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Dankwoord

Toen ik in 2016 afstudeerde als master in de wiskunde, wist ik (zoals zovelen op die
leeftijd) nog niet zo goed waarheen het leven me zou brengen. Ik wist ook nog niet zo
goed naar waar ik wilde dat het leven me zou brengen. Ik startte in de privé-sector, in
Brussel, maar dat bleek dan toch zo mijn ding niet. Al vrij snel was ik opnieuw vacatures
aan het opzoeken, waarbij ik nu wel zeker wist dat ik me tot regio Gent zou beperken:
dat pendelen was niets voor mij. Ze zochten een assistent wiskunde aan de faculteit
Ingenieurswetenschappen en Architectuur van de Universiteit Gent: een combinatie van
doctoraatsonderzoek en het begeleiden van de studenten in hun wiskundevakken. Ik twi-
jfelde. Lesgeven leek me wel leuk, maar een doctoraat schrijven? Dat is een masterthesis
schrijven, maar zes (en uiteindelijk in mijn geval zelfs acht) keer zo lang! Na veel rond-
vragen en nadenken, greep ik de kans en mocht ik op 7 november, mijn verjaardag nog
wel, op gesprek bij professor Hendrik De Bie en professor Marián Slodička. Ik kreeg de
job en mocht terugkeren naar mijn welvertrouwde universiteit, weliswaar in een andere
functie.

En daar ben ik ontzettend dankbaar voor. Het begin van heel wat veranderingen en
nieuwe wegen in mijn leven. Ik leerde bij op alle vlakken, zowel professioneel als persoon-
lijk.

Ik mocht onderzoek doen in de abstracte en complexe wereld van de wiskunde. Mensen
vroegen me soms “Hoe gaat dat dan, doctoreren in de wiskunde?”. Men kan zich iets
voorstellen bij het ontleden van een orgaan, het onderzoeken van een plant of het bestud-
eren van een sociaal-economisch fenomeen. Maar onderzoek in de wiskunde? Wel, je
vindt dan eigenlijk nieuwe wiskunde uit, door concepten en ideeën uit te werken en te
controleren of ze consistent zijn met de wiskunde die al bestaat. Zo bouw je mee aan het
immense stratennetwerk dat de wiskunde groot is. Het resultaat daarvan? Dat lees je
wat verder1. Mijn pad was een hobbelige weg, met omleidingen en doodlopende straten,
rode lichten en ellenlange rotondes. En een helse eindsprint, dat ook. Maar wat ben ik
blij dat u dit nu aan het lezen bent.

Ik mocht lesgeven aan eerstejaarsstudenten burgerlijk ingenieur. Dat vond ik heel erg
fijn, het was een welkome afwisseling naast de discrete Clifford analyse. Ik genoot ervan
om terug onder de studenten te zijn, hen te begeleiden in de oefeningen en hen te helpen
om de schoonheid van de wiskunde in te zien. Het hoogtepunt was zonder twijfel het
geven van de bordoefeningenlessen voor een volledig gevuld, mythisch auditorium A.

Daarnaast leerde ik mezelf beter kennen. Ik ontwikkelde als mens, als vrouw, als echtgenote,
als mama. Ik ontdekte mijn waarden, wat belangrijk voor me is en welke richting ik uit
wil. Ik leerde hoe ik in het leven sta en wil staan, en hoe ik dat alles met andere mensen

1Er is een Nederlandstalige samenvatting voor de minder wiskundig aangelegde lezer.
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wil delen. Hierdoor sta ik ongetwijfeld sterker in mijn schoenen. Ik leerde ook hoe belan-
grijk de mensen in mijn omgeving voor me zijn en hoe dankbaar ik ben voor hun warme,
onvoorwaardelijke steun en liefde.

Hoog tijd dus om die personen in mijn omgeving, zowel thuis als aan de UGent, te
bedanken.

Eerst en vooral wil ikHilde bedanken. Als copromotor was zij er vanaf het begin van mijn
doctoraat bij. Ze vertaalde Franks abstracte en - althans voor mij - vaak onbegrijpelijke
wiskundige ideeën naar concrete werkpunten en berekeningen. Ze had het geduld om me
alles tot in de details uit te leggen en dat vaak ook nog eens te herhalen. Ondanks haar
drukke job (in Brussel dan nog wel) en als mama van twee jonge dochters, bleef ze me
begeleiden bij het uitwerken van deze thesis. Zonder haar zou ik dit doctoraat nooit tot
een einde kunnen gebracht hebben. Een staande ovatie verdien je, Hilde!

Abstracte wiskundige ideeën, daar was Frank Sommen de beste in, dat kan je bijna
letterlijk nemen. Zijn onderzoek en ideeën waren en zijn nog steeds van fundamenteel
belang op het gebied van Clifford analyse. Hij was een briljante wiskundige en een
warme, genereuze persoon. Frank startte in 2017 als mijn promotor en gaf mij en Hilde
de basisinzichten voor het onderwerp van deze thesis. Hij overleed helaas in 2023, maar
zijn naam is vereeuwigd in vele wiskundige artikels en boeken. Het was een eer hem
gekend te hebben en een van zijn laatste doctoraatstudenten geweest te zijn.

Hennie nam de rol van Frank over en werd mijn nieuwe promotor. Ze hielp mij in de
laatste rechte lijn naar de eindmeet. Haar feedback en bemoedigende woorden deden me
er blijven in geloven. Ik kon bij haar terecht voor kleine en grotere twijfels. Daarnaast
was ze natuurlijk de prof van de vakken waarin ik mee begeleidde. Daardoor hadden
we al vanaf het begin goed contact met elkaar en dat groeide met de jaren. Hennie, het
was heel fijn om jouw vakken te mogen begeleiden. De studenten ingenieur mogen zich
gelukkig prijzen om hun academische jaren te starten met jou als lesgever. Ik zal ook onze
reis naar Ancona met diner op een gezellig pleintje met Italiaanse achtergrondmuziek niet
snel vergeten.

I would like to thank the members of the examination committee, Prof. dr. Swanhild
Bernstein, Prof. dr. Üwe Kaehler, Prof. dr. Hans Vernaeve and dr. Tim
Raeymaekers and the chair Prof. dr. Bart De Bruyn for taking the time to read
and improve my thesis. Thank you for your stimulating and challenging questions.

Verder zijn er nog heel wat collega’s die ik graag wil bedanken om de voorbije acht
jaren zo aangenaam te maken. De sfeer in de vakgroep en het respect onder de collega’s
zat altijd goed en zorgde ervoor dat ik mezelf kon zijn en me al vanaf het begin op
mijn gemak voelde. Tim, op jou kon ik (en iedereen) altijd rekenen. Had iemand een
vraag? Tim zal het wel weten. Je had steeds goede raad, was altijd goedgezind en stond
altijd klaar voor een babbel en een luisterend oor. Dan zijn er uiteraard ook Hendrik,
Teppo, Frederick, Karel, Srdan en Sam, met wie ik lange tijd mocht samenwerken
als assistent. Ik apprecieer jullie heel erg. Ik wil ook graag mijn voorgangers Wouter,
Lander, Zoë, Ren, Michael en Hadewijch bedanken om het pad te effenen. Ten
slotte wens ik de nieuwe(re) collega’s Michiel, Kobe, Seppe en Louis veel succes en
een leuke tijd toe in onze vakgroep.

Uit de professionele UGent-kring wil ik tot slot nog Denis en Roy bedanken. Zij hebben
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mij geholpen met het verwerken van speciale functies en me verwezen naar die ene formule
die de puzzel compleet maakte.

Uiteraard wil ik ook mijn vrienden vermelden. Katrijn, Jozefien, Jasmine, Char-
lotte, Jolien, Els, Elke en Elke (aka de mathemachicks), jullie zijn top! Dankjullie
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Jasmien, dankjewel voor de prachtige cover van dit boek! En uiteraard ook een oneindige
dankjewel om, samen met Melissa, Nikki en Juanita, met zoveel liefde, geduld en
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in het huishouden, pakjes te ontvangen, of om een huis te bouwen en af te werken. Ik
ben zo enorm blij met jullie als schoonouders.

Liefste Zus, jij bent mijn rots in de branding. Bedankt voor je steun, je enthousiasme,
je oprechtheid, je inspiratie, je luisterend oor en je vriendschap. Je bent mijn klankbord
voor grote, maar zeker ook voor veel kleine ergernissen, twijfels en gelukjes. Dankjewel
ook voor je kledingadvies, je relatie-advies, je cadeautjesadvies, je sociaal advies, Steven-
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Mama en papa, dank jullie om me te maken tot wie ik ben, om voor mij te zorgen en
voor alle kansen die jullie mij gegeven hebben. Dankzij jullie steun lagen er zoveel mo-
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een ver-van-jullie-bedshow, jullie stonden altijd achter mij en gaven me de vrijheid om
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alles wat ik doe, ook al gaat dat ten koste van tijd voor ons samen. Je bleef me motiveren
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1
Introduction

In this first introductory chapter, we will clarify the title of the dissertation and put
it in the bigger context. We will give some general background about the Weierstrass
transform, Clifford analysis and discrete Clifford analysis in particular. Eventually, the
overall aim of the thesis is sketched, along with its structure.

1.1 The Weierstrass transform

The Weierstrass transform, [1] (or Gauss transform, Gauss-Weierstrass operator), named
after the German mathematician Karl Weierstrass (1815-1897) is a fundamental opera-
tion in mathematical analysis and applied mathematics. It is a smoothing operator that
transforms a given function into an entire function: a function that is complex differen-
tiable everywhere in the complex plane. It averages the values of a function f by making
the convolution with a Gaussian kernel to obtain a ‘smoothed’ version of f . Evaluating
the smoothed function at the point x, points in the original function close to x are given
a higher weight, while points that are further away from x get lower weights. Specifically,
the most general definition of the Weierstrass transform Wt[f ] of a function f : R → R
is given by

Wt[f ](u) =
1√
2πt

∫
R
exp

(
−|u− x|2

2t

)
f(x)dx.

In the classical definition, one sets t = 1, which is mostly used for mathematical purposes.
For small values of t, Wt[f ] is close to f , but smooth. For larger t, the operator averages
out and changes f .

The Weierstrass transform’s smoothing properties and its relationship with the Gaussian
kernel make it useful in a variety of mathematical and practical applications:

1. The Weierstrass transform is closely related to the solution of the heat equation.
Given an initial temperature distribution f of an infinitely long rod with thermal
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conductivity equal to 1, the Weierstrass transform Wt[f ] gives the temperature
distribution t time units later. This connection makes the transform a valuable
tool in studying heat conduction and diffusion processes. See for example [2] and
[3].

2. In probability theory, the Weierstrass transform appears in the context of the Cen-
tral Limit Theorem (CLT). The Gaussian kernel in the transform is the probability
density function of a normal distribution, highlighting the transform’s role in mod-
eling the distribution of sums of random variables, see for example [4]. Given a
function that represents noisy data, one wants to build a function that approxi-
mates the important patterns of the data, omitting the noise.

3. The smoothing property of the Weierstrass transform makes it useful in signal
processing for noise reduction. By applying the transform to a noisy signal, the
high-frequency noise can be attenuated, resulting in a smoother signal. The Weier-
strass transform thus acts as a low-pass filter. An example is found in [5].

4. Similar to its application in signal processing, the Weierstrass transform can be
used in image processing for tasks such as image smoothing and noise reduction. It
helps in removing fine details and noise, producing a cleaner image. In this context,
the transform is also known as the Gaussian blur. See for example [6], [7] and [8].

5. The Weierstrass transform is utilized in numerical analysis to approximate functions
and integrals. Its ability to convert functions into smoother forms can improve the
accuracy and stability of numerical algorithms.

6. In quantum mechanics, the Weierstrass transform is related to the concept of the
propagator for a free particle in one dimension. The Gaussian kernel represents
the transition probability amplitude, connecting the transform to the evolution of
quantum states.

Applications are thus widely around. This dissertation is to be situated in the context
of discrete Clifford analysis, where a discrete counterpart of the Weierstrass transform is
constructed. In the next section, we will discuss Clifford algebras and Clifford analysis,
both in the classical (continuous) setting as in the discrete setting.

1.2 Clifford analysis

Clifford analysis is a quite recent branch of mathematical analysis that extends the tech-
niques of classical real and complex analysis to functions defined on so-called Clifford
algebras. It is centred around the notion of a Dirac operator and its null solutions,
called monogenic functions. In the most common known case, the two-dimensional al-
gebra of complex numbers, one considers the Cauchy-Riemann operator consisting of a
real and a vectorial part. Its null solutions are holomorphic functions. An important
property is that, by multiplying this Cauchy-Riemann operator with its complex con-
jugate, one obtains the two-dimensional Laplacian. This setting may be generalised in
a very natural way to higher dimensions by the generalised Cauchy-Riemann operator.
This operator contains again a scalar and an m-dimensional vectorial part, the Dirac
operator, factorising the m−dimensional Laplacian. Clifford analysis can thus be seen as
a higher-dimensional theory of holomorphic functions in the complex plane on the one
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hand. On the other hand, as the Dirac operator factorises the Laplacian, it is also a
refinement of classical harmonic analysis. Clifford Analysis bridges the gap between pure
mathematical theory and practical applications in science and engineering, providing a
rich framework for understanding multidimensional spaces.

Many research has been devoted to function theory in Clifford algebras. In the 19th

century, William Kingdon Clifford introduced an algebra with an arbitrary number of
anti-commuting basis elements ([9]). This was a generalisation of the already existing
function theory of complex analysis, in which big names such as Euler, Gauss, Riemann,
Cauchy and Weierstrass contributed. However, it was only until mid 20th century that the
setting resulted in the hypercomplex analysis as we know it today because an appropriate
differential operator was still missing. It was Paul Dirac who introduced the first ”Dirac
operator” in 1928 ([10]), followed by a generalisation by Brauer and Weyl in 1935 to any
finite dimensional quadratic space with arbitrary signature. The Swiss mathematician
Karl Rudolf Fueter was the first to contribute to the study of monogenic functions, the
null-solutions of the (generalisation of the) Dirac operator ([11]). In the eighties, the
work of Richard Delanghe, Fred Brackx and Franciscus Sommen made this field to really
come to existence. A detailed study, constituting the foundations of Clifford Analysis, is
the book by Brackx, Delanghe and Sommen, [12]. More standards in the literature are
e.g. [13, 14, 15, 16, 17]. We do not claim completeness in this list.

1.3 Discrete Clifford analysis

Discrete Clifford analysis is a more recent branch, which originated from the need for
numerical applications. Its development is driven by the desire to study function theory
and harmonic analysis on discrete lattices or grids, especially in higher-dimensional set-
tings. The discrete setting introduces new challenges, such as defining a suitable Dirac
operator which allows for a discrete counterpart of key results in classical Clifford analy-
sis and function theory. One of those challenges, for example, is the important property
of the discrete Dirac operator factorising a discrete Laplacian. Several models for the
discrete Clifford algebra have been established, either starting from an application or
from a function theoretic point of view.

In the first place, numerical problems related to potential theory and boundary value
problems are treated, for example by Gürlebeck and Sprössig in [18] and [15]. They
developed continuous strategies to solve boundary value problems based on operator
calculus, and gave a basic scheme for the construction of discrete operator calculus. This
has led to a suitable numerical approach of boundary value problems. They constructed
a function theoretical approach to discrete Clifford analysis for a Dirac operator which
only contained forward differences. A major drawback is that the approach of using only
one type of difference operator (either forward or backward differences) does not factorise
the Star-Laplacian.

The work of Gürlebeck and Sprössig was then extended to a version of a discrete boundary
element method by Gürlebeck and Hommel in [19] and [20], with successful application
of this theory in [21]. It was based on the concept of discrete fundamental solutions
of the discrete Laplace operator. First steps were made in the direction of using a
Dirac operator which factorises the Star-Laplacian, as was also done in [21, 22]. Other
important contributions regarding the construction of discrete Dirac operators are [23, 24,
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25, 26]. In 2006, Faustino and Kähler were one of the first to work on the construction of a
discrete Clifford analysis from the theoretical point of view, allowing for the construction
of basic polynomial solutions, Fischer decompositions and Taylor series. However, this
was also done using the approach of only one type of difference operator, not supporting
the factorisation of the Laplace operator. Therefore, both types of difference operators
are necessary.

In the so-called discrete Hermitian setting, introduced by Brackx, De Schepper, Som-
men and Van de Voorde in [27, 28, 29], the Clifford basis elements ej = e+j + e−j are
split in a forward and backward basis element. The discrete Dirac operator was then
constructed by combining the forward and backward difference operators with these for-
ward and backward basis elements. While forward and backward difference operators
are commuting with each other, their corresponding vector variable operators are not.
It was Sommen who came up with the idea of using the so-called skew-Weyl relations
to overcome this issue, see [30]. This theory further developed by amongst others De
Ridder and colleagues ([31, 32, 33, 34]) and Faustino ([35]). They developed for ex-
ample discrete analogues of the Cauchy-Kovalevskaya extension, (dual) Taylor series, a
Fischer decompostion and discrete Clifford-Hermite and Clifford-Laguerre polynomials.
This framework will form the basis for this dissertation.

1.4 Aim and structure of this dissertation

Before we start with the main content of this dissertation, we provide a chapter with
preliminaries. Herein, we introduce the basic concepts and definitions of continuous
Clifford algebras and analysis. Standard references are, as mentioned above, e.g. [12,
13, 14]. Next, we present its discrete counterpart, the Clifford Hermite framework as it
is described in e.g. [27, 28, 29]. We will enlist the necessary definitions and objects to
build the theory of this thesis.

The main aim of this dissertation is the definition of a discrete Weierstrass transform,
together with the construction of a discrete Weierstrass space. Therefore, we are inspired
by the classical definition of the Weierstrass transform in combination with the already
defined tools in the discrete Hermitian Clifford analysis. The main idea is to use the
discrete Gauss distribution G established in [31], as a ‘weight function’ and let the com-
position of a discrete function with this Gaussian act on a well-defined kernel, resulting
in a direct analogue to the continuous integral transform. In order to define a discrete
Weierstrass space W, we are inspired by the classical L2−spaces and use the discrete
Hermite polynomials as basis elements of this space.

In the third chapter, these ideas will be carried out in dimension m = 1. We will
define the Weierstrass transform on the discrete radial Hermite polynomials Hn, which
will then be naturally extended to possibly infinite linear combinations of these basis
functions. We define an inner product and corresponding norm in order to construct the
discrete Weierstrass space: discrete functions that are linear combinations of Hermite
polynomials, for which their norm is finite. A natural and important question is whether
the delta-functions, the building blocks of discrete function theory, are elements of the
discrete Weierstrass space. This will be subject of section 3.2.3. Similarly, we investigate
if the discrete Hermite functions are contained in this space.
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The above will be carried out on a standard grid with mesh width h = 1. In section 3.3,
we will be concerned about the definitions when h ̸= 1. In particular, we are interested
in the behaviour if h tends to 0 and we will compare this result to the classical setting.

In chapter four, we extend the theory from dimension m = 1 to m > 1. The situation
gets more complex due to the anti-commutativity of the basic Clifford elements and
the fact that we now have to consider the generalised Hermite polynomials Hn,m,r as
basis elements for the Weierstrass space. These generalised Hermite polynomials were
introduced by Sommen in [36] in the classical case and translated to the discrete setting
by De Ridder in [31]. They are formed as the composition of a monogenic polynomial of
order r and a Hermite polynomial of degree n. The goal is to obtain recurrence formulae,
both in terms of the degree n of the Hermite polynomial and in terms of the degree r of
the monogenic, to find the Weierstrass transform of this generalised Hermite polynomial.
In order to fix ideas and limit notations, we start in two dimensions. Because of the
explicit form of a monogenic polynomial in two dimensions, we will be able to manage
the challenges mentioned above. Unfortunately, if m > 2, it will turn out that another
approach for the definition of the Weierstrass transform is needed, in order to find an
explicit expression for the transform of a generalised Hermite polynomial. We give two
equivalent definitions, one of which will provide us the formula we are aiming for.

Finally, in chapter 6, we enter a new subject: we discuss the discrete heat equation.
In [2], a first sort has been treated: a framework with discrete space and continuous
time. We will consider a heat equation in a situation in which both space and time are
discrete. Therefore, we introduce a new operator with respect to the time variable. We
then discuss the fundamental solution of the discrete heat equation and how to handle
an initial value problem. Finally, we obtain the discrete heat polynomials and discuss a
family of functions that are orthogonal to and can be interpreted as dual to these heat
polynomials.

The content of chapter three, the definitions of the discrete Weierstrass transform and
space, has been published in [37], while the generalisations for dimensions m > 1 and
grid mesh width h ̸= 1 were subject of a second paper, [38].
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2
Preliminaries

This chapter is intended to make the reader familiar with definitions and concepts of
Clifford analysis and discrete Clifford analysis in particular. The content is based on a
variety of other works, the most prominent ones being [39], [28], [31] and [29].

2.1 Clifford algebras and analysis: continuous setting

2.1.1 Clifford algebras

Consider the m-dimensional real vector space Rm spanned by the orthonormal basis
{e1, . . . , em}, endowed with a non-degenerate quadratic form of signature (p, q), p+q = m.
A non-commutative multiplication then is defined by the rules

e2j = 1, j = 1, . . . p,

e2j = −1, j = p+ 1, . . . ,m,

ejek + ekej = 0, j ̸= k, j, k = 1, . . . ,m,

(2.1)

leading to the construction of the real Clifford algebra Rp,q. Denote for the set A =
{j1, . . . , jr} ⊆ {1, . . . ,m} = M the element eA = ej1ej2 , . . . ejr , for 1 ≤ j1 < j2 < . . . <
jr ≤ m, with e∅ = 1 the multiplicative identity element. For every r ∈ {1, . . . ,m}, the
set {eA | A ⊆ M and |A| = r} constitutes a basis for the space Rr

p,q of r-vectors. Any
element a ∈ Rp,q can be composed as∑

A⊆M

aAeA, aA ∈ R

or equivalently as
m∑
r=0

[a]r,



2. Preliminaries 8

where [.]r : Rp,q → Rr
p,q is the projection from Rp,q to Rr

p,q. For each value of r there are(
m
r

)
basis elements, so the total dimension of the Clifford algebra is

m∑
r=0

(
m

r

)
= 2m.

The space R of real numbers is identified with the subspace of scalars R0
p,q and the

Euclidean space Rm is embedded in the Clifford algebra Rp,q by the identification of the

point x = (x1, . . . , xm) ∈ Rm with the Clifford vector

m∑
j=1

ejxj .

In this work, we will work in the complex Clifford algebra Cm, which is introduced as
the composition

Cm := C⊗ R0,m.

It has the same generators (e1, . . . , em) as R0,m, with the same multiplication rules,
however allowing for complex constants. As a linear associative algebra over C, it still
has dimension 2m. Any Clifford number λ ∈ Cm may now be written as∑

A⊆M

λAeA, λA ∈ C,

or equivalently as λ = a+ ib with a, b ∈ R0,m. As in the real Clifford algebra, the space
C can be identified with the subalgebra of scalars C0

m. The following automorphisms on
Cm are used:

• the main involution or inversion a 7→ ã:

ẽj = −ej , j = 1, . . . ,m,

ãb = ãb̃, a, b ∈ Cm,

˜(λAeA) = λAẽA, A ⊂M ;

• the Clifford conjugation: a 7→ ā:

ej = −ej , j = 1, . . . ,m,

ab = b̄ā, a, b ∈ Cm,

(λAeA) = λAeA, A ⊂M,

eA = (−1)
|A|(|A|+1)

2 eA;

• the Hermitian conjugation: a 7→ a†:

ej
† = −ej , j = 1, . . . ,m,

(ab)† = b†a†, a, b ∈ R0,m,

(λAeA)
† = λcAeA

†, A ⊂M,

with λcA the usual complex conjugate of the complex number λA.

It is mainly with the latter involution that we will be concerned. For an arbitrary Clifford
number λ ∈ Cm:

λ† = a− ib, a, b ∈ R0,m
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or equivalently

λ† =
∑
A⊆M

λcAeA, λA ∈ C

where .c is used for complex conjugation.

By means of this Hermitian conjugation .†, one may introduce a sesquilinear inner product
and associated norm on Cm:

⟨λ, µ⟩ =
[
λ†µ
]
0
, (2.2)

|λ| =
√[

λ†λ
]
0
. (2.3)

In this dissertation, we will work with Clifford valued functions: a function Cm → Cm

maps a complex variable z to a Clifford number and thus can be written as

f(z) =
∑
A⊆M

eAfA(z),

with fA : Cm → C. We can define the right Clifford-module

L2

(
Cm,Cm,

1

πm
exp

(
−|z|2

))
, (2.4)

as an analogue to the classical weighted L2 space (the Fock space, see section 3.1). Since
the elements of a Clifford algebra do not form a field, this is a Clifford module. The inner
product of two functions in this module is then given by

⟨f, g⟩ = 1

πm

∫
Cm

f †(z)g(z) exp
(
−|z|2

)
dxdy,

with z = x+ iy. Its associated norm is

∥f∥2 =
[
⟨f, f⟩

]
0
. (2.5)

For a function to be an element of L2

(
Cm,Cm,

1
πm exp

(
−|z|2

))
, its norm (2.5) must

be finite.

2.1.2 Clifford analysis

The considered functions are defined on Rm and take values in the real or complex Clifford
algebra Rp,q or Cm. They may thus be written as

f =
∑
A⊂M

fA(x1, . . . , xm)eA.

The key subjects in Clifford analysis are the Dirac operator and its solutions, monogenic
functions. Therefore, consider the generalised Cauchy-Riemann operator (also known as
the Fueter-Delanghe operator)

Dx = ∂x0 +
m∑
j=1

ej∂xj = ∂x0 + ∂x.



2. Preliminaries 10

It splits into a scalar part ∂x0 and an m−dimensional vectorial part ∂x, which is called

the Dirac operator and is the Fourier dual of the vector variable x =
m∑
j=1

ejxj . This Dirac

operator factorises the m−dimensional Laplacian

∂2x = −
m∑
j=1

∂2xj
= −∆m,

while the Cauchy-Riemann operator factorises the m+ 1-dimensional Laplacian

DxDx = (∂x0 + ∂x)(∂x0 − ∂x) =

m∑
j=0

∂2xj
= ∆m+1.

There is a natural equivalence between solutions of Dx and ∂x. To this end, one adds an
extra generator e0 to the set of generators of Rm. Consider the corresponding Clifford
algebra R0,m+1, then we identify an element of Rm+1 with a subspace of R0,m+1 by the
correspondence

x =
m∑
j=0

xjej 7→ x0e0 + x.

This way, the Dirac operator ∂x in m+ 1 dimensions is introduced by

∂x =
m∑
j=0

ej∂xj = e0∂x0 + ∂x.

A function f is now called left (resp. right) monogenic if it satisfies ∂xf = 0 (resp.
f∂x = 0). Similarly, a function satisfying ∆m = 0 is called a harmonic function. A
function that is monogenic is in particular also harmonic, monogenicity thus being a
refinement of harmonicity.
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2.2 Clifford algebras and analysis: discrete setting

2.2.1 Discrete Clifford algebras

Consider the discrete grid Zm
h = {x = (n1h, n2h, . . . , nmh) | n ∈ Zm}. Split up the basis

elements ej of Cm into forward and backward basic vectors e+j and e−j , such that

• the forward and the backward basis vector in each particular cartesian direction
add up to the traditional basis vector in that direction: e+j + e−j = ej , j = 1, . . .m;

• there are no preferential Cartesian directions, i.e. all Cartesian directions play the
same role in the metric (rotational invariance);

• the positive and negative orientations of any cartesian direction play an equivalent
role (reflection invariance).

We consider the algebra over the set {e+j , e
−
j | j = 1, ..,m}, satisfying the following

relations:

{e−j , e
−
k } = e−j e

−
k + e−k e

−
j = 0, j, k ∈ {1, . . . ,m},

{e+j , e
+
k } = e+j e

+
k + e+k e

+
j = 0, j, k ∈ {1, . . . ,m},

{e+j , e
−
k } = e+j e

−
k + e−k e

+
j = δjk, j, k ∈ {1, . . . ,m}.

(2.6)

Remark that, in contrast to the relations mentioned in (2.1) for the continuous case, the
anticommutator of e+j and e−j equals 1. This implies e2j = +1 versus the usual Clifford

setting where e2j = −1. This is due to historical reasons. The Clifford algebra thus has
order (m, 0). Because of this splitting of the basis elements, this setting is sometimes
referred to as the ‘split’ discrete setting. The basis elements {e+j , e

−
j | j = 1, . . . ,m} form

a basis of the space of 1-vectors. Let the wedge product (also called exterior product) be
defined as follows

e±j ∧ e±k := e±j e
±
k − e±k e

±
j . (2.7)

Then the elements in {e±j ∧ e±k | j, k = 1, . . .m}} form a basis for the space of 2-vectors

or bivectors. In general, the set {e±j1 ∧ e±j2 ∧ . . . ∧ e±jr | j1, . . . , jr ∈ {1, . . . ,m}} forms the
basis for the r-vectors.

Remark 2.1. We started from the classical Clifford algebra Cm with dimension 2m

and split up each basis element in a forward and backward vector. Because of that,
the dimension raises to (2m)2 = 22m. This can also be seen as a lift from Cm to C2m:
identifying e+j + e−j with a continuous basis element that squares up to 1 and e+j − e−j
with one that squares up to −1.

The same involutions as in the continuous case can be introduced. In this work, we will
only use the Hermitian conjugation 2.1.1 .†, which we now extend to the forward and
backward vectors as

(e+j )
† = e−j and (e−j )

† = e+j .

Remark 2.2. Hermitian conjugation is the discretisation of hermitian conjugation in Cm

and a generalisation of complex conjugation in C. It holds that (e+j + e−j )
† = e+j + e−j

and (e+j − e−j )
† = e−j − e+j .
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2.2.2 Discrete Clifford analysis

Classical partial derivatives are replaced by the so-called forward and backward dif-
ferences for j = 1, . . . ,m, in analogy with the classical left and right limit of differenti-
ation:

∆+
j f(x) =

f(x+ hej)− f(x)

h
,

∆−
j f(x) =

f(x)− f(x− hej)

h
,

with x ∈ Zm
h and f defined on Zm

h .

Definition 2.3. The star Laplacian

∆∗[f ](x) =
m∑
j=1

f(x+ hej) + f(x− hej)

h2
−2m

f(x)

h2
=

m∑
j=1

∆+
j ∆

−
j [f ](x) =

m∑
j=1

∆−
j ∆

+
j [f ](x)

is the discrete counterpart of the continuous Laplace operator. A function f such that
∆∗[f ](x) = 0, is called a (discrete) harmonic function.

Many notions of a discrete Dirac operator are around. As we want discrete monogenicity
to be a refinement of discrete harmonicity, we choose the next definition, which makes
use of the splitting of the basis vectors ej .

Definition 2.4. Denote ∂j = e+j ∆
+
j + e−j ∆

−
j . The discrete Dirac operator then is

defined as

∂ =

m∑
j=1

∂j =

m∑
j=1

e+j ∆
+
j + e−j ∆

−
j .

A discrete function f satisfying ∂f = 0, is called (left) monogenic.

This Dirac operator factorises the star Laplacian, i.e.

∂2 = ∆∗.

This is in analogy to classical Clifford analysis where the continuous Dirac operator also
factorises the Laplacian ∆m, monogenicity thus being a refinement of harmonicity.

The Dirac operator and the forward and backward differences are lowering operators:
they lower the degree of a polynomial by 1. The corresponding raising operator is the
discrete vector variable operator, denoted by

ξ =

m∑
j=1

ξj =

m∑
j=1

e+j X
−
j + e−j X

+
j .

The interaction of the lowering and rising operators are given by the skew Weyl-
relations introduced in [30]

∆+
j X

+
j −X−

j ∆−
j = 1,

∆−
j X

−
j −X+

j ∆+
j = 1.

(2.8)
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This implies for ξj and ∂j

∂jξj − ξj∂j = 1,

ξjξk = −ξkξj ,
∂j∂k = −∂k∂j ,
∂jξk = −ξk∂j , j ̸= k.

(2.9)

Definition 2.5. The discrete Euler operator is given by

E =
m∑
j=1

ξj∂j =
m∑
j=1

(
e+j e

−
j X

−
j ∆−

j + e−j e
+
j X

+
j ∆+

j

)
. (2.10)

The same intertwining relations as in the continuous setting hold:

∂ξ + ξ∂ = 2E+m,

∂E = E∂ + ∂,

Eξ = ξE+ ξ.

(2.11)

From the relations (2.8) and (2.11), we find how the raising operators X±
j and hence ξj

act on polynomials. In particular, ξnj [1], which are the basic discrete polynomials of
degree n were obtained in [33]:

ξj [1](xj) = xj(e
+
j + e−j ),

ξ2k+1
j [1](xj) = xj

k∏
s=1

(
x2j − s2h2

)(
e+j + e−j

)
,

ξ2kj [1](xj) =

(
x2j + k hxj

(
e+j e

−
j − e−j e

+
j

)) k−1∏
s=1

(
x2j − s2h2

)
,

(2.12)

for k ≥ 1. These polynomials are, for k > 2 unique solutions of the system
∂jξ

k
j [1] = kξk−1

j [1],

ξkj [1](0) = 0,

ξkj [1](h) = 0.

(2.13)

The roots of ξ2k+1
j [1] and ξ2k+2

j [1] is the set {−kh, . . . , kh}. Remark that
(
ξnj [1]

)†
= ξnj [1].

A polynomial Pk is called discrete homogeneous of degree k if it is an eigenfunction
of the discrete Euler operator with eigenvalue k:

EPk = kPk.

