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Abstract 

Multiphase polymeric materials and applications play a prominent role in our society. One of the key 

challenges is the design and modification of their macromolecules so that the composition and 

structuring of the phases as well as the interactions between them can be controlled from the molecular 

scale onwards. In the present contribution, it is highlighted that more recently developed event driven 

(kinetic) Monte Carlo models provide an interesting framework to grasp molecular variations over 

various length scales. The strength lies in the tracking of individual molecules per phase of interest so 

that interphase transfer events can be sampled based on the distributed nature of the (macro)molecules 

present. Hence, the micro-scale of local concentrations and temperatures can be connected to the meso-

scale defining interphase transport and morphological variations, with an additional connection to the 

macro- or application scale within reach by adding macro-scale transfer events to the overall sampling 

scheme. Starting from a benchmark coupled matrix based Monte Carlo (CMMC) study on the 

multiphase formation of engineering composites which explicitly acknowledges the type of 

(macro)molecules present in each phase, it is showcased that the CMMC framework can support the 

general field of energy and electronics applications. This is highlighted through (i) a case study devoted 

to the design of polymer electrolytes for batteries, and (ii) a case study on blend design for the regulated 

stretching of piezoresistive sensors.  
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Introduction 

Multiphase polymeric materials play a crucial role in our society, with applications such as drug 

delivery, batteries, solar cells, high-tech engineering composites, and sensors [1-4]. A key challenge for 

these materials and their applications is the dedicated design of the morphology [5], e.g. core-shell, co-

continuous, Janus shaped, or fibrillose alignment, allowing to optimize the final properties in several 

directions, e.g. strength, conductivity, permeability, transparency, and/or capacity [6-8]. 

Important research questions that arise to facilitate such design are: (i) Which type of polymeric phases 

are needed to obtain multi-functionality?; (ii) Which amount is required of each phase to obtain a certain 

morphology?; (iii) What is the most optimal (nano)structuring of the phases involved?; (iv) How to 

obtain (dynamic) control over the phase (nano)structuring?; (v) Which macromolecular structures allow 

proper phase interconnectivity to guarantee specifically stability and optimal macroscopic 

performance?; (vi) Which multiphase polymer engineering technique (e.g. emulsion or precipitation 

polymerization; extrusion or reactive extrusion) and process conditions (e.g. temperature, concentration 

ratios and compound/reactant types) are most suited to obtain a high material performance in an 

economic framework?  

To address these questions a combination of experimental and modeling research is the most 

recommended pathway, recognizing that many phenomena at different length and time scales are at play 

during multiphase polymerization and processing [9-11], and that the link between the reaction 

conditions and the final material morphology is often very complex [12-14]. Most combined studies are 

however directed toward single phase systems and if one acknowledges multiple phases the distributed 

nature of polymer molecules with respect to chain length, composition, and architecture (or topology) 

is often replaced by a simplified average molecular description [9, 15, 16]. The molecular scale although 



constitutes the core of any (multi)material build-up but is often hidden, or seen as fixed, once 

manipulations at the material or application scale are performed. The current work therefore aims at 

making clearer to a broader community that engineering tools exist that are paramount to still include a 

(macro)molecular scale driven design at any moment of the value chain, pushing forward the realm of 

polymeric materials and applications. 

In what follows, it is first explained how single phase oriented models can be upgraded to multiphase 

ones accounting in detail for the molecular scale, i.e. by embedding event driven stochastic modeling 

approaches in a multi-scale context. Next, two case studies connecting the molecular and material scale 

by means of bridging experiments and modeling results are included, considering for illustration 

purposes the overall field of energy and electronics applications. A differentiation is made between a 

first case study on polymer electrolyte design for batteries and a second case study on the compositional 

control of stretchable piezoresistive sensors. 

