal cell
carcinoma. None of these compounds have so far progressed to
clinical stage II testing, however. Delta4 used computational drug
repositioning to identify clopidogrel as an attractive therapeutic
option for the treatment of focal segmental glomerulosclerosis
and proposed a phase II trial as a productive next step [119].
The most mature program in the context of kidney disease is a
sphingosine-1-phosphate (S1P)1 agonist that is currently tested
in phase II trials in heart failure and acute kidney injury by
Valo Health. The provided data from Jayatunga et al. on success
rates of AI-based drugs across all therapeutic areas are promising
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although still being based on a small sample size. This holds even
more true when we only consider AI-discovered drugs in the area
of nephrology where only very few compounds have yet entered
clinical testing.

5 Economics and Cost-Effectiveness of AI in
CKDManagement

5.1 Cost-Effectiveness of AI in Healthcare

AI is increasingly being recognized for its potential to enhance
healthcare outcomes while reducing costs, particularly in the
management of chronic diseases like CKD. Given the growing
burden of CKD worldwide, the use of AI for early detection,
risk stratification, and personalized treatment offers signifi-
cant opportunities for cost savings. Wolff et al. highlight the
importance of conducting detailed cost-effectiveness studies to
quantify the benefits of AI technologies in healthcare settings
[120].

Early diagnosis and intervention through AI represent crucial
economic advantages in CKD management. By leveraging AI’s
predictive capabilities, healthcare systems can identify at-risk
patients before they develop severe symptoms, potentially saving
millions in treatment costs [121, 122]. For instance, detecting
CKD in its early stages allows for lifestyle modifications and
preventive treatments that cost significantly less than late-stage
interventions like dialysis or transplantation. The economic
impact is substantial, as early-stage CKD management costs are
typically a small fraction of the extensive costs associated with
dialysis treatment. AI’s predictive models have demonstrated
particular effectiveness in early-stage CKD, where they can
prevent progression to end-stage renal disease (ESRD), which is
associated with the highest treatment costs [123]. Studies have
shown that AI-driven early detection and intervention systems
can significantly reduce hospitalization rates through real-time
monitoring and personalized interventions [124],making a strong
economic case for preventive care in CKD management.

5.1.1 Cost-Saving Potential of AI in CKD

AI shows strong potential to reduce CKD management costs by
enhancing diagnostic and therapeutic processes. Through large
dataset analysis, ML models identify early-stage CKD, which
is key to slowing disease progression and reducing reliance on
costly treatments such as dialysis or transplantation [121, 123].
This is significant, given the high treatment costs; for instance,
Medicare’s CKD spending in the United States reached nearly
USD 100 billion in 2015 [125].

Predictive AI models help forecast CKD progression, enabling
timely treatment adjustments that prevent costly hospitalizations
[122, 126]. This is crucial, especially given the disparities in CKD-
related disability-adjusted life-years (DALYs) across countries
with lower socio-demographic indexes, showing AI’s role in
alleviating CKD’s economic burden [127].

Additionally, AIminimizesmedical errors and improves resource
allocation by identifying high-risk CKD patients who need

prioritized care. Studies indicate that AI can reduce CKD hos-
pitalizations by up to 30% through real-time monitoring and
personalized care [124]. Integrating AI with telemedicine further
enhances patient monitoring, reducing in-person visit frequency
and easing outpatient care costs and provider workload [128].

5.1.2 Comparing Diagnostic AI and Therapeutic AI

The cost-effectiveness of AI in CKDmanagement varies by appli-
cation. AI-driven diagnostic tools, particularly those analyzing
medical data and images, are highly accurate but most cost-
effective when leading to actionable results. For example, AI can
analyze clinical data to detect CKD progression patterns earlier
than traditional methods, enabling interventions that may lower
future treatment costs [121, 123].

AI in treatment management offers greater long-term savings.
AI-driven models that adjust therapies based on patient data
optimize medication dosages, reduce side effects, and lower
progression risks [126]. Based on their systematic review, Vithlani
et al. found that 13 out of 21 studies (62%) demonstrated AI-
based healthcare interventions to be cost-effective or cost-saving
compared to standard care, though most studies had significant
methodological limitations and lacked transparent reporting
about implementation costs [129].

5.2 Health Economic Models Versus
Cost-Effectiveness Models

Health economic and cost-effectiveness models are vital for eval-
uating the financial impact of AI in CKD management, guiding
policymakers and healthcare providers in resource allocation for
AI infrastructure.

5.2.1 Health Economic Models in CKD and AI

Health economic models consider both direct (e.g., equipment,
training) and indirect costs (e.g., hospitalizations, long-term care)
of AI technologies. Wolff et al. stress these models’ importance in
understanding CKD’s economic burden and AI’s role in reducing
it through early diagnosis and personalized care [120]. AI-driven
decision support systems help optimize healthcare resources,
focusing on high-risk patients to cut unnecessary treatments
and readmissions, major cost contributors in CKD [130]. By
integrating ERH and omics data, AI improves risk assessment,
leading to more cost-effective decisions [124]. These models also
assess AI scalability, providing a full view of its economic viability
and supporting early AI adoption for long-term savings [122, 129].