The basic discrete polynomials ξkj [1] are discrete homogeneous of degree k. Moreover,
they span the subvectorspace of discrete homogeneous polynomials of degree k. It is
important to keep in mind that the discrete notion of homogenity does not coincide with
the continuous definition. A restriction of a continuous homogeneous polynomial to the
grid does not give a discrete homogeneous polynomial in the discrete sense and vice versa:
ξkj [1] is not homogeneous in the classical definition.

The natural powers of the Hermitian conjugation † of ξ are analogous: we were able to
prove that they only differ by a different sign of the bivector part:
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Lemma 2.6. The natural powers of the Hermitian conjugation † of ξ are given by

(
ξ†j

)2k+1
[1] = ξ2k+1

j [1] = xj

k∏
s=1

(
x2j − s2h2

)(
e+j + e−j

)
,

(
ξ†j

)2k
[1] =

(
x2j − k hxj

(
e+j e

−
j − e−j e

+
j

)) k−1∏
s=1

(
x2j − s2h2

)
.

(2.14)

Proof. This proof is by induction. Take h = 1 and omit the subindex j to not overload
notations. The trivial cases with k = 0 are

•
(
ξ†
)0

= 1

•
(
ξ†
)1

= x(e+ + e−)

Now let k ≥ 1. We use lemma 2.9.4 and corollary 2.9.1 from [31]. First, we prove for the

odd case that
(
ξ†
)2 (

ξ2k−1[1](x)
)
= ξ2k+1[1](x).

ξ†
(
ξ2k−1[1](x)

)
= (X+e− +X+e+)

(
ξ2k−1[1](x)

)
= (x+ k)e−ξ2k−1[1](x) + (x− k)e+ξ2k−1[1](x)

= x(e+ + e−)ξ2k−1[1](x) + k(e− − e+)ξ2k−1[1](x).

(
ξ†
)2 (

ξ2k−1[1](x)
)
= ξ†

[
x(e+ + e−)ξ2k−1[1](x)

]
+ ξ†

[
k(e− − e+)ξ2k−1[1](x)

]
= x(e− + e+)ξ†

(
ξ2k−1[1](x)

)
+ k(e− − e+)ξ†

(
ξ2k−1[1](x)

)
= x(e− + e+)

(
x(e+ + e−)ξ2k−1[1](x) + k(e− − e+)ξ2k−1[1](x)

)
+ k(e− − e+)

(
x(e+ + e−)ξ2k−1[1](x) + k(e− − e+)ξ2k−1[1](x)

)
= x2 (e− + e+)2︸ ︷︷ ︸

=1

ξ2k−1[1](x) + xk(e− + e+)(e− − e+)ξ2k−1[1](x)

+ xk(e− − e+)(e− + e+)ξ2k−1[1](x) + k2 (e− − e+)2︸ ︷︷ ︸
=−1

ξ2k−1[1](x)

= (x2 − k2)ξ2k−1[1](x).

For the even case, we rely on the property for the odd case.(
ξ†
)2k+2

[1](x) = ξ†
[(
ξ†
)2k+1

[1](x)

]
= ξ†

[
ξ2k+1[1](x)

]
= X+e+

[
ξ2k+1[1](x)

]
+X−e−

[
ξ2k+1[1](x)

]
=
(
x− (k + 1)

)
e+
[
ξ2k+1[1](x)

]
+
(
x+ (k + 1)

)
e−
[
ξ2k+1[1](x)

]
= x(e+ + e−)ξ2k+1[1](x) + (k + 1)(e− − e+)ξ2k+1[1](x)
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= x2
k∏

i=1

(x2 − i2) (e+ + e−)2︸ ︷︷ ︸
=1

+(k + 1)(e− − e+)x

k∏
i=1

(x2 − i2)(e+ + e−)

=

(
x2 + (k + 1)x

(
e−e+ − e+e−

)) k∏
i=1

(
x2 − i2

)
=

(
x2 − (k + 1)x

(
e+ ∧ e−

)) k∏
i=1

(
x2 − i2

)
.

Until now, we gave expressions for the discrete vector variable ξ acting from the left on
the base state [1]. As the Clifford algebra we are working in is not commutative, the
action from the right is, in general, not equal to the action on the left. In [31], it is proven
that (

ξα1
1 . . . ξ

αj

j . . . ξαm
m [1]

)
∂†j = (−1)αj+1+...+αmξα1

1 . . .
(
αjξ

αj−1

j

)
. . . ξαm

m [1].

In particular, if m = 1, this reduces to(
ξk[1]

)
∂† = ∂

(
ξk[1]

)
, (2.15)(

ξk[1]
)
ξ† = ξk+1[1]. (2.16)

Due to the anti-commutativity of the basic elements e1, . . . , em, also the co-ordinate dif-
ference operators and co-ordinate vector variables mutually anti-commute. To overcome
this lack of commutativity of ξ and ∂, let us introduce the operators

Rj = e+j R
+
j + e−j R

−
j , j = 1, . . .m, (2.17)

which were defined in [40].

The operators interact with X±
j and ∆±

j in the following way:

R±
j [1] = e±j ,

R+
j X

+
j = X−

j R
−
j , R−

j X
−
j = X+

j R
+
j ,

R+
j ∆

−
j = ∆+

j R
−
j , R−

j ∆
+
j = ∆−

j R
+
j

It follows that, on co-ordinate level, they satisfy the following (anti-)commuting relations:

Rjξj − ξjRj = 0,

Rj∂j − ∂jRj = 0,

Rjξk + ξkRj = 0, j ̸= k,

Rj∂k + ∂kRj = 0, j ̸= k,

RjRk +RkRj = 0, j ̸= k.

(2.18)
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In particular, in combination with the operators ξj and ∂j , we obtain mutually commuting
operators ξjRj and ∂jRj , i.e.

(ξjRj)(ξkRk) = (ξkRk)(ξjRj) and (∂jRj)(∂kRk) = (∂kRk)(∂jRj).

These operators Rj will be of interest when we consider structures and definitions in
dimensions m > 1 in chapter 4.

The discrete delta functions are the building blocks of discrete function theory.

δnh(x) =

{
1
hm , if x = nh,

0, else.

A discrete function f can be decomposed into discrete delta functions as

f(x) =
∑
n∈Zm

f(nh)h δnh(x), x ∈ Zm.

The same function f can also be expressed as an infinite series of powers of the basis
vector variables, its Taylor series:

f(x) =

∞∑
k=0

1

k!

m∑
ℓ1=1

. . .

m∑
ℓk=1

ξℓ1 . . . ξℓk [1](x)∂ℓk . . . ∂ℓ1f(0). (2.19)

In one dimension, this gives

f(x) =
∞∑
k=0

1

k!
ξk[1](x)[∂kf(u)]u=0. (2.20)

The Taylor series expansion

f(ξ) =
∑
k∈N

ξkhck
k!

with ck = [∂kf(u)]u=0

is the corresponding operator to this function. Letting this operator act on the identity
function 1, one obtains a function in the discrete variable x. By identifying a discrete
function with its corresponding operator, the set of discrete functions is a right Clifford
module.

In particular, the discrete Taylor series of the delta functions in one dimension are found
in [32]:

δ0(x) =

∞∑
ℓ=0

(−1)ℓ

(ℓ!)2 h2ℓ+1
ξ2ℓ[1](x) +

∞∑
ℓ=0

(−1)ℓ+1

(ℓ+ 1)! ℓ!h2ℓ+2
ξ2ℓ+1[1](x)(e+ − e−),

For j = nh positive:

δnh(x) =

∞∑
ℓ=n

(−1)ℓ−n

(ℓ− n)!(ℓ+ n)!h2ℓ+1
ξ2ℓ[1](x)+
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∞∑
ℓ=n−1

(−1)ℓ−n+1

(ℓ− n+ 1)!(ℓ+ n)!
ξ2ℓ+1[1](x)e++

∞∑
ℓ=n

(−1)ℓ−n

(ℓ− n)!(ℓ+ n+ 1)!h2ℓ+2
ξ2ℓ+1[1](x)e−,

and for j = nh negative:

δj(nh) =
∞∑

l=|n|

(−1)ℓ−n

(ℓ− n)!(ℓ+ n)!h2ℓ+1 h2ℓ+1
ξ2ℓ[1](x)+

∞∑
l=|n|

(−1)ℓ−n+1

(ℓ− n+ 1)!(ℓ+ n)!
ξ2ℓ+1[1](x)e++

∞∑
l=|n|−1

(−1)ℓ−n

(l − n)!(l + n+ 1)!h2ℓ+2
ξ2ℓ+1[1](x)e−.

2.2.2.1 Discrete distributions

Similar to classical analysis, distributions are a class of linear functionals acting on a
particular space of functions.

A discrete distribution is a linear functional defined on the set of discrete polynomials,
with values in the Clifford algebra. They were introduced in the discrete Clifford setting
in [32]. As in the classical setting, a regular distribution F is one that is associated with
a density function f , such that

⟨F, g⟩ =
∫
R
g(x)f(x)dx.

The translation to the discrete setting is immediate:

⟨F, g⟩ =
∑
x∈Zh

g(x)f(x)h.

The inverse is also true: with every discrete function with compact support, a distribution
is associated: let f(x) be a function with compact support, then its associated distribution
F is defined as

⟨F, g⟩ =
∑
x∈Z

f(x) g(x).

Regular distributions are unique, in the sense that there is a one-on-one correspondence
between the distribution and the discrete function with compact support.

Let F denote a (not necessary regular) discrete distribution, V a discrete polynomial and
a a Clifford number. It was proven in [32] that〈

∂jF, V
〉
= −

〈
F, V ∂†j

〉
,〈

ξjF, V
〉
=
〈
F, V ξ†j

〉
,

⟨Fa, g⟩ = ⟨F, V ⟩ a,
⟨F, aV ⟩ = a ⟨F, V ⟩ .

(2.21)

The building blocks of discrete distributions are the discrete delta distributions δnh,
associated with the discrete delta functions δnh:

⟨δnh, f⟩ =
∑

m∈Zm

f(mh)h δnh(mh) = f(nh).
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Consider the derivatives of the discrete delta distribution, acting on a discrete function
f as 〈

∂kj δnh, f
〉
= (−1)k

〈
δnh, ∂

k
j f
〉
= ∂kj f(nh).

In particular, if f = ξℓj [1](x), then

〈
∂kj δnh, ξ

ℓ
j [1]
〉
=

(−1)k
ℓ!

(ℓ− k)!
ξℓ−k
j [1](nh), k ≤ ℓ,

0, k > l.
(2.22)

The dual Taylor series are for distributions what the Taylor series are for functions.
Every discrete distribution F can be written in terms of derivatives of the delta distri-
bution as follows

F =
∞∑

k1,...km=0

(−1)|k|

k1! . . . km!
∂kmm . . . ∂k11 δ0

〈
F, ξk11 ξ

k2
2 . . . ξkmm [1]

〉
. (2.23)

The discrete Gauss distribution is another important distribution in our theory. It
is uniquely defined via its action on the discrete homogeneous polynomials:

〈
G, ξk11 ξ

k2
2 . . . ξkmm [1]

〉
=

{
(2π)

m
2
∏m

i=1(ki − 1)!!, if all ki even,

0, else,
(2.24)

with the double factorial

(ki − 1)!! =
(2ki)!

2ki ki!
.

The dual Taylor series representation, immediately derived from (2.23), is given by:

G =
∞∑

k1,...,km=0

(−1)|k|

k1!k2! . . . km!
∂k11 ∂

k2
2 . . . ∂kmm δ0

〈
G, ξk11 ξ

k2
2 . . . ξkmm [1]

〉
=

∞∑
k=0

(2π)
m
2

1

2k1+...+kmk1! . . . km!
∂k11 ∂

k2
2 . . . ∂kmm δ0

= (2π)
m
2 exp

(
∂2

2

)
δ0.

(2.25)

The following result from [31] for the moments of G is useful for calculations:
〈
G, ξ2k[1]

〉
=

√
2π

m
2k

Γ(m
2
+k)

Γ(m
2
) ,〈

G, ξ2k+1[1]
〉

= 0.
(2.26)
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Let P (ξ) be a discrete polynomial in the discrete vector variable ξ. The distribution
P (ξ)G is well defined and can be calculated using the calculation rule

∂jG = −ξjG, (2.27)

and hence also

∂G = −ξG. (2.28)

It enables us to write P (ξ)G as a sum of derivatives of the δ0-distribution. For a given
polynomial P , defined on the grid, there exists a unique operator P (ξ) such that

P (ξ)[1](nh) = P (nh), ∀n ∈ Zm,

hence there exists a unique distribution of the form P (ξ)G.

The discrete (radial) Hermite polynomials are defined using the Gauss distribution.
They are polynomials in ξ, defined by the recurrence relation Hk+1G = (−1)k+1∂HkG.
Using the relation ∂G = −ξG, they satisfy Rodriguez’ formula

H2kG = (−1)k∂2kG

H2k+1G = (−1)k+1∂2k+1G.
(2.29)

An explicit form for the Hermite polynomials is given by

H2k,m =
k∑

j=0

a2k2j ξ
2j H2k+1,m =

k∑
j=0

a2k+1
2j+1ξ

2j+1 (2.30)

with

a2k2j = (−1)j2k−j

(
k

j

)
Γ(k + m

2 )

Γ(j + m
2 )

(2.31)

a2k+1
2j+1 = (−1)j2k−j

(
k

j

)
Γ(k + m

2 + 1)

Γ(j + m
2 + 1)

. (2.32)

or in particular in dimension m = 1:

Hn(ξ) =

⌊n
2
⌋∑

j=0

(−1)⌊
n
2
⌋−j 2−j n!

j! (n− 2j)!
ξn−2j (2.33)

The absolute values of the coefficients a2ℓ2j and a
2ℓ+1
2j+1 are equal to those of the coefficients

of the continuous Hermite polynomials Hn: the difference is a factor (−1)
⌊n⌋
2 .

Even Hermite polynomials and operators have a scalar and a bivectorial part as they
only contain even power of ξ, while odd Hermite polynomials only have a vectorial part
as they only have odd powers of ξ.

Example 2.7. The first Hermite polynomial operators in dimension m = 1 are given by

H1 = ξ
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H2 = −ξ2 + 1

H3 = −ξ3 + 3ξ

H4 = ξ4 − 6ξ2 + 3

H5 = ξ5 − 10ξ3 + 15ξ

H6 = −ξ6 + 15ξ4 − 45ξ2 + 15

H7 = −ξ7 + 21ξ5 − 105ξ3 + 105ξ

H8 = ξ8 − 28ξ6 + 210ξ4 − 420ξ2 + 105

H9 = ξ9 − 36ξ7 + 378ξ5 − 1260ξ3 + 945ξ

H10 = −ξ10 + 45ξ8 − 630ξ6 + 3150ξ4 − 4725ξ2 + 945

In the classical case, one can use the continuous Hermite polynomials as a basis for a
certain kind of L2−functions: those defined on the real line. However, in [36], Sommen
and his colleagues developped a more complex set of polynomials, called the generalised
Hermite polynomials. They are defined using a monogenic function Pk of degree k and

creating the monogenic extension of exp

(
−x

2

2

)
Pk(x):

Hn,m,kPk(x) = exp

(
−x

2

2

)
(−1)n∂nx

exp(−x2
2

)
Pk(x)

 .
These can be used to construct a basis for of L2

(
Rm,R0,m

)
, the space of measurable

Clifford algebra-valued functions on Rm. We refer to [36] and [41] for a more exhaustive
study in the classical setting. Similarly, De Ridder introduced the discrete generalised
Hermite polynomials, defined by the same corresponding Rodriguez’ formulae as (2.29):

H2k,m,rPrG = (−1)k∂2kPrG

H2k+1,m,rPrG = (−1)k+1∂2k+1PrG.
(2.34)

Herein, Pr is a discrete monogenic polynomial of degree r. The explicit form for the
generalised Hermite polynomials is similar to the expression of the radial Hermite poly-
nomials:

H2k,m,r =
k∑

j=0

a2k2j ξ
2j H2k+1,m,r =

k∑
j=0

a2k+1
2j+1ξ

2j+1 (2.35)

with

a2k2j = (−1)j2k−j

(
k

j

)
Γ(k + m

2 + r)

Γ(j + m
2 + r)

(2.36)

a2k+1
2j+1 = (−1)j2k−j

(
k

j

)
Γ(k + m

2 + r + 1)

Γ(j + m
2 + r + 1)

. (2.37)

For r = 0, we reobtain the radial Hermite polynomials.



3
Weierstrass transform in one dimension

We start with a note on the continuous (classical) Weierstrass transform. The elementary
principles of the continuous setting will lead to the definition of a discrete Weierstrass
space W on which a discrete counterpart of the Weierstrass transform will make sense.
The set of discrete polynomials should be a dense subset of W and a basis will be formed
by the Hermite polynomials. The inner product will be defined using the discrete Gauss
distribution. We will show that the translation to the discrete setting is well-defined and
investigate for some basic discrete functions if they are an element of our newly defined
space. In particular, we will show in section 3.2.3 that the building blocks of discrete
functions, the δ-functions are elements of the discrete Weierstrass space. In section 3.3,
we generalise the definitions to a grid with mesh width h ̸= 1. The fact that, for h→ 0,
we obtain the classical results, would confirm the accuracy of our definitions.

3.1 Continuous Weierstrass transform

Definition 3.1. The Weierstrass transform [1] of a function f on R is defined as the
convolution of f with the Gaussian kernel:

W[f ](u) =
1√
2π

∫
R
exp

(
−|u− x|2

2

)
f(x)dx.

When considered as an integral transform on Lp(R), the space of real p−th power in-
tegrable functions on R, we have that W[f ] ∈ Lp(R) and ∥W[f ]∥ ≤ ∥f∥, hence the
Weierstrass transform is a bounded operator on Lp(R). As is well-known, the Hermite
polynomials form a basis for the weighted L2-space:

L2

(
R, exp

(
−|x|2 /2

))
= {f : R → C :

∫
R

∣∣f(x)∣∣2 exp(−|x|2 /2
)
dx <∞},
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where we use the probabilistic definition of Hermite polynomials

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
−x

2

2

)
= n!

⌊n
2
⌋∑

j=0

(−1)j

j!(n− 2j)!

xn−2j

2j
,

with generating function

exp

(
xz − 1

2
z2
)

=

∞∑
n=0

Hn(x)
zn

n!
. (3.1)

Consider the Fock space ([42]) of holomorphic functions which are square integrable with
respect to the Gaussian function

1

π

∫
C
exp

(
−|z|2

)∣∣f(z)∣∣2 dxdy <∞

and equipped with the inner product

⟨f, g⟩ = 1

π

∫
C
exp

(
−|z|2

)
f(z)g(z)dxdy, z = x+ iy.

The basis {zk | k ∈ N} is orthogonal:

⟨zℓ, zk⟩ = 0, k ̸= ℓ,

and

⟨zk, zk⟩ = 1

π

∫ 2π

0

∫ ∞

0
exp

(
−r2

)
r2krdrdθ = k!, z = r exp(iθ).

As an informative example, let us calculate the Weierstrass transform of the classical
Hermite polynomials in one dimension:

W[Hn](z) =
1√
2π

∫
R
exp

(
−(z − x)2/2

)
(−1)n exp

(
x2/2

) dn

dxn

[
exp

(
−x2/2

)]
dx

= (−1)n
1√
2π

∫
R
exp

(
−z2/2 + xz

) dn

dxn

[
exp

(
−x2/2

)]
dx

=
1√
2π

∫
R

dn

dxn

[
exp

(
−z2/2 + xz

)]
exp

(
−x2/2

)
dx

=
zn√
2π

∫
R
exp

(
−(z − x)2/2

)
dx = zn.

(3.2)

This above computation shows that the Weierstrass transform of Hn equals zn. It proves

that we deal with an isometry between L2

(
R, exp

(
−|x|2 /2

))
and the Fock space. This

discussion can be naturally extended from one to several complex variables, see [42], but
for us the ideas and construction described above inspire us for the next chapter.
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3.2 Discrete Weierstrass transform in one dimension

We want to establish a discrete version of the Weierstrass transform, sending a discrete
function (i.e. defined on the grid) to an analytic function in a Clifford-valued Fock
space. Therefore, we try to mimic the ideas of the classical setting. Consider again the
calculations of W[Hn](z) = zn (see (3.2)), we see

W[Hn](z) = (−1)n
1√
2π

∫
R
exp

(
−z2/2 + xz

) dn

dxn

[
exp

(
−x2/2

)]
dx.

It is the product of the n−th derivative of the Gaussian function with exp
(
−z2/2 + xz

)
.

We recognise this derivative as the n−th degree Hermite polynomial. Both the Hermite
polynomials (see (2.29)) and Gaussian function (see (2.24) are introduced in the discrete
setting in the previous section. These elements will allow us to translate the Weierstrass
transform to the discrete setting:

Definition 3.2. The discrete Weierstrass transformation of the discrete Hermite poly-
nomials in one dimension is defined as

W[Hn](z) :=
1√
2π

⟨Hn(ξ)G, exp
(
−z2/2 + ξ z

)
[1]⟩. (3.3)

We then directly obtain the following result:

Proposition 3.3. W[Hn](z) = (−1)⌊
n
2 ⌋zn, ∀n ∈ N.

Proof. This is a straightforward calculation.

⟨Hn(ξ)G, exp
(
−z2/2 + ξ z

)
[1]⟩ = ⟨(−1)⌈

n
2 ⌉∂nG, exp

(
−z2/2 + ξ z

)
[1]⟩

= (−1)⌈
n
2 ⌉ exp

(
−z2/2

)
⟨∂nG,

∞∑
i=0

ξizi[1]

i!
⟩.

We now use (2.21) and (2.15) to see that this equals

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=0

zi

i!
⟨G, ξi[1](∂†)n⟩.

Acting on the constant function 1, ∂ acts as a formal derivative of ξ (2.13), hence

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=0

zi

i!
⟨G, ∂nξi[1]⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=n

zi

i!

i!

(i− n)!
⟨G, ξi−n[1]⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
j=0

zj+n

j!
⟨G, ξj [1]⟩.
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The action of the Gauss distribution is only non-zero when acting on even powers of ξ
and was given in (2.24)

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

)
zn

∞∑
j=0

z2j

(2j)!

√
2π

(2j)!

2jj!

= (−1)⌊
n
2 ⌋
√
2π zn.

These transformations correspond to the continuous case, taking into account that the
discrete Hermite polynomials are formally equal to their continuous counterparts, up to
signs in the coefficients.

This definition can be naturally extended to any (in)finite right linear combination of
Hermite polynomials:

f =

∞∑
n=0

Hn cn ⇒ W[f ](z) =

∞∑
n=0

W[Hn](z) cn, cn ∈ Cm.

We now want to extend this definition to general discrete functions and find a condition
for a discrete function to possess a Weierstrass transform. Therefore, we aim for an
appropriate space of functions similar to the classical weighted L2−space

L2

(
Rm, exp

(
−|x|2 /2

))
= {f : Rm → C :

∫
Rm

∣∣f(x)∣∣2 exp(−|x|2 /2
)
dx <∞}.

Herein, the set of Hermite polynomials form a basis and the Gaussian is the kernel,
exactly the tools we have at hand.

Remark that the set of discrete functions forms a right Clifford module in which the right
submodule of polynomials is dense, by writing a discrete function f in its Taylor series
f(ξ)[1], with

f(ξ) =
∞∑
k=0

ξkck

the corresponding operator. Moreover, the set of discrete Hermite polynomials in ξ of
degree less or equal to n, as its classical counterpart, is a set of n+1 linearly independent
polynomials. Hence, the space of discrete polynomials of degree ≤ n is spanned by these
Hermite polynomials, i.e. every discrete polynomial in ξ can be written as a finite linear
combination of Hermite polynomials.

Now define a sesquilinear form as follows:

Definition 3.4. Let f and g be two discrete functions.

(f, g) =
(
f(ξ)[1], g(ξ)[1]

)
:=
〈
f(ξ)G, [1](g(ξ))†

〉
. (3.4)

The distribution f(ξ)G is calculated by writing f in its Taylor series expansion, hence a
(possibly infinite) series of polynomials in the operator ξ.
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Remark that (
f(ξ)[1]

)†
= [1]

∞∑
k=0

c†k(ξ
†)k =

∞∑
k=0

c†kξ
k[1].

In particular, if f is a real function (i.e. every ck ∈ R) then [1]
(
f(ξ)

)†
= f(ξ)[1].

Lemma 3.5. The discrete Hermite polynomials are orthogonal with respect to the inner
product (3.4) and for n,m ∈ N :

(Hn, Hm) =
√
2π n! δn,m =: ηn.

Proof. We calculate (Hn, Hm). If n ̸= m, it follows from [31], p. 9-12, that (Hn, Hm) = 0.
Now suppose m = n = 2k is even.

(H2k, H2k) =

〈
k∑

j=0

a2k2j ξ
2jG, [1]

 k∑
i=0

a2k2i ξ
2i

†〉
=

〈
k∑

j=0

a2k2j ξ
2jG,

k∑
i=0

a2k2i [1](ξ
2i)†

〉

=
k∑

i,j=0

a2k2ja
2k
2i

〈
G, ξ2i+2j [1]

〉
=

k∑
i,j=0

a2k2ja
2k
2i

√
2π

(2i+ 2j)!

2i+j(i+ j)!

=
√
2π (2k)! = η2k.

For m = n = 2k + 1 odd, we similarly have that

(H2k+1, H2k+1) =
∑
i,j∈N

a2k+1
2j+1a

2k+1
2i+1

√
2π

(2i+ 2j + 2)!

2i+j+1(i+ j + 1)!

=
√
2π (2k + 1)! = η2k+1.

The last step was calculated by substituting the explicit values of the coefficients akj .

The results coincide with those for the inner products of Hermite polynomials in the
continuous setting.

Lemma 3.6. The bilinear form (3.4) is conjugate symmetric with respect to †.

Proof. Let f, g be two discrete Clifford-valued polynomials and write them in their Her-

mite polynomial expansion, i.e. f =

∞∑
k=0

Hkak and g =

∞∑
ℓ=0

Hℓbℓ. We then have

(f, g) =
〈
f(ξ)G, [1](g(ξ))†

〉
=

∞∑
k,ℓ=0

〈
Hk(ξ)akG, [1]⟨Hℓ(ξ)bℓ

)†⟩
=

∞∑
k,ℓ=0

b†ℓ⟨Hk(ξ)G, [1]Hℓ(ξ
†)⟩ak
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=

∞∑
n=0

b†nηnan,

Since G is scalar, the second step akG = Gak is allowed. Also, as ηn ∈ R,

(g, f)† =

∞∑
n=0

(
a†nηnbn

)†
=

∞∑
n=0

b†nηnan.

Remark 3.7. It is possible to take the scalar part of the right hand side of definition
(3.4) in order to obtain a positive definite inner product. In that case however, one
obtains a complex Hilbert space in which the discrete Hermite polynomials are no longer
basis elements: a function f spanned by discrete Hermite polynomials can be written as

∞∑
n=0

(f,Hn)Hn

and thus could never be Clifford-valued if both (f,Hn) and Hn are scalar-valued.

Let f be a Clifford-valued polynomial, written as a linear combination of Hermite poly-

nomials: f =
∞∑
k=0

Hkck. Then

(f, f) =

∞∑
k,ℓ=0

c†ℓ (Hk, Hℓ) ck =

∞∑
k=0

ηkc
†
kck. (3.5)

Let us now calculate r†r, where r is an arbitrary Clifford element of the form r =
a+ be+ + ce− + d(e+ ∧ e−), where a, b, c, d are complex numbers. We obtain

r†r = (a+ be+ + ce− + d(e+ ∧ e−))†(a+ be+ + ce− + d(e+ ∧ e−))

= (ā+ b̄e− + c̄e+ + d̄(e+ ∧ e−))(a+ be+ + ce− + d(e+ ∧ e−))

= |a|2 + ābe+ + āce− + ād(e+ ∧ e−) + ab̄e− + |b|2e−e+ + b̄de−(e+ ∧ e−) + ac̄e+

+ |c|2e+e− + c̄de+(e+ ∧ e−) + ad̄(e+ ∧ e−) + bd̄(e+ ∧ e−)e+

+ cd̄(e+ ∧ e−)e− + |d|2(e+ ∧ e−)2

= |a|2 + |d|2 + |b|2 + |c|2

2
+ (āb+ ac̄− c̄d+ bd̄)e+ + (āc+ ab̄+ b̄d− cd̄)e−

+
2ād+ 2ad̄+ |c|2 − |b|2

2
(e+ ∧ e−),

(3.6)

where we invoked the relations (2.6), (2.7) and

e±(e+ ∧ e−) = ∓e±,

(e+ ∧ e−) e± = ±e±,
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(e+ ∧ e−)2 = 1,

(e+ ∧ e−)† = e+ ∧ e−.

It follows that if (f, f) = 0, f must be 0 because of (3.6). Moreover, its scalar part is
always positive, thus leading to the definition of the norm of a Clifford number and the
norm of a discrete function.

Definition 3.8. The norm of a Clifford number a is defined as:

∥a∥ :=
[
a†a
]
0
.

The scalar part of (f, f) is defined as the norm of the discrete function f :

∥f∥ :=
[
(f, f)

]
0
. (3.7)

Based on the findings in this section, we define the discrete Weierstrass space as follows:

Definition 3.9. The discrete Weierstrass space W is the completion of the right
Clifford module of Hermite polynomials in ξ in the norm (3.7):

f ∈ W ⇔ f =
∞∑
n=0

Hncn with ∥f∥ <∞.

With this newly introducedWeierstrass space, we can expand the definition of the discrete
Weierstrass transform to all elements inW, as they are a convergent (for the inner product
(3.4)) series of Hermite polynomials.

Definition 3.10. For a discrete function f ∈ W, f =
∞∑
n=0

Hnan, its Weierstrass trans-

form is defined as

W[f ](z) =
1√
2π

⟨f(ξ)G, exp
(
−z2/2 + ξ z

)
[1]⟩ =

∑
n∈N

W[Hn](z)an =
∑
n∈N

(−1)
⌊n⌋
2 anz

n.

The Weierstrass transform of a discrete function f ∈ W is a continuous complex Clifford-

valued function. In (2.4), we introduced the space L2

(
Cm,Cm,

1
π exp

(
−|z|2

2

))
. We

will now show that W[f ] is an element of this module, for m = 1. Moreover, this
discrete Weierstrass transform of Clifford algebra-valued functions is unitary up to a
scaling constant.

Proposition 3.11. If f ∈ W, then〈
W[f ],W[f ]

〉
L2

(
C,C, 1

π
exp(−|z|2)

) = (f, f)W .

Proof. If f =

∞∑
n=0

Hnan ∈ W, then (f, f) =
∑∞

n=0 ηna
†
nan and W[f ](z) =

∞∑
n=0

znan. It

then follows that〈
W[f ],W[f ]

〉
L2

(
Cm,Cm, 1

πm exp(−|z|2)
) =

〈∑
n∈N

znan,
∑
m∈N

zmam

〉
L2

(
Cm,Cm, 1

πm exp(−|z|2)
)
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=
∑

m,n∈N
a†man ⟨zn, zm⟩L2

(
Cm,Cm, 1

πm exp(−|z|2)
)

=
∑
n∈N

a†nann!.

Because f is an element of W,

∞∑
n=0

[
ηna

†
nan

]
0
is finite, hence W[f ] is an element of

L2

Cm,Cm,
1

πm
exp

(
−|z|

2

2

).

In the next sections, we look at some examples of elements that are in the Weierstrass
space their corresponding Weierstrass transforms.

3.2.1 Examples of elements in the Weierstrass space

3.2.1.1 Linear combination of Hermite polynomials

As was already mentioned, any discrete polynomial can be written as a finite linear
combination of Hermite polynomials. For any (finite or infinite) linearly combination of
Hermite polynomials, one clearly has

∞∑
k,ℓ=0

(Hkck, Hℓbℓ) =
∞∑
k=0

b†k (Hk, Hk) ck =
∞∑
k=0

b†kηkck.

3.2.1.2 Basic vectors

The inner product of two basic vectors is:

(
e±, e±

)
=
〈
e±G, [1]e∓

〉
=
〈
G, [1]e∓e±

〉
=

√
2π e∓e± =

√
2π

2

(
1∓ e+j ∧ e−j

)
,(

e+, e−
)
=
〈
e+G, [1]e+

〉
=
〈
G, e+e+[1]

〉
= 0.

We can interpret these results as orthogonality relations of the basic elements e+ and
e−. As a result,

(
e+ ± e−, e+ ± e−

)
=

√
2π

3.2.1.3 Basic discrete polynomials

The inner product of two basic discrete polynomials immediately follows from the defi-
nition of the Gaussian distribution G.(

ξk[1], ξℓ[1]
)
=
〈
ξkG, [1](ξ†)ℓ

〉
=
〈
G, [1](ξ†)ℓ(ξ†)k

〉

=
〈
G, ξk+ℓ[1]

〉
=


√
2π, k + ℓ = 0,√
2π (k + ℓ− 1)!!, k + ℓ even,

0, k + ℓ odd.
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3.2.1.4 Exponential functions

We calculate
(
exp (aξ) , exp (aξ)

)
, a ∈ C.

(
exp (aξ) , exp (aξ)

)
= ⟨exp (aξ)G, [1] exp

(
aξ†
)
⟩

= ⟨G, exp (aξ) [1] exp
(
aξ†
)
[1]⟩ = ⟨G, exp (2aξ) [1]⟩

=
∞∑
s=0

(2a)s

s!
⟨G, ξs[1]⟩ =

∞∑
ℓ=0

(2a)2ℓ

(2ℓ)!
⟨G, ξ2ℓ[1]⟩

=
∞∑
ℓ=0

(2a)2ℓ

(2ℓ)!