Upgrading engineering knowledge on single phase polymeric material applications to 

multiphase systems 

From an engineering point of view the largest level of molecular (modeling) detail is often taken up in 

single phase polymeric synthesis and material processing studies. For example many investigations on 

single-phase polymerization kinetics exist but as soon as e.g. precipitation takes place leading to a 

dispersed phase polymerization the modeling output is more limited. This is illustrated for emulsion 

polymerization in Figure 1 (left) [17-19], for which kinetic modeling approaches accounting for multiple 

reaction loci, being the aqueous phase and many organic nanoparticles, are well established but a 

coupling of these models to morphological variations in such particles (Figure 1; right) is still less 

developed [20-23]. For example, Marien et al. [24, 25] could predict for each miniemulsion nanoparticle 



which molecules (e.g. as defined by the chain length and overall comonomer composition) are present 

but did not describe the interactions between them to create a certain particle morphology. Hamzehlou 

et al. [21] in turn modeled such morphological variations within particles but treated the molecular scale 

in a lumped format, describing the overall conversion driven morphology behavior without explicitly 

accounting for a detailed set of elementary reactions. Similarly, for the field of extrusion-based polymer 

blending, e.g. for manufacturing of pharmaceutics and mechanical recycling, Edeleva et al. [26] 

highlighted that in most cases only the phenomena/properties at one scale are modeled with a high level 

of detail, while assuming an idealized or averaged description of the phenomena/properties at the other 

scales. 

 

Figure 1. Left: Multi-scale character of dispersed phase polymerization (here illustrated for aqueous 

emulsion polymerization), resulting from the interplay between chemistry and interphase mass transfer, 

defining chain length and particle size variations. Right: the challenge to access morphological 

variations within such particles, while recognizing the molecules defining the morphology. The state-

of-the-art either accounts for detailed reactions and particle size variations, ignoring morphological 

variations, or accounts for the latter but includes a basic chemistry description. 

Interestingly, the strengths of more recently developed event driven (stochastic) algorithms are that they 

allow (i) to map many competing phenomena at the level of the smallest entity of interest, e.g. a molecule 

or a particle, and (ii) to screen complex design protocols, provided that dedicated parameter tuning is 

performed and scales are properly connected [2, 27, 28]. Ideally, one employs a multi-scale (stochastic) 

model that predicts physicochemical phenomena from sufficiently detailed first principles calculations 



at both (i) the micro-scale, being the scale of chemical reactions, concentrations, and diffusivities, (ii) 

the morphological or meso-scale, being the scale of particles, phases and interfaces, and (iii) the 

reactor/equipment or macro-scale, being the industrial implementation scale. Appropriate mass, 

momentum and energy equations per phase are additionally needed in combination with fundamental 

transfer terms to connect phases and thus scales [29]. Multi-scale model parameters should ideally 

follow from specific experiments, first under lab-scale bulk/solution conditions, allowing the 

determination of micro-scale parameters, and in a second step under multi-phase conditions allowing to 

obtain the remaining larger scale (e.g. meso and/or macro-scale) parameters.  

It should be although admitted that mature multi-phase polymerization and processing multi-scale 

modeling tools that fundamentally address the coupling between the micro-, meso, and macro-scale, 

while acknowledging molecular scale driven morphological information, are still lacking. The most 

critical or first priority research task in the polymer multiphase modeling field is therefore the better 

connection of the micro- and meso-scale, particularly the enriching of (dynamic) morphological models 

with molecular features. 

As shown in Figure 2, two main types of models have been applied to obtain meso-scale dynamic 

morphological information, namely dissipative particle dynamics (DPD) and Cahn-Hilliard (CH) 

models. In DPD models (top part of Figure 2), which can be seen as coarse-grained molecular dynamics 

simulations, the movement of beads under the influence of forces is the main output, allowing the 

implicit identification of regions in which polymer chains of a certain composition cluster and aggregate 

[30-33]. A coupling of DPD models to a simple stochastic reaction model has been applied, although a 

proper reflection of time-dependent reaction probabilities linked to fundamental rate laws and 

experimentally measurable macroscopic rate coefficients has not been achieved yet.  



