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Abstract 142 

Plant communities are composed of species that differ both in functional traits and 143 

evolutionary histories. As species’ functional traits partly result from their individual 144 

evolutionary history, we expect the functional diversity of communities to increase with 145 

increasing phylogenetic diversity. This expectation has only been tested at local scales and 146 

generally for specific growth forms or specific habitat types, e.g., grasslands. Here, we 147 

compare standardized effect sizes for functional and phylogenetic diversity among 1,781,836 148 

vegetation plots using the global sPlot database. In contrast to expectations, we find 149 

functional diversity and phylogenetic diversity to be only weakly and negatively correlated, 150 

implying a decoupling between these two facets of diversity. While phylogenetic diversity is 151 

higher in forests and reflects recent climatic conditions (1981 to 2010), functional diversity 152 

tends to reflect recent and past climatic conditions (21,000 years ago). The independent 153 

nature of functional and phylogenetic diversity makes it crucial to consider both aspects of 154 

diversity when analyzing ecosystem functioning and prioritizing conservation efforts. 155 

Introduction 156 

Climate change and biodiversity loss are pressing environmental issues, with rising 157 

temperatures and shifting precipitation patterns increasingly driving plant species 158 

extinctions1. These changes have significant implications for ecosystems and human societies 159 

alike, with impacts ranging from altered agricultural yields to increased risk of natural 160 

disasters2–4. To understand and mitigate the effects of climate change and biodiversity loss, it 161 

is crucial to determine how plant species assemble into communities and how these 162 

communities respond to changing environmental and climatic conditions5,6. To do this, we 163 

need to understand the underlying mechanisms of plant community assembly and how 164 

environmental conditions, species’ functional traits and evolutionary histories interact to 165 

mediate these mechanisms7.  166 

Community assembly reflects several processes that can reinforce or oppose each other8. On 167 

the one hand, environmental filters tend to favor similar phenotypic traits generating 168 

clustering within a community9,10. On the other hand, biotic interactions like competitive 169 

exclusion often limit how similar phenotypes can be as species with different traits coexist 170 

more readily, fostering trait divergence11,12. Attributing convergence or divergence to specific 171 
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mechanisms is difficult, however, competitive exclusion can also generate convergence when 172 

other traits are associated with low competitive abilities8. Likewise, divergence can stem from 173 

habitat filtering when traits become correlated with distinct sets of environmental controls13 174 

or when interacting environmental factors select for resident species14. Whatever the 175 

underlying mechanism, species functional traits play an important role in community 176 

assembly while also reflecting how species evolved within specific environments. In other 177 

words, functional traits reflect past selection and are often conserved within phylogenetic 178 

lineages. Species closely related on the evolutionary tree are thus more likely to share similar 179 

traits compared to less closely related species. Depending on the pace of evolution, specific 180 

traits can be more or less conserved on the phylogenetic tree15,16. Indices based on Brownian 181 

motion models of trait evolution like Blomberg`s K and Pagel`s λ17,18 allow us to test whether 182 

traits are phylogenetically conserved. These indices are based on correlations between 183 

species’ distances in trait values and distances along their shared phylogeny7,19,20.  184 

When species within a community share similar traits, the community is said to show 185 

phenotypic clustering, reducing functional diversity (FD). Phenotypic clustering can be 186 

associated with two patterns, either a combination of phylogenetic clustering with trait 187 

conservatism (Fig. 1, bottom left) or a combination of phylogenetic dispersion with trait 188 

convergence (Fig. 1, bottom right)7,15,21. In the former case, there is a positive covariation 189 

between phylogenetic and functional distances, which is why we call the resulting diversity 190 

metrics coupled. In the latter case, the phylogenetic and functional distances are inversely 191 

related, and thus, we call the resulting diversity metrics decoupled. 192 

In contrast, if species in a community have dissimilar traits, the community has a high 193 

phenotypic variation, which is equivalent to a high FD. High FD can either happen in 194 

combination with high phylogenetic variation (Fig. 1, top right) or phylogenetic clustering (Fig. 195 