√
2π

(2ℓ)!

2ℓℓ!
=

∞∑
ℓ=0

√
2π
a2ℓ2ℓ

ℓ!

=
√
2π exp

(
2a2
)
.

Hence for every a ∈ C, exp (aξ) [1] is an element of W.

On the other side:(
exp

(
aξ2
)
[1], exp

(
aξ2
)
[1]

)
= ⟨G, exp

(
2aξ2

)
[1]⟩ =

∞∑
s=0

(2a)s

s!
⟨G, ξ2s[1]⟩

=
∞∑
s=0

(2a)s

s!

√
2π

(2s)!

2ss!
=

∞∑
s=0

√
2π as

(
2s

s

)
.

The convergence of this series depends on the parameter a. Denoting the general term
by As, this series is convergent by d’Alemberts criterium, if

lim
s→∞

∣∣∣∣As+1

As

∣∣∣∣ < 1 ⇔|a| < 1

4
. (3.8)

The cases a = ±1
4 at the boundary of the interval have to be considered separately. For

a = −1
4 , the series (3.8) is convergent with value

√
π, while for a = 1

4 , the series is
divergent.

For completeness, other examples includeexp

(
−ξ

2

8

)
, exp

(
−ξ

2

8

) =
2
√
3

3

√
π,

exp

(
−ξ

2

6

)
, exp

(
−ξ

2

6

) =

√
30

5

√
π,

exp

(
ξ2

8

)
, exp

(
ξ2

8

) = 2
√
π,

exp

(
ξ2

6

)
, exp

(
ξ2

6

) =
√
6π.
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3.2.1.5 Extension of W to other elements

Suppose that the function f =
∞∑
n=0

Hn√
ηn
cn, cn ∈ R is an element of W. Then it has a

Taylor series expansion, for which evaluation of f in zero gives us the constant term in
this series. In particular,

f(0) = f(ξ)
∣∣
ξ=0

=
∑
n∈N

Hn(0)√
ηn

cn.

As f is an element of W, it must hold that ⟨f, f⟩ =
∑
n∈N

c2n < ∞, hence the coefficients

(cn)n ∈ ℓ2(R).

Let us first consider the behaviour of

∞∑
k=0

H2k(0)√
η2k

(remark that H2k+1(0) = 0,∀k ∈ N, as

constant coefficients only occur in even Hermite polynomials). Using Stirlings asymptotic
behaviour for factorials, we have on the one hand

H2k(0) = a2k0 =
2kΓ

(
k + 1

2

)
Γ
(
1
2

) =
2k(2k)!

4kk!

∼ 1

2k

√
2k(2k)2k exp(k)√
k exp(2k)kk

∼ 2k+
1
2kk

exp(k)

∼
√
2

(
2k

exp(1)

)k

,

and on the other hand

√
η2k =

√
(2k)!

√
2π

∼ (2π)
1
4

[
√
2π

√
2k

(
2k

exp(1)

)2k
] 1

2

= (2π)
1
2 (2k)

1
4

(
2k

exp(1)

)k

.

which gives us as asymptotic behaviour for the general term

H2k(0)√
η2k

∼ k−
1
4 .

If we take

(ck)k =

(
1

(2k)s

)
k

,

with s > 1
2 so that (ck)k ∈ ℓ2(R), then

f(0) =
∞∑
k=0

1

2s ks+
1
4

,
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which diverges if s < 3
4 . This shows that not every converging combination of Hermite

polynomials with coefficients in ℓ2 results in pointwise convergence. However, a discrete
function must have finite values in every point of the grid, by definition. Hence it is
necessary to add the condition that f is a function in the definition of the Weierstrass
space. On the other hand, it would also be possible to extend this definition to general
discrete ‘elements’. We will not dig deeper into this subject, but this can be a topic for
further research.

Let us now calculate the Weierstrass transform of the previous examples.

3.2.2 Examples of Weierstrass transforms

3.2.2.1 Basic discrete polynomials

Consider the basic discrete homogeneous polynomials of even degree.

W
[
ξ2k[1]

]
(z) =

1√
2π

⟨ξ2kG, exp
(
−z2/2 + ξ z

)
[1]⟩

=
1√
2π

exp
(
−z2/2

)
⟨ξ2kG,

∞∑
l=0

ξlzl

l!
[1]⟩

=
1√
2π

exp
(
−z2/2

) ∞∑
l=0

zl

l!
⟨G, ξl+2k[1]⟩

=
1√
2π

exp
(
−z2/2

) ∞∑
l=0

z2l

(2l)!
⟨G, ξ2l+2k[1]⟩

= exp
(
−z2/2

) ∞∑
l=0

z2l

(2l)!

(2l + 2k)!

2l+k(l + k)!

= exp
(
−z2/2

) (2k)!

2kk!
1F1

(
k +

1

2
;
1

2
;
z2

2

)

=
(2k)!

2kk!
1F1

(
−k; 1

2
;−z

2

2

)
= (−1)kH2k(iz),

where now H2k(z) is the continuous Hermite polynomial of degree 2k, i is the imaginary
unit and 1F1(a; b; z) is Kummer’s confluent hypergeometric function, converging for all
finite values of z. For odd powers of ξ, we find

W
[
ξ2k+1[1]

]
(z) = exp

(
−z2/2

) ∞∑
l=0

z2l+1

(2l + 1)!
⟨G, ξ2l+2k+2[1]⟩

= exp
(
−z2/2

) ∞∑
l=0

z2l+1

(2l + 1)!

(2l + 2k + 2)!

2l+k+1(l + k + 1)!

= exp
(
−z2/2

)
z
(2k + 1)!

2kk!
1F1

(
k +

3

2
;
3

2
;
z2

2

)

= z
(2k + 1)!

2k k!
1F1

(
−k; 3

2
;−z

2

2

)
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k W
[
ξk[1]

]
(z)

1 z
2 z2 + 1
3 z3 + 3z
4 z4 + 6z2 + 3
5 z5 + 10z3 + 15z
6 z6 + 15z4 + 45z2 + 15
7 z7 + 21z5 + 105z3 + 105z
8 z8 + 28z6 + 210z4 + 420z2 + 105
9 z9 + 36z7 + 378z5 + 1260z3 + 945z
10 z10 + 45z8 + 630z6 + 3150z4 + 4725z2 + 945
11 z11 + 55z9 + 990z7 + 6930z5 + 17325z3 + 10395z
12 z12 + 66z10 + 1485z8 + 13860z6 + 51975z4 + 62370z2 + 10395

Table 3.1: Weierstrass transforms of ξk[1]k ∈ N.

= (−1)k+1iH2k+1(iz).

For low values of k, we find the results listed in Table 3.1. These are the classical Hermite
polynomials, but with all coefficients taken positive. In section 4.2.3.1, we will meet these
polynomials again and introduce the notation bjn for their coefficients.

Remark 3.12. The classical Hermite polynomials can be expressed in terms of Kum-
mer’s confluent hypergeometric function by ([43])

2nH2n

(√
2x
)
= (−1)n

(2n)!

n!
1F1

(
−n, 1

2
;x2
)
,

2nH2n+1

(√
2x
)
= (−1)n

(2n+ 1)!

n!

√
2x 1F1

(
−n, 3

2
;x2
)
.

A natural question is to compare these results with the classical (continuous) case. In-
deed: the continuous Weierstrass transform of the (continuous) polynomials xk are the
same as in Table 3.1.

3.2.2.2 Exponential functions

We calculate the Weierstrass transform of an exponential function (a ∈ C).

W[exp (aξ)](z) = ⟨exp (aξ)G, exp
(
−z2/2 + ξ z

)
[1]⟩

=
∞∑
ℓ=0

1

ℓ!
aℓ⟨ξℓG, exp

(
−z2/2 + ξ z

)
[1]⟩

=
∞∑
ℓ=0

aℓ

ℓ!
W[ξℓ](z)

=

∞∑
ℓ=0

a2ℓ

(2ℓ)!
(−1)ℓH2ℓ(iz) +

a2ℓ+1

(2ℓ+ 1)!
(−1)ℓ+1iH2ℓ+1(iz).
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To calculate this sum of Hermite polynomials, we use the identities 1

∞∑
k=0

H2k(
√
2x) (2t)k

(2k)!
= exp(−t) cos

(
2x

√
−t
)
,

∞∑
k=0

H2k+1(
√
2x)

√
−2t (2t)k

(2k + 1)!
= exp(−t) sin

(
2x

√
−t
)
.

(3.9)

Now put
√
2x = iz and 2t = −a2, then

W[exp (aξ)](z) = exp

(
a2

2

)(
cos (iza) + i sin (iza)

)
= exp

(
a2

2

)(
cosh(az) + sinh(az)

)
= exp

(
a2

2
+ az

)
.

The function exp (aξ) is thus an eigenfunction of the Weierstrass transform, with eigen-

value exp
(
a2

2

)
.

Let |a| < 1
4 , such that exp

(
aξ2
)
∈ W, then

W[exp
(
aξ2
)
](z) = ⟨exp

(
aξ2
)
G, exp

(
−z2/2 + ξz

)
[1]⟩

=

∞∑
ℓ=0

1

ℓ!
aℓ⟨ξ2ℓG, exp

(
−z2/2 + ξz

)
[1]⟩

=
∞∑
ℓ=0

aℓ

ℓ!
W[ξ2ℓ](z)

=

∞∑
ℓ=0

(−a)ℓ

ℓ!
H2ℓ(iz).

(3.10)

Using next formula

∞∑
n=0

Hn(z)t
n

⌊n2 ⌋!
= (1 + 2zt+ 4t2) (1 + 4t2)−3/2e

4t2z2

1+4t2 (3.11)

with t2 = −a,

W[exp
(
aξ2
)
](z) = exp

(
4az2

1− 4a

)
(1− 4a)−

1
2 .

This result confirms our previous finding that |a| < 1
4 in order for exp

(
aξ2
)
to belong to

W.

Remark 3.13. These results are again in line with the continuous setting. Moreover,
the same boundary |a| < 1

4 such that W[exp
(
ax2
)
] exists, is also found in the classical

case.
1https://functions.wolfram.com/Polynomials/HermiteH/23/02/
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3.2.2.3 Ladder operators in the Weierstrass space

For the discrete Hermite polynomials, one has the recurrence formulae, see [31]

(∂ − ξ)H2k−1[1](x) = H2k[1](x),

−(∂ − ξ)H2k[1](x) = H2k+1[1](x),

whence ∂ − ξ can be seen as a raising operator, up to sign, for the discrete Hermite
polynomials in the Weierstrass space .

After applying the Weierstrass transform, we then find

W[H2k[1]](z) = (−1)kz2k = (−1)kz z2k−1 = −zW[H2k−1[1]](z)

and

W[H2k+1[1]](z) = (−1)kz2k+1 = (−1)kz z2k = zW[H2k[1]](z).

So the raising operator −(∂ − ξ) in the discrete Weierstrass space corresponds to the
raising operator z in the (continuous) Fock space.

H2k H2k+1

(−1)kz2k (−1)kz2k+1

−(∂−ξ)

W W

z

H2k−1 H2k

(−1)k−1z2k−1 (−1)kz2k

(∂−ξ)

W W

−z

On the other hand, as ∂ξ2k[1] = 2kξ2k−1[1],

∂H2k[1] = ∂

 k∑
j=0

a2k2j ξ
2j [1]


=

k∑
j=1

(2j)a2k2j ξ
2j−1[1]

∗
= −

k∑
j=1

(2k)a2k−1
2j−1ξ

2j−1[1]

= −(2k)

k−1∑
j=0

a2k−1
2j+1ξ

2j+1[1]

= −(2k)H2k−1[1].

The equality ∗ is from [31], lemma 9.1.2. Also, as ∂ξ2k+1[1] = (2k + 1)ξ2k[1],

∂H2k+1[1] = ∂

 k∑
j=0

a2k+1
2j+1ξ

2j+1[1]


=

k∑
j=0

(2j + 1)a2k+1
2j+1ξ

2j [1]
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∗
=

k∑
j=0

(2k + 1)a2k2j ξ
2j [1]

= (2k + 1)

k∑
j=0

a2k2j ξ
2j [1]

= (2k + 1)H2k[1],

where we used the same lemma for the equality ∗. Hence the dirac operator ∂ can be
seen as the corresponding lowering operator in the Weierstrass space. When we apply
the Weierstrass transform:

W[∂H2k[1]](z) = (−2k)W[H2k−1[1]](z) = (−2k)(−1)kz2k−1 =
d

dz
W[H2k[1]](z),

W[∂H2k+1[1]](z) = (2k + 1)W[H2k[1]](z) = (2k + 1)(−1)kz2k =
d

dz
W[H2k+1[1]](z).

The lowering operator ∂ in W thus corresponds to the lowering operator d
dz in the (con-

tinuous) Fock space.

H2k+1 (2k + 1)H2k

(−1)kz2k+1 (−1)k(2k + 1)z2k

∂

W W
d
dz

H2k −(2k)H2k−1

(−1)kz2k (−1)k(2k)z2k−1

∂

W W
d
dz

This is confirmed by calculating the commutator relations:[
∂,−(∂ − ξ)

]
= ∂ξ − ξ∂ = 1,[

d

dz
, z

]
=

d

dz
z − z

d

dz
= 1.

3.2.3 Discrete δ-functions

As they are the building blocks of discrete function theory, we investigate whether the
discrete δ−functions are elements of the Weierstrass space W.
Let δ0 = δ0(ξ)[1] be the δ0-function which takes values 0 everywhere except in the origin
where it is 1. Let

δ0(ξ) =

∞∑
ℓ=0

ξℓcℓ

the corresponding Taylor series operator. We search for an expression

δ0 = δ0(ξ)[1] =

∞∑
n=0

Hn(ξ)dn[1],

writing δ0 in terms of the Hermite polynomials. It holds that δ0(ξ)[1] = δ0 = δ†0 =
(δ0(ξ)[1])

†, because δ0 is real. If the coefficients dn exist, they must satisfy the relations

(Hn, δ0) =

〈
Hn(ξ)G, [1]

∞∑
ℓ=0

d†ℓHℓ(ξ)
†

〉
=

〈
Hn(ξ)G,

∞∑
ℓ=0

d†ℓHℓ(ξ)[1]

〉
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= d†n
〈
Hn(ξ)G,Hn

〉
= d†nηn,

from which it follows that

d†n =
(Hn, δ0)

ηn
.

On the one hand, we have

(Hn, δ0) =
〈
Hn(ξ)G, δ0

〉
=
∑
s∈Z

(
Hn(ξ)G

)
(s) δ0(s),

because the distribution Hk(ξ)G corresponds to a function on Z, where the action is
pointwise. In this way, we can use δ0 as a density function on Z. So (Hn, δ0) = Hn(ξ)G(0).

On the other hand, one can also consider the Taylor series δ0(ξ) =
∞∑
ℓ=0

ξℓcℓ and substitute

it into the inner product (Hn, δ0):

(Hn, δ0) =

〈
Hn(ξ)G, [1]

∞∑
ℓ=0

c†ℓξ
ℓ

〉
=

∞∑
ℓ=0

c†ℓ

〈
Hn(ξ)G, [1]ξ

ℓ
〉
,

which should equal d†nηn. This gives us two ways to calculate the coefficients dn, as we
will show in the next sections.

3.2.3.1 First method: Taylor series

Expanding δ0 by its Taylor series, we have (see [44])

δ0(x) =
∞∑
ℓ=0

(−1)ℓ

(ℓ!)2
ξ2ℓ[1](x) +

∞∑
ℓ=0

(−1)ℓ+1

(ℓ+ 1)!ℓ!
ξ2ℓ+1[1](x)(e+ − e−).

We will now let the discrete Gaussian distribution G act on this expression.

Calculation of (H2k, δ0)

As
〈
G, ξs[1]

〉
= 0 for odd s, only the first part of the Taylor series is of importance in

order to calculate (H2k, δ0). First, use Rodriguez’ formula (2.29), then the rules (2.15):〈
H2k(ξ)G, [1]δ

†
0

〉
=

∞∑
ℓ=0

(−1)ℓ

(ℓ)2

〈
(−1)k ∂2kG, ξ2ℓ[1]

〉
=

∞∑
ℓ=0

(−1)ℓ+k

(ℓ)2

〈
G, ∂2k ξ2ℓ[1]

〉
=

∞∑
ℓ=k

(−1)ℓ+k

(ℓ)2
(2ℓ)!

(2ℓ− 2k)!

〈
G, ξ2ℓ−2k [1]

〉
.

Now use the expression for the moments of the Gaussian distribution (2.24) and simplify:

=

∞∑
ℓ=k

(−1)ℓ+k

(ℓ)2
(2ℓ)!

(2ℓ− 2k)!

√
2π

(2ℓ− 2k)!

2ℓ−k(ℓ− k)!
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=

∞∑
ℓ=k

(−1)ℓ+k

√
2π

(ℓ)2
(2ℓ)!

2ℓ−k (ℓ− k)!

=
√
2π

(
2k

k

)
1F1

(
k +

1

2
, k + 1,−2

)
.

Calculation of (H2k+1, δ0)

We calculate (H2k+1, δ0). Similarly as in the case above, now only the second part of the
Taylor series is of importance.

〈
H2k+1(ξ)G, [1]δ

†
0

〉
=

∞∑
ℓ=0

(−1)ℓ+1

(ℓ+ 1)!ℓ!
(e− − e+)

〈
H2k+1(ξ)G, [1] (ξ

2ℓ+1)†
〉

=

∞∑
ℓ=0

(−1)ℓ+1

(ℓ+ 1)!ℓ!
(e− − e+)

〈
(−1)k+1∂2k+1G, ξ2ℓ+1 [1]

〉
=

∞∑
ℓ=0

(−1)ℓ+k+1

(ℓ+ 1)!ℓ!
(e− − e+)

〈
G, ξ2ℓ+1 [1] (∂2k+1)†

〉
=

∞∑
l=k

(−1)ℓ+k+1

(ℓ+ 1)!ℓ!

(2ℓ+ 1)!

(2ℓ− 2k)!
(e− − e+)

〈
G, ξ2ℓ−2k [1]

〉
.

Let G act on ξ2ℓ−2k and simplify again

=
∞∑
ℓ=k

(−1)ℓ+k+1

(ℓ+ 1)!ℓ!

(2ℓ+ 1)!

(2ℓ− 2k)!

√
2π

(2ℓ− 2k)!

2ℓ−k(ℓ− k)!
(e− − e+)

=
∞∑
ℓ=k

(−1)ℓ+k+1

√
2π

(ℓ+ 1)!ℓ!

(2ℓ+ 1)!

2ℓ−k (ℓ− k)!
(e− − e+)

=
√
2π

(
2k + 1

k

)
1F1

(
k +

3

2
; k + 2;−2

)
(e+ − e−).

After normalising, i.e. dividing by η2k, respectively η2k+1 and applying the conjugation
†, we obtain the following result:

Proposition 3.14. The discrete function δ0 can be written as a linear combination of

discrete Hermite polynomials, i.e. δ0 =
∑
n∈Z

Hn(ξ)d
0
n[1], with coefficients d0n

d02k =
1

(k!)2
1F1

(
k +

1

2
; k + 1;−2

)
, (3.12)

d02k+1 =
1

k!(k + 1)!
1F1

(
k +

3

2
; k + 2;−2

)
(e+ − e−). (3.13)

This generalized hypergeometric series 1F1 is also known as (Kummer’s) confluent hy-
pergeometric function of the first kind (see e.g. [45]). In general, the hypergeometric
function pFq (a; b; z) with p ≤ q converges for all finite values of z and defines an entire
function, [46, Sec. 16.2].
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The same question can be asked for any other δj , j ∈ Z and the reasoning will be com-
pletely similar. The Taylor series are given by

δj(x) =

∞∑
ℓ=j

(−1)ℓ−j

(ℓ− j)!(ℓ+ j)!
ξ2ℓ[1](x)+

∞∑
ℓ=j−1

(−1)ℓ−j+1

(ℓ− j + 1)!(ℓ+ j)!
ξ2ℓ+1[1](x)e+ +

∞∑
ℓ=j

(−1)ℓ−j

(ℓ− j)!(ℓ+ j + 1)!
ξ2ℓ+1[1](x)e− (3.14)

for positive j and

δj(x) =
∞∑
l=|j|

(−1)ℓ−j

(ℓ− j)!(ℓ+ j)!
ξ2ℓ[1](x)+

∞∑
l=|j|

(−1)ℓ−j+1

(ℓ− j + 1)!(ℓ+ j)!
ξ2ℓ+1[1](x)e+ +

∞∑
l=|j|−1

(−1)ℓ−j

(l − j)!(l + j + 1)!
ξ2ℓ+1[1](x)e− (3.15)

for negative j.

Calculation of (H2k, δj)

Let us calculate the inner product for j > 0:

〈
H2k(ξ)G, [1]δ

†
j

〉
=

∞∑
ℓ=j

(−1)ℓ−j

(ℓ− j)!(ℓ+ j)!

〈
H2k(ξ)G, [1] (ξ

2ℓ)†
〉

=

∞∑
ℓ=j

(−1)ℓ−j

(ℓ− j)!(ℓ+ j)!

〈
(−1)k∂2kG, ξ2ℓ [1]

〉
=

∞∑
ℓ=j

(−1)ℓ+k−j

(ℓ− j)!(ℓ+ j)!

〈
G, ξ2ℓ[1] (∂2k)†

〉
Denote µ := max (k, j), then

=

∞∑
ℓ=µ

(−1)ℓ+k−j

(ℓ− j)!(ℓ+ j)!

(2ℓ)!

(2ℓ− 2k)!

〈
G, ξ2ℓ−2k[1]

〉
=

∞∑
ℓ=µ

(−1)ℓ+k−j

(ℓ− j)!(ℓ+ j)!

(2ℓ)!

(2ℓ− 2k)!

√
2π

(2ℓ− 2k)!

2ℓ−k(ℓ− k)!

=
(−1)µ−j+k

√
2π 2k−µ (2µ)!

(µ− j)! (µ+ j)! (µ− k)!

× 3F3

(
1, µ+

1

2
, µ+ 1;µ− j + 1, µ+ j + 1, µ− k + 1;−2

)
.

This generalized hypergeometric function 3F3 will simplify to 2F2 in both cases µ = k
and µ = j, because

pFq(a1, . . . , ap; b1, . . . , bq; z) = p−1Fq−1(a1, . . . , ap−1; b1, . . . , bq−1; z),

whenever, without loss of generality, ap = bq. We then obtain one of the next results:
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• k > j, hence µ = k :
(−1)j

√
2π (2k)!

(k − j)! (k + j)!
2F2

(
k +

1

2
, k + 1; k − j + 1, k + j + 1;−2

)
,

• k < j, hence µ = j :
(−1)k

√
2π 2k−j

(j − k)!
2F2

(
j +

1

2
, j + 1; 2j + 1, j − k + 1;−2

)
,

• k = j, hence µ = j = k : (−1)k
√
2π 2F2

(
k +

1

2
, k + 1; 2k + 1, 1;−2

)
.

Calculation of (H2k+1, δj)

For the odd Hermite polynomials, we have that

〈
H2k+1(ξ)G, [1]δ

†
j

〉
=

〈
(−1)k+1∂2k+1G, [1]

∞∑
ℓ=j−1

(−1)ℓ−j+1

(ℓ− j + 1)! (ℓ+ j)!
(ξ2ℓ+1)†

〉
e−

+

〈
(−1)k+1∂2k+1G, [1]

∞∑
ℓ=j

(−1)ℓ−j

(ℓ− j)! (ℓ+ j + 1)!
(ξ2ℓ+1)†

〉
e+

=
∞∑

ℓ=j−1

(−1)ℓ−j+k+1

((ℓ− j + 1)! (ℓ+ j)!

〈
G, ∂2k+1 ξ2ℓ+1[1]

〉
e−

+

∞∑
ℓ=j

(−1)ℓ−j+k

((ℓ− j)! (ℓ+ j + 1)!

〈
G, ∂2k+1 ξ2ℓ+1[1]

〉
e+

Let again µ = max (k, j) and µ′ = max (k, j − 1)

=
∞∑

ℓ=µ′

(−1)ℓ−j+k+1 (2ℓ+ 1)!

(ℓ− j + 1)! (ℓ+ j)!(2ℓ− 2k)!

〈
G, ξ2ℓ−2k[1]

〉
e−

+
∞∑
ℓ=µ

(−1)ℓ−j+k (2ℓ+ 1)!

(ℓ− j)! (ℓ+ j + 1)!(2ℓ− 2k)!

〈
G, ξ2ℓ−2k[1]

〉
e+

=

∞∑
ℓ=µ′

(−1)ℓ−j+k+1 (2ℓ+ 1)!

(ℓ− j + 1)! (ℓ+ j)! (2ℓ− 2k)!

√
2π (2ℓ− 2k)!

2ℓ−k (ℓ− k)!
e−+

+

∞∑
ℓ=µ

(−1)ℓ−j+k (2ℓ+ 1)!

(ℓ− j)! (ℓ+ j + 1)! (2ℓ− 2k)!

√
2π (2ℓ− 2k)!

2ℓ−k (ℓ− k)!
e+

=

√
2π (−1)1−j+k+µ′

2k−µ′
(1 + 2µ′)!

(1− j + µ′)! (j + µ′)! (µ′ − k)!

× 3F3(1, 1 + µ′,
3

2
+ µ′; 2− j + µ′, 1 + j + µ′, 1− k + µ′;−2)e−

+

√
2π (−1)−j+k+µ 2k−µ (1 + 2µ)!

(1 + j + µ)! (µ− j)! (µ− k)!

×3 F3(1, 1 + µ,
3

2
+ µ; 1− j + µ, 2 + j + µ, 1− k + µ;−2)e+.

We obtain one of next possibilities:
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• k ≥ j, hence µ = µ′ = k :

√
2π (−1)1−j (1 + 2k)!

(1− j + k)! (j + k)!
2F2(1 + k,

3

2
+ k; 2− j + k, 1 + j + k;−2)e−

+

√
2π (−1)−j (1 + 2k)!

(1 + j + k)! (k − j)!
2F2(1 + k,

3

2
+ k; 1− j + k, 2 + j + k;−2)e+,

• k ≤ j − 1, hence µ = j and µ′ = j − 1 :

√
2π (−1)k 2k−j+1

(j − 1− k)!
2F2(j,

3

2
+ j − 1; 2j, j − k;−2)e−

+

√
2π (−1)k 2k−j

(j − k)!
2F2(1 + j,

3

2
+ j; 2 + 2j, 1− k + j;−2)e+.

The results for j < 0 are completely analoguous, and it is immediately clear from the
Taylor series (see (3.14) and (3.15) that coefficients of e+ and e− will be interchanged.
For both inner products above, we end by normalizing H2k and H2k+1 to obtain the
following result:

Proposition 3.15. The discrete function δj , j > 0, can be written as a linear combina-

tion of discrete Hermite polynomials, i.e. δj =
∑
k∈Z

Hk(ξ)d
j
k[1], with coefficients djk given

by

dj2k =
(−1)µ−j+k 2k−µ (2µ)!

(2k)! (µ− j)! (µ+ j)! (µ− k)!

× 3F3

(
1, µ+

1

2
, µ+ 1;µ− j + 1, µ+ j + 1, µ− k + 1;−2

)
,

dj2k+1 =
(−1)1−j+k+µ′

2k−µ′
(1 + 2µ′)!

(1− j + µ′)! (j + µ′)! (µ′ − k)! (2k + 1)!

× 3F3(1, 1 + µ′,
3

2
+ µ′; 2− j + µ′, 1 + j + µ′, 1− k + µ′;−2)e+

+
(−1)−j+k+µ 2k−µ (1 + 2µ)!

(1 + j + µ)! (µ− j)! (µ− k)! (2k + 1)!

× 3F3(1, 1 + µ,
3

2
+ µ; 1− j + µ, 2 + j + µ, 1− k + µ;−2)e−.

If j < 0,

dj2k =
(−1)µ−j+k 2k−µ (2µ)!

(2k)! (µ− j)! (µ+ j)! (µ− k)!

× 3F3

(
1, µ+

1

2
, µ+ 1;µ− j + 1, µ+ j + 1, µ− k + 1;−2

)
,

dj2k+1 =
(−1)1−j+k+µ 2k−µ (1 + 2µ)!

(1− j + µ)! (j + µ)! (µ− k)! (2k + 1)!

× 3F3(1, 1 + µ,
3

2
+ µ; 2− j + µ, 1 + j + µ, 1− k + µ;−2)e+
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+
(−1)−j+k+µ 2k−µ (1 + 2µ)!

(1 + j + µ)! (µ− j)! (µ− k)! (2k + 1)!

× 3F3(1, 1 + µ,
3

2
+ µ; 1− j + µ, 2 + j + µ, 1− k + µ;−2)e−.

We used the notation µ = max (k,|j|) and µ′ = max (k,|j| − 1).

For the special case j = 0, we reobtain the result from proposition 3.14. To avoid
confusion, we will always write j in superscript of the coefficients djn, also for δ0.

3.2.3.2 Second method: pointwise evaluation

In [32], for the derivatives of the delta functions δj the following results were established:

∂2kδj =

2k∑
i=0

(−1)i
(
2k

i

)
δj−(k−i), (3.16)

∂2k+1δj =
2k+1∑
i=0

(−1)i
(
2k + 1

i

)(
δj−(k+1−i)e

+ + δj−(k−i)e
−
)
. (3.17)

We will now use these expressions to evaluate the action of the Hermite operators on the
Gauss distribution G in x = 0.

Calculation of (H2k, δ0) = H2k(ξ)G(0)

For the action of H2k, we have

H2kG = (−1)k ∂2k
√
2π exp

(
∂2

2

)
δ0 =

∞∑
ℓ=0

(−1)k ∂2k
√
2π

∂2ℓ

2ℓℓ!
δ0

=
∞∑
ℓ=0

√
2π

(−1)k

2ℓℓ!
∂2(ℓ+k)δ0

=
∞∑
ℓ=0

√
2π

(−1)k

2ℓℓ!

2(ℓ+k)∑
i=0

(−1)i
(
2ℓ+ 2k

i

)
δ−(ℓ+k)+i

 .

(3.18)

To obtain the coefficients in δ0, we have to look at the case −(ℓ+k)+ i = 0, or i = k+ ℓ:

⟨H2kG, δ0⟩ =
∞∑
ℓ=0

√
2π

(−1)ℓ

2ℓℓ!

(
2ℓ+ 2k

k + ℓ

)
=

√
2π

(
2k

k

)
1F1

(
k +

1

2
; k + 1;−2

)
.
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Calculation of (H2k+1, δ0) = H2k+1(ξ)G(0)

For the odd case, we have

H2k+1G = (−1)k+1∂2k+1
√
2π exp

(
∂2/2

)
δ0 =

∞∑
ℓ=0

(−1)k+1∂2k+1
√
2π

∂2ℓ

2ℓℓ!

=

∞∑
ℓ=0

√
2π

(−1)k+1

2ℓℓ!
∂2(ℓ+k)+1δ0

=
∞∑
ℓ=0

√
2π

(−1)k+1

2ℓℓ!

2(ℓ+k)+1∑
i=0

(−1)i
(
2ℓ+ 2k + 1

i

)
δ−(ℓ+k+1−i)e

+


+

∞∑
ℓ=0

√
2π

(−1)k+1

2ℓℓ!

2(ℓ+k)+1∑
i=0

(−1)i
(
2ℓ+ 2k + 1

i

)
δ−(l+k−i)e

−

 .

(3.19)

We look for the coefficients in δ0: for e
+, we need to consider i = k+1+ ℓ, while for e−,

we look at i = k + ℓ.

H2k+1G(0) =
∞∑
ℓ=0

√
2π

(−1)k+1

2ℓℓ!
×(

(−1)k+ℓ+1

(
2ℓ+ 2k + 1

k + ℓ+ 1

)
e+ + (−1)ℓ+k

(
2ℓ+ 2k + 1

ℓ+ k

)
e−

)

=

∞∑
ℓ=0

√
2π

(−1)ℓ

2ℓℓ!

((
2ℓ+ 2k + 1

k + ℓ+ 1

)
e+ −

(
2ℓ+ 2k + 1

ℓ+ k

)
e−

)

=

∞∑
ℓ=0

√
2π

(−1)ℓ

2ℓℓ!

(
2ℓ+ 2k + 1

k + ℓ

)
(e+ − e−)

=
√
2π

(
2k + 1

k

)
1F1

(
k +

3

2
; k + 2;−2

)
(e+ − e−).

These are indeed the same results as in proposition 3.14.

Calculation of (H2k, δj) = H2k(ξ)G(j)

For δj , we can do similar calculations. For the even Hermite functions, starting from
(3.18), we are now interested in the coefficients for i = j + ℓ+ k:

∞∑
ℓ=|j|−k

√
2π

(−1)ℓ+j

2ℓℓ!

(
2ℓ+ 2k

j + k + ℓ

)
δj . (3.20)

Since 0 ≤ i ≤ 2ℓ+ 2k, also 0 ≤ j + k + ℓ ≤ 2ℓ+ 2k, or |j| ≤ ℓ+ k. This value is

√
2π (−1)k2k−j

2F2

(
j + 1, j +

1

2
; 1 + 2j, j − k + 1;−2

)
in the point j ∈ Z.
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Calculation of (H2k+1, δj) = H2k+1(ξ)G(j)

For the odd case, we have to look at i = j + ℓ+ k + 1 for e+ and at i = j + k + ℓ for e−

in (3.19). This implies that −k − ℓ − 1 ≤ j ≤ ℓ + k and −k − ℓ ≤ j ≤ k + ℓ + 1. If we
notate ν := max (j − k, 0) and ν ′ := max (j − k − 1, 0), the coefficient in δj is

∞∑
ℓ=ν

√
2π

(−1)k+1

2ℓℓ!
(−1)j+ℓ+k+1

(
2k + 2ℓ+ 1

j + k + ℓ+ 1

)
e+

−
∞∑

ℓ=ν′

√
2π

(−1)k+1

2ℓℓ!
(−1)j+ℓ+k

(
2ℓ+ 2k + 1

j + k + ℓ

)
e−

=
∞∑
ℓ=ν

√
2π

(−1)ℓ+j

2ℓℓ!