In CH models (bottom part of Figure 2), which are phase-field models, local material balances for 

individual species are solved, expressing diffusion and phase segregation as a result of chemical 

potential gradients, which can be evaluated by for instance the Flory-Huggins equation [34-37]. In any 

situation, it is non-trivial to keep track of reaction rate differences between certain phase entities, e.g. 

particles or (nano)domains, while simultaneously recognizing detailed chain-by-chain information, e.g. 

the structuring of comonomers units and the position and length of branches in a given chain.  

 

Figure 2. Concept of top dissipative particle dynamics (DPD) and (bottom) Cahn-Hilliard (CH) 

modeling to obtain dynamic meso-scale morphological information. Focus is on (top) the self-assembly 

of a poly(acrylic acid) macro-RAFT (reversible addition fragmentation chain transfer) agent during its 

extension with styrene in methanol (solvent beads are not shown; Figure adapted from Yan et al. [30], 

copyright (2019), with permission from the American Chemical Society) and (bottom) the phase 

inversion process during the production of high-impact polystyrene (Figure adopted from Vonka et al. 



[38], Copyright (2011), with permission from Wiley). A challenge is to enrich such type of model 

outputs with molecular features. 

A promising modeling route to implement such chain-by-chain information is to extend the application 

range of (Gillespie) event driven kinetic Monte Carlo (kMC) simulations, the principles of which are 

outlined in the next section. Such kMC simulations have already been upgraded to couple chain length 

and particle size variations in representative polymer engineering cases but only recently have been 

further upgraded to also account for morphological variations although in more composite engineering 

applications only [39]. Having access to the composition and topology of individual molecules at the 

micro-scale opens the door to make meso-scale parameters explicitly dependent on molecular 

information, whereas the more commonly applied reverse engineering approach with a posteriori 

sampling, e.g. conditional Monte Carlo, [40] or hybrid modeling [41], is by default more pragmatic and 

thus less generic. 

Multi-scale kinetic Monte Carlo principles 

Event driven kMC modeling relies on the sampling of events between species in a discrete manner 

according to probabilities as defined by fundamental rate laws [27]. Originally such stochastic modeling 

has been applied to describe the concentration changes for single phase chemical systems consisting of 

elemental species considering a limited amount of reactions. For example, emphasis has been on the 

reaction between A and B to C in competition with the reaction between A and A to D, this for simplicity 

in the absence of concentration or temperature gradients so that the micro- and macro-scale are the same; 

note that no meso-scale is needed as a single phase system is considered. A prerequisite is a sufficiently 

large ensemble size, which for the example given implies a high amount of A and B molecules at the 

start so that the reaction probabilities are accurately represented.  



For polymerization kinetics, the amount of reaction events is much larger as a complex reaction 

mechanism is likely active and the chain length i is an unavoidable parameter with many possibilities 

[42-45], e.g. a basic (chain-growth) homopropagation reaction occurs with Ri (i=1 to imax, e.g. 105). 

Moreover, for multiphase systems, reaction events occur per phase and one also has to sample meso-

scale transfer events to address the crossing of species over the interphase border or interface. In general, 

for a multiphase polymer-based system, a very high number of reaction and physical events needs to be 

considered. Next to that a high amount of matrices are needed if one wants to describe in high level of 

detail the chemical build-up of the macromolecules formed. 