1, top left). Again, in the former case phylogenetic and functional diversities are coupled, 196 

while being inversely related, and therefore decoupled, in the latter case21,22. Many local 197 

studies found a prevalence of coupled communities with positive covariation of functional 198 

and phylogenetic diversity (FD, PD, respectively)23–25, but negative covariations26,27 and 199 

unclear patterns28 have also been encountered. However, it is not yet known under which 200 

conditions communities express coupled or decoupled functional and phylogenetic 201 

diversities. 202 
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By calculating functional and phylogenetic diversity for 1,781,836 vegetation plots from 203 

sPlot29, the global vegetation plot database, we tested whether patterns of coupling or 204 

decoupling 1) dominate at the global level, 2) show regional patterns, 3) differ between forest 205 

and non-forest ecosystems, and 4) correlate with recent and past climatic gradients. We 206 

hypothesized an overall coupled pattern of functional and phylogenetic diversity, since 207 

phylogenetic diversity has often been found to reflect functional trait diversity, especially for 208 

those phylogenetically conserved traits which are not easily measurable in plants, such as 209 

herbivore and pathogen resistance15,20,30. We expected higher phylogenetic diversity in 210 

forests than in non-forest ecosystems due to the co-occurrence of woody and non-woody 211 

plant species, given that the herbaceous habit has evolved from the ancestral woody state 212 

multiple times and in different lineages31–34. Since phylogenetic and functional diversity 213 

metrics are correlated with species richness, we used null models to calculate standardized 214 

effect sizes and quantify how much phylogenetic and functional diversity differed from 215 

random expectations before comparing them35.  216 
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Results 217 

The relationship of functional and phylogenetic diversity 218 

We modelled the relationship between functional and phylogenetic diversity indices 219 

expressed as a standardized effect size of Rao´s quadratic entropy based on functional traits 220 

(SES.FDQ) and phylogenetic distances (SES.PDQ). We considered three functional traits 221 

representing the main dimensions of the global spectrum of plant form and function, namely 222 

the leaf economics spectrum (specific leaf area), the size-seed mass dimension (plant height), 223 

and the root collaboration gradient (specific root length)36,37. Both diversity indices were 224 

calculated as standardized effect sizes, based on biome-specific null models that account for 225 

the varying species richness across plots, and use the relative frequencies of species 226 

occurrences within each biome to weight species resampling probabilities. This was done 227 

because both functional and phylogenetic diversity are tightly related to species richness. Out 228 

of 1,781,836 vegetation plots, 31.38% showed trait and phylogenetic coupling as SES.FDQ and 229 

SES.PDQ were simultaneously high or low; 53.03% of the vegetation plots had higher SES.FDQ 230 

than SES.PDQ and 15.6% had higher SES.PDQ than SES.FDQ, suggesting that decoupled plant 231 

communities are twice as common than coupled ones and that, on average, global 232 

communities are more functionally than phylogenetically diverse (Fig. 2 A). These results did 233 

not change after removing non-significant standardized effect values, i.e., values between -234 

1.96 and 1.96 standard deviations from the mean (6.9% coupled communities, 45.8% 235 

decoupled with high FD values and 17.3% decoupled with high PD values). 236 

We did not find any clear geographical pattern at the global scale (Fig. 2 B). Decoupled 237 

communities with high SES.FDQ and low SES.PDQ, (see Methods for definition of high and low 238 

values of SES.FDQ and SES.PDQ) occurred in the western USA and locally across Europe, while 239 

communities with low SES.FDQ and high SES.PDQ were found close to the Arctic Circle in 240 