(
2k + 2ℓ+ 1

j + k + ℓ+ 1

)
e+ −

∞∑
ℓ=ν′

√
2π

(−1)ℓ+j+1

2ℓℓ!

(
2ℓ+ 2k + 1

j + k + ℓ

)
e−.

This result equals

=
√
2π

(−1)j+ν

2ν ν!

(
2k + 2ν + 1

j + k + ν + 1

)
× 3F3

(
1, k + ν + 1, k + ν +

3

2
; ν + 1,−j + k + ν + 1, j + k + ν + 2;−2

)
e+

+
√
2π

(−1)j+ν′+1

2ν′ ν ′!

(
2k + 2ν ′ + 1

j + k + ν ′

)
× 3F3

(
1, k + ν ′ + 1, k + ν ′ +

3

2
; ν ′ + 1,−j + k + ν ′ + 2, j + k + ν ′ + 1;−2

)
e−.

Again, this generalised hypergeometric function 3F3 is a 2F2 when we substitute the
value of ν = max(j − k, 0) or ν ′ := max (j − k − 1, 0):

• j > k, hence ν = j − k and ν ′ = j − k − 1 :

√
2π

(−1)k

2j−k (j − k)!
2F2

(
j + 1, j +

3

2
; j − k + 1, 2j + 2;−2

)
e+

+
√
2π

(−1)k

2j−k−1 (j − k − 1)!
2F2

(
j, j − 1 +

3

2
; j − k, 2j;−2

)
e−.

• j ≤ k, hence ν = ν ′ = 0:

=
√
2π(−1)j

(
2k + 1

j + k + 1

)
2F2

(
k + 1, k +

3

2
;−j + k + 1, j + k + 2;−2

)
e+

+
√
2π (−1)j+1

(
2k + 1

j + k

)
2F2

(
k + 1, k +

3

2
;−j + k + 2, j + k + 1;−2

)
e−.

We now have another expression for the coefficients djn, after normalizing by η2k, respec-
tively η2k+1:

Proposition 3.16. The discrete function δj , j > 0, can be written as a linear combina-

tion of discrete Hermite polynomials, i.e. δj =
∑
k∈Z

Hk(ξ)d
j
k[1], with coefficients djk

dj2k =
(−1)k2k−j

(2k)!
2F2

(
j + 1, j +

1

2
; 1 + 2j, j − k + 1;−2

)
,
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dj2k+1 =
(−1)j+ν

2ν ν! (2k + 1)!

(
2k + 2ν + 1

j + k + ν + 1

)
3F3

(
1, k + ν + 1, k + ν +

3

2
; ν + 1,−j + k + ν + 1, j + k + ν + 2;−2

)
e+

+
(−1)j+ν′+1

2ν′ ν ′! (2k + 1)!

(
2k + 2ν ′ + 1

j + k + ν ′

)
3F3

(
1, k + ν ′ + 1, k + ν ′ +

3

2
; ν ′ + 1,−j + k + ν ′ + 2, j + k + ν ′ + 1;−2

)
e−.

We used the notation ν = max (j − k, 0) and ν ′ = max (j − k − 1, 0).

It is easily checked that the expressions in propositions 3.15 and 3.16 are equal for concrete
values of j and k.

3.2.3.3 Conclusion

In the previous section, we found explicit expressions for the coefficients djn, such that δj
can be written as a linear combination of Hermite polynomials. First of all, let us check if
if this expression is well-defined, i.e. if this infinite series of Hermite polynomials defines
a discrete function. Therefore, its value for every x ∈ Z must be finite. Let us rewrite the
infinite series of Hermite polynomials again as an infinite series of powers of the discrete
vector variable ξ. If all coefficients are finite, we can conclude pointwise convergence: for
fixed x ∈ Z, ξk[1](x) = 0, ∀k > 2|x|. Let us calculate this for δ0:

δ0 =
∑
n∈N

Hn(ξ)d
0
n[1] =

∑
k∈N

H2k(ξ)d
0
2k[1] +H2k+1(ξ)d

0
2k+1[1]

=
∑
k∈N

 k∑
j=0

a2k2j ξ
2j

 d02k[1] +

 k∑
j=0

a2k+1
2j+1ξ

2j+1

 d02k+1[1]

=
∑
k∈N

 ∞∑
j=k

a2j2kd
0
2j

 ξ2k[1] +

 ∞∑
j=k

a2j+1
2k+1d

0
2j+1

 ξ2k+1[1].

To check the convergence of the coefficients in ξ2k, we use d’Alembert’s ratio test:

lim
j→∞

∣∣∣∣∣∣a
2j+2
2k d02j+2

a2j2kd
0
2j

∣∣∣∣∣∣ =
2j−k+1

(
j+1
k

)
Γ
(
j + 3

2

)
2j−k

(
j
k

)
Γ
(
j + 1

2

) j!2 1F1

(
j + 3

2 ; j + 2;−2
)

(j + 1)!2 1F1

(
j + 1

2 ; j + 1;−2
)

= lim
j→∞

(2j + 1)

(j + 1− k)(j + 1)

1F1

(
j + 3

2 ; j + 2;−2
)

1F1

(
j + 1

2 ; j + 1;−2
) .

In view of the properties of the confluent hypergeometric function, it holds that2

lim
k→∞

1F1

(
k +

1

2
; k + 1;−2

)
= lim

k→∞
1F1

(
k +

3

2
; k + 2;−2

)
= exp(−2). (3.21)

2See formulae 13.8.17 and 5.11.3 from [46]
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D’Alembert’s ratio test hence results in

lim
j→∞

∣∣∣∣∣∣a
2j+2
2k d02j+2

a2j2kd
0
2j

∣∣∣∣∣∣ = 0.

For the convergence of the coefficients in ξ2k+1, as well as for the delta functions δj ,
the method and result is completely analogous, hence this infinite series of Hermite
polynomials indeed defines a discrete function.

Still, it does not imply that δ0 is an element of the discrete Weierstrass space W. In
order to be an element of the discrete Weierstrass space, we need that

∞∑
k=0

η2k(d
0
2k)

†d02k + η2k+1(d
0
2k+1)

†d02k+1 <∞.

In order to proof the convergence of this series, we want to use d’Alembert’s ratio test
again and find the limits

lim
k 7→∞

∣∣∣∣∣η2k+2(d
0
2k+2)

†d02k+2

η2k(d
0
2k)

†d02k

∣∣∣∣∣ and lim
k 7→∞

∣∣∣∣∣η2k+3(d
0
2k+3)

†d02k+3

η2k+1(d
0
2k+1)

†d02k+1

∣∣∣∣∣ .
Using the same limit (3.21), it then follows immediately that

lim
k 7→∞

∣∣∣∣∣η2k+2(d
0
2k+2)

†d02k+2

η2k(d
0
2k)

†d02k

∣∣∣∣∣ = lim
k 7→∞

∣∣∣∣∣η2k+3(d
0
2k+3)

†d02k+3

η2k+1(d
0
2k+1)

†d02k+1

∣∣∣∣∣ = 0,

from which we conclude that δ0 ∈ W.

For coefficients djn, the reasoning is very similar. We want the convergence of the series

∞∑
k=0

η2k(d
j
2k)

†dj2k + η2k+1(d
j
2k+1)

†dj2k+1 <∞

and need to investigate the corresponding limit of the generalized hypergeometric function

2F2. As k → ∞, µ = k and for fixed j

lim
k→∞

2F2

(
k +

1

2
, k + 1; k − j + 2, k + j + 1;−2

)
= lim

k→∞
2F2

(
k +

3

2
, k + 1; k − j + 1, k + j + 1;−2

)
= lim

k→∞
2F2

(
k +

3

2
, k + 1; k − j + 1, k + j + 2;−2

)
= exp(−2).

We thus can conclude that δj ∈ W for every j ∈ Z. Furthermore, it immediately follows
that

lim
n→∞

djn = 0,∀j ∈ Z. (3.22)



3. Dimension one 46

Figure 3.1: Plots of δ-coefficients

(a) Coefficients d0n (b) Coefficients d3n

(c) Coefficients d−3
n (d) Coefficients d8n

To give a visual idea of the results, the coefficients d0n, d
3
n, d

−3
n , d8n, d

30
n and d35n are

plotted in Figure 3.1. On the x-axis, the n-th Hermite polynomial is represented, while
on the y-axis, the respective coefficients are depicted. For n even, the values of the delta-
coefficients are always scalar and plotted in red. For n odd, the values are vectorial: in
green, one finds the coefficents for e+, in blue, we find the coefficients for e−.

In particular, for δ0, the odd coefficients are opposite for e+ and e−, i.e. d02k+1 =
r(e− − e+), with r scalar. This r is depicted by the blue dots.

In the plots of d3n and d−3
n , it is clear that the coefficients of e± reflected with respect to

the x−axis give the coefficients of e∓ of the delta function with opposite index.

The absolute values of all coefficients djn converge to 0 for fixed j if n enlarges, which
confirms (3.22).

Having found the coefficients of the δj functions with respect to the discrete Hermite
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(e) Coefficients d30n (f) Coefficients d35n

polynomials in the discrete Weierstrass space, we can now calculate the Weierstrass

transform of these delta functions. Considering the most simple case δ0 =
∑
n∈N

Hn(ξ)d
0
n,

we obtain:

W
[
δ0(ξ)[1]

]
(z) =

∑
n∈N

W[Hn(ξ)](z)d
0
n =

∑
n∈N

d0n (−1)⌊
n
2
⌋ zn

=

∞∑
k=0

(−1)k

(
1

(k!)2
1F1

(
k +

1

2
; k + 1;−2

)
z2k

+
1

k!(k + 1)!
1F1

(
k +

3

2
; k + 2;−2

)
(e− − e+) z2k+1

)
.

For every z ∈ C, this number is finite. However, lim
|z|→∞

W
[
δ0(ξ)[1]

]
(z) = +∞, indicating

that this function is unbounded and will certainly not converge to the Gaussian kernel,
as is the case in the continuous case. In analogy, it was already found out in [33] that
also the CK-extension of δ0 ‘explodes’ at infinity. An expected result would be that the
Weierstrass transform of the discrete delta distribution δ0 is the Gaussian function. Of
course, this raises the question to define a Weierstrass transform for discrete distributions,
and hence a condition for a distribution to have a Weierstrass transform. One idea could
be to take the Fourier transform of the distribution (which is a function), to check if this
function is an element of the discrete Weierstrass space W and calculate its transform.
However, this needs to be accurately defined and investigated and could be subject to
further research.

Conclusion Let us now come back to the question how we can describe the elements
in the discrete Weierstrass space W. Take an element f ∈ W and consider fG. On
the one hand, fG acts on functions in W, in particular polynomials, by means of the
inner product (3.4). It means fG is a distribution. On the other hand, as the delta
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functions δj ∈ W, fG acts on δj , which is pointwise evaluation of fG. This means fG
can be interpreted as a function on Z. With every distribution fG, there is associated a
density function on Z, which reflects the dual aspect in this theory. In this way, the set
WG = {fG | f ∈ G} can be seen to contain both functions and distributions and thus
is a subspace of D ∩ F , where D and F are the spaces of distributions and functions,
respectively.

An element f ∈ W however is not a distribution: it does not act on polynomials and has
no compact support. In particular polynomials, which are in W, are not distributions.

3.2.4 Discrete Hermite functions

Obviously, Hermite polynomials are elements of the Weierstrass space W. In paragraph

3.2.1.4, we have seen that also exp
(
−ξ2

4

)
is contained in W. Discrete Hermite functions

are defined as the product of a Hermite polynomial operator and exp
(
−ξ2

4

)
, in analogy

to the definition from [42].

Definition 3.17. The discrete Hermite functions are defined as

ψn(ξ)[1] = Hn(ξ) exp

(
−ξ2

4

)
[1],

where Hn is the n-th degree Hermite polynomial.

It is important to remark that this is the composition of the operators Hn(ξ) and

exp
(
−ξ2

4

)
and not the multiplication of the corresponding functions in ξ.

In this section, we investigate if these Hermite functions are elements of W. This is
done in the same way as we did for the delta functions δj : by means of its Taylor series.
Writing the Hermite functions as an (infinite) linear combination of Hermite polynomials,
then

ψm(ξ) =
∑
n∈N

Hn(ξ)s
m
n [1].

We can obtain the coefficients smn as follows:

(Hn, ψm) =

〈
Hn(ξ)G, [1]

∑
ℓ∈N

(
smℓ
)†
Hℓ(ξ)

†

〉
=

〈
Hn(ξ)G,

∑
ℓ∈N

(
smℓ
)†
Hℓ(ξ)[1]

〉
= (smn )†

〈
Hn(ξ)G,Hn

〉
= (smn )† ηn,

From which it follows that

(smn )† =
(Hn, ψm)

ηn
.

We will make a distinction between even and odd Hermite functions to make the calcu-
lations. Remark that the inner product of an even Hermite function and an odd Hermite
polynomial, and vice versa, will be zero because the action of the Gaussian on odd powers
of ξ is zero, hence we only need to consider the remaining combinations.
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First, consider an even Hermite function ψ2m and combine it with an even Hermite
polynomial H2k.(

s2m2k

)†
η2k =

〈
H2kG, [1]ψ

†
2m

〉
=

m∑
j=0

∞∑
i=0

(−1)i

4ii!
a2m2j (−1)k

〈
∂2kG, ξ2i+2j [1]

〉
.

Denote ρ = max(0, k − j) and use equation (2.26) then

=
m∑
j=0

∞∑
i=ρ

(−1)i+k+j

4ii!
2m−j m!

j!(m− j)!

Γ(m+ 1
2)

Γ(j + 1
2)

(2i+ 2j)!

(2i+ 2j − 2k)!

×
Γ(12 + i+ j − k)

Γ(12)
2i+j−k

√
2π.

Now use the rules

Γ

(
n+

1

2

)
=

√
π
(2n)!

4nn!
and Γ

(
1

2

)
=

√
π.

and simplify the derived expression(
s2m2k

)†
η2k =

√
π

m∑
j=0

∞∑
i=ρ

(−1)i+j+k

4ii!
2m+i−k+ 1

2
m!

j!(m− j)!

(2m)!

4mm!

4jj!

(2j)!

× (2i+ 2j)!

(2i+ 2j − 2k)!

(2i+ 2j − 2k)!

4i+j−k(i+ j − k)!

=
√
π

m∑
j=0

∞∑
i=ρ

(−1)i+j+k 2−3i+k−m+ 1
2 (2m)! (2i+ 2j)!

i!(m− j)! (2j)! (i+ j − k)!

=
√
π

m∑
j=0

(2m)!(−1)ρ+j+k2−3ρ+k−m+ 1
2 (2ρ+ 2j)!

(2j)!ρ!(m− j)!(ρ+ j − k)!

× 3F2

(
1, 1 + ρ+ j, j + ρ+

1

2
; ρ+ 1, ρ+ 1 + j − k;−1

2

)
.

Clearly, the coefficients
(
sm2k
)†

are scalar, hence
(
sm2k
)†

= sm2k. Depending on ρ, this
expression can be simplified:

• k > j: ρ = k − j:

s2m2k η2k =
√
π

m∑
j=0

(2m)!2−2k+3j−m+ 1
2 (2k)!

(2j)!(k − j)!(m− j)!
2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)
,

(3.23)

• k < j: ρ = 0:

s2m2k η2k =
√
π

m∑
j=0

(2m)!(−1)j+k2k−m+ 1
2

(m− j)!(j − k)!
2F1

(
1 + j, j +

1

2
; 1 + j − k;−1

2

)
,
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• k = j: ρ = 0:

s2m2k η2k =
√
π

m∑
j=0

(2m)!2k−m+ 1
2

(m− k)!
2F1

(
1 + k, k +

1

2
; 1;−1

2

)
.

Now consider an odd Hermite function ψ2m+1 combined with an odd Hermite poly-
nomial H2k+1. Similarly,

(
s2m+1
2k+1

)†
η2k+1 =

〈
H2k+1G, [1]ψ

†
2m+1

〉
=

m∑
j=0

∞∑
i=0

(−1)i

4ii!
a2m+1
2j+1 (−1)k+1

〈
∂2k+1G, ξ2i+2j+1[1]

〉
Again we use the notation ρ = max(0, k − j)

=

m∑
j=0

∞∑
i=ρ

(−1)i+k+j

4ii!
2m−j m!

j!(m− j)!

Γ(m+ 3
2)

Γ(j + 3
2)

(2i+ 2j + 1)!

(2i+ 2j − 2k)!

×
Γ(12 + i+ j − k)

Γ(12)
2i+j−k

√
2π

Use the formulae for the Gamma function of a half-integer and simplify this expression

=
√
π

m∑
j=0

∞∑
i=ρ

(−1)i+j+k

4ii!
2m+i−k+ 1

2
m!

j!(m− j)!

(2m+ 2)!

4m+1(m+ 1)!

× 4j+1(j + 1)!

(2j + 2)!

(2i+ 2j + 1)!

(2i+ 2j − 2k)!

(2i+ 2j − 2k)!

4i+j−k(i+ j − k)!

=
√
π

m∑
j=0

∞∑
i=ρ

(−1)i+j+k 2−3i+k−m+ 1
2 (2m+ 1)! (2i+ 2j + 1)!

i!(m− j)! (2j + 1)! (i+ j − k)!

=
√
π

m∑
j=0

(2m+ 1)!(−1)ρ+j+k2−3ρ+k−m+ 1
2 (2ρ+ 2j + 1)!

(2j + 1)!ρ!(m− j)!(ρ+ j − k)
!

× 3F2

(
1, 1 + ρ+ j, j + ρ+

3

2
; ρ+ 1, ρ+ 1 + j − k;−1

2

)
.

The generalised hypergeometric function 3F2 again can be simplified to the hypergeo-
metric 2F1, depending on ρ:

• k > j: ρ = k − j:

s2m+1
2k+1 η2k+1 =

√
π

m∑
j=0

(2m+ 1)!2−2k+3j−m+ 1
2 (2k + 1)!

(2j + 1)!(k − j)!(m− j)!

× 2F1

(
1 + k, k +

3

2
; k − j + 1;−1

2

)
,
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• k < j: ρ = 0:

s2m+1
2k+1 η2k+1 =

√
π

m∑
j=0

(2m+ 1)!(−1)j+k2k−m+ 1
2

(m− j)!(j − k)!
2F1

(
1 + j, j +

3

2
; 1 + j − k;−1

2

)
,

• k = j: ρ = 0:

s2m+1
2k+1 η2k+1 =

√
π

m∑
j=0

(2m+ 1)!2k−m+ 1
2

(m− k)!
2F1

(
1 + k, k +

3

2
; 1;−1

2

)
.

These scalar coefficients are very similar to the ones for even Hermite functions above. We
will further discuss the calculations and results explicitly for the even Hermite functions
as the conclusions will be identical.

Although we did not found a closed form for the coefficients, we can calculate its value
for low values of n and m and make a plot to visualise its behaviour.

From the examples in figures 3.2a to 3.2k, it is clear that for a fixed Hermite function ψm,
the coefficients smn tend to zero as n goes to infinity. In order to proof this analytically,
let us first find an upper bound for this hypergeometric series in the next lemma.

Lemma 3.18.∣∣∣∣∣ 2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)∣∣∣∣∣ ≤ (j + 1)(2j)!

(
2

3

)k+ 1
2

,∣∣∣∣∣ 2F1

(
1 + k, k +

3

2
; k − j + 1;−1

2

)∣∣∣∣∣ ≤ (j + 1)(2j + 1)!

(
2

3

)k+ 3
2

.

Proof. Both inequalities are proven in the same way. Let us do the calculations for the
first expression. From [46], formula 15.8.1, we have that

2F1 (a, b; c; z) = (1− z)c−b−a
2F1 (c− a, c− b; c; z) .

Applied to our parameters, this becomes

2F1

(
k + 1, k +

1

2
; k − j + 1;−1

2

)
=

(
2

3

)k+j+ 1
2

2F1

(
−j,−j + 1

2
; k − j + 1;−1

2

)
.

Because the negative integer −j appears as the first parameter in this hypergeometric
function, this infinite sum reduces to a finite one. We use the definitions of 2F1(a, b; c; z)
in this case [46](15.2.4) and the Pochhammer symbol:(

2

3

)k+j+ 1
2

2F1

(
−j,−j + 1

2
; k − j + 1;−1

2

)
=

(
2

3

)k+j+ 1
2

j∑
i=0

(
1

2

)i j!

i!(j − i)!

(−j + 1
2)i

(k + 1− j)i

=

(
2

3

)k+j+ 1
2

j∑
i=0

(
1

2

)i j!

i!(j − i)!

(k − j)!

(k − j + i)!

Γ(−j + i+ 1
2)

Γ(−j + 1
2)
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=

(
2

3

)k+j+ 1
2

j∑
i=0

(
1

2

)i j!

i!(j − i)!

(k − j)!

(k − j + i)!

(−4)j−i(j − i)!

(2j − 2i)!

(2j)!

(−4)jj!

=

(
2

3

)k+j+ 1
2

j∑
i=0

(−1)i
(k − j)!(2j)!

i!(k − j + i)!(2j − 2i)!8i
.

Now take the absolute value of this sum and maximise it.∣∣∣∣∣ 2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)∣∣∣∣∣ =
∣∣∣∣∣∣
(
2

3

)k+j+ 1
2

j∑
i=0

(−1)i
(k − j)!(2j)!

i!(k − j + i)!(2j − 2i)!8i

∣∣∣∣∣∣
≤
(
2

3

)k+ 1
2

(j + 1)
(k − j)!(2j)!

0!(k − j + 0)!(2j − 2j)!80

=

(
2

3

)k+ 1
2

(j + 1)(2j)!.

To calculate the limit as n = 2k tends to infinity, we need the expressions for which
ρ = k − j. It follows that

lim
k→∞

∣∣∣s2m2k ∣∣∣ =
∣∣∣∣∣∣
m∑
j=0

(2m)!2−2k+3j−m

(2j)!(k − j)!(m− j)!
2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)∣∣∣∣∣∣
≤

m∑
j=0

(2m)!2−2k+3j−m

(2j)!(k − j)!(m− j)!
(j + 1)(2j)!

(
2

3

)k+ 1
2

≤ (m+ 1)
2−2k+2m

(2.0)!(k −m)!(m−m)!
(m+ 1)(2m)!

(
2

3

)k+ 1
2

= 0.

Before we check if the Hermite functions are elements of the Weierstrass space, we verify
if the infinite series of Hermite polynomials is well-defined and has pointwise convergence
in every point of the grid: the coefficient in every power ξn[1] must be finite.

ψ2m(ξ)[1] =
∑
k∈N

H2k(ξ)s
2m
2k

=
∑
k∈N

k∑
j=0

a2k2j ξ
2js2m2k

=
∑
k∈N

∞∑
j=k

a2j2ks
2m
2j ξ

2k.

The infinite sum

∞∑
j=k

a2j2ks
2m
2j must be convergent. We use the expression for a2j2k from

(2.30) and the formula

Γ

(
n+

1

2

)
=

(2n)!
√
π

4n n!
.
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The aim is to find a convergent majorant series. As we will let j tend to infinity, take
the first expression for s2m2j , (3.23).

∣∣∣a2j2ks2m2j ∣∣∣ =
∣∣∣∣∣∣ 2j−kj!

k!(j − k)!

(2j)!

4j j!

4k k!

(2k)!

m∑
i=0

(2m)!2−2j+3i−m

(2i)!(j − i)!(m− i)!
2F1

(
1 + j, j +

1

2
; j − i+ 1;−1

2

)∣∣∣∣∣∣ .
Use lemma 3.18:

≤ 2j−k(2j)!

4j−k(j − k)!(2k)!

m∑
i=0

(2m)!2−2j+3i−m

(2i)!(j − i)!(m− i)!
(i+ 1)(2i)!

(
2

3

)j+ 1
2

≤ 2k−j(2j)!

(j − k)!(2k)!
(m+ 1)

(2m)!2−2j+2m

(2.0)!(j −m)!(m−m)!
(m+ 1)(2m)!

(
2

3

)j+ 1
2

.

Now use d’Alemberts ratio test to prove that this majorant series converges:

lim
j→∞

∣∣∣∣∣∣a
2j+2
2k s2m2j+2

a2j2ks
2m
2j

∣∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣∣∣
2−j−1(2j+2)!

(j+1−k)!
2−2j−2

(j+1−m)!

(
2
3

)j+ 3
2

2−j(2j)!
(j−k)!

2−2j

(j−m)!

(
2
3

)j+ 1
2

∣∣∣∣∣∣∣∣
= lim

j→∞

2−1(2j + 2)(2j + 1)

(j + 1− k)

2−2

(j + 1−m)

2

3

=
1

3
.

We conclude that the series defines a discrete function.

If the Hermite function ψm is an element of the Weierstrass space, its coefficients must
satisfy

∞∑
n=0

ηn(s
m
n )†smn =

∞∑
k=0

η2k
(
sm2k
)2

+ η2k+1

(
sm2k+1

)2
<∞. (3.24)

Depending on the parity of m, only one term will be non-zero. Let us again discuss the
case for even Hermite functions, hence we want to prove that

∞∑
k=0

η2k

(
s2m2k

)2
<∞. (3.25)

There are only a finite number of terms for which k ≤ m, so the question of convergence
reduces to the series

∞∑
k=m+1

η2k

(
s2m2k

)2
<∞. (3.26)

In this case, ρ = k − j and we are led to the examination of the series

∞∑
k=m

η2k

(
s2m2k

)2
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=
∞∑

k=m

(2k)!(2m)!2√
2π

 m∑
j=0

2−2k+3j−m

(2j)!(k − j)!(m− j)!
2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)2

.

(3.27)

We again want to find a convergent majorant series.

(2k)!(2m)!2√
2π

 m∑
j=0

2−2k+3j−m

(2j)!(k − j)!(m− j)!
2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)2

≤ (2k)!(2m)!2

[
(m+ 1)

2−2k+3m−m

(2.0)!(k −m)!(m−m)!
2F1

(
1 + k, k +

1

2
; k − j + 1;−1

2

)]2

≤ (2k)!(2m)!2(m+ 1)2
4−2k+2m

(k −m)!2
(j + 1)2(2j)!2

(
2

3

)2k+1

≤ (2k)!(2m)!4(m+ 1)4
4−2k+2m

(k −m)!2

(
2

3

)2k+1

:= Sk.

Now use d’Alembert’s ratio test once more:

lim
k→∞

∣∣∣∣Sk+1

Sk

∣∣∣∣ = lim
k→∞

(2k + 2)(2k + 1)4−2

(k + 1−m)2

(
2

3

)2

=
1

4

4

9
=

1

9
< 1.

We conclude that ψ2m is indeed a function in the discrete Weierstrass space. As men-
tioned above, the calculations and conclusions for ψ2m+1 are identical.
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(a) Coefficients s22k (b) Coefficients η2k
(
s22k
)2

(c) Coefficients s32k+1
(d) Coefficients η2k+1

(
s32k+1

)2

(e) Coefficients s62k (f) Coefficients η2k
(
s62k
)2
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(g) Coefficients s72k+1
(h) Coefficients η2k+1

(
s72k+1

)2

(i) Coefficients s142k (j) Coefficients η2k
(
s142k
)2

(k) Coefficients s192k+1
(l) Coefficients η2k+1

(
s192k+1

)2
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3.3 Mesh width h ̸= 1

In the next section, we investigate how the value h influences the definition and results
of the Weierstrass transform and in particular the behaviour for h tending to 0.
Therefore, we return to the basic definitions we have used to define the Weierstrass
transform and space.

Let us first consider the Gaussian distribution. As seen in the preliminaries, the mesh
width h does not appear explicitly in the definition of G. It does however appear in its
density function.

To calculate its density function, we will need an expression for the even derivatives of
δ0:

∂2kδ0 =
2k∑
i=0

(−1)i

h2k

(
2k

i

)
δ−(k−i)h

=
k∑

i=−k

(−1)k+i

h2k

(
2k

i+ k

)
δih

=

k∑
i=−k

(−1)k+i

h2k

(
2k

i+ k

)
δih.

Then

G =
∞∑
k=0

(−1)k

k!
∂khδ0

〈
G, ξkh[1]

〉
=

∞∑
k=0

(−1)2k
√
2π(2k)!

(2k)!2kk!
∂2kh δ0

=

∞∑
k=0

√
2π

2kk!

 k∑
i=−k

(−1)k+i

h2k

(
2k

i+ k

)
δih


=

√
2π
∑
n∈Z

 ∞∑
ℓ=|n|

(−1)n+l

2ℓℓ!h2ℓ

(
2ℓ

n+ ℓ

) δnh

=
√
2π
∑
n∈Z

In
(

1

h2

)
exp

(
− 1

h2

)
δnh,

with n = x
h . Here, In(z) is the modified Bessel function of the first kind. Therefore, in a

point x = nh ∈ Zh, the value of G is
√
2π

h
exp

(
− 1

h2

)
I x

h

(
1

h2

)
(3.28)

and this is thus the density function of the Gaussian distribution, denoted by g(x).

Remark 3.19. For general dimension m, this density function is

g(x) =
(
√
2π)m

hm
exp

(
m

h2

) m∏
j=1

Ixj
h

(
1

h2

)
with

xj
h

∈ Z.
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To analytically investigate the asymptotic behaviour of the Gauss distribution as h→ 0,
we use formula 9.7.7 from [47]:

Iν(νz) ≈
1√
2πν

exp(νη)

(1 + z2)1/4

1 +
∞∑
k=1

Uk(p)

νk

 , η =
√
1 + z2 + ln

(
z

1 +
√
1 + z2

)
,

(3.29)
which describes the uniform asymptotic expansion for large orders ν → +∞ and is valid
for z in the sector ∣∣arg(z)∣∣ < π

2
.

The terms Uk(p) are polynomials in p = (1 + z2)−
1
2 of degree 3k, recursively given by

U0(p) = 1,

Uk+1(p) =
1

2
p2(1− p2)U ′

k(p) +
1

8

∫ p

0
(1− 5t2)Uk(t)dt.

As

(
1

h2

)
> 0, we may apply it for the density function g. As seen in figure 3.3, cases for

h = 1, h =
1

10
and h =

1

100
approach the continuous Gaussian. This is clearly confirmed

by substituting formula (3.29) into the definition of g with ν =
x

h
and z =

1

xh
. Taking

the limit for h → 0 gives exp

(
−x

2

2

)
, the continuous Gaussian distribution. This can

be checked, for example with Maple: see the appendix 7.3.

Another way to visualise the effect in G of h approaching 0 is given in figure 3.4, where
we let h approach 0 in (3.28). Be aware that x = nh, hence the absolute value of x
increases with the same factor as h decreases, resulting in a rescaling of the plots and
x-axis. As h→ 0, all points of the grid collapse to the origin, hence g tends to 1.

The discrete Weierstrass transform was defined based on the transform of the Hermite
polynomials. Because there is no explicit appearance of the mesh width h in formulas
(4.6), the calculation in (3.3) can be replicated and the outcome of the Weierstrass
transform will not change, as h tends to 0.

⟨Hn(ξh)G, exp
(
−z2/2 + ξhz

)
[1]⟩ = ⟨(−1)⌈

n
2 ⌉∂nG, exp

(
−z2/2 + ξhz

)
[1]⟩

= (−1)⌈
n
2 ⌉ exp

(
−z2/2

)
⟨∂nG,

∞∑
i=0

ξihz
i[1]

i!
⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=0

zi

i!
⟨G, ξih[1](∂†)n⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=0

zi

i!
⟨G, ∂nξih[1]⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
i=n

zi

i!

i!

(i− n)!
⟨G, ξi−n

h [1]⟩.
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Figure 3.3: Asymptotic behaviour of discrete Gauss distribution for h = 1, h =
1
10 , h = 1

100 , compared to the continuous Gauss distribution.

Figure 3.4: Density function of discrete Gauss distribution for h = 1, h = 1
10 , h =

1
100 respectively.
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Now change the summation index i to j to make it start from 0, then recall that G is
only non-trivial if acting on even powers of ξ.

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

) ∞∑
j=0

zj+n

j!
⟨G, ξjh[1]⟩

= (−1)⌊
n
2 ⌋ exp

(
−z2/2

)
zn

∞∑
j=0

z2j

(2j)!

√
2π

(2j)!

2jj!

= (−1)⌊
n
2 ⌋
√
2π zn.

3.4 Conclusion

In this chapter, we laid the foundation for the Weierstrass transform in the discrete
Hermitian Clifford setting. We defined the discrete Weierstrass transform of a discrete
function f as

W[f ](z) =
1√
2π

⟨f(ξ)G, exp
(
−z2/2 + ξ z

)
[1]⟩.

In order to put a condition on the functions for which this Weierstrass transform is
makes sense, we also defined a Weierstrass space: it is the completion of the (right)
Clifford module of the discrete Hermite polynomials Hn(ξ) for the norm ∞∑

n=0

ηnc
†
ncn


0

,

where f =

∞∑
n=0

Hncn and ηn =
√
2πn!. We gave some examples of elementary functions

that are contained in the Weierstrass space and gave their corresponding Weierstrass
transforms. The discrete delta functions, which are the building blocks of discrete func-
tion theory, are elements of the Weierstrass space, and so are the Hermite functions.
Eventually, we showed that this definition is consistent with the definition in the classi-
cal (continuous) setting. First, we generalised the definitions on a grid with general mesh
width h, then let this mesh width approach zero, where we found the same properties
and results as in the classical case.