To make clearer the order of magnitude of the mathematical modifications at hand for multiphase 

polymeric systems we again refer to Figure 1 (left), in which focus is only on a basic free radical 

homopolymerization (FRP) in miniemulsion, with reactions such as chain initiation, propagation and 

termination (by recombination) inducing in a given particle with a maximum chain length of 105 already  

1010 reaction events. With a typical ensemble size of 1000 droplets/particles, while including meso-scale 

entry/exit events, this implies on overall amount of 1013 micro- and meso-scale events. In case macro-

scale variations exist as well, at least per “isolated” compartment with given macro-scale characteristics 

(e.g. a region close to the impeller or reactor inlet) all the relevant lower scale events need to be sampled 

and additional macro-scale transfer events are required to account for variations in bulk concentration 

and temperature. One easily thus goes from 1013 micro- and meso-scale events to 1014 micro-, meso-

scale and macro-scale events. Furthermore, every monomer unit in a given (general) macromolecule can 

possess a certain nature, and branches can be present of a certain size and at a given backbone position, 

so that for very detailed molecular scale driven kMC models the overall mathematical complexity is 

even higher (e.g. in total 1018 possibilities). 



The mathematical complexity also depends on the degree of phase coupling. For example, for Figure 1, 

only dealing with homopolymer chains, already a strong interaction between the micro- and meso-scale 

is active. A different particle nucleation mechanism leads here to different distributions of nanoparticle 

sizes, with the kinetics in the nanoparticles strongly dependent on the size, largely due to the particle 

size dependence of the rate coefficients for entry and exit events of species to and from the 

(nano)particles and due to so-called (kinetic) compartmentalization effects [20, 46-49]. The associated 

coupled matrix based Monte Carlo (CMMC) model allows the coupled calculation of the chain length 

distribution (CLD) at the micro-scale and the particle size distribution (PSD) at the meso-scale [24, 25]. 

Instead of averaging (e.g. monomer) concentrations over particles, fluctuations in concentrations for all 

types of species are acknowledged per nanoparticle size, proving the incorrectness, at least under general 

conditions delivering various active species, of more simplified average-based models, hence, creating 

a huge step forward in emulsion process design.  

In any case, for polymer engineering applications, advanced multi-scale kMC modeling demands the 

development and use of advanced storage and search algorithms [50], with the main micro-scale 

mathematical principles explained in the recent review of Trigilio et al [27]. and the details for more 

advanced complex multiphase topologies, hence, micro- and meso-scale influenced systems given in 

the work of De Keer et al [2] and Figueira et al [39].  

Figure 3 highlights a key result of the recent work of Figueira et al. [39], in which the top left part 

conceptually shows how a single phase model is too simplified as a so-called salami morphology is 

eventually formed in high-impact polystyrene (HIPS) production. The polymerization is started with 

styrene monomer and polybutadiene (PB) polymer to create in one phase PS and grafted copolymer 

(GC), with PB backbones and styrene grafts. Once a certain amount of PS is formed phase separation 



occurs (first vertical line in top right plot in Figure 3), with a PS-rich being a dispersed phase and a PB-

rich phase being a continuous phase. The situation changes once the contributions of PS and PB are 

similar (second vertical line in top right plot in Figure 3) and becomes even more complex with freshly 

formed PS remaining trapped as occlusion particles in the PB-rich phase. The bottom part of Figure 3 

displays the associated log-molar mass distributions (log-MMDs) for PS, highlighting which type of PS 

chain lengths are defining each of the aforementioned three phases. Such a unique classification is only 

possible by tracking individual chains per phase and accounting for both micro- and meso-scale events, 

highlighting the CMMC relevance and novelty. 

 

Figure 3. The application of coupled matrix-based Monte Carlo (CMMC) for multiphase 

polymerization generating a multiphase morphology in the absence of macro-scale variations; example 

of morphology development for high-impact polystyrene (HIPS) production with a polystyrene (PS)-

rich phase, a polybutadiene (PB)-rich phase, and PS occlusion (occl.) phase; GC: graft copolymer. Top: 

simplified single phase vs. advanced multiphase modeling, with a comparison of phase volumes (grey 

line: single phase; colored lines: multiple phase); bottom: example of log-molar mass distributions (log-



MMDs) at three styrene (St) conversions distinguishing contributions per phase (if phase not shown: 

negligible contribution). This type of modeling approach connects the phase formation to the dynamics 

and structure of individual molecules and is applicable to other fields than engineering composites, as 

illustrated in the present work for the field of energy and electronics applications. Data taken from 