5.2.2 Cost-effectiveness Models in CKD and AI

Cost-effectiveness models compare AI intervention costs and
outcomes to traditional approaches, often usingQuality-Adjusted
Life Years (QALYs) to evaluate value [126]. In CKD, AI often
incurs higher upfront costs but provides substantial long-term
savings by enhancing patient outcomes and reducing late-stage
interventions. For instance, Xie et al. found AI most cost-
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effective in early-stage CKD, preventing progression to costly
kidney failure [123]. However, these models indicate that cost-
effectiveness depends on healthcare settings that can support
AI infrastructure [121]. Additionally, AI improves QALYs by
enabling timely, targeted treatments that delay CKD progression,
enhancing both patient well-being and long-term cost savings
[122, 130].

5.2.3 Challenges in Modeling AI’s Economic Impact

While valuable, these models face challenges. Wolff et al. note
that traditional models struggle to capture AI’s dynamic nature,
as AI systems continuously adapt to new data, complicating long-
term predictions [120]. Furthermore, cost-effectiveness models
tend to emphasize short-term outcomes, potentially overlooking
AI’s long-term benefits in preventing complications [124, 130].
Additionally, ethical and legal considerations such as data pri-
vacy, consent, and liability carry economic implications [131, 132].
Future research should develop models that reflect AI’s evolving
capabilities and address these ethical complexities to enhance
CKD management.

6 Future Directions for AI and
Cost-Effectiveness in CKD

This review outlines key steps for translating omics research
into cost-effective clinical strategies for CKDmanagement.While
integrating omics data with advanced ML offers clear benefits,
limitations remain that need addressing to improve data and AI
tool efficacy in CKD care. Below we highlight future directions
and opportunities in AI for CKD care.

6.1 DataAvailability

Despite various consortia creating valuable datasets, access is
often hindered by inactive databases or fragmented data sources.
Moreover, many CKD-specific omics databases do not provide
raw or preprocessed data, limiting research and analysis, as they
mainly support validation by allowing disease-related molecular
signature assessments [9, 47, 48]. General repositories offer
CKD samples with raw or preprocessed omics data but often
restrict access to clinical data. Platforms like the Registry of
Research Data Repositories and Database Commons centralize
resources for reuse, while project websites control data openness
[133–135]. The PerMediK network addresses these challenges,
promoting data sharing, integration, and analysis for ML-driven
personalized medicine in CKD [136].

6.2 Validation Studies

Future efforts should focus on validating ML findings with
independent datasets to improve generalizability and clinical
efficacy. Biomarker discoveries must also be followed by deeper
investigations into pathological mechanisms using diverse exper-
imental models. The International Society of Nephrology’s 2023
guidance on preclinical animal models in translational nephrol-
ogy underscores the importance of model standardization [137].

Although primarily intended for drug development, these guide-
lines also aid in selecting models that closely mimic human
CKDmechanisms. Additionally, the 3R principles (Replacement,
Reduction, Refinement) should guide the process, encouraging
alternatives like organs-on-a-chip or organoids where possible
[138, 139].

6.3 Advancing AI Cost-Effectiveness in CKD

To achieve cost-effective AI in CKD care, AI must deliver
actionable insights for timely interventions and prevent costly
complications. While initial investments in infrastructure and
skilled personnel are substantial, AI’s ability to reduce hospi-
talizations, improve diagnostic accuracy, and enhance patient
adherence presents clear long-term economic benefits. Future
research should increase the application and development of
AI algorithms for CKD diagnosis and treatment through multi-
omics data integration, facilitating targeted preventive interven-
tions that contribute to overall cost savings [140]. ML can identify
high-risk patients for earlier interventions and personalized care
[121, 129]. Furthermore, advances in cloud computing and edge
AI support real-time decision-making by aggregating multiple
sources of data [124, 126, 130].

6.4 Policy Recommendations for AI Adoption in
CKD Care

Supportive policies are essential for AI’s widespread adoption
in CKD care. Regulatory clarity, data privacy, and standardiza-
tion are critical challenges [120]. Policymakers should establish
guidelines to ensure AI accuracy, safety, and data security. Incen-
tives, such as grants and partnerships, can help low-resource
institutions offset initial AI costs, encouraging broader adoption
[130]. Collaboration among governments, healthcare providers,
and tech firms could produce tailored, cost-effective AI solutions
[122].

6.5 Addressing Research Gaps and Challenges

Standardization and explainability are major challenges for AI
in CKD management. Differences in data quality, demographics,
and infrastructure affect AI performance, reducing generaliz-
ability [124]. Future research should focus on adaptable models
that maintain accuracy across diverse settings. Additionally,
enhancing AI explainability is crucial for provider and patient
trust, requiring transparency in algorithms [121, 141].

6.6 Expanding the AI’s Role in Preventive CKD
Care

AI’s future in CKD may extend to preventive strategies by iden-
tifying early signs in asymptomatic patients, supporting lifestyle
modifications, and early interventions [129, 130]. Integration
with health monitoring tech could allow AI to predict health
deterioration, reducing the need for intensive interventions and
lowering long-term CKD treatment costs [122, 124].
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6.7 Multidisciplinary Collaboration

The successful integration of AI into CKDmanagement holds the
promise ofmore efficient, effective, and economically sustainable
care, balancing innovationwith healthcare realities. The future of
AI in CKD benefits from multidisciplinary collaboration among
data scientists, clinicians, bioinformaticians, and policymakers.
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