4
Discrete Weierstrass transform in dimension

m > 1

Having defined and investigated the discrete Weierstrass transform and its functions in
one dimension, we will now further explore how we need to adapt these definitions in the
higher-dimensional context. There will be two obstacles to overcome.

First, we must take into account the non-commutativity of the basis Clifford elements
e1, . . . , em. In particular, it holds that ejek = −ekej if j ̸= k. To handle this, we will use
the discrete rotation invariant operators Rj, introduced in [40]:

Rj = e+j R
+
j + e−j R

−
j ,

where R±
j are scalar operators.

For a detailed study of these operators, we refer to [40]. For now, we will summarise the
properties that we will need in this thesis. The interaction of Rj with other fundamental
operators is as follows:

Rj [c] = ejc, c ∈ Cm, (4.1)

[Rj , ξj ] = [Rj , ∂j ] = 0, (4.2)

{Rj , ξk} = {Rj , ∂k} = 0, j ̸= k. (4.3)

As a result:

(ξjRj)(ξkRk) = (ξkRk)(ξjRj) and (∂jRj)(∂kRk) = (∂kRk)(∂jRj),

which we can interpret as commutativity for the operators ξjRj and ξkRk(j ̸= k) and
similar for ∂j . We will implement the operator Rj in the kernel of the Weierstrass
transform: ξjzj becomes ξjRjzj , which will allow for commutativity between the different
indices j = 1, . . . ,m. As a result of the extra operator Rj in the definition of the
Weierstrass transform, due to the rule Rj [1] = ej , a basis element ej will emerge in the
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Clifford-Fock space: every occurrence of the complex variable zj will be accompanied by
the basis element ej , resulting in a complex Clifford variable.

Besides the anti-commutativity of the basis elements, there is the need to review the
discrete Hermite polynomials in order to form a basis in the Weierstrass space in higher
dimensions. In one dimension, it suffices to consider the radial Hermite polynomials, as
defined in the preliminaries (see (2.29)) and as used in the previous chapter. In this form,
the radial Hermite polynomials form a basis for the space of functions of the form f(ξ),
where f is a function on the discrete ‘line’. In higher dimensions, m > 1, they no longer
constitute a basis, as they are polynomials in ξ = ξ1 + ξ2 + . . . + ξm and do not allow
for other forms. Therefore, we use the generalised discrete Hermite polynomials,
introduced by Sommen in [36] in the classical setting, and established in the discrete
setting by De Ridder in [31]. These generalised discrete Hermite polynomials Hn,m,r are
defined based on the composition of a discrete spherical monogenic operator Pr, i.e.

∂Pr = 0 and EPr = rPr,

of degree r with the (discrete) Hermite polynomial Hn,m,r of degree n. Its recurrence
relation (with respect to the Hermite degree n) is

Hn,m,rPrG = (−1)n∂Hn−1,m,rPrG. (4.4)

The defining Rodriguez’ formula is

H2k,m,rPrG = (−1)k∂2kPrG,

H2k+1,m,rPrG = (−1)k+1∂2k+1PrG.
(4.5)

Note the dependency of Hn,m,r on the degree r of the monogenic Pr. The explicit form
is given by

H2k,m,r =
k∑

j=0

a2k2j ξ
2j , H2k+1,m,r =

k∑
j=0

a2k+1
2j+1ξ

2j+1 (4.6)

with

a2k2j = (−1)j2k−j

(
k

j

)
Γ(k + m

2 + r)

Γ(j + m
2 + r)

, (4.7)

a2k+1
2j+1 = (−1)j2k−j

(
k

j

)
Γ(k + m

2 + r + 1)

Γ(j + m
2 + r + 1)

. (4.8)

The combination of the new kernel with the product ξjRjzj and the generalised Hermite
polynomials will lead to definition (4.3).

But first, we recall the definition of the discrete Weierstrass space and its inner product,
which are directly extendable to dimension m > 1.

Definition 4.1. Let f and g be two discrete functions.

(f, g) =
(
f(ξ)[1], g(ξ)[1]

)
:=
〈
f(ξ)G, [1](g(ξ))†

〉
. (4.9)

The scalar part of (f, f) is defined as the norm of the discrete function f :

∥f∥ :=
[
(f, f)

]
0
. (4.10)
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A discrete function f is an element of the discrete Weierstrass space if it is a finite or
infinite linear combination of generalised Hermite polynomials, for which its norm is
finite.

Definition 4.2. The discrete Weierstrass space W is the completion of the right
Clifford module of generalised Hermite polynomials in ξ in the norm (4.10):

f ∈ W ⇔ f =
∞∑

n∈N
Hn,m,rPrcn with ∥f∥ <∞, cn ∈ Cm.

We are now led to the definition of the discrete Weierstrass transform.

Definition 4.3. The discrete Weierstrass transform of a discrete function f ∈ W is
defined by the transforms of the n−th degree generalised Hermite polynomial in dimen-
sion m

W[Hn,m,rPr](z) :=
√
2π

−m

〈
Hn,m,rPrG, exp

(
−|z|2

2
+ ξRz

)
[1]

〉
,

where ξRz =
m∑
j=1

ξjRjzj and z =
m∑
j=1

zjej is a continuous complex Clifford variable.

Our aim is to generate an explicit formula for this transform. As there are two positive
integer parameters, n and r, the natural way is to try to obtain a recurrence relation.

4.1 Recurrence relation in terms of the degree n of the
Hermite polynomial

Our first goal is to establish an expression forW[Hn,m,rPr](z) in terms ofW[Hn−1,m,rPr](z).
This is mainly based on the recurrence relation of the generalised Hermite polynomials
(4.4), complemented by some additional technical lemmas. In order to fix ideas and
limit notations, let us do the calculations and check some examples in dimension m = 2.
Afterwards, we address for m > 2.
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We subsequently obtain

W[Hn,2,rPr](z) =
1

2π

〈
Hn,2,rPrG, exp

(
−|z|2

2
+ ξRz

)
[1]

〉
(4.4)
=

1

2π
exp

(
−|z|2

2

)〈
(−1)n∂Hn−1,2,rPrG,

∞∑
ℓ=0

(ξRz)ℓ

ℓ!
[1]

〉

=
(−1)n+1

2π
exp

(
−|z|2

2

)

×
∞∑
ℓ=0

1

ℓ!

〈
Hn−1,2,rPrG, (ξ1R1z1 + ξ2R2z2)

ℓ[1](∂1 + ∂2)
†
〉
.

Here is were the role of the operators Rj becomes clear: we can expand the sum (ξ1R1z1+
ξ2R2z2)

ℓ

=
(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

ℓ∑
j=0

(
ℓ

j

)
1

ℓ!
×[〈

Hn−1,2,rPrG, ξ
j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]∂†1

〉
+
〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]∂†2

〉]
.

(4.11)

In order to move ∂†j to work from the left, we now need the following lemma.

Lemma 4.4. For a fixed i and ∀j, k, ℓ ∈ N : If j and k have equal parity, then

ξjiR
k
i [1]

(
∂†i

)ℓ
= eki ∂

ℓ
i ξ

j
i [1].

Proof. If j and k are even, then Rk
i [1] = 1, hence apply calculation rule (2.15) to find

ξjiR
k
i [1]

(
∂†i

)ℓ
= ξji [1]

(
∂†i

)ℓ
= ∂ℓi ξ

j
i [1] = eki ∂

ℓ
i ξ

j
i [1].

If j and k are odd, then ξji [1] =
(
ξ†i

)j
[1] and Rk

i [1] = Ri[1] = ei[1]. There are two options

for the dirac operator ∂i, keeping in mind that ∂2i =
(
∂†i

)2
is scalar. If ℓ is even, say 2ℓ,

then scalar

ξjiRi[1]
(
∂†i

)2ℓ
= ξji ei[1]

(
∂†i

)2ℓ
=
(
∂†i

)2ℓ (
ξ†i

)j
ei[1] = ei∂

2ℓ
i ξ

j
i [1].

If ℓ is odd, say 2ℓ+ 1, then

ξjiR[1]
(
∂†i

)2ℓ+1
= ∂2ℓi

(
ξji e[1]∂

†
i

)
= ∂2ℓi

(
∂†i

(
ξ†i

)j
ei

)
[1] = ∂2ℓi

(
ei∂iξ

j [1]
)
= ei∂

2ℓ+1
i ξji [1].
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Remark 4.5. In our context, we will often see combinations as, for example,

ξj11 R
k1
1 ξ

j2
2 R

k2
2 [1]

(
∂†2

)ℓ
,

or with even more ξiRi depending on the dimension we are working in. The interaction
of the different indices does not affect the outcome of this lemma, as ∂k and ξjRj (j ̸= k)
are commutative:

∂k(ξjRj) = −ξj∂kRj = ξjRj∂k.

We continue from (4.11), invoking the above lemma, to obtain

W[Hn,2,rPr](z) =
(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

ℓ∑
j=0

(
ℓ

j

)
1

ℓ!
×

〈
Hn−1,2,rPrG, e

j
1 ∂1ξ

j
1︸︷︷︸

jξj−1
1

zj1ξ
ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

+

〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1e

ℓ−j
2 ∂2ξ

ℓ−j
2︸ ︷︷ ︸

(ℓ−j)ξℓ−j−1
2

zℓ−j
2 [1]

〉
=

(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!
× l∑

j=1

(
ℓ

j

)
j
〈
Hn−1,2,rPrG, e

j
1ξ

j−1
1 zj1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

+
ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)

〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1e

ℓ−j
2 ξℓ−j−1

2 zℓ−j
2 [1]

〉 .
(4.12)

We want to re-introduce the operators R1 and R2 in the first, resp. second term, in order
to go back to the definition of the Weierstrass transform.

Lemma 4.6. For any index i = 1 . . .m and any power j ∈ N,

eji ξ
j−1
i [1] = eiξ

j−1
i Rj−1

i [1].

Proof. The aim is to bring the factor ej−1
i in the left hand side through the basic discrete

polynomial ξj−1
i , in order to re-write it as the operator Rj−1

i , acting on [1]. However,

eiξi = ξ†i ei. If j is even, j− 1 is odd, which means
(
ξ†i

)j−1
[1] = ξj−1

i [1]. If j is odd, j− 1

is even and ej−1
i = 1. In both cases, the lemma is proven.
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Let us proceed with (4.12)

W[Hn,2,rPr](z) =
(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

×

 ℓ∑
j=1

(
ℓ

j

)
je1z1

〈
Hn−1,2,rPrG, ξ

j−1
1 Rj−1

1 zj−1
1 ξℓ−j

2 Rℓ−j
2 zℓ−j

2 [1]
〉

+

ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)e2z2

〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
=

(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

ℓ−1∑
j=0

1

ℓ!

((
ℓ

j + 1

)
(j + 1)z1e1 +

(
ℓ

j

)
(ℓ− j)z2e2

)

×
〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
=

(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=1

ℓ−1∑
j=0

1

(ℓ− 1)!

(
ℓ− 1

j

)
(z1e1 + z2e2)

×
〈
Hn−1,2,rPrG, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
=

(−1)n+1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=1

1

(ℓ− 1)!
(z1e1 + z2e2)

×
〈
Hn−1,2,rPrG, (ξ1R1z1 + ξ2R2z2)

ℓ−1[1]
〉

= (−1)n+1(z1e1 + z2e2)W[Hn−1,2,rPr](z).

(4.13)

In this way, we have proven the following recurrence relation.

Theorem 4.7. For the discrete Weierstrass transform of the discrete generalised Hermite
polynomials in dimension m = 2, it holds that

W[Hn,2,rPr](z) = (−1)n+1 (z1e1 + z2e2)W[Hn−1,2,rPr](z).

Let us illustrate this theorem by looking at some examples for low values of n. For
r = 0, the results of the general definition 4.3 for the discrete Weierstrass transform must
coincide with the former definition of chapter 3.2, i.e. the transform of the n−th degree
Hermite polynomial should be the n−th power of z. As P0 = 1, we will omit it in the
notation.

Example 4.8. Let us check this for n = 0.

W[H0,2,0](z) =
1

2π
exp

(
−|z|2

2

)〈
H0,2,0G, exp (ξRz) [1]

〉
=

1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

〈
G, (ξ1R1z1 + ξ2R2z2)

ℓ[1]
〉
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=
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)〈
G, ξj1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

=
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)
zj1z

ℓ−j
2

〈
G, ej1ξ

j
1e

ℓ−j
2 ξℓ−j

2 [1]
〉
.

The Gaussian distribution vanishes when acting on odd powers of ξ[1], see (2.24). Hence,
the only remaining terms are those where j and ℓ are both even, whence

W[H0,2,0](z) =
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

(2ℓ)!

ℓ∑
j=0

(
2ℓ

2j

)
z2j1 z

2ℓ−2j
2

〈
G, e2j1 ξ

2j
1 e

2ℓ−2j
2 ξ2ℓ−2j

2 [1]
〉

= exp

(
−|z|2

2

) ∞∑
ℓ=0

1

(2ℓ)!

ℓ∑
j=0

(2ℓ)!

(2j)!(2ℓ− 2j)!
z2j1 z

2ℓ−2j
2

(2j)!

2jj!

(2ℓ− 2j)!

2ℓ−j(ℓ− j)!

= exp

(
−|z|2

2

) ∞∑
ℓ=0

z2j1 z
2ℓ−2j
2

1

j!(ℓ− j)!2ℓ

= exp

(
−|z|2

2

)
(z21 + z22)

ℓ

2ℓℓ!
= 1.

Example 4.9. The next example for n = 1 uses the same calculations as seen in the
general proof and again the fact that the Gaussian vanishes when acting on odd powers
of ξ[1].

W[H1,2,0](z) =
1

2π
exp

(
−|z|2

2

)〈
H1,2,0G, exp (ξRz) [1]

〉
=

1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

〈
− (∂1 + ∂2)G, (ξ1R1z1 + ξ2R2z2)

ℓ[1]
〉

=
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)

×
[〈
G, ξj1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]∂†1

〉
+
〈
G, ξj1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]∂†2

〉]
.

Use lemma 4.4 to bring ∂†j forward

=
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

 ℓ∑
j=1

(
ℓ

j

)
zj1z

ℓ−j
2 j

〈
G, ej1ξ

j−1
1 ξℓ−j

2 eℓ−j
2 [1]

〉

+
ℓ−1∑
j=0

(
ℓ

j

)
zj1z

ℓ−j
2 (ℓ− j)

〈
G, ξj1e

j
1ξ

ℓ−j−1
2 eℓ−j

2 [1]
〉

=
1

2π
exp

(
−|z|2

2

) ∞∑
ℓ=0

1

(2ℓ+ 1)!
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×

 ℓ∑
j=0

(
2ℓ+ 1

2j + 1

)
z2j+1
1 z2ℓ−2j

2 e1(2j + 1)
〈
G, ξ2j1 ξ

2ℓ−2j
2 [1]

〉

+

ℓ∑
j=0

(
2ℓ+ 1

2j

)
z2j1 z

2ℓ+1−2j
2 e2(2ℓ+ 1− 2j)

〈
G, ξ2j1 ξ

2ℓ−2j
2 [1]

〉
= exp

(
−|z|2

2

) ∞∑
ℓ=0

1

(2ℓ+ 1)!

×

 ℓ∑
j=0

(
2ℓ+ 1

2j + 1

)
z2j+1
1 z2ℓ−2j

2 e1(2j + 1)
(2j)!

2jj!

(2ℓ− 2j)!

2ℓ−j(ℓ− j)!

+
ℓ∑

j=0

(
2ℓ+ 1

2j

)
z2j1 z

2ℓ+1−2j
2 e2(2ℓ+ 1− 2j)

(2j)!

2jj!

(2ℓ− 2j)!

2ℓ−j(ℓ− j)!


= exp

(
−|z|2

2

) ∞∑
ℓ=0

ℓ∑
j=0

1

2ℓj!(ℓ− j)!

[
z2j+1
1 z2ℓ−2j

2 e1 + z2j1 z
2ℓ+1−2j
2 e2

]

= exp

(
−|z|2

2

) ∞∑
ℓ=0

ℓ∑
j=0

(z2j1 z
2ℓ−2j
2 )

2ℓj!(ℓ− j)!
(e1z1 + e2z2)

= exp

(
−|z|2

2

) ∞∑
ℓ=0

(z21 + z22)
ℓ

2ℓℓ!
(e1z1 + e2z2)

= exp

(
−|z|2

2

)
exp

(
|z|2

2

)
(e1z1 + e2z2)

= e1z1 + e2z2.

Based on the calculations above in examples 4.8 and 4.9, together with the results of
theorem 4.7, we obtain an explicit expression for the discrete Hermite polynomial of
n− th in dimension 2 with r = 0.

W[H2k,2,0](z) = (−1)k(z1e1 + z2e2)
2k,

W[H2k+1,2,0](z) = (−1)k(z1e1 + z2e2)
2k+1.

(4.14)

The calculations and results from section 4.1 can be directly extended tom > 2. However,
due to the overload in notations, we limit ourselves to the results.

Theorem 4.10. The discrete Weierstrass transform of the discrete generalised Hermite
polynomials in m dimensions is recursively given by

W[Hn,m,rPr](z) =

 m∑
j=1

zjej

 (−1)n+1W[Hn−1,m,rPr](z). (4.15)

To start the recursive definition, it can be easily calculated that
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W[H0,m,0](z) = 1,

W[H1,m,0](z) =
m∑
j=1

zjej .
(4.16)

Having found a recurrence relation for the degree n of the Hermite polynomial, we seek
for an analogous formula, expressing the Weierstrass transform of Hn,m,rPr in terms of
Hn,m,r−1Pr−1 .

4.2 Recurrence relation in terms of the degree r of the
monogenic

A basis for the space M(m)
r of spherical discrete monogenics of degree r in m variables

is given by the so-called Fueter polynomials: they are the Cauchy-Kovalevskaya (CK in
short) extension of the discrete homogeneous polynomials of degree r in m− 1 variables.
Let us therefore rephrase this important theorem and accompanying notations.

Theorem 4.11 (Cauchy-Kovalevskaya extension for discrete monogenic functions, [31]).
Let f be a discrete function in the variables x2, . . . , xm, defined on the grid Zm−1 and tak-
ing values in the algebra over {e+2 , e

−
2 , . . . , e

+
m, e

−
m}. Then there exists a unique discrete

monogenic function F in the variables x1, . . . , xm, defined on the grid Zm and taking
values in the algebra over {e+1 , e

−
1 , . . . , e

+
m, e

−
m}, such that the restriction of F to the

hyperplane x1 = 0 equals f . This function F is given by

CK[f ](x1, . . . , xm) =

∞∑
k=0

ξk1 [1](x1)

k!
fk(x2, . . . , xm),

where f0 = f and fk+1 = (−1)k+1
m∑
j=2

∂jfk.

Theorem 4.12. The set

{CK[ξα] | α = (α2, . . . , αm), α2 + . . .+ αm = r}

constitutes a basis for the set of discrete spherical monogenics of degree r in dimension
m.

This discrete CK-extension was introduced and investigated by De Ridder in [33].

Let us introduce some notations.

Notation 4.13. We use the notations

ηi = ξi − ξ1 and η̂i = ξi + ξ1.

For α = (α2, . . . , αm) ∈ Nm−1, let ξα = ξα2
2 . . . ξαm

m . The degree of the operator ξα is
k = α2 + . . . + αm. With every α, we associate the k−tupple (ℓ1, . . . , ℓk), with every
ℓj ∈ {2, . . . ,m}, ℓi ≤ ℓj if i ≤ j and the number of times that j appears in (ℓ1, . . . , ℓk) is
αj .
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Notation 4.14. On a k-tuple (ηℓ1 , . . . , ηℓk) we define three operators:

• (ηℓ1 , . . . , ηℓk)
Ej means that every even occurrence (i.e. second, fourth, sixth,. . . ) of

ηj is replaced by η̂j and vice versa. The composition of Er1 , . . . , Erk is denoted in
short by Er1,...,rk .

• Analogously, (ηℓ1 , . . . , ηℓk)
Oj means that every odd occurrence (i.e. first, third,

fifth,. . . ) of ηj is replaced by η̂j and vice versa. The composition of Or1 , . . . , Ork is
denoted in short by Or1,...,rk .

• (ηℓ1 , . . . , ηℓk)
∗j denotes that every ηj is replaced by η̂j and vice versa, every η̂j is

replaced by ηj .

From [34], we know that

CK[ξα] =
α2! . . . αm!

k!

∑
π(ℓ1,...,ℓk)

sgn(π)(ηπ(ℓ1) . . . ηπ(ℓk))
E2,...,m ,

where the sum runs over all distinguishable permutations π of (ℓ1, . . . , ℓk) and sgn(π) is
+1 or −1, according to the signature of the permutation π.

As in the first section, let us start in dimension m = 2 in order to fix ideas and limit
notations.

4.2.1 Recurrence relation in terms of the degree r in dimension m = 2

In what follows, results will be proven for the basis monogenic polynomials, and hence
we will use the notations

Pr = (ξ2 − ξ1)(ξ2 + ξ1) . . . (ξ2 ± ξ1)︸ ︷︷ ︸
r times

= η2η̂2 . . .

P̃r := (ξ2 + ξ1)(ξ2 − ξ1) . . . (ξ2 ∓ ξ1)︸ ︷︷ ︸
r times

= η̂2η2 . . .

as well as

∂ = ∂2 + ∂1,

∂̃ := ∂2 − ∂1.
(4.17)

In combination with the discrete Gauss distribution, we know that ∂PrG = −ξPrG,
which we now can write as

∂PrG = −ξPrG = −P̃r+1G.

We now try to exploit this relationship to find the recurrence relation we are looking for.
Recall that H0,m,r′ = 1,∀m,∀r′, hence

W [P̃r](z) = W[H0,2,rP̃r](z).
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The calculation uses the same method as in (4.13):

W[H0,2,rP̃r](z) =
1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)
×
〈
−(∂1 + ∂2)Pr−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉
=

1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

×
ℓ∑

j=0

(
ℓ

j

)〈
Pr−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1](∂†1 + ∂†2)

〉
.

Split up ∂†1 + ∂†2 in two separate terms, for each of them we apply lemma 4.4.

=
1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

 ℓ∑
j=1

(
ℓ

j

)
j
〈
Pr−1G, e

j
1ξ

j−1
1 zj1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

+
ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)

〈
Pr−1G, ξ

j
1R

j
1z

j
1e

ℓ−j
2 ξℓ−j−1

2 zℓ−j
2 [1]

〉
=

1

2π
exp

(
−|z|

2

2

) ∞∑
l=1

1

ℓ!

×

ℓ−1∑
j=0

(
ℓ

j + 1

)
(j + 1)z1e1

〈
Pr−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉

+
ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)z2e2

〈
Pr−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
=

1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)
(z1e1 + z2e2)

×
〈
Pr−1G, (ξ1R1z1 + ξ2R2z2)

l[1]
〉

= (z1e1 + z2e2)W[H0,2,r−1Pr−1](z).

Similarly, it is easily checked that, with the new notation, ∂̃P̃r = 0. It then holds that

∂̃P̃rG = −(ξ2 − ξ1)P̃rG = −Pr+1G.

The proof of the first equality is completely analogous as the proof for the equality
∂PrG = −ξPrG, which can be found in [31]. We obtain
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W[H0,2,rPr](z) =
1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)〈
−(∂2 − ∂1)P̃r−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

=
1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

ℓ∑
j=0

(
ℓ

j

)〈
P̃r−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1](∂†1 − ∂†2)

〉
.

Split up and use lemma 4.4 once more:

=
1

2π
exp

(
−|z|

2

2

) ∞∑
ℓ=0

1

ℓ!

 ℓ∑
j=1

(
ℓ

j

)
j
〈
P̃r−1G, e

j
1ξ

j−1
1 zj1ξ

ℓ−j
2 Rℓ−j

2 zℓ−j
2 [1]

〉

−
ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)

〈
P̃r−1G, ξ

j
1R

j
1z

j
1e

ℓ−j
2 ξℓ−j−1

2 zℓ−j
2 [1]

〉
=

1

2π
exp

(
−|z|

2

2

) ∞∑
l=1

1

ℓ! ℓ∑
j=1

(
ℓ

j

)
jz1e1

〈
P̃r−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉

−
ℓ−1∑
j=0

(
ℓ

j

)
(ℓ− j)z2e2

〈
P̃r−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
=

1

2π
exp

(
−|z|

2

2

) ∞∑
l=1

1

ℓ!

ℓ−1∑
j=0

(
ℓ

j

)
(z1e1 − z2e2)

×
〈
P̃r−1G, ξ

j
1R

j
1z

j
1ξ

ℓ−j−1
2 Rℓ−j−1

2 zℓ−j−1
2 [1]

〉
= (z1e1 − z2e2)W[H0,2,r−1P̃r−1](z).

(4.18)

We conclude the results of the previous calculations in the next theorem:

Theorem 4.15. For the discrete Weierstrass transform in dimension 2, it holds that

W[H0,2,rP̃r](z) = (z1e1 + z2e2) W[H0,2,r−1Pr−1(z)],

W[H0,2,rPr](z) = (z1e1 − z2e2) W[H0,2,r−1P̃r−1](z).

Combining the recurrence relations in theorems 4.7, 4.15 and the trivial example in (4.14),
we can calculate the Weierstrass transform of every generalised Hermite polynomial in two
dimensions. We made an overview for low values of r and n in Tables 7.1, complemented
by Table 7.2.

The previous method in section 4.2.1 is unfortunately not directly extendable to higher
dimensions, because it relies on the specific representation of the basic monogenics Pr for
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m = 2. However, it gives us a good idea of the results whenm > 2: the Weierstrass trans-

form of a generalised Hermite polynomialHn,m,rPr is the product of n factors

 m∑
j=1

zjej


and r factors

 m∑
ℓ=1

±zℓeℓ

, with ± depending on the form of the monogenic. To prove

this result in higher dimensions, we need another approach. Before we do so, let us fur-
ther illustrate the structure of the Weierstrass transform for some concrete examples of
monogenics for m > 2.

4.2.2 Examples of the Weierstrass transform of spherical monogenics

In the next section, we will give some examples of the Weierstrass transform of CK[ξα], for
low values of ∥α∥ = r. This can be interpreted as theWeierstrass transformW[H0,m,rCK[ξα]],
as any Hermite polynomial of degree 0 is 1. This will give us some inspiration concerning
the form of the results and how to calculate them. In order to aid to clarify the structure,
let us introduce another notation:

Notation 4.16. Denote

yi = zi − z1

ŷi = zi + z1.

4.2.2.1 ∥α∥ = 1

Here is CK[ξα] = ηj , when ℓ = (j). Hence P1 = ξj − ξ1. Having in mind that ξG = −∂G,
this leads us to the calculation of example 4.9:

W[ηj ](z) = W[ξj − ξ1](z)

=
√
2π

−m
2 exp

(
−|z|2

2

) ∞∑
ℓ=0

1

ℓ!

〈
−
(
∂j − ∂1

)
G, (ξRz)ℓ [1]

〉
= ejzj − e1z1 = yj .

4.2.2.2 ∥α∥ = 2

Two combinations are possible (i, j ̸= 1, i ̸= j):

• ℓ = (i, j): In this case,

CK[ξα] =
1

2

(
ηiηj − ηjηi

)
= ξiξj − ξ1ξj + ξ1ξi.

This will result in the Weierstrass transform 1
2

(
yiyj − yjyi

)
. For example, take

m = 3 and ℓ = (2, 3).

W[ξ2ξ3 − ξ1ξ3 + ξ1ξ2]

=
√
2π

− 3
2 exp

(
−|z|2

2

)[〈
ξ2ξ3G, exp (ξRz) [1]

〉
−
〈
ξ1ξ3G, exp (ξRz) [1]

〉
+
〈
ξ1ξ2G, exp (ξRz) [1]

〉]
.
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The three terms in the right hand side are completely similar, so we will only work
out the first term.〈
ξ2ξ3G, exp (ξRz) [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
ξ2ξ3G, ξ

j1
1 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
∂2∂3G, ξ

j1
1 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]∂†2∂

†
3

〉
.

Use lemma 4.4 to bring ∂†2∂
†
3 forward.

=
∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
G, ξj11 R

j1
1 z

j1
1 e

j2
2 ∂2ξ

j2
2 z

j2
2 e

j3
3 ∂3ξ

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)
j2j3

〈
G, ξj11 R

j1
1 z

j1
1 e

j2
2 ξ

j2−1
2 zj22 e

j3
3 ξ

j3−1
3 zj33 [1]

〉
=

∞∑
ℓ=0

1

(2ℓ+ 2)!

∑
j1+j2+j3=ℓ

(2ℓ+ 2)!

(2j1)!(2j2 + 1)!(2j3 + 1)!
(2j2 + 1)(2j3 + 1)

×
〈
G, ξ2j11 R2j1

1 z2j11 e2j2+1
2 ξ2j22 z2j2+1

2 e2j3+1
3 ξ2j33 z2j3+1

3 [1]
〉
.

Now use the fact that R2
j = e2j = 1.

=

∞∑
ℓ=0

1

(2ℓ+ 2)!

∑
j1+j2+j3=ℓ

(2ℓ+ 2)!

(2j1)!(2j2)!(2j3)!

× z2j11 z2j2+1
2 z2j3+1

3 e2e3

〈
G, ξ2j11 ξ2j22 ξ2j33 [1]

〉
=

∞∑
ℓ=0

∑
j1+j2+j3=ℓ

1

(2j1)!(2j2)!(2j3)!
z2j11 z2j2+1

2 z2j3+1
3 e2e3

(2j1)!

2j1j1!

(2j2)!

2j2j2!

(2j3)!

2j3j3!

=

∞∑
ℓ=0

∑
j1+j2+j3=ℓ

(
z21
2

)j

1

1

j1!

(
z22
2

)j

2

1

j2!

(
z23
2

)j

3

1

j3!
z2e2z3e3

= exp

(
|z|2

2

)
z2e2z3e3.

The result of the three terms together will then be

W
[
1

2
(η2η3 − η3η2)

]
= z2e2z3e3 − z1e1z3e3 + z1e1z2e2 =

1

2
(y2y3 − y3y2) .

• ℓ = (j, j): Here,
CK[ξα] = ηj η̂j = ξ2j − 2ξ1ξj − ξ21 ,
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which will give yj ŷj as a result. Let us verify this for m = 3 and ℓ = (2, 2).

W[ξ22 − 2ξ1ξ2 − ξ21 ]

=
√
2π

− 3
2 exp

(
−|z|2

2

)

×
[〈
ξ22G, exp (ξRz) [1]

〉
− 2

〈
ξ1ξ2G, exp (ξRz) [1]

〉
−
〈
ξ21G, exp (ξRz) [1]

〉]
.

Using the result of the previous calculation, we only need to know〈
ξ22G, exp (ξRz) [1]

〉
. Remark that

ξ2jG = −ξj∂jG = −(∂jξj − 1)G = (∂2j + 1)G,

because ξjG = −∂jG and ξj∂j = ∂jξj − 1.

〈
ξ22G, exp (ξRz) [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
ξ22G, ξ

j1
1 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
(∂22 + 1)G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1](∂†2

2
+ 1)

〉
.

∂2j is scalar, hence commutative with any other operator

=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
G, ξj11 R

j1
1 z

j1
1 (∂22 + 1)ξj22 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
=

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)(
j2(j2 − 1)

×
〈
G, ξj11 R

j1
1 z

j1
1 ξ

j2−2
2 Rj2

2 z
j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
+
〈
G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉)
.

The action of G is only non-zero when all of the powers of ξj are even, thus

=
∞∑
ℓ=0

1

(2ℓ)!

∑
j1+j2+j3=ℓ

(2ℓ)!

(2j1)!(2j2)!(2j3)!

(
2j2(2j2 − 1)

×
〈
G, ξ2j11 R2j1

1 z2j11 ξ2j2−2
2 R2j2

2 z2j22 ξ2j33 R2j3
3 z2j33 [1]

〉
+
〈
G, ξ2j11 R2j1

1 z2j11 ξ2j22 R2j2
2 z2j22 ξ2j33 R2j3

3 z2j33 [1]
〉)
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=

∞∑
ℓ=0

∑
j1+j2+j3=ℓ

1

(2j1)!(2j2 − 2)!(2j3)!

×
(〈

G, ξ2j11 R2j1
1 z2j11 ξ2j2−2

2 R2j2
2 z2j22 ξ2j33 R2j3

3 z2j33 [1]
〉

+
〈
G, ξ2j11 R2j1

1 z2j11 ξ2j22 R2j2
2 z2j22 ξ2j33 R2j3

3 z2j33 [1]
〉)

.

Now re-arrange so we can write it in closed form again.

=
∞∑
ℓ=0

∑
j1+j2+j3=ℓ

1

(2j1)!(2j2 − 2)!(2j3)!

×
(
z22

〈
G, ξ2j11 z2j11 ξ2j2−2

2 z2j2−2
2 ξ2j33 z2j33 [1]

〉
+
〈
G, ξ2j11 z2j11 ξ2j22 z2j22 ξ2j33 z2j33 [1]

〉)
= z22 + 1 = (z2e2)

2 + 1.

As a result,

W[η2η̂2] = W[ξ22 − 2ξ1ξ2 − ξ21 ]

= z22 + 1− 2z1e1z2e2 − z21 − 1

= z22 − 2z1e1z2e3 − z21

= y2ŷ2.

4.2.2.3 ∥α∥ = 3

Three combinations are possible (i, j ̸= 1, i ̸= j)

• ℓ = (i, j, k): here we have that

CK[ξα] =
1

3!