Figueira [39]. Copyright (2024), with permission from Elsevier. Permission 

Hence, it is very worthwhile to develop stochastic modeling strategies not only allowing the sampling 

of reactions and transfers but also of morphological phenomena (e.g. phase contribution and particle 

size variations). Overall, the state-of-the art of such implementations is still rather basic with only a 

handful of scientific contributions. One has e.g. the already discussed work of Figueira et al [39]. but 

also the simulations of for instance Stubbs et al [23]. for radical gradients in nanoparticles during 

emulsion polymerization. However, a single nanoparticle size was assumed by the latter authors so that 

the effect of particle size variations was neglected. Dedicated molecular driven simulations of 

multiphase morphologies are thus still largely lacking, although recently some deterministic attempts 

have been made, however, without a fundamental coupling to the micro-scale [22, 51, 52]. Similar to 

the desired evolution of (stochastic) kinetic modeling studies to acknowledge the complete CLD and 

PSD in emulsion polymerization instead of only the average chain length and particle size, a transition 

needs to be therefore made from pseudo-single-phase models to genuine multiphase models 

acknowledging the complete morphology portfolio. This will allow to understand and control the effect 

of the make-up of individual macromolecules on morphological variations, which in turn allows to better 

regulate the (interfacial) macroscopic properties for various applications. 

In what follows, the potential of such molecular scale driven morphological description is further 

highlighted for two case studies in the energy and electronics application field, differentiating between 

(i) a case study on polymer electrolytes for batteries and (ii) a case study for blend design for 

piezoresistive sensors. 



Case study 1: Design of polymer electrolytes for battery applications 

An important societal challenge is meeting the increasing energy consumption with renewable or 

sustainable energy sources, using technological advances. For example, electrical energy can be 

sustainably produced by harvesting solar energy via photovoltaic cells, converting it into electrical 

energy and storing it via electrical batteries [53, 54]. Notably, high-tech polymeric materials are 

important candidates for both organic PV cells and electrical batteries, avoiding the use of rare-earth 

metals in inorganic solar cells[55, 56]. In the past decades, the photon efficiency of organic PV cells has 

approached the efficiency of existing commercial inorganic photovoltaic cells, at least under laboratory 

conditions. Furthermore, electrical batteries based on solid polyelectrolytes are expected to achieve 

superior energy storage compared to non-polymer technology. However, large efficiency gains are 

expected by optimizing molecular and morphological parameters [57, 58]. In this context, a multi-scale 

modeling approach recognizing micro- and meso-scale interactions is highly recommendable. 

 

Figure 4. Molecular and morphology control for cyclopolymer electrolytes. (a) Conceptual illustration 

of diffusion channels enhancing the ion conductivity of cyclopolymers. (b) Cation template-assisted 

controlled radical cyclopolymerization (CCP) leading to linear polymeric pseudo-crown ethers [59, 60]. 

Indeed, as e.g. shown in Figure 4(a), the efficiency of ion transport for cyclopolymer electrolytes 

depends on how the chains fold and define a nanomorphology. More in detail, as shown in Figure 4(b), 

it follows that a bifunctional monomer can be polymerized under radical conditions in such a way that 



cyclization is possible (green loops), i.e. an intramolecular interaction first takes place so that the 

dangling double bond of the incorporated functional monomer is aligned for a linear propagation 

(instead of crosslinking) [59]. With a mediating agent, control over the molar mass distribution is also 

possible and chains can be capped with halogen ends [60]. The loops are so-called (pseudo)crown ethers 

recognizing certain cations thus enabling tunneling and charge transport for which CMMC modeling as 

displayed in Figure 3 would be highly beneficial to search for fine dispersions. Note that a CMMC-

based morphology design of recently proposed self-healing pseudo-cyclic vitrimers [61] would also be 

highly advantageous.  