(
ηiηjηk − ηjηiηk + ηjηkηi − ηkηjηi − ηiηkηj + ηkηiηj

)
.

Using the same reasoning as in the previous examples, this is transformed into

1

3!

(
yiyjyk − yjyiyk + yjykyi − ykyjyi − yiykyj + ykyiyj

)
.

• ℓ = (i, j, j) or ℓ = (i, i, j): The second case splits up in two sub cases, however both
are identically calculated as a combination of the two options when ∥α∥ = 2.

W
[
CK[ξα]

]
=

1

3
W
[
ηiη̂iηj − ηiηj η̂i + ηjηiη̂i

]
= yiŷiyj − yiyj ŷi + yjyiŷi.

Therefore, we need a combination of previous calculations.

• ℓ = (j, j, j): Finally,

CK[ξ3j ] = ηj η̂jηj = ξ3j + ξ31 − 3ξ1ξ
2
j − 3ξ21ξj
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becomes

z3j ej + 3z3e3 + z31e1 + 3z1e1 − 3(z1e1(z
2
j + 1))− 3((z21 + 1)zjej)

= z3j ej + z31e1 − 3z1e1z
2
j − 3z21zjej

=
1

3

(
yj ŷjyj

)
.

On the basis of these examples, the structure of the Weierstrass transform of the basic
monogenic polynomials CK[ξα] is clear: every factor ηj or η̂j translates into yj or ŷj , in
the same order:

W

 ∑
π(ℓ1,...ℓk)

sgn(π)(ηπ(ℓ1) . . . ηπ(ℓk))
E2,...,m

 (z) =
∑

π(ℓ1,...ℓk)

sgn(π)(yπ(ℓ1) . . . yπ(ℓk))
E2,...,m .

Indeed, anticipating on proposition 4.17, every power of ξj , acting on G, corresponds to
a polynomial of the same degree in ∂j , acting on G. This polynomial will result in the
same polynomial in zjej .

In the next section, we will try to prove this structure for W[CK[ξα]]. Therefore, we
accessed three different approaches.
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4.2.3 Explicit expression for the Weierstrass transform of spherical
monogenics

Having a clear idea about the expected result, we now still need to prove it. Several
options were investigated, with the idea to obtain a recurrence formula for the degree of
the monogenic. In the next subsections, we will discuss three different strategies.

4.2.3.1 First attempt

The discrete Hermite polynomial of degree n is a polynomial in ξ, defined by as the n−th
derivative of the Gaussian polynomial. One can of course also reverse this relationship:
the action of the n−th power of ξ on G is a polynomial in ∂, acting on G. We claim that
the coefficients of this polynomial in ∂ are the same as the coefficients for the Hermite
polynomials given in (4.6), up to signs.

Proposition 4.17. The action of natural powers of ξ on the discrete Gauss distribution
is as follows:

ξ2lG =

ℓ∑
j=0

b2ℓ2j∂
2jG,

ξ2l+1G = −
ℓ∑

j=0

b2ℓ+1
2j+1∂

2j+1G,

with

b2ℓ2j = 2ℓ−j

(
ℓ

j

)
Γ(ℓ+ m

2 )

Γ(j + m
2 )
,

b2ℓ+1
2j+1 = 2ℓ−j

(
ℓ

j

)
Γ(ℓ+ m

2 + 1)

Γ(j + m
2 + 1)

.

To prove this proposition, we first look for some recurrence relations on the coefficients
bnj in the following lemmata.

Lemma 4.18.

b2ℓ+1
2j+1 = (2j + 2)b2ℓ2j+2 + b2ℓ2j , (4.19)

b2ℓ2j = (2j +m)b2ℓ−1
2j+1 + b2ℓ−1

2j−1. (4.20)

Proof. For the odd coefficients,

ξ2l+1G = ξ

ℓ∑
j=0

b2ℓ2j∂
2jG

=

ℓ∑
j=0

b2ℓ2j

(
−2j∂2j−1 − ∂2j+1

)
G,

so

−
ℓ∑

j=0

b2ℓ+1
2j+1∂

2j+1G =
ℓ∑

j=0

b2ℓ2j

(
(−2j∂2j−1 − ∂2j+1

)
G,
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hence
b2ℓ+1
2j+1 = b2ℓ2j + 2(j + 1)b2ℓ2j+2.

For the even coefficients,

ξ2lG = −ξ
ℓ−1∑
j=0

b2ℓ−1
2j+1∂

2j+1G

= −
ℓ−1∑
j=0

b2ℓ−1
2j+1

(
(−2j +m)∂2j + 2∂2jE− ∂2j+1ξ

)
G

= −
ℓ−1∑
j=0

b2ℓ−1
2j+1

(
(−2j +m)∂2j − 2∂2j(∂2 +m) + ∂2j+2

)
G.

So

ℓ∑
j=0

b2ℓ2j∂
2jG =

ℓ−1∑
j=0

b2ℓ−1
2j+1

(
(2j +m)∂2j + ∂2j+2

)
G.

We now use the previous relations (4.19) and (4.20) in order to proof a first order recur-
rence relation for b2ℓ+1

2j+1 and b2ℓ2j .

Lemma 4.19.

(2j +m) b2ℓ+1
2j+1 = (2ℓ+m) b2ℓ2j , (4.21)

2j b2ℓ2j = 2ℓ b2ℓ−1
2j−1. (4.22)

Proof. The proof is again by induction on ℓ. The statements are true for ℓ = 0, as
bjj = 1,∀j and ξG = −∂G. For ℓ = 1, we rely on the second order Hermite polynomial

H2,m(ξ) = −ξ2 +m, for which we know that H2,mG = −∂2G, hence ξ2G = (∂2 +m)G.
Further,

ξ3G = ξ(∂2 +m)G

= (2E+m− ∂ξ)∂G−m∂G

= 2(∂E− ∂)G+m∂G− ∂(2∂ +m− ∂ξ)G−m∂G

= −2∂G+ ∂2ξG−m∂G

= −(m+ 2)∂G− ∂3G,

both are in accordance to b20 = m and b31 = m+ 2. For larger ℓ:

(2j +m)b2ℓ+1
2j+1

(4.19)
= (2j +m)

[
(2j + 2)b2ℓ2j+2 + b2ℓ2j

]
(4.22)
= (2j +m)

[
2ℓb2ℓ−1

2j+1 + b2ℓ2j

]
(4.20)
= 2ℓ

[
b2ℓ2j − b2ℓ−1

2j−1

]
+ (2j +m)b2ℓ2j

= 2j b2ℓ2j − 2ℓ b2ℓ−1
2j−1 + (2ℓ+m)b2ℓ2j



4. Dimension m > 1 80

(4.22)
= 0 + (2ℓ+m)b2ℓ2j = (2ℓ+m)b2ℓ2j .

and

2j b2ℓ2j
(4.20)
= 2j

[
(2j +m)b2ℓ−1

2j+1 + b2ℓ−1
2j−1

]
(4.21)
= (2ℓ− 2 +m)2j b2ℓ−2

2j + 2j b2ℓ−1
2j−1

(4.19)
= (2ℓ− 2 +m)

[
−b2ℓ−2

2j−2 + b2ℓ−1
2j−1

]
+ 2j b2ℓ−1

2j−1

= −(2ℓ− 2 +m)b2ℓ−2
2j−2 + 2ℓ b2ℓ−1

2j−1 + (2j − 2 +m)b2ℓ−1
2j−1

(4.21)
= (2ℓ− 2 +m)b2ℓ−2

2j−2 + 2ℓ b2ℓ−1
2j−1 + (2ℓ− 2 +m)b2ℓ−2

2j−2

= 2ℓ b2ℓ−1
2j−1.

We now use the above recurrence relations to prove Proposition 4.17.

Proof.

b2ℓ2j
(4.22)
=

l

j
b2ℓ−1
2j−1

(4.21)
=

l

j

(
2(ℓ− 1) +m

)(
2(j − 1) +m

)b2ℓ−2
2j−2

=
ℓ(ℓ− 1)

j(j − 1)

(
2(ℓ− 1) +m

) (
2(ℓ− 2) +m

)(
2(j − 1) +m

) (
2(j − 2) +m

)b2ℓ−4
2j−4

which eventually results in

b2ℓ2j =

(
ℓ

j

)
Γ(ℓ+ m

2 )

Γ(ℓ− j + m
2 )

Γ(m2 )

Γ(j + m
2 )
b2ℓ−2j
0 . (4.23)

Now consider b2k0 separately and obtain the following result:

b2k0
(4.20)
= mb2k−1

1

(4.21)
= m

(
2(k − 1) +m

)
m

b2k−2
0 = 2

(
k − 1 +

m

2

)
b2k−2
0

Repeatedly applying the same relations gives us

b2k0 = 2k
(
k − 1 +

m

2

)
. . .

(
k +

m

2

)
b00

= 2k
Γ(k + m

2 )

Γ(m2 )
. (4.24)

Combining (4.23) and (4.24), we arrive at the expression for the even coefficient

b2ℓ2j = 2ℓ−j

(
ℓ

j

)
Γ(ℓ+ m

2 )

Γ(j + m
2 )
.
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The expression for the odd coefficient follows from (4.21):

b2ℓ+1
2j+1 =

(2ℓ+m)

(2j +m)
b2ℓ2j = 2ℓ−j

(
ℓ

j

)
Γ(ℓ+ m

2 + 1)

Γ(j + m
2 + 1)

.

Recall the Weierstrass transform in one dimension of the discrete basic polynomials ξn[1],
from section 3.2.2.1:

W
[
ξ2k[1]

]
(z) = (−1)kH2k(iz),

W
[
ξ2k+1[1]

]
(z) = (−1)k+1iH2k+1(iz).

For low values of k, the results were given in table 3.1. The coefficients in the polynomials
of W

[
ξn[1]

]
(z) are exactly the values bℓj , so we can rewrite:

W
[
ξ2k[1]

]
(z) =

n∑
j=0

b2n2j z
2j ,

W
[
ξ2k+1[1]

]
(z) =

n∑
j=0

b2n+1
2j+1 z

2j+1e.

Using the proposition, we can easily calculate the Weierstrass transform of any polyno-
mial of the form ξα = ξα1

1 . . . ξαm
m : the result holds for any of the ξ

αj

j and using property
(2.21) and lemma 4.4, we can transfer any ∂j acting on G - in the left side of the inner
product - to a derivative of ξj in the right side of the inner product. The final result of
the Weierstrass transform will be the a product of factors of the form

ℓ∑
i=0

b2ℓ2iz
2i
j e

2i
j =

ℓ∑
i=0

b2ℓ2iz
2i
j

and/or

−
ℓ∑

i=0

b2ℓ+1
2i+1z

2i+1
j e2i+1

j = −
ℓ∑

i=0

b2ℓ+1
2i+1z

2i+1
j ej ,

according to an even or odd power of ξj , in the same order as they appeared in the
original product. The examples in section 4.2.2 are already an illustration of this method.
For completeness, let us calculate the Weierstrass transform of the product ξ2k1 ξ

2n+1
2 , a

combination of an even and an odd power of ξj in dimension 3. This will be directly
generalisable to other (more complex) combinations of different ξj .

W[ξ2k1 ξ
2n+1
2 ] =

1
√
2π

m
2

exp

(
−|z|2

2

)[〈
ξ2k1 ξ

2n+1
2 G, exp (ξRz) [1]

〉]

For shortness in notation, write C =
√
2π

−m
2 exp

(
−|z|2
2

)

= C

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

)〈
ξ2k1 ξ

2n+1
2 G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
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= C

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

) k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

×
〈
∂2i1 ∂

2r+1
2 G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
= C

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

) k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

×
〈
G, ξj11 R

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1](∂†1)

2i(∂†2)
2r+1

〉
= C

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

) k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

×
〈
G, ej11 ∂

2i
1 ξ

j1
1 z

j1
1 ξ

j2
2 R

j2
2 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1](∂†2)

2r+1
〉

= C
∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

) k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

×
〈
G, ej11 ∂

2i
1 ξ

j1
1 z

j1
1 e

j2
2 ∂

2r+1
2 ξj22 z

j2
2 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
.

Let the Dirac operators act on the corresponding vector variables, then recall again that
G vanishes on odd powers of these vector variables:

= C

∞∑
ℓ=0

1

ℓ!

∑
j1+j2+j3=ℓ

(
ℓ

j1j2j3

) k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

j1!

(j1 − 2i)!

j2!

(j2 − 2r − 1)!

×
〈
G, ej11 ξ

j1−2i
1 zj11 e

j2
2 ξ

j2−2r−1
2 zj22 ξ

j3
3 R

j3
3 z

j3
3 [1]

〉
= C

∞∑
ℓ=0

1

(2ℓ+ 1)!

∑
j1+j2+j3=ℓ

(2ℓ+ 1)!

(2j1)!(2j2 + 1)!(2j3)!

×
k∑

i=0

b2k2i

n∑
r=0

b2n+1
2r+1

(2j1)!

(2j1 − 2i)!

(2j2 + 1)!

(2j2 − 2r)!

×
〈
G, e2j11 ξ2j1−2i

1 z2j11 e2j2+1
2 ξ2j2−2r

2 z2j2+1
2 ξ2j33 R2j3

3 z2j33 [1]
〉
.

The Gaussian distribution acts on the vector variables, then simplify the expression and
combine until the final result.

= C

∞∑
ℓ=0

∑
j1+j2+j3=ℓ

k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

1

(2j1 − 2i)!

1

(2j2 − 2r)!

1

(2j3)!

× z2j11 z2j2+1
2 z2j33 e2

〈
G, ξ2j1−2i

1 ξ2j2−2r
2 ξ2j33 [1]

〉
= C

∞∑
ℓ=0

∑
j1+j2+j3=ℓ

k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1

1

(2j1 − 2i)!

1

(2j2 − 2r)!

1

(2j3)!

× z2j11 z2j2+1
2 z2j33 e2

(2j1 − 2i)!

2j1−i(j1 − i)!

(2j2 − 2r)!

2j2−r(j2 − r)!

(2j3)!

2j3(j3)!

=
1

√
2π

m
2

exp

(
−|z|2

2

) ∞∑
ℓ=0

∑
j1+j2+j3=ℓ

k∑
i=0

b2k2i

n∑
r=0

b2n+1
2r+1
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× z2i1
1

(j1 − i)!

(
z21
2

)j1−i

z2r+1
2

1

(j2 − r)!

(
z22
2

)j2−r
1

j3!

(
z23
2

)j3

e2

=
1

√
2π

m
2

k∑
i=0

b2k2i z
2i
1

n∑
r=0

b2n+1
2r+1 z

2r+1
2 e2.

Recall that every spherical monogenic Pr is a linear combination of the set CK[ξα], each
of them being of the form

CK[ξα] =
α2! . . . αm!

k!

∑
π(ℓ1,...ℓk)

sgn(π)(ηπ(ℓ1) . . . ηπ(ℓk))
E2,...,m ,

i.e. basically a sum of products of ηj and η̂j . Due to the distributive property, this is a
sum of elements of the form ξα1

1 . . . ξαm
m , for which we can now calculate its Weierstrass

transform. The extra (lower order) terms in zjej arriving in the transform of ξnj , evidently
cancel out in the bigger picture of the spherical monogenic: this is what we see in the
examples of section 4.2.2. Unfortunately, so far, we could not find an explanation for this
observation, so with this method, we have also hit a dead end.

4.2.3.2 Second attempt

An important lemma on which we based our initial ideas comes from [34]:

Lemma 4.20. Denote

Vℓ1,...,ℓn =
1

k!

∑
π(l1,...lk)

sgn(π)(ηπ(l1) . . . ηπ(lk))
E2,...,m .

Let Pk be a discrete spherical monogenic of degree k. For every 1 ≤ n ≤ k

Pk =
n!(k − n)!

k!

∑
(ℓ1,...,ℓn)

Vℓ1,...,ℓn∂ℓn . . . ∂ℓ1Pk,

with ℓj ∈ {2, . . . ,m} and where every subset {ℓ1, . . . , ℓn} only appears once in the sum.

Remark 4.21. With the notation in the lemma, CK[ξα] = α2! . . . αm!Vℓ1,...,ℓn .

By taking n = 1 and Pk = CK[ξα] with k the degree of α, this reduces to

Pk =
1

k

m∑
j=2

ηj∂jPk.

It should allow us to gradually take one ηj out of Pk and lower its degree in order to
construct a recurrence relation. However unfortunately, CK and ∂j are not commutative.
More precisely, it was proven in [34]

Lemma 4.22. Let α = (α2, . . . , αm) and ξα = ξα2
2 . . . ξαm

m . For j = 2, . . . ,m, it holds
that

CK[∂2j ξ
α] = ∂2jCK[ξα],

∂jCK[ξα] =
(
CK[∂jξ

α]
)∗j ,

CK[∂jξ
α] =

(
∂jCK[ξα]

)∗j .
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When calculating W
[
CK[ξα]

]
, we thus get

exp

(
−|z|2

2

)〈
CK[ξα]G, exp (ξRz) [1]

〉
= exp

(
−|z|2

2

)
1

k

m∑
j=2

〈
ηj∂jCK[ξα]G, exp (ξRz) [1]

〉
= exp

(
−|z|2

2

)
1

k

m∑
j=2

〈
ηjCK[∂jξ

α]∗jG, exp (ξRz) [1]
〉
.

Hence the question arises how to deal with the ∗j . Can its action be transferred to the
right so that G acts on it? For some inspiration, let us have a look at the next two
examples.

Example 4.23. Take P2 = V2,3 =
1
2 (η2η3 − η3η2). On the one side, we know that

2
〈
P2G, exp (ξRz) [1]

〉
=
〈
η2η3G, exp (ξRz) [1]

〉
−
〈
η3η2G, exp (ξRz) [1]

〉
=
〈
η3G, exp (ξRz) [1]η

†
2

〉
−
〈
η2G, exp (ξRz) [1]η

†
3

〉
. (4.25)

On the other side, applying the lemmata above, we obtain

2
〈
P2G, exp (ξRz) [1]

〉
4.20
=
〈
η2∂2CK[ξ2ξ3]G, exp (ξRz) [1]

〉
+
〈
η3∂3CK[ξ2ξ3]G, exp (ξRz) [1]

〉
4.22
=
〈
η2
(
CK[ξ3]

)∗2 G, exp (ξRz) [1]〉+
〈
η3
(
CK[−ξ2]

)∗3 G, exp (ξRz) [1]〉
=
〈(

CK[ξ3]
)∗2 G, exp (ξRz) [1]η†2〉+

〈(
CK[−ξ2]

)∗3 G, exp (ξRz) [1]η†3〉
Now CK[ξ3] = η3, so the operation ∗2 has no effect on this factor. Similarly, CK[ξ2] = η2
which is not affected by ∗3. Thus this equals:

=
〈
η3G, exp (ξRz) [1]η

†
2

〉
−
〈
η2G, exp (ξRz) [1]η

†
3

〉
. (4.26)

Both calculations (4.25) and (4.26) are equal, without any transfer of ∗j to the right hand
side of the brackets. It means that, in this example, ∗j should not be transferred.

Example 4.24. Take P2 = V2,2 = η2η̂2 = ξ22 −2ξ1ξ2− ξ21 . On the one side, we know that〈
P2G, exp (ξRz) [1]

〉 4.20
=
〈
η2η̂2G, exp (ξRz) [1]

〉
4.22
=
〈
η̂2G, exp (ξRz) [1]η

†
2

〉
=
〈
G, exp (ξRz) [1]η†2η̂

†
2

〉
. (4.27)

On the other side,〈
P2G, exp (ξRz) [1]

〉
=

1

2

〈
η2∂2CK[ξ22 ]G, exp (ξRz) [1]

〉
=

1

2

〈
η2
(
CK[2ξ2]

)∗2 G, exp (ξRz) [1]〉
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=
1

2

〈(
CK[2ξ2]

)∗2 G, exp (ξRz) [1]η†2〉
=
〈
(η2)

∗2 G, exp (ξRz) [1]η†2

〉
.

We transfer the ∗2 from the left side of the brackets (acting on η†2) to the right side
(acting on η̂2), let us denote it by ?2:

=

〈
η2G, exp (ξRz) [1]

(
η†2

)?2〉
=

〈
G, exp (ξRz) [1]

(
η†2

)?2
η†2

〉
. (4.28)

(4.27) and (4.28) should be equal. However, this is impossible due to η̂†2 versus η†2 as the
last factor in the respective equations.

Both examples imply that the appearance of ∗j is not transferable in a ‘nice’ way to the
right. Although we do not claim that is impossible, the possible result will not be easy
to work with. Let us try another argument.

4.2.3.3 Third attempt

In order to find any recurrence relation in the Weierstrass transform of the spherical
monogenic polynomials, we tried to write the transform of a product of r elements ηi or
η̂i of different combinations of indices in terms of the transform of an analogue product
of r − 1 of these elements, by ‘peeling off’ the first ηi. We hope to find a structure that
will allow us to look for a general rule. Here are some examples:

W[ηi] = yi,

W[η̂i] = ŷi,

W[ηiη̂i] = yiŷi = yiW[η̂i],

W[η̂iηi] = ŷiyi = ŷiW[yi],

W[ηiηj ] = yiyj + 1 = yiW[ηj ] + 1,

W[ηiη̂j ] = yiŷj − 1 = yiW[η̂j ]− 1,

W[η̂iηj ] = ŷiyj − 1 = ŷiW[ηj ]− 1,

W[η̂iη̂j ] = ŷiŷj + 1 = ŷiW[η̂j ] + 1

So far, it looks good: the Weierstrass transform of a product of two ηi (same index) is a
product of the corresponding yi and a lower degree transform. If the indices are different
with bothˆor both no ,̂ we add 1 to the product with the lower degree transform. If the
indices are different and one of both have ,̂ we add −1. Unfortunately, when we look at
third degree polynomials, this behaviour does not sustain.

W[ηiη̂iηi] = yiŷiyi = yiW[ŷiyi],

W[η̂iηiη̂i] = ŷiyiη̂i = yiW[ηiη̂i],

W[ηiηj η̂j ] = yiyj ŷj + 2ŷj = yiW[ηj η̂j ] + 2ŷj ,

W[ηiη̂jηj ] = yiŷjyj − 2yj = yiW[η̂jηj ]− 2yj ,

W[η̂iηj η̂j ] = ŷiyj ŷj − 2ŷj = ŷiW[ηj η̂j ]− 2ŷj ,
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W[ηiη̂iηj ] = yiŷiyj − 2yi = yiW[η̂iηj ]− yi,

W[η̂iηiηj ] = ŷiyiyj + 2ŷi = ŷiW[ηiηj ] + ŷi,

W[η̂iηiη̂j ] = ŷiyiŷj − 2ŷi = ŷiW[ηiη̂j ]− ŷi,

W[ηiηj η̂i] = yiyj ŷi + 4z1e1 = yiW[ηj η̂i] + yi + 4z1e1,

W[η̂iη̂jηi] = ŷiŷjyi − 4z1e1 = ŷiW[ŷjyi] + ŷi − 4z1e1.

While any combination of indices ′iii′ or ′ijj′ or ′iij′ shows a nice behaviour regard-
ing the lower order transform, this is not the case for the combination ′iji′: the extra
terms ±4z1e1 appear, which is not in line with the other findings. From the above, it
unfortunately follows that also the third attempt fails.

4.3 Conclusion

In this chapter, we generalised the definition from chapter one for the Weierstrass trans-
form to dimension m > 1. Firstly, we needed to handle the anti-commutativity of the
basis elements. This was done by implementing the operators Rj(j = 1, . . .m). Secondly,
the basis for the discrete Weierstrass space now consists of the generalised Hermite poly-
nomials Hn,m,r, the composition of the n-th degree Hermite polynomial and a monogenic
polynomial of degree r. Both considerations lead to

W[Hn,m,rPr](z) =
√
2π

−m

〈
Hn,m,rPrG, exp

(
−|z|2

2
+ ξRz

)
[1]

〉
.

In order to calculate this, we found a recurrence relation for the Weierstrass transform of
these generalised Hermite polynomials in terms of n. In dimension m = 2, we also found
a recurrence relation in terms of r. This was done based on the explicit expression for
spherical monogenics. Unfortunately, finding a recurrence relation or an explicit expres-
sion for the Weierstrass transform of a spherical monogenic, based on this definition, in
dimension m > 2 did not work. Although we have a clear idea of the outcome, inspired
by examples and the cases for m = 2, we were not able to prove it. Therefore, let us go
back to the continuous (classical) Weierstrass transform and take a different tack. This
is the subject of the next chapter.



5
Two alternative definitions

In the previous chapters, we defined a discrete version of the Weierstrass transform, using
the discrete Hermite polynomials, which form a basis for the elements in the discrete
Weierstrass space, and we provided several examples. However, we were unable to prove
an explicit formula for the Weierstrass transform of the generalised Hermite polynomials
in dimension m > 1. In this chapter, we provide two alternative ways to define the
Weierstrass transform, for which we revisited the classical setting in order to obtain
inspiration. Using the second alternative form, we finally will be able to prove the
desired expression for the Weierstrass transform of the generalised Hermite polynomials.

5.1 Discrete translations

Consider once again the classical definition of the Weierstrass transform

W[f ](u) =
1√
2π

m

∫
Rm

exp

(
−|u− x|2

2

)
f(x) dx,

defined as the convolution of the function f with the Gaussian function√
2π

−m
exp

(
−|x|2 /2

)
. Exploiting the basic property of convolutions, this can be rewrit-

ten as

W[f ](u) =
1√
2π

m

∫
Rm

exp

(
−|x|2

2

)
f(x− u) dx,

showing the product of the Gaussian function with a translation of the function f in the
integrand.

In [40], De Ridder defined a discrete translation Tj (j = 1, . . . ,m), using the operator
Rj , see definition 2.17. It allows to introduce discrete infinitesimal translations Rj∂j in
such a way that they satisfy the same properties as in the continuous case: they are
symmetries of the Dirac operator. In the following definition, we use them to generate
discrete translations. For more in depth information, we refer to [40].
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Definition 5.1. The translation Tj of a polynomial V in the j−direction is given by the
action on V of the operator

Tj := exp
(
zjRj∂j

)
, zj ∈ C.

We investigate if the discrete Weierstrass transform, as defined in definition 4.3,

W[f(ξ)](z) =

〈
f(ξ)G, exp

(
−|z|2

2
+ ξRz

)
[1]

〉
,

can be written in terms of this discrete translation. Based on the continuous analogue,
it can be expected that:

W[f(ξ)] =
√
2π

−m 〈
G,T [f(ξ)]

〉
, (5.1)

where T := T1 . . . Tm. Since the operators Rj∂j mutually commute, so do the translations
Tj . We now want to check if this alternative form has the same properties as the original
definition, based on its action on the basis elements.

As the Hermite polynomials form the basis of the discrete Weierstrass space, we first
calculate

T [Hn,1,0P0(ξ)] = T [Hn,1,0(ξ)],

where we will make a distinction between even and odd Hermite polynomials. First, we
know from [40], that

Tj

[
ξnj [1]

]
=

n∑
i=0

(
n

i

)
ξij [1](zjej)

n−i =
n∑

i=0

(
n

i

)
ξn−i
j [1](zjej)

i.

We use this in the calculation of T [H2n,1,0(ξ)] (omiting the subindex 1).

T
[
H2n(ξ)[1]

]
= T

 n∑
j=0

a2n2j ξ
2j [1]


=

n∑
j=0

2j∑
s=0

a2n2j

(
2j

s

)
ξs[1]e2j−sz2j−s.

As the action of the Gaussian G is zero for odd powers of ξ, only even powers of ξ are of
interest:

=
n∑

j=0

j∑
s=0

a2n2j

(
2j

2s

)
ξ2s[1]e2j−2sz2j−2s

=
n∑

j=0

j∑
s=0

(−1)j2n−jn!

j!(n− j)!

Γ
(
n+ m

2

)
Γ
(
j + m

2

) (2j)!

(2s)!(2j − 2s)!
z2j−2sξ2s[1].

Let now G act on this expression:

〈
G,T [H2n(ξ)[1]]

〉
=

√
2π

−m
n∑

j=0

j∑
s=0

(−1)j2n−jn!

j!(n− j)!

Γ
(
n+ m

2

)
Γ
(
j + m

2

) (2j)!

(2j − 2s)!
z2j−2s 1

2ss!
.
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Likewise, we can calculate

〈
G,T [H2n+1(ξ)[1]]

〉
=

√
2π

−m

〈
G,T

 n∑
j=0

a2n+1
2j+1 ξ

2j+1[1]

〉

=
√
2π

−m

〈
G,

n∑
j=0

2j+1∑
s=0

a2n+1
2j+1

(
2j + 1

s

)
ξs[1]e2j+1−sz2j+1−s

〉

=
√
2π

−m

〈
G,

n∑
j=0

j∑
s=0

a2n+1
2j+1

(
2j + 1

2s

)
ξ2s[1]e2j+1−2sz2j+1−2s

〉

=
√
2π

−m

〈
G,

n∑
j=0

j∑
s=0

(−1)j2n−jn!

j!(n− j)!

Γ
(
n+ m

2 + 1
)

Γ
(
j + m

2 + 1
)

× (2j + 1)!

(2s)!(2j − 2s+ 1)!
ξ2s[1]ez2j+1−2s

〉
=

√
2π

−m
n∑

j=0

j∑
s=0

(−1)j2n−jn!

j!(n− j)!

Γ
(
n+ m

2 + 1
)

Γ
(
j + m

2 + 1
)

× (2j + 1)!

(2j − 2s+ 1)!
ξ2s[1]ez2j+1−2s 1

2ss!
.

Simplification of the above expression (using Maple) yields
√
2π

m 〈
G,T [H2n(ξ)[1](z)]

〉
= (−1)nz2n, (5.2)

√
2π

m 〈
G,T [H2n+1(ξ)[1](z)]

〉
= (−1)nz2n+1e. (5.3)

This is exactly the result of the Weierstrass transform as defined via the original definition
4.3. To confirm this alternative definition, let us check some other examples and compare
them to the results in section 3.2.2.

5.1.1 Example 1: basic discrete polynomials (m = 1)

Let us calculate
〈
G,T [ξn]

〉
. Again we make a distinction between even and odd powers.

First we obtain, for the even powers

〈
G,T [ξ2n]

〉
=

〈
G,

2n∑
i=0

(
2n

i

)
ξi[1](ze)2n−i

〉

=

〈
G,

n∑
i=0

(
2n

2i

)
ξ2i[1](ze)2n−2i

〉

=
n∑

i=0

(2n)!

(2i)!(2n− 2i)!
(ze)2n−2i (2i)!

2i i!

= z2n 2F0

[
−n,−n+

1

2
; ;

2

z2

]
∗
= (−1)nH2n(iz).
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and next, for the odd powers

〈
G,T [ξ2n+1]

〉
=

〈
G,

2n+1∑
i=0

(
2n+ 1

i

)
ξi[1](ze)2n+1−i

〉

=

〈
G,

n∑
i=0

(
2n+ 1

2i

)
ξ2i[1](ze)2n+1−2i

〉

=

n∑
i=0

(2n+ 1)!

(2i)!(2n+ 1− 2i)!
(ze)2n+1−2i (2i)!

2i i!

= z2n+1
2F0

[
−n,−n− 1

2
; ;

2

z2

]
∗
= (−1)n+1iH2n+1(iz).

For the transitions ∗, we made use of the formula1

2F0

[
−n
2
,
1− n

2
; ; z

]
=

(
−z
2

)n
2

Hn

(√
−2

z

)
.

In terms of the coefficients b2ℓ2j and b2ℓ+1
2j+1, introduced in section 4.2.3.1, this means

〈
G,T [ξ2n]

〉
=

n∑
j=0

b2n2j z
2j , (5.4)

〈
G,T [ξ2n+1]

〉
=

n∑
j=0

b2n+1
2j+1 z

2j+1e. (5.5)

These results coincide with the calculations in section 3.2.2.

Now move to dimension m > 1 and recall that T = T1 . . . Tm with Tjξk = ξkTj because
of the commutator relations (2.18). Hence we can calculate the translation T of ξα =
ξα1
1 . . . ξαm

m by letting each individual Tj act on its corresponding ξ
αj

j . Therefore,

〈
G,T [ξ2k1 ξ

2n+1
2 ]

〉
=

k∑
j=0

b2k2j z
2j

n∑
i=0

b2n+1
2j+1 z

2j+1e,

and this result is immediately applicable for general ξα.

5.1.2 Example 2: Exponential functions (m = 1)

First, consider T
[
exp (aξ)

]
, a ∈ C. We subsequently obtain

T
[
exp (aξ)

]
= T

 ∞∑
j=0

ajξj

j!


1http://functions.wolfram.com/07.31.03.0083.01



91 5.1 Discrete translations

=

∞∑
j=0

aj

j!
T
[
ξj
]

=

∞∑
j=0

aj

j!

j∑
i=0

j!

i!(j − i)!
(ze)j−iξi

=
∞∑
j=0

j∑
i=0

aj

i!(j − i)!
(ze)j−i

= exp
(
a(ξ + z)

)
,

from which it follows that〈
G, exp

(
a(ξ + z)

)〉
= exp (az)

〈
G, exp (ξa)

〉
= exp (az)

〈
G,

∞∑
j=0

ajξj

j!

〉

= exp (az)

∞∑
j=0

a2j

(2j)!

〈
G, ξ2j

〉
= exp (az)

∞∑
j=0

a2j

(2j)!

(2j)!

2jj!

= exp

(
az +

a2

2

)
.