More in general well-defined multi-phase nanostructured polymer electrolytes are promising solid-state 

electrolytes for high energy density lithium metal batteries [62, 63]. In contrast to the currently available 

Li ion batteries (LIB), metallic lithium is used as anode material in lithium metal batteries (LMB), 

thereby achieving the highest possible cell voltage and energy density [64, 65]. Notably, liquid 

electrolytes used in LIBs cannot be used in LMBs as electrodeposition of lithium on the negative 

electrode would lead to dendrite formation and thus an undesired micro- and meso-scale interaction. 

The presence of these dendrites not only consumes the electrolyte but also leads to short-circuiting with 

potential fire and explosion hazards. A very interesting alternative is to employ a mechanically robust 

solid polymer electrolyte that suppresses the formation of dendrites. 



 

Figure 5. Model-based strategy to avoid dead ends in the conductive pathways of solid polymer 

electrolytes via the design of tapered block copolymers (green arrows) instead of conventional block 

copolymers (red arrows) [66, 67]. 

Currently, most research efforts have been devoted to block copolymer-based electrolytes based on ion-

conducting poly(ethylene oxide) (PEO) and mechanically robust polystyrene (PS) [68, 69]. Interesting 

is to also deal with poly(oligo-oxyethylene methacrylate) (POEM) in view of its superior conductivity 

at room temperature compared to PEO. Another advantage of considering POEM is that tapered block 

copolymers (i.e. diblock copolymers with a gradient section in between the two blocks; see Figure 5 

(middle) can be synthesized via controlled radical polymerization and appropriate feeding strategies. 

Notably, it has been anticipated that the smooth transition between the polar and non-polar block in 

tapered block copolymers allows to obtain a more continuous morphology (Figure 5; bottom  right) 

compared to conventional block copolymers for which the sharp transition between the block leads to 

bending of domains (Figure 5; top right) [66, 67].  

Tapered POEM-PS block copolymers could thus be designed by applying appropriate feeding strategies, 

which depend on the monomer reactivity ratios. Macromolecular structures simulated via CMMC can 

then be validated based on gel permeation chromatography and nuclear magnetic resonance data. This 

allows in a next step to quantify in silico the degree at which the actual macromolecular structure 
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corresponds to the targeted one via the so-called structural deviation calculation, an approach which has 

very recently been extended for various macromolecular structures by stochastic means [70]. The 

morphology evolution can be simulated based on nanodomain nucleation and coagulation kernels 

depending on the segregation strength χ N (χ: Flory-Huggins interaction parameter and N: 

chain/segment length), consistent with the principles outlined in Figure 3 and to be correlated to the 

structural deviation parameter which characterizes the macromolecular structure. A morphology 

validation can be performed via transition electron and atomic force microscopy, and the effect on the 

ion-conductivity can be measured and tuned by model-based design. 

Case study 2: Polymer blend design for stretchable piezoresistive sensors 

Stretchable piezoresistive sensors display a morphology that is altered upon mechanical strain so that 

they can be used to detect damage or translate deformation in other signals enabling for instance motion, 

e.g. for smart textile applications or other electronic applications [71, 72].  

In contrast to an assembly based on more expensive structural engineering, a cheap way to manufacture 

prototypes of stretchable piezoresistive  sensors is through extrusion in which a polymer blend is loaded 

with a filler system creating a particle-driven network morphology. Upon a well-defined control of the 

meso-scale filler matrix interactions, close to the percolation limit, mechanical forces move the particles 

in such manner that tunneling resistances are altered and thus the conductivity is changing. Ideally a 

linear response is obtained for the variation in the resistance relative to the original resistance (r) versus 

the applied strain, and applicability is obtained for either lower or larger strains. The sensitivity is 

typically captured by the calculating the gauge factor GF defined as the ratio of r and the strain.  