Next, we consider

T

[
exp

(
aξ2
)]

=
∞∑
j=0

2j∑
i=0

aj(2j)!

j!i!(2j − i)!
ξi(ze)2j−i

yielding 〈
G,T

[
exp

(
aξ2
)]〉

=
∞∑
j=0

j∑
i=0

aj(2j)!

j!(2i)!(2j − 2i)!

(2i)!

2ii!
(ze)2j−2i

=

∞∑
j=0

(az2)j

j!
2F0

[
−j,−j + 1

2
; ;

2

z2

]

=

∞∑
j=0

(−a)j

j!
H2j(iz)

= exp

(
4az2

1− 4a

)
(1− 4a)−

1
2 .

Again, both results coincide with the original definition 4.3.
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5.1.3 Weierstrass transform of monogenics using discrete translations

Now the same question as in the previous chapter arises: we want to establish an explicit
expression, or a recurrence relation for the discrete Weierstrass transform of a monogenic
polynomial Pr of degree r. If successful, then we also are able to find an explicit form
for the transform of a generalised Hermite polynomial, i.e. of the basis elements of the
discrete Weierstrass space.

The translations Tj used in definition 5.1, are invariant under the discrete Dirac operator.
This means that the translation of a monogenic is again monogenic of the same degree.
The only conclusion that we can make thus far is:〈

G,T [Pr]
〉
=
〈
G,P ′

r′
〉
.

It is necessary to further investigate the properties of the translation on monogenic func-
tions in order to use this definition to establish an explicit expression for the Weierstrass
transform of these monogenic functions. This can be an interesting topic for further
research.
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5.2 Another formal expression

Although clear from the examples and despite various attempts to find a recurrence
relation on the degree r of the monogenic, we were not able to prove the general formula
for the discrete Weierstrass transform of a generalized Hermite polynomial in dimension
m > 2. Let us again look at the classical setting: there, the Weierstrass transform has a
an alternative formal expression. However more informal, it leads to certain advantages
such as the idea of the inverse of the Weierstrass transform, see [48].

Definition 5.2. The continuous Weierstrass transform can be written as

W [f ] = exp

(
1

2
∂2x

)
f(x) =

∞∑
j=0

1

j! 2j
∂2jx f(x).

This definition plays with convergence of the series. There are functions that are Weier-
strass transformable, but for which this series does not converge. For details, also see
[48]. Nonetheless, it inspires us to look for an alternative definition for the discrete Weier-

strass transform. Therefore, let us calculate exp

(
−∂

2

2

)
ξnPr(ξ)[1], with Pr a monogenic

homogeneous polynomial of degree r (as is CK[ξα]).

We will use the following lemma:

Lemma 5.3.

∂2jξ2ℓPr[1] = 4j
ℓ!

(ℓ− j)!

(ℓ− 1 + r + m
2 )!

(ℓ− 1 + r + m
2 − j)!

ξ2ℓ−2jPr[1]

=
4j Γ(ℓ+ r + m

2 ) Γ(ℓ+ 1)

Γ(ℓ+ r + m
2 − j) Γ(ℓ+ 1− j)

ξ2ℓ−2jPr[1],

∂2jξ2ℓ+1Pr[1] = 4j
ℓ!

(ℓ− j)!

(ℓ+ r + m
2 )!

(ℓ+ r + m
2 − j)!

ξ2ℓ+1−2jPr[1]

=
4j Γ(ℓ+ r + 1 + m

2 ) Γ(ℓ+ 1)

Γ(ℓ+ r + 1 + m
2 − j) Γ(ℓ+ 1− j)

ξ2ℓ+1−2jPr[1].

Proof. This is a consequence of the relations

∂ξ2j+1Pr[1] = (2j + 2r +m)ξ2jPr, and ∂ξ
2jPr[1] = 2jξ2j−1Pr,

which in turn are a consequence of the intertwining relations ∂ξ + ξ∂ = 2E + m and
∂E = E∂ + ∂.

Let us now calculate exp

(
−∂

2

2

)
ξnPr(ξ)[1], making the distinction between even and

odd powers of ξ.
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For the even case, i.e. n = 2ℓ, we obtain

exp

(
−∂

2

2

)
ξ2ℓPr(ξ)[1] =

ℓ∑
j=0

(−1)j

j! 2j
∂2jξ2ℓPr(ξ)[1]

=
ℓ∑

j=0

(−1)j

j! 2j
4j Γ(ℓ+ r + m

2 ) Γ(ℓ+ 1)

Γ(ℓ+ r + m
2 − j) Γ(ℓ+ 1− j)

ξ2ℓ−2jPr[1](ξ)

=
ℓ∑

i=0

(−1)ℓ−i 2ℓ−i

(ℓ− i)!

Γ(ℓ+ r + m
2 ) Γ(ℓ+ 1)

Γ(i+ r + m
2 ) Γ(i+ 1)

ξ2iPr[1](ξ)

= (−1)ℓ
ℓ∑

i=0

(−1)i 2ℓ−i

(
ℓ

i

)
Γ(ℓ+ m

2 + r)

Γ(i+ m
2 + r)

ξ2iPr[1](ξ)

= (−1)ℓH2ℓ,m,r(ξ)Pr[1](ξ).

For the odd case, i.e. n = 2ℓ+ 1, we obtain

exp

(
−∂

2

2

)
ξ2ℓ+1Pr(ξ)[1] =

ℓ∑
j=0

(−1)j

j! 2j
∂2jξ2ℓ+1Pr[1](ξ)

=
ℓ∑

j=0

(−1)j

j! 2j
4j Γ(ℓ+ r + m

2 + 1)Γ(ℓ+ 1)

Γ(ℓ+ r + m
2 − j + 1)Γ(ℓ+ 1− j)

ξ2ℓ+1−2jPr[1](ξ)

=
ℓ∑

i=0

(−1)ℓ−i 2ℓ−i

(ℓ− i)!

Γ(ℓ+ r + m
2 + 1)Γ(ℓ+ 1)

Γ(i+ r + m
2 + 1)Γ(i+ 1)

ξ2i+1Pr[1](ξ)

= (−1)ℓ
ℓ∑

i=0

(−1)i 2ℓ−i

(
ℓ

i

)
Γ(ℓ+ m

2 + r + 1)

Γ(i+ m
2 + r + 1)

ξ2i+1Pr[1](ξ)

= (−1)ℓH2ℓ+1,m,r(ξ)Pr[1](ξ).

Together, we see that

exp

(
−∂

2

2

)
ξnPr(ξ)[1] = (−1)⌊

n
2
⌋Hn,m,r(ξ)Pr(ξ)[1],

or

exp

(
∂2

2

)
Hn,m,r(ξ)Pr(ξ)[1] = (−1)⌊

n
2
⌋ξnPr(ξ)[1].

Remark 5.4. These results also come back in the differential operator representation of
the continuous Hermite polynomials, i.e. in the continuous case it holds that

Hn(x) = exp

(
−∂

2

2

)
xn.

After formally replacing the discrete variable ξ into the continuous variable z =
∑m

j=1 zjej ,
we see that
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1. For r = 0, this is exactly the result obtained by calculation with the original
definition.

2. For n = 0, this is exactly the result obtained by direct calculation of the examples
in paragraph 4.2.2.

As the generalised Hermite polynomials form a basis for the space of functions which
are Weierstrass transformable and as the result obtained by the original definition 4.3 is
identical as the one obtained above, we can state that this alternative definition makes
sense and is valid to work with.

Definition 5.5. The discrete Weierstrass transform of a discrete function f can be
written as

W[f ](z) = exp

(
∂2

2

)
f(ξ)

∣∣∣∣
ξ=z

.

With this definition, we can finally deduce a formula for the discrete Weierstrass trans-
form of the generalised Hermite polynomials.

Conjecture 5.6. The discrete Weierstrass transform of the generalised Hermite polyno-
mials is given by

W
[
Hn,m,rPr

(
ξ)](z) = (−1)⌊

n
2
⌋znPr(z) (5.6)

where z =
∑m

j=1 zjej .

As the generalised Hermite polynomials form a basis for the discrete Weierstrass space,
we now have an expression for the discrete Weierstrass transform of any discrete function
contained in this space.

5.3 Conclusion

Inspired by the classical Weierstrass transform, we defined a discrete analogue, based on
the discrete Gaussian distribution G and the discrete (generalised) Hermite polynomials
Hn,m,r. The latter form a basis for a function space, which we called the discrete Weier-
strass space. We defined an inner product and a corresponding norm on it, in order to
put a condition on such that a discrete function contained in this space, would have a
meaningful Weierstrass transform. Our goal was to find an explicit expression for the
Weierstrass transform of a discrete function contained in this Weierstrass space. As the
(generalised) Hermite polynomials form a basis and the transform is linear, it is sufficient
to find an expression for the transform of those Hermite polynomials. Our initial idea was
to find a recurrence relation, both in terms of the degree n of the Hermite polynomial
and in terms of r of the monogenic polynomial occurring in Hn,m,rPr. Based on Ro-
driguez’ formula, we successfully found a recurrence relation in terms of n. However, for
the recurrence relation in terms of r, we did not succeed. Instead, we used an alternative
definition for the discrete Weierstrass transform. Although more informal, it led us to an
explicit expression for the Weierstrass transform of a generalised Hermite polynomial.
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6
Discrete heat equation

The heat equation is a second order partial differential equation originally developed and
solved to describe the heat flow over time through a solid medium, as it flows from spots
with higher density to spots with lower density. It is however valid for the distribution of
any quantity. Physics, engineering, financial mathematics and probability theory (e.g. in
[49], [50], [51], [52]) are only a few domains in which this well-known differential equation
has its applications. For a function u(x, t), x ∈ Rm, t ∈ R+, the heat equation is given by(

∂

∂t
− α∆x

)
u(x, t) = 0.

The coefficient α > 0, called the thermal diffusivity, affects the speed and spatial scale of
the process. For mathematical purposes, it suffices to set α = 1, which makes the heat
equation a prototypical parabolic partial differential equation. In this chapter, we will
focus on the one-dimensional heat equation, i.e. x ∈ R.

Much research has been devoted to the heat equation. In 2014, first steps were taken by
Baaske, Bernstein and De Ridder to discretize the heat equation in a discrete Clifford
analysis setting, see [2]. They considered discrete space and continuous time and con-
structed a fundamental solution together with related heat polynomials. This chapter
will be devoted to finding solutions to the discrete heat equation, in which both space
and time are discrete.

6.1 Continuous heat equation

6.1.1 Classical setting

The classical, continuous heat equation with initial condition u0 is given by
(

∂
∂t −∆x

)
u(x, t) = 0, t ∈ R+, x ∈ R

u(x, 0) = u0(x), x ∈ R.
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The initial temperature function u0 is an element of the Schwartz space of rapidly de-
creasing infinitely differentiable functions on R. The solution u(x, t) can be found, for
example, using Fourier series and is given by

u(x, t) =
1

(4πt)m/2

∫
R
exp

(
−|x− y|2

4t

)
u0(y)dy.

This is the convolution of the Gaussian function G(x, t) with u0, which is the Weierstrass
transform.

Remark 6.1. Note that the Gaussian function appearing here is a rescaling of the one we
used in the first part of this thesis. This equivalent definition however is more commonly
used in physics, hence we proceed with this rescaling in the current section.

The above result is intimately related to the fact that the convolution kernel

G(x, t) =
1

(4πt)m/2
exp

(
−|x|

2

4t

)

is a fundamental solution of the heat equation, i.e. a solution to
(

∂
∂t −∆x

)
u(x, t) = 0, t ∈ R+, x ∈ R

u(x, 0) = δ(x), x ∈ R.

with δ(x) the Dirac delta function.

The heat polynomials pn(x, t) are defined as the polynomial solutions to the heat equation
with initial condition u0(x) = xn. They are found as the coefficient of zn

n! in the power
series expansion of exp

(
zx+ z2t

)
:

exp
(
zx+ z2t

)
=

∞∑
n=0

pn(x, t)
zn

n!
. (6.1)

We refer to [53] for a proof. The heat polynomials are suitable to determine the general
solution of the heat equation with a given initial condition. They are used to construct an
approximate solution of a given problem in a form of a linear combination of polynomials
([54]).

An explicit formula for the heat polynomials is given by

pn(x, t) = n!

⌊n
2
⌋∑

k=0

xn−2ktk

(n− 2k)!k!
. (6.2)

In their paper from 1959, [53], Rosenbloom and Widder introduced the associated func-
tions in one dimension, which are obtained by the Appell transformation ([55], [56]) of
the heat polynomials:

qn(x, t) = G(x, t) pn

(
x

t
,−1

t

)
, t > 0. (6.3)
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Inherent to the Appell transform is that it maps one solution of the heat equation to
another. Alternatively, qn(x, t) may be defined by use of the fundamental solution G(x, t)
as a generating function:

G(x− 2z, t) =
1

(4πt)m/2
exp

(
−(x− 2z)2

4t

)
=

∞∑
n=0

qn(x, t)
zn

n!
.

It then follows that the associated functions are also given by the formula

qn(x, t) =
∂n

∂zn
G(x− 2z, t)

∣∣
z=0

= (−2)n
∂n

∂zn
G(x, t). (6.4)

Remarkable is the orthogonality relation between the heat polynomials and their associ-
ated functions: ∫

R
pn(x,−t) qm(x, t) dx = δm,n. (6.5)

6.1.2 Discrete heat equation: continuous time, discrete space

A first step to discretise the heat equation is to use a discrete space variable and a
continuous time variable. We will refer to this as the ‘mixed’ heat equation, to distinguish
between the fully continuous heat equation and the fully discrete one. In [2], the authors
considered this situation, found a fundamental solution and studied solutions of the initial
value problem by taking the discrete convolution with the fundamental solution.

In a discrete space setting, the heat equation is given by(
∂t −∆∗) u(x, t) = 0, x ∈ Z, t ∈ R+. (6.6)

Here ∆∗ is the discrete star Laplacian and δ0 the discrete delta distribution in the space
variable x. To determine solutions of the heat equation with a given initial temperature
is, as in the continuous case, based on a fundamental solution of the heat equation,
satisfying in distributional sense(

∂t −∆∗) u(x, t) = δ(t)δ0, x ∈ Z, t ∈ R+. (6.7)

As every discrete distribution can be written in its dual Taylor series, the fundamental
solution to (6.7) is found by use of those. Based on the equivalence with the continuous
heat equation, where the fundamental solution is basically a Gaussian function, the
following form for the fundamental solution is proposed:

G(t) =

∞∑
ℓ=0

cℓ(t)∂
2ℓδ0.

The coefficients cℓ(t) are to be determined in order for this distribution G(t) to fulfill
(6.6). Substituting the proposed form of G(t) in (6.7), gives us

G(t) = H(t)
∞∑
ℓ=0

tℓ

ℓ!
∂2ℓδ0 = H(t) exp (t∂2)δ0, (6.8)

whereH(t) is the continuous Heaviside function. Observe that G(t) consists of continuous
distributions in t combined with discrete distributions in x. We refer to [2] for the explicit
calculations.
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The density function of the distribution G(t) is the function g(n, t)(n ∈ Z) with

g(n, t) = (−1)n
I(|n| , 2t)
exp(2t)

H(t), (6.9)

where again I denotes the modified Bessel function of the first kind. For t = 0, this
discrete density function reduces to the discrete delta function δ0.

In order to find a solution to the initial value problem{
(∂t −∆∗) u(x, t) = 0, x ∈ Z, t ∈ R+,

u(x, 0) = u0(x), x ∈ Z,
(6.10)

where u0(x) is a given discrete function, we need a discrete analogue for the convolution.

6.1.3 Discrete convolution theory

In this section, we will briefly introduce some concepts of discrete convolution theory.
Again, we revert to a summary of the results obtained in [2] without proofs.

Definition 6.2. Consider two discrete functions f and g and define their convolution
f ∗ g as the discrete function

(f ∗ g) (n) :=
∑
x∈Z

f(x)g(n− x) =
∑
x∈Z

f(n− x) g(x), (6.11)

in any point n where convergence is ensured.

Note that, whenever one of the discrete functions f or g have compact support, the
convolution is defined. The interaction with Clifford constants is as follows:

Lemma 6.3. Given two discrete functions f and g and a Clifford constant a ∈ Cm. It
holds that

(af) ∗ g = a(f ∗ g), f ∗ (ag) = (fa) ∗ g, f ∗ (ga) = (f ∗ g)a.

Useful for calculations is to know how ∂ interacts with convolutions, see [2].

Lemma 6.4. For the discrete convolution, it holds that (f∂) ∗ g = f ∗ (∂g).

Example 6.5. The convolution of the discrete functions ∂kδ and f are given by(
∂kδ ∗ f

)
(n) =

(
∂kf

)
(n),(

f ∗ ∂kδ
)
(n) =

(
f∂k

)
(n).

The discrete convolution is also defined for regular distributions:

Definition 6.6. Let Tf and Tg be two regular distributions with respective density
functions f and g. The convolution of Tf and Tg is the distribution Tf ∗ Tg, which is
defined by its action on polynomials as follows:

〈
Tf ∗ Tg

〉
=
〈
Tg(y),

〈
Tf (x), V (x+ y)

〉〉
=
∑
y∈Z

∑
x∈Z

V (x+ y)f(x)

 g(y),

whenever this double series converges.
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It is proven that the convolution of two distributions Tf and Tg equals the regular dis-
tribution with density function Tf∗g. Similar to the convolution of the functions ∂kδ and
f , it holds that

∂jδ0 ∗G = ∂jG,

for a general distribution G.

6.1.4 Solutions of the mixed heat equation

Using convolutions, we are now able to describe a solution to the problem(
∂t −∆∗) u(x, t) = f(x, t),

given f(x, t). Therefore, consider the convolution u(x, t) := g(x, t) ∗ f(x, t), where g(x, t)
denotes the density function of the fundamental solution G, see (6.9). If f(x, t) is the
density function of a regular distribution Tf , then u(x, t) is the density function of the
distribution G ∗Tf and will satisfy the heat equation (6.10) in distributional sense. Note
that g(x, t)∗f(x, t) is a combination of a discrete (in the space variable x) and a continuous
(in the time variable t) convolution.

In particular, we can look for discrete polynomial solutions pn(x, t) of the mixed heat
equation (6.10), with initial condition pn(x, 0) = ξn[1](x). Using the Fourier transform,
the authors of [2] were able to construct a discrete analogue of the heat polynomials:

hn(x, t) = n!

⌊n
2
⌋∑

ℓ=0

tℓ

ℓ!

1

(n− 2ℓ)!
ξn−2ℓ[1](x).

They formally resemble the continuous heat polynomials (see (6.2)). In order to find
a solution to the (mixed) heat equation with a given general initial condition (6.10)
one proceeds as follows: first develop the function u0(x) in its discrete Taylor series
(2.20). Then substitute every discrete basis vector variable ξn[1] by its corresponding
heat polynomial hn(x, t) This solution will satisfy the heat equation with initial condition
u(x, 0) = u0(x).
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6.2 Discrete time variable

As our aim is to formulate and solve a heat equation in which both time and space are
discrete, we still need some definitions and notations for the discrete time variable.

6.2.1 Discrete time variable

In order to formulate and investigate the fully discrete heat equation, we need to introduce
the discrete time variable t together with its corresponding differential operators. For
completeness, we again mention the difference operators related to the discrete space
variable.

Definition 6.7 (Difference operators). Let f be a function defined on the discrete vari-
ables x ∈ Z and t ∈ N.

∂±t f(x, t) := ±
(
f(x, t± 1)− f(x, t)

)
, (6.12)

∆±
j f(x, t) := ±

(
f(x± 1, t)− f(x, t)

)
. (6.13)

Related to the space variable x, there is the discrete (raising) vector variable operator
ξ = e−X++ e+X−, where X± are (scalar) operators acting on discrete functions. Their
action is defined by the skew Weyl relations (2.8) with initial value X±[1] = x.

Similarly, we now also define the raising operator θ with respect to the variable t. To
this aim, we define the Weyl relation

∂+t θ − θ∂+t = 1, (6.14)

together with the initial value θ[1] = t.

Note that, as opposed to the discrete vector variable ξ, we only have one Weyl relation
for the positive time differentiation. As ξ and θ act on different variables, their action is
commutative, i.e. θξ = ξθ.

Let us calculate how θ acts on powers of t, i.e. θ[tk].

Proposition 6.8. For the discrete time variable θ, it holds that

θ[tk] = t (t− 1)k, (6.15)

θk[1](t) =
t!

(t− k)!
. (6.16)

Proof. For k = 0, formula (6.15) is true by definition. For k = 1, the Weyl relation (6.14)
implies

∂+t θ[t]− θ∂+t [t] = t⇔ ∂+t θ[t] = t+ θ[t+ 1− t] = t+ θ[1] = 2t.

Let θ[t] = at2 + bt+ c, then also

∂+t θ[t] = 2at+ a+ b,

Hence a = 1 and b = −1. By determining the action of the raising operator θ on tk, for
every k ∈ N, by means of the Weyl relation, the resulting constant will always remain
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undetermined. At this point, we will always make the choice of fixing the constant term
to be zero, which completely determines the operator. It then follows that θ[t] = t2− t =
t (t − 1). For a general k, we proceed by induction. Suppose the formula holds for all
natural numbers j < k ∈ N. First, notice that

∂+t [t
k] = (t+ 1)k − tk =

k∑
j=0

(
k

j

)
tj − tk =

k−1∑
j=0

(
k

j

)
tj .

We calculate θ[tk] by induction, starting from

∂+t θ[t
k]− θ∂+t [t

k] = tk

which yields

∂+t θ[t
k] = tk +

k−1∑
j=0

(
k

j

)
θ[tj ]

where we used the definition of ∂+t . By the induction hypothesis, we then obtain

∂+t θ[t
k] = tk +

k−1∑
j=0

(
k

j

)
t(t− 1)j

or still

∂+t θ[t
k] = tk + t

(
tk − (t− 1)k

)
= (t+ 1)tk − t (t− 1)k.

On the other side, It is directly obtained that

∂+t [t(t− 1)k] = (t+ 1)tk − t (t− 1)k.

It is easily seen for discrete functions f and g in t that

∂+t [f ] = ∂+t [g] ⇒ f = g + c,

where c is a constant. As we chose to take constants zero, we can conclude that

θ[tk] = t (t− 1)k.

This proves the first part of the proposition.

For k = 0 or k = 1, formula (6.16) is true by definition. For general k, we calculate
θk+1[1] by induction. The induction hypothesis yields

θk+1[1] = θ
[
θk[1]

]
= θ

[
t!

(t− k)!

]
= θ [

k∑
j=0

s(k, j) tj ] =

k∑
j=0

s(k, j) θ
[
tj
]
.



6. Discrete heat equation 104

Using the first part of the proposition, we then obtain

= t
k∑

j=0

s(k, j) (t− 1)j

= t
(t− 1)!

(t− 1− k)!

=
t!

(t− (k + 1))!
.

This proves the second part of the proposition.

Using this discrete time variabele θ, we are able to express discrete functions by means of
a Taylor series expansion. There is a natural isomorphism between the space of discrete
operators onto the space of discrete functions, by

F (ξ, θ) 7→ f(x, t) = F (ξ, θ)[1], on Z× N.

Definition 6.9 (Taylor Series in (x, t) ∈ Z× N). The formal Taylor series of a discrete
operator F (ξ, θ) is defined as

F (ξ, θ) =
∞∑

k,ℓ=0

ξkθℓak,ℓ. (6.17)

The coefficients ak,ℓ are calculated as

ak,ℓ =
∂k

k!

(∂+t )
ℓ

ℓ!
F (ξ, θ)[1]

∣∣
t=x=0

.

The values ∂k

k!
∂+ℓ
t
ℓ! f(x, t)

∣∣
t=x=0

are determined by the values of f(x, t) on the half plane
Z× N.

6.2.2 Discrete distributions for the time variable

Consider the dual space of distributions, which we can now expand to be defined on the
space of discrete polynomials in x and t. Similar to the discrete delta distributions with
respect to the space variable, we can now define discrete delta distributions with respect
to the (fixed) tuple (X,T ) ∈ Z× N. The discrete distribution

δX,T : f → δX,T [f ] =
∑

(x,t)∈Z2

δ(x−X)δ(t− T )f(x, t) = f(X,T )

sends a discrete function f to its value at the tuple (X,T ) ∈ Z2. Any finite linear
combination

F =
∑
i,j

δXi,Tj
ci,j : f →

∑
(x,t)∈Z

f(x, t)F (x, t) =
∑

(x,t)∈Z

f(Xi, Ti)ci,j

is a distribution with compact support.

The following definition complements and extends (2.21).
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Definition 6.10. For a discrete function g and a discrete distribution F , we put

⟨∂xF, g⟩ = −
〈
F, [g]∂†x

〉
,

⟨ξF, g⟩ =
〈
F, [g]ξ†

〉
,〈

∂−t F, g
〉
= −

〈
F, ∂+t g

〉
,

⟨θF, g⟩ = ⟨F, θg⟩ .

With these definitions, the following Weyl relations for distributions are valid:

∂xξ − ξ∂x = 1,

∂−t θ − θ∂−t = 1.

Remark that we use the negative time differentiation for distributions, while we used the
positive differentiation for functions.

The dual aspect of distributions versus functions is now clear: ∂+t acting on functions
is equivalent as ∂−t acting on distributions. For example, let ∂−t act on the discrete δ
distribution in X and T :

∂−t δX,T = δ(x−X)
(
δ(t− T )− δ(t− 1− T )

)
.

Now let ∂−t δX,T act on the discrete function f and use definition 6.10:〈
∂−t δX,T , f

〉
= −

〈
δXT , ∂

+
t f(x, t)

〉
= −

〈
δX,T , f(x, t+ 1)− f(x, t)

〉
= −

(
f(X,T + 1)− f(X,T )

)
= f(X,T )− f(X,T + 1)

= ∂+t f(X,T )

Because of the skew Weyl relations, ξ∂xF = ∂xξF − F . Now let F = ∂ℓ−1
x δ0,0. It then

follows that
ξ∂ℓxδ0,0 = ∂xξ∂

ℓ−1
x δ0,0 − ∂ℓ−1

x δ0,0 = . . . = −ℓ∂ℓ−1
x δ0,0. (6.18)

This is done by consecutive application of the Weyl relations and the fact that ξδ0,0 = 0.
In general, as an immediate consequence, we can state next proposition, which, in its
turn, complements and extends (2.22).

Proposition 6.11. 〈
∂kxδ0,0, ξ

ℓ[1]
〉
= δℓk(−1)kk!, (6.19)〈

∂−t
k
δ0,0, θ

ℓ[1]
〉
= δℓk(−1)kk!. (6.20)

This again leads to the dual Taylor series expansion of a distribution F . The dual Taylor
series of a discrete distribution F is given by

F =
∑
k,ℓ

(−∂x)k

k!

(−∂−t )
ℓ

ℓ!
δ0,0

〈
F, ξkθℓ[1]

〉
. (6.21)
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6.3 Discrete heat equation: discrete time and discrete space

The heat equation in a setting with discrete space variable x and discrete time variable
t > 0 is given by

(
∂+t − α∆∗

)
f(x, t) = 0. (6.22)

Let us furthermore define the anti-heat equation by(
∂−t + α∆∗

)
f(x, t) = 0. (6.23)

Note that there is no physical process linked to the anti-heat equation, as we cannot (yet)
travel back in time. We will, as in the continuous and mixed cases, again set α = 1.

Let F be a regular distribution with density function f . Then whenever f fulfills the
heat equation, F will fulfill the anti-heat equation, because of the relations in definition
6.10. The anti-heat equation is thus dual to the heat equation, as functions are dual to
distributions.

6.3.1 Fundamental Solution

Denote by χA the characteristic function on the set A ⊂ R and consider

E(x, t) = χt>0(t)
(
1 + ∆∗)t−1

δ0(x),

which is both a function and a distribution with compact support with respect to x: the
density function of the distribution E(x, t) is the function E(x, t). For t < 0, E(x, t+1) =
0, while for t ≥ 0:

E(x, t+ 1) =
(
1 + ∆∗)t δ0(x) = {δ0(x) = δ0(x) + E(x, 0), if t = 0,

(1 + ∆∗)E(x, t), if t > 0.

By definition,
∂+t E(x, t) = E(x, t+ 1)− E(x, t) = ∆∗E(x, t).

Hence it follows that (
∂+t −∆∗

)
E(x, t) = δ0(x)δ0(t), (6.24)

hence E(x, t) is a fundamental solution to the heat equation. Remark that E(x,−t)
fulfills the anti-heat equation.

6.3.2 The Cauchy-Kovalevskaya extension

We now aim for a general solution of the heat equation, given an initial condition, i.e.
a function f that represents the initial temperature in the medium. Therefore, we use
once more the Cauchy-Kowalevskaya extension, which we already mentioned in theorem
4.11. It is not only a powerful tool to construct monogenic functions, it is also useful to
solve differential equations, such as the heat equation.

Theorem 6.12. Cauchy-Kovalevskaya extension Let f(x) be a function defined on the
discrete grid Z. Then there is a unique function f(x, t) on Z× N such that
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(i) f(x, 0) = f(x),

(ii)
(
∂+t −∆∗

)
f(x, t) = 0 on Z× N.

Based on the analogy with the continuous settings, we propose the next form of this
CK-extension of f :

CK[f(x)] = f(x, t) := E(x, t+ 1) ∗ f(x) =
∑
u∈Z

E(u− x, t+ 1)f(u) =
(
1 + ∆∗)t f(x),

(6.25)
where E is the fundamental solution to the heat equation and ∗ denotes the discrete
convolution.

Now consider the general statement of an initial value problem
(
∂+t −∆∗

)
u(x, t) = 0,

u(x, 0) = f(x).
(6.26)

with f(x) a given discrete function. To find the solution u(x, t), we check if the CK-
extension of f is a possible solution. It is immediate that it satisfies the initial condition
in (6.26) and(
∂+t −∆∗

) [
E(x, t+ 1) ∗ f(x)

]
= ∂+t

(
1 + ∆∗)t f(x)−∆∗ (1 + ∆∗)t f(x)

=
(
1 + ∆∗)t+1

f(x)−
(
1 + ∆∗)t f(x)−∆∗ (1 + ∆∗)t f(x)

=
(
1 + ∆∗)t+1

f(x)−
(
1 + ∆∗) (1 + ∆∗)t f(x)

= 0. (6.27)

The CK-extension of f hence is a solution to the heat equation with initial profile f .

This form of the CK−extension is unique, as proven in the following theorem.

Theorem 6.13. Let F be a discrete function defined on Z×N, fulfilling the heat equation,
with F |t=0 = 0. Then F is the null function.

Proof. As F fulfills the heat equation, we can write(
∂+t −∆∗

)
F (x, t) = 0,

or equivalently

F (x, t+ 1)− F (x, t) =
(
F (x+ 1, t) + F (x− 1, t)

)
− 2F (x, t).

For t = 0, the above expression reduces to

F (x, 1) = 0,

because F (x, 0) = 0, for every x ∈ Z. Next, consider again

F (x, t+ 1)− F (x, t) =
(
F (x+ 1, t) + F (x− 1, t)

)
− 2F (x, t),
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where we now let t = 1. This yields

F (x, 2) = 0,∀x ∈ Z.

Repeating this procedure, we end up with

F (x, t) = 0, ∀(x, t) ∈ Z× N.

Example 6.14. For f(x) = δ0(x), we find that

CK[δ0(x)](x, t) =
∑
u∈Z

E(u−x, t+1)δ0(u) = E(−x, t+1) = E(x, t+1) =
(
1 + ∆∗)t δ0(x),

where the third equality follows from the even behaviour of E(x, t) as function of x.
It means the CK−extension of the discrete delta function is a shift of the fundamental
solution. More general, we see that for a ∈ Z

CK[δa(x)](x, t) = E(a− x, t+ 1) =
(
1 + ∆∗)t δ0(a− x).

Proposition 6.15. In operator form, the CK-extension of f is given by

CK[f(x)] = f(x, t) = exp
(
θ∆∗)F (ξ)[1](x, t), (6.28)

where f(x) = F (ξ)[1] is the Taylor series expansion of the discrete function f .

Proof. One has

∂+t exp
(
θ∆∗) = ∂+t

∞∑
k=0

θk

k!

(
∆∗)k

=
∞∑
k=0

∂+t θ
k

k!

(
∆∗)k

Repeatedly applying the Weyl relation (6.14)

=

∞∑
k=1

kθk−1

k!

(
∆∗)k + θk

k!

(
∆∗)k ∂+t

= ∆∗ exp
(
θ∆∗)+ exp

(
θ∆∗) ∂+t . (6.29)

Letting the left hand side of (6.29) act on f(x) = F (ξ)[1], the second term of (6.29) will
vanish as f(x) is only a function of the space variable x. Hence (6.28) fulfills the heat
equation.

Remark 6.16. The operator form of the CK-extension matches the fundamental solution
of the mixed heat equation (6.8), where now the variable t has been replaced by the
operator θ.
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Remark 6.17. In the continuous setting, the correspondence is obvious: the fundamen-
tal solution to the heat equation is the Gaussian function. Hence a solution to an initial
value problem is found by the convolution of the initial function with the Gaussian kernel,
which is the Weierstrass transform. The same obvious relationship is not immediately
found in the discrete setting, mainly due to the discretisation of the time variable. The
correspondence between the heat equation and the Weierstrass transform is only straight-
forward when looking at the operational form: if we formally substitute θ = 1

2 , we find
the alternative definition 5.5 of the Weierstrass transform. Because of the particularities
of the discrete setting, the correspondence is much less clear when considering the points
on the grid.

Example 6.18. Let (6.29) act on 2tf(x) and take in account that ∂+t
(
2tf(x)

)
= 2tf(x).

Then

∂+t exp
(
θ∆∗) [2tf(x)] = ∆∗ exp

(
θ∆∗) 2tf(x) + exp

(
θ∆∗) 2tf(x)

=
(
1 + ∆∗) exp (θ∆∗) [2tf(x)]. (6.30)

In other words: the CK-extension of 2tf(x) is an eigenfunction of the heat equation.

6.3.3 Discrete heat polynomials

The definition of the Cauchy-Kovalevskaya extension in the previous section enables us
to define the discrete heat polynomials as solutions to the heat equation with initial
condition p(x, 0) = ξn[1](x).

Definition 6.19. The discrete heat polynomials hn(x, t) are the solutions of the system
(
∂+t −∆∗

)
u(x, t) = 0,

u(x, 0) = ξn[1](x),
(6.31)

i.e.

hn(x, t) = CK
[
ξn[1]

]
(x, t). (6.32)

To obtain an explicit formula, we calculate:

hn(x, t) = CK
[
ξn[1]

]
(x, t)

=
∑
u∈Z

E(u− x, t+ 1) ξn[1](u)

=
(
1 + ∆∗)t ξn[1](x)

=

t∑
j=0

(
t

j

)
(∆∗)jξn[1](x).

The star Laplacian ∆∗ is factorised by the Dirac operator, hence

hn(x, t) =

⌊n
2
⌋∑

j=0

t!

(t− j)! j!

n!

(n− 2j)!
ξn−2j [1](x). (6.33)
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Proposition 6.20. The generating function of the discrete heat polynomials is

CK
[
exp(z ξ)[1]

]
(x, t) = exp

(
θz2 + ξz

)
[1](x, t).

Proof. This follows from the explicit calculation:

CK
[
exp(z ξ)[1]

]
(x, t) =

(
1 + ∆∗)t exp(z ξ)[1](x)

=
t∑

j=0

(
t

j

)
(∆∗)j

∞∑
k=0

zkξk[1](x)

k!
.

The star Laplacian acts as the second order derivative

=
∞∑
k=0

t∑
j=0

(
t

j

)
zk

ξk−2j

(k − 2j)!
.

Herein, we recognise the explicit form of the heat polynomials

=
∞∑
k=0

t∑
j=0

θj [1](t)

j!

ξk−2j

(k − 2j)!
zk

=
∞∑
k=0

hk(x, t)
zk

k!
.

This clearly yields the same result as

exp
(
θz2 + ξz

)
[1](x, t) =

∞∑
k=0

1

k!

(
θz2 + ξz

)k
[1](x, t)

=

∞∑
k=0

k∑
j=0

1

k!

k!

j! (k − j)!
θj [1](t)z2jξk−j [1](x)zk−j

=

∞∑
k=0

k∑
j=0

1

j! (k − j)!
θj [1](t)ξk−j [1](x)zj+k.

Implement a change of summation index an find

exp
(
θz2 + ξz

)
[1](x, t) =

∞∑
n=0

⌊n/2⌋∑
j=0

1

j!(n− 2j)!
θj [1](t)ξn−2j [1](x) zn

=

∞∑
n=0

hn(x, t)
zn

n!
.

Example 6.21. Explicitly, we find the following polynomials:

h0(x, t) = 1

h1(x, t) = ξ[1](x)
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h2(x, t) = ξ2[1](x) + 2t

h3(x, t) = ξ3[1](x) + 6 t ξ[1](x)

h4(x, t) = ξ4[1](x) + 12 t ξ2[1](x) + 12 t2 − 12t

h5(x, t) = ξ5[1](x) + 20 t ξ3[1](x) + 60 t (t− 1)ξ[1](x)

h6(x, t) = ξ6[1](x) + 30 t ξ4[1](x) + (180 t2 − 180 t) ξ2[1](x) + 120 t (t− 1) (t− 2)

h7(x, t) = ξ7[1](x) + 42 t ξ5[1](x) + 420 t (t− 1)ξ3[1](x) + 840 t (t− 1) (t− 2)ξ[1](x)

h8(x, t) = ξ8[1](x) + 56 t ξ6[1](x) + 840 t (t− 1)ξ4[1](x) + 3360 t (t− 1) (t− 2)ξ2[1](x)

+ 1680 t (t− 1) (t− 2) (t− 3)

Define the operator Ψn (ξ, θ) as

Ψn (ξ, θ) = exp
(
θ∆∗) ξn,

i.e. the operator form of the CK-extension of ξn. Based on (6.33), we find

Ψn (ξ, θ) =

⌊n
2
⌋∑

j=0

θj

j!

n!

(n− 2j)!
ξn−2j . (6.34)

Consider the functions Ψn(ξ,
1
2): these are the polynomials enlisted in table 3.1. Hence,

the heat polynomials are connected to the Weierstrass transform of the discrete homoge-
neous polynomials ξn[1]. This is of course an immediate consequence of the fact that the
operator form of the CK extension, with θ = 1

2 is the Weierstrass transform (see remark
6.17).

Comparing the explicit formula of the discrete radial Hermite polynomials (2.33) with the
above expression for the discrete heat polynomial operators, the next relation is obtained:

(−1)⌊
n
2
⌋Ψn

(
ξ,−1

2

)
= Hn(ξ).

Moreover, if we formally let θ = −1
2 and ξ[1] = x in (6.34), we find the continuous

Hermite polynomials. This can also be easily seen by comparing the corresponding
generating functions.

It is important to remark that hk(x,−t) ̸= Ψk(ξ,−θ)[1](x, t): it is not sufficient to map
t to −t and θ to −θ to obtain again the same polynomials in x and t. For example:

h5(x,−t) = ξ5[1](x)− 20 t ξ3[1](x)− 60 t (−t− 1)ξ[1](x)

and

Ψ5(ξ,−θ) = ξ5 − 20 θξ3 + 60 θ2ξ,

hence

Ψ5(ξ,−θ)[1](x, t) = ξ5[1](x)− 20θ[1](t)ξ3[1](x) + 60θ2[1](t)ξ[1](x)

= ξ5[1](x)− 20tξ3[1](x) + 60 t (t− 1)ξ[1](x)

̸= h5(x,−t).
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Definition 6.22. We define the heat-Euler operator as

Eξ,θ := 2θ∂+t + ξ∂x. (6.35)

Lemma 6.23. The discrete heat polynomials are eigenfunctions of the discrete heat-
Euler operator: Eξ,θhk(x, t) = khk(x, t).

Proof. Consider 2θ∂+t hk(x, t):

2θ∂+t hk(x, t) =

⌊k/2⌋∑
j=0

2θ∂+t θ
j [1]

j!

k!

(k − 2j)!
ξk−2j [1].

First, for the numerator 2θ∂+t θ
j [1], we use the Weyl relation ∂+t θ − θ∂+t = 1 to obtain

2θ∂+t θ
j [1] = 2θ

(
1 + θ∂+t

)
θj−1[1]

= 2θj + 2θ2
(
1 + θ∂+t

)
θj−2[1].

Repeating the same formula eventually yields

2θ∂+t θ
j [1] = 2jθj + 2θj+1∂+t [1] = 2jθj . (6.36)

Secondly, consider

ξ∂xhk(x, t) =

⌊k/2⌋∑
j=0

θj [1](t)

j!

k!

(k − 2j)!
ξ∂xξ

k−2j [1](x).

The last part can be simplified, also using the corresponding Weyl relations:

ξ∂xξ
k−2j [1](x) = ξ (1 + ξ∂x) ξ

k−2j−1[1](x)

= ξk−2j + ξ2 (1 + ξ∂x) ξ
k−2j−2[1](x).

Repeatedly applying the same reasoning yields

ξ∂xξ
k−2j [1](x) = (k − 2j)ξk−2j + ξk−2j+1∂x[1](x) = (k − 2j)ξk−2j [1](x). (6.37)

Combining (6.36) and (6.37), we arrive at

Eξ,θhk(x, t) = 2θ∂+t hk(x, t) + ξ∂xhk(x, t)

=

⌊k/2⌋∑
j=0

2jθj [1]

j!

k!

(k − 2j)!
ξk−2j [1](x) +

⌊k/2⌋∑
j=0

θj [1](t)

j!

k!

(k − 2j)!
(k − 2j)ξk−2j [1](x)

= k

⌊k/2⌋∑
j=0

θj [1](t)

j!

k!

(k − 2j)!
ξk−2j [1](x) = k hk(x, t).

This concludes the proof.
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6.3.4 Associated functions

In the continuous setting, the functions qn(x, t), (6.3) are called associated to the heat
polynomials: they are dual, in the sense that there is an orthogonality relation with the
heat polynomials, see (6.5). We investigate whether a similar result exists in this discrete
Clifford setting, being inspired by the fact that - in the continuous setting - the associated
functions are derivatives of the fundamental solution G(x, t). Define

qn(x, t) :=
1

n!
∂nE(x,−t), (6.38)

i.e. the n-th derivative of the fundamental solution. This function qn(x, t) satisfies
the anti-heat equation. We can interpret it as a distribution because E(x, t) is the
density function of the distribution E(x, t). The interpretation as a distribution will
stress the duality argument between hn(x, t) and qn(x, t). To proceed, we will need
some discrete analogues to continuous integral formulae, with respect to the differential
operators ∂±t and the star Laplacian ∆∗. The first lemma is a Green’s formula, an
analogue of integration by parts.

Lemma 6.24 (Green’s formula). Let f and g be two discrete functions, depending on
time and space. If at least one of both functions has compact support with respect to
the time variable t, then∑

t∈Z
f(x, t)∂+t g(x, t) = −

∑
t∈Z

∂−t f(x, t)g(x, t). (6.39)

If at least one of both functions has compact support with respect to the space variable
x, then ∑

x∈Z
∆∗f(x, t)g(x, t)− f(x, t)∆∗g(x, t) = 0. (6.40)

Proof. Let f and g be as stated in the proposition, with at least one of both functions
having compact support with respect to t. It holds that∑

t∈Z
f(x, t)∂+t g(x, t) =

∑
t∈Z

f(x, t)
(
g(x, t+ 1)− g(x, t)

)
=
∑
t∈Z

(
f(x, t− 1)− f(x, t)

)
g(x, t)

= −
∑
t∈Z

∂−t f(x, t)g(x, t).

(6.41)

Analogously, we have that∑
x∈Z

f(x, t)
(
∆∗g(x, t)

)
=
∑
x∈Z

f(x, t)
(
∆+

x∆
−
x g(x, t)

)
= −

∑
x∈Z

(
∆−

x f(x, t)
)(

∆−
x g(x, t)

)
.

and∑
x∈Z

(
∆∗f(x, t)

)
g(x, t) =

∑
x∈Z

(
∆+

x∆
−
x f(x, t)

)
g(x, t) = −

∑
x∈Z

(
∆−

x f(x, t)
)(

∆−
x g(x, t)

)
.
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Remark 6.25. The condition of one of both functions having compact support is actually
too strong: it might be possible for the sums in (6.39) and (6.40) to converge, even if f
nor g has compact support.

The next lemma shows that we can shift solutions in time: solutions to the (anti-)heat
equation are invariant for translations in time.

Lemma 6.26. Fix a and b ∈ N, let f(x, t) be a solution to the anti-heat equation in [a, b[
and g(x, t) a solution to the heat equation, with one of both functions having compact
support with respect to x. Then∑

x∈Z
f(x, b− 1)g(x, b) =

∑
x∈Z

f(x, a− 1)g(x, a). (6.42)

Proof. Let f and g be as stated in the proposition, i.e.

∂−t f(x, t) = −∆∗f(x, t), a ≤ t < b,(
∂+t −∆∗

)
g(x, t) = 0.

Denote by χ the characteristic function on the interval [a, b[:

χ(t) =

{
1, if a ≤ t < b;

0, else.

Then it holds that

∂+t χ(t) = χ(t+ 1)− χ(t) = δa−1 − δb−1

and g(x, t)χ(t) now is a solution to the heat equation on [a, b[.

It holds that

∂+t
[
χ(t)g(x, t)

]
= χ(t+ 1)g(x, t+ 1)− χ(t)g(x, t)

=
(
χ(t+ 1)− χ(t)

)
g(x, t+ 1) + χ(t)

(
g(x, t+ 1)− g(x, t)

)
= (δa−1 − δb−1) g(x, t+ 1) + χ(t)∂+t g(x, t). (6.43)

As g fulfills the heat equation, this equals

= (δa−1 + δb−1) g(x, t+ 1) + χ(t)∆∗g(x, t). (6.44)

Hence,

f(x, t)∂+t
[
χ(t)g(x, t)

]
= f(x, t)

[
(δa−1 − δb−1) g(x, t+ 1)

]
+ f(x, t)χ(t)∆∗g(x, t)

= −f(x, t− 1)g(x, t)

∣∣∣∣b
a

+ f(x, t)χ(t)∆∗g(x, t).

We now use (6.39), which is allowed since χg has compact support with respect to t.∑
(x,t)∈Z×N

(
∂−t f

)
χg + f

(
∂+t (χg)

)
= 0
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which yields

∑
(x,t)∈Z×N

−∆∗f(x, t)χ(t)g(x, t)− f(x, t− 1)g(x, t)

∣∣∣∣b
a

+ f(x, t)∆∗g(x, t) = 0

and is equivalent to∑
x∈Z

f(x, b− 1)g(x, b) =
∑
x∈Z

f(x, a− 1)g(x, a).

This sum is well-defined, because at least one of both functions has compact support
with respect to x.

Let us now come back to the associated functions and apply lemma 6.26 to the functions
qn(x, t) and hm(x, t), on the interval [−T, 0[, T > 0:∑

x∈Z
hm(x, 0)qn(x,−1) =

∑
x∈Z

hm(x,−T )qn(x,−T − 1). (6.45)

On the one side, because δ0(x) is the density function of the distribution δ0(x), the left
hand side of (6.45) is equal to∑

x∈Z
hm(x, 0)

∂n

n!
δ0(x) =

∑
x∈Z

ξm[1](x)
1

n!
∂nδ0(x)

=
∑
x∈Z

1

n!

〈
∂nδ0, ξ

m[1](x)
〉

=
∑
x∈Z

(−1)n

n!

〈
δ0, ∂

nξm[1](x)
〉

=
(−1)n

n!
∂nξm[1](0)

=
(−1)n

n!

m!

(m− n)!
ξm−n[1](0)

= (−1)mδm,n.

The last equality follows from the fact that ξk[1](0) = 0,∀k ∈ N. On the other side, the
right hand side of (6.45) is ∑

x∈Z
hm(x,−T )) 1

n!
∂nE(x, T + 1).

All together, we obtain∑
x∈Z

hm(x,−T )
(
(−∂)n

n!

(
1 + ∆∗)T δ0(x)) = δm,n. (6.46)

In other words, the m−th order heat polynomial hm(x, t) is orthogonal to the n−th
derivative of the fundamental solution E(x, t). This is exact the result that was estab-
lished in the continuous case, see (6.5), by Rosenbloom and Widder in [53].
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6.4 Conclusion

In this chapter, we formulated a heat equation, for a setting in which both time and
space are discrete: (

∂+t −∆∗
)
f(x, t) = 0. (6.47)

Here, ∂+t is the forward difference operator with respect to the time variable t. Similar
to the operator calculus with respect to x, we defined a raising operator θ, acting on
polynomials as

θ[tk] = t (t− 1)k,

θk[1](t) =
t!

(t− k)!.

The interaction of θ and ∂+t is given by the Weyl relation

∂+t θ − θ∂+t = 1.

We expanded the dual space of distributions, now to be defined on the space of discrete
polynomials in x and t. The dual aspect becomes clear when we consider the Weyl
relation for distributions

∂−t θ − θ∂−t .

A fundamental solution for the discrete heat equation is given by

E(x, t) = χt>0(t)
(
1 + ∆∗)t−1

δ0(x).

We furthermore defined the anti-heat equation as(
∂−t +∆∗

)
f(x, t) = 0. (6.48)

A fundamental solution for the anti-heat equation is then given by E(x,−t). In order to
find a solution of the initial value problem

(i) f(x, 0) = f(x),

(ii)
(
∂+t −∆∗

)
f(x, t) = 0 on Z× N,

we constructed the Cauchy Kovalevskaya extension:

CK[f(x)] = E(x, t+ 1) ∗ f(x) =
(
1 + ∆∗)t f(x). (6.49)

The CK-extension of f fulfills this initial value problem. In particular, the heat polynomi-
als hn(x, t) are the solutions to the heat equation with initial condition f(x, 0) = ξn[1](x).
Finally, we constructed a family of functions qn(x, t), orthogonal to the heat polynomials:

qn(x, t) :=
1

n!
∂nxE(x,−t).

These functions satisfy the anti-heat equation, again reflecting the dual aspect between
the heat and anti-heat equation.
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Appendix

7.1 English summary

In this summary, we give a short overview on the most important concepts and results
in this thesis. We give a general overview of the content by chapter.

The Weierstrass transform, named after the German mathematician Karl Weierstrass,
is a fundamental operator in mathematical analysis en applied mathematics. It aver-
ages the values of a function f by making the convolution with a Gaussian kernel to
obtain a ‘smoothed’ version of f . The Weierstrass transform’s smoothing properties and
its relationship with the Gaussian kernel make it useful in a variety of mathematical
and practical applications, such as solving the heat equation, signal processing, image
processing, quantum mechanics and numerical analysis.

This thesis is to be situated in the context of discrete Clifford analysis. Euclidean Clifford
analysis is a recent branch of mathematics. It studies functions defined in Euclidean
space, with values in a real or complex Clifford algebra. Clifford analysis can be seen
as a higher-dimensional theory of complex analysis as well as a refinement of harmonic
analysis. Similar to complex analysis, the central objects are a differential operator,
called the Dirac operator and its solutions, called monogenic functions. They are the
subject of a variety of important results and have a range of uses, amongst others solving
boundary value problems and harmonic analysis.

Discrete Clifford analysis originated from the need for numerical applications. Its de-
velopment is driven by the desire to study function theory and harmonic analysis on
discrete lattices or grids, especially in higher-dimensional settings. The discrete setting
introduces new challenges, such as defining a suitable Dirac operator which allows for a
discrete counterpart of key results in classical Clifford analysis. Several models for the
discrete Clifford algebra have been established, either starting from an application or
from a function theoretic point of view. The discrete Hermitian setting was introduced
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by Brackx, De Schepper, Sommen and Van de Voorde ([27, 28, 29]) and will form the
basis for this dissertation.

The main aim of this dissertation is the definition of a discrete Weierstrass transform,
together with a function space for which the transform is well-defined, in the discrete
Hermitian Clifford setting. Therefore, we are inspired by the classical definition of the
Weierstrass transform in combination with the already defined tools in the discrete Her-
mitian Clifford analysis, by (amongst others) De Ridder, De Schepper, Sommen en Van
de Voorde, [30, 31, 44, 33, 34, 35]. The main idea is to use the discrete Gauss distribution
G as a weight function and the discrete Hermite polynomials will form the basis of the
space of functions which admit a Weierstrass transform.

Chapter 2 comprises some basic notions and preliminaries on the classical and discrete
Clifford analysis that are being used in this thesis.

In the third chapter, we get started with the definition of the Weierstrass transform in one
dimension. As already mentioned, the discrete Gauss distribution G has a crucial role:
we let the composition of a discrete function with this Gaussian act on a well-defined
kernel, resulting in a direct analogue to the continuous integral transform. We define
an inner product and corresponding norm in order to construct the discrete Weierstrass
space: discrete functions that are linear combinations of Hermite polynomials, for which
their norm is finite. A natural and important question is whether the delta-functions,
the building blocks of discrete function theory, are elements of the discrete Weierstrass
space. Similarly, we investigate if the discrete Hermite functions are contained in this
space. Indeed, for both families of functions, we are able to prove that they can be
written as (infinite) linear combination of discrete Hermite polynomials and that they
fullfill the condition to be elements of the discrete Weierstrass space.

The above is carried out on a standard grid with mesh width h = 1. As a last part of
chapter three, we will generalise this to a grid with general mesh width h. In particular,
we are interested in the asymptotic behaviour if h tends to 0, as this is the continuous
(classical) situation. It turns out that our definitions are indeed consistent with the
classical case.

In chapter four, we extend the theory from dimension m = 1 to m > 1. this brings some
complications. Firstly, we need to handle the anti-commutativity of the basic Clifford el-
ements: eiej = −ejei. This problem will be solved by using a rotation invariant operator.
Secondly, the radial Hermite polynomials have to be replaced by the generalised Hermite
polynomials, in order to form a basis for the discrete Weierstrass space. Those gener-
alised Hermite polynomials are formed as the composition of a monogenic polynomial of
order r and a Hermite polynomial of degree n. The goal is to obtain recurrence formulae,
both in terms of the degree n of the Hermite polynomial and in terms of the degree r
of the monogenic, for the Weierstrass transform of this generalised Hermite polynomial.
In order to fix ideas and limit notations, we start in dimension m = 2, this gives us a
good idea of the results when m ≥ 2. However, the reasonings and proofs in dimension
two relies on the explicit form of the monogenic polynomials. This is not extendable to
higher dimensions. We need another approach to find an expression for the Weierstrass
transform of the generalised Hermite polynomials. We give two alternative definitions:
one is based on discrete translations, the other is based on the classical formal expression
of the Weierstrass transform. The latter will lead us to the formula we are looking for.
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In the last chapter, we focus on a different subject: the discrete heat equation. As
a logical progression of a first discretisation in [2], where space is discrete but time is
continuous, we now formulate a heat equation where both space and time are discrete.
Therefore, we introduce a new operator with respect to the time variable. We discuss
the fundamental solutions of the discrete heat equation and how we solve an initial
value problem. Finally, we obtain the discrete heat polynomials and discuss a family of
functions that are orthogonal to and can be interpreted as dual to these heat polynomials.

The content of chapter three, the definitions of the discrete Weierstrass transform and
space, has been published in [37], while the generalisations for dimensions m > 1 and
grid mesh width h ̸= 1 were subject of a second paper, [38].
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7.2 Nederlandstalige samenvatting

In deze Nederlandstalige samenvatting zal ik kort overlopen waar dit proefschrift zich
situeert en wat het doel is. Vervolgens geef ik een algemeen overzicht van de inhoud,
geordend per hoofdstuk.

De Weierstrass transformatie, genoemd naar de Duitse wiskundige Karl Weierstrass, is
een fundamentele operatie in de wiskundige analyse en toegepaste wiskunde. Het is een
operator die een gegeven functie omzet in een ‘gladdere’ functie: een functie met mooiere
en interessantere eigenschappen. Het gaat om een integraaltransformatie, waarbij de
convolutie met een Gaussische kern wordt gemaakt. De Weierstrass transformatie heeft
tal van toepassingen, in onder meer het oplossen van de warmtevergelijking, signaalpro-
cessen, beeldverwerking, kwantummechanica en numerieke analyse.

Deze thesis situeert zich in de context van discrete Clifford analyse. Euclidische Clifford
analyse is een vrij recente tak van de wiskunde die, eenvoudig gezegd, functies bestudeert
die gedefinieerd zijn in de Euclidische ruimte en waarden hebben in een reële of complexe
Clifford algebra. Clifford analyse kan zowel gezien worden als een hogerdimensionale
uitbreiding op complexe analyse alsook als een verfijning van de klassieke harmonische
analyse. Net zoals in de complexe analyse, is het centrale object een differentiaaloper-
ator: de zogenaamde Dirac operator. Oplossingen hiervan worden monogene functies
genoemd. Een andere belangrijke operator, de Laplaciaan, wordt gefactoriseerd door
de Dirac operator, waardoor oplossingen van de Dirac operator ook oplossingen van de
Laplaciaan zijn. De Dirac operator en zijn oplossingen zijn het onderwerp van tal van
belangrijke resultaten en kennen meerdere toepassingen, in onder andere het oplossen
van randwaardeproblemen en harmonische analyse.

Discrete Clifford analyse is ontstaan uit de nood aan numerieke toepassingen. Men wilde
de resultaten uit de klassieke Clifford analyse kunnen toepassen op roosters, in het bi-
jzonder in hogere dimensies. Dit bracht nieuwe uitdagingen met zich mee, zoals het
definiëren van een discrete Dirac operator, die ook de discrete Laplaciaan factoriseert.
Verschillende methoden en invalshoeken werden voorgesteld en uitgewerkt, sommigen
waren eerder theoretische van aard, anderen meer toepassingsgericht. De discrete Hermi-
tische setting werd gëıntroduceerd door Brackx, De Schepper, Sommen en Van de Voorde
([27, 28, 29]) en vormt de basis voor dit proefschrift.

Het belangrijkste doel van deze thesis is om een discrete versie van de Weierstrass trans-
formatie te definiëren in de discrete Hermitische Clifford setting. We baseren ons daarvoor
op de bestaande definities in het continue geval en op de reeds gëıntroduceerde concepten
in de discrete Clifford analyse, door onder andere De Ridder, De Schepper, Sommen en
Van de Voorde ([30, 31, 44, 33, 34, 35]). De discrete Gauss distributie zal dienen als de
gewichtsfunctie en de discrete Hermite polynomen zullen de basis vormen van de ruimte
van functies waarop we de Weierstrass transformatie willen definiëren.

We starten in hoofdstuk twee met de herhaling van de definities, concepten en resultaten
uit de klassieke en discrete Clifford analyse, dewelke nodig zijn in dit werk.

In hoofdstuk drie gaan we aan de slag met de definitie van de Weierstrass transformatie
in één dimensie. Zoals reeds vermeld, speelt de discrete Gauss distributie G hier een
cruciale rol: we laten de samenstelling van de te transformeren functie f en G inwerken
op een slim gekozen kern. Op deze manier vinden we een directe analogie met de con-
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tinue integraaltransformatie. We construeren ook een Weierstrassruimte W, een ruimte
van functies analoog aan de continue L2− ruimte, met bijhorend inproduct en norm.
De discrete Hermite veeltermen vormen nu een basis van W. We onderzoeken wat de
voorwaarden zijn opdat een discrete functie tot de Weierstrassruimte behoort. We geven
enkele voorbeelden van eenvoudige discrete functies met hun Weierstrass transformatie.
Een belangrijke vraag is of de discrete deltafuncties ook bevat zijn in W, vermits dit
de bouwblokken zijn van de discrete functietheorie. Hetzelfde onderzoeken we voor de
discrete Hermitefuncties. Voor beide verzamelingen van functies vinden we inderdaad
dat ze kunnen geschreven worden als (oneindige) lineaire combinatie van de discrete
Hermiteveeltermen én dat de voorwaarde opdat ze bevat zijn in de discrete Weierstrass
ruimte, vervuld is.

Bovenstaande wordt allemaal uitgevoerd op een standaardrooster met stapgrootte h = 1.
Als laatste onderdeel van hoofdstuk drie, veralgemenen we dit naar een rooster met
algemene stapgrootte h. We zijn in het bijzonder gëınteresseerd in het asymptotisch
gedrag als h naar 0 nadert. Dat is namelijk de situatie van de continue (klassieke)
Clifford analyse. Het blijkt dat onze definities inderdaad in overeenstemming zijn met
het klassieke geval, als we h tot 0 laten naderen.

In hoofdstuk vier veralgemenen we de theory van dimensie m = 1 naar dimensie m > 1.
Dit brengt enkele complicaties met zich mee. Enerzijds stuiten we nu op het feit dat de
basisvectoren van de Clifford algebra anticommutatief zijn: eiej = −ejei. De invoering
van een rotatie-invariante operator zal hier een oplossing bieden. Anderzijds volstaan
de radiale Hermite veeltermen niet meer als basisfuncties voor de Weierstrassruimte. De
veralgemeende Hermite veeltermen, gevormd door de samenstelling van een Hermite veel-
term van graad n en een monogene veelterm van graad r brengen soelaas. We proberen
recurrente betrekkingen te vinden, zowel in functie van de graad n als in functie van de
graad r, om de Weierstrass transformatie van deze veralgemeende Hermite veeltermen
te beschrijven. In eerste instantie doen we dit in dimensie m = 2, wat ons een goed
beeld geeft van de resultaten als m > 2. Echter, het bewijs in dimensie twee steunt
op de expliciete vorm van de monogene veeltermen, iets wat niet veralgemeenbaar is in
hogere dimensies. Een andere aanpak is nodig om een uitdrukking te vinden voor de
Weierstrass transformatie van de veralgemeende Hermite veeltermen. We geven twee
alternatieve definities: de eerste is gebaseerd op discrete translaties, de tweede op een
formele vorm van de Weierstrass transformatie in het klassieke geval. Deze laatste levert
ons de gezochte formule op.

In het laatste hoofdstuk focussen we op een ander onderwerp: de discrete warmtevergeli-
jking. In navolging van een eerste discretisering van de warmtevergelijking in [2], waarin
de ruimte discreet is, maar de tijd continu, formuleren we nu een warmtevergelijking
waarbij zowel de tijd als de ruimte discreet zijn. Daartoe introduceren we een nieuwe op-
erator met betrekking tot de tijdsvariabele. We bediscussiëren de fundamentele oplossin-
gen van de discrete warmetevergelijking en hoe we een beginvoorwaardeprobleem moeten
oplossen. Tot slot verkrijgen we de discrete warmteveeltermen en bespreken we een set
veeltermen die we kunnen interpreteren als duaal aan de warmteveeltermen.

In een eerste paper, [37], werden de definities van de discrete Weierstrasstransformatie
en -ruimte gepubliceerd. De veralgemeningen hiervan naar stapgrootte h ̸= 1 en naar
hogere dimensies m > 1 waren het onderwerp van een tweede paper [38].
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7.3 Maple calculations for section 3.3
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7.4 Tables 7.1 and 7.2



1
2
3

7
.4

T
a
b
le
s
7
.1

a
n
d

7
.2

Hn

Pr 0 1 2

0 1 (z1e1 − z2e2) (z1e1 − z2e2)(z1e1 + z2e2)

1 (z1e1 + z2e2) (z1e1 + z2e2)(z1e1 − z2e2) (z1e1 + z2e2)(z1e1 − z2e2)(z1e1 + z2e2)

2 −(z1e1 + z2e2)
2 −(z1e1 + z2e2)

2(z1e1 − z2e2) −(z1e1 + z2e2)
2(z1e1 − z2e2)(z1e1 + z2e2)

3 −(z1e1 + z2e2)
3 −(z1e1 + z2e2)

3(z1e1 − z2e2) −(z1e1 + z2e2)
3(z1e1 − z2e2)(z1e1 + z2e2)

4 (z1e1 + z2e2)
4 (z1e1 + z2e2)

4(z1e1 − z2e2) (z1e1 + z2e2)
4(z1e1 − z2e2)(z1e1 + z2e2)

5 (z1e1 + z2e2)
5 (z1e1 + z2e2)

5(z1e1 − z2e2) (z1e1 + z2e2)
5(z1e1 − z2e2)(z1e1 + z2e2)

Hn

Pr 3

0 (z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

1 (z1e1 + z2e2)(z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

2 −(z1e1 + z2e2)
2(z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

3 −(z1e1 + z2e2)
3(z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

4 (z1e1 + z2e2)
4(z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

5 (z1e1 + z2e2)
5(z1e1 − z2e2)(z1e1 + z2e2)(z1e1 − z2e2)

Table 7.1: Weierstrass transform of generalised Hermite polynomials Hn,2,rPr in two dimensions.
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1
2
4

Hn

P̃r 0 1 2 3

0 1 (z1e1 + z2e2) (z1e1 + z2e2)(z1e1 − z2e2) (z1e1 + z2e2)(z1e1 − z2e2)(z1e1 + z2e2)

Table 7.2: Weierstrass transform of H0,2,rP̃r = P̃r in two dimensions.
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[38] A. Massé and H. De Ridder. Discrete Weierstrass transform : generalisations. Com-
plex analysis an operator theory, 18(2):29, 2024.

[39] H. De Schepper and F. Sommen. Introductory clifford analysis. In Operator theory,
pages 1339–1367. Springer Basel, 2015.

[40] H. De Ridder and F. Sommen. The spingroup and its actions in discrete clifford
analysis, 2017.

[41] S. Bernstein and S. Schufmann. The Segal–Bargmann Transform in Clifford Analy-
sis, pages 29–52. Springer International Publishing, Cham, 2021.

[42] D. Peña Peña, I. Sabadini and F. Sommen. Segal-bargmann-fock modules of mono-
genic functions. Journal of Mathematical Physics, 2017.

[43] H. Ben Hamdin. On some relations between the hermite polynomials and some
well-known classical polynomials and the hypergeometric function. Journal of Pure
& Applied Sciences, 19:2020, 04 2024.

[44] H. De Ridder, H. De Schepper and F. Sommen. Taylor series expansion in discrete
clifford analysis. Complex Analysis and Operator Theory, 8, 02 2014.

[45] E.E. Kummer. De integralibus quibusdam definitis et seriebus infinitis. Journal für
die reine und angewandte Mathematik, 1837(17):228–242, 1837.



BIBLIOGRAPHY 128

[46] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Re-
lease 1.1.12 of 2023-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl,
and M. A. McClain, eds.

[47] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, ninth dover printing, tenth gpo
printing edition, 1964.

[48] G. G. Bilodeau. An inversion formula for the weierstrass transform. Canadian
Journal of Mathematics, 13:593–601, 1961.

[49] A. Lipton A. Itkin and D. Muravey. Multilayer heat equations: Application to
finance. Frontiers of Mathematical Finance, 1(1):99–135, 2022.

[50] Mathis M. Caprais, U. Pensec O. Shviro, and H. Zeyen. Application of the heat
equation to the study of underground temperature. American Journal of Physics,
92(9):663–669, 09 2024.

[51] L.R. Haff L. Brown, A. DasGupta and W.E. Strawderman. The heat equation
and stein’s identity: Connections, applications. Journal of Statistical Planning and
Inference, 136(7):2254–2278, 2006. In Memory of Dr. Shanti Swarup Gupta.
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