 

Figure 6: (left) Literature data on sensitivities expressed by gauge factor (GF) as a function of 

applied strain for structural engineered assemblies and conductive polymer composites; (right) 

Principle of morphology control via ternary blend design. Data taken from Duan [73, 74]. 

Copyright (2024), with permission from American Chemical Society and Elsevier.  

Duan et al. [73, 74] for instance tuned blends based on thermoplastic polyurethane (TPU), olefin block 

copolymer (OBC) and carbon black (CB) filler using extrusion technology, therefore, enabling a 

straightforward manufacturing technique for sensor design. Binary blends of one polymer and CB, and 

ternary blends of both polymers and CB have been explored, playing with the mixing order and extrusion 

design parameters. Furthermore, two types of CB have been considered, including even a hybrid 

situation. As shown in Figure 6(left), the (maximum) GF could be regulated by blend design in the more 

challenging region of high strains and high sensitivities. However, only a couple of material blends can 

be seen as successful and still significant tuning of polymer blends design is required, also taking into 

account mechanical strength specifications. 

As shown in Figure 6 (right), this comes to dedicated morphology control considering variations in the 

number of blending partners thus material phases as well as processing conditions (e.g. masterbatch 



approach with further blending or direct blending). Another point of attention is the minimization of 

hysteresis, being drifting upon cyclic strain loading, this for both low and high strains which is related 

to the application range of the final sensor. As many parameters can be varied a model-driven approach 

making a link to the molecular scale is highly recommended. In that way it can be better screened which 

material specifications are needed to enable a certain interaction scheme from the molecular to the 

material scale level, with again a core research item a more molecular driven interpretation of Flory-

Huggins driven parameters. 

Summary and outlook 

Event driven (kinetic) Monte Carlo simulations, especially those based on coupled matrices (e.g. 

coupled matrix Monte Carlo (CMMC)), are a powerful modeling tool to support the molecule-based 

morphological design and control of multiphase polymeric materials and applications. These 

simulations rely on discretely sampling micro-scale (e.g. reactions after molecular diffusion) and meso-

scale (e.g. interphase transfer and nucleation) events based on probabilities derived from rate laws.  

The strength of these modeling tools lies in the tracking of individual (macro)molecules in each phase 

such that the rate of meso-scale phase transfer and morphological phenomena (e.g. nucleation or 

coagulation) and their corresponding probabilities can be made a function of the properties (e.g. chain 

length and comonomer composition) of the (macro)molecules present in the participating phases. Hence, 

these modeling tools allow to describe morphological dynamics based on time dependent 

(macro)molecular property variations. This enables the design and control of the morphology from the 

molecular scale onwards, ultimately allowing to improve the macroscopic material/application 

properties.  



The ability of CMMC to connect the dynamics of the formation of individual macromolecules to the 

phase formation dynamics has first been demonstrated for high-impact polystyrene production, thus for 

multiphase engineering composites. Here, it has in particular been shown that different log-molar mass 

distributions are obtained in different phases, which is important to understand the contribution of the 

different phases to the overall macroscopic material properties. 

Next, the potential of CMMC has been illustrated for the combined molecular and morphological design 

of solid polymer electrolytes for batteries. In particular, the potential of CMMC to design (i) fine 

dispersions of pseudo-crown ether rings and (ii) tapered block copolymers avoiding dead ends in the ion 

conducting pathways of solid polymer electrolyte materials has been highlighted. Moreover, it has been 

put forward that CMMC can help to optimize the blend design for stretchable piezoresistive sensors by 

coupling molecular variations to meso-scale phase interactions. Notably, upon doing so, a more 

molecular driven interpretation of Flory-Huggins parameters can be obtained. 

It can be expected that the event driven Monte Carlo approach, which couples in a first stage the 

molecular (micro-) and morphological (meso-) scale and in a next stage also ensures a connection to the 

process/material (macro-) scale, will allow the advancement of multiphase polymer materials, 

specifically in the fields of energy and electronics. 
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