Scandinavia and Siberia, and in New Zealand and Japan. Coupled communities with high 241 

values of both diversity indices were encountered in the eastern USA, Central-Europe as well 242 

as in New-Zealand and Japan. 243 

Overall, we found a negative relationship between SES.FDQ and SES.PDQ. Accounting for the 244 

spatial structure of the data by adding a smoothing spline, our general additive model 245 

explained 7.8% of the deviance in SES.FDQ (Fig. 2 A). Modelling the raw values of FDQ against 246 
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the raw values of PDQ, hence not accounting for the effect of species richness, also returned 247 

a negative relationship with 18.5% of deviance explained (Fig. S 1 A). The explained deviance 248 

increased to 36.2% when the distance matrix of phylogenetic distances was square root-249 

transformed, accounting for the non-linearity of trait evolution (Fig. S 1 B).  250 

The negative relationship between SES.FDQ and SES.PDQ was robust to the use of alternative 251 

null models, diversity indices, selections of functional traits, and subsets of vegetation plot 252 

data (see Methods for details). Using a null model based on a global species pool, SES.PDQ 253 

together with the spatial smoothing spline explained 5.8% of the deviance in SES.FDQ, which 254 

increased to 6.2% when the phylogenetic distances were square root-transformed (Fig. S 1 C, 255 

D). Based on a biome-specific, but unweighted species pool, the explained deviance was 6.8% 256 

(Fig. S 1 F). When null models were constrained based on a phytogeographic38 species pool 257 

the explained deviance was 7.8% (Fig. S 1 G). The same negative relationship was found when 258 

using alternative indices of functional and phylogenetic diversity, i.e., when modelling 259 

standardized effect size of functional dispersion against mean pairwise distance (MPD). The 260 

explained deviance in this case was 7.1% (Fig. S 1 E). Considering each trait individually, or 261 

including additional traits (eight, see Methods for details) but only for an environmentally-262 

balanced subset of vegetation plot data (i.e., sPlotOpen39), also returned a negative 263 

relationships between FDQ and PDQ (Fig. S 7, Table S 1). 264 

The environmental predictors  265 

We used Boosted Regression Trees (BRT) to select the environmental variables that best 266 

explain either SES.FDQ or SES.PDQ. The BRTs suggested climatic variables to be most relevant 267 

for shaping patterns of SES.FDQ (Fig. 3 A). Temperature of the coldest quarter and coldest 268 

month (both reflected by PC2 in a principal component analysis based on 19 bioclimatic 269 

variables) had the highest relative influence on SES.FDQ, followed by the climatic variability 270 

after the Last Glacial Maximum (LGM) and precipitation seasonality (PC5). Partial dependence 271 

plots suggested a predominantly positive relationship between SES.FDQ and climatic 272 

variability after the LGM and a negative one with precipitation seasonality (PC5, Fig. S 3). 273 

SES.FDQ first increased and then decreased with increasing temperatures of the coldest 274 

quarter and coldest month (PC2). 275 
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Regarding phylogenetic diversity, SES.PDQ was especially related to the vegetation formation 276 

type (forest vs. non-forest, classified based on the cover of the tree layer and species traits, 277 

such as growth form and height, see Methods), being higher in forest compared to non-forest 278 

ecosystems, and tended to increase with annual precipitation (PC1; Fig. 3 A, Fig. S 4 A). 279 

When modelling the log ratio of SES.FDQ to SES.PDQ, BRTs showed that the classification of 280 

forest / non-forest and annual precipitation (PC1) had the highest relative influence, 281 

resembling what we observed for SES.PDQ (Fig. 3 B, S 4 B).  282 

From the BRTs, we chose variables with a relative influence greater than 12.5% (the relative 283 

influence expected by chance given by 100% / 8 explanatory variables) to use in general 284 

additive models (GAM) predicting SES.FDQ or SES.PDQ after accounting for spatial 285 

autocorrelation. The model for SES.FDQ explained 4.6% of the deviance and suggested that 286 

functional diversity increases with increased climatic variability after the last glacial maximum 287 

and temperatures of the coldest quarter or month (PC2, Fig. 4) and decreases with 288 

precipitation seasonality (PC5).  289 

In contrast, the model for phylogenetic diversity showed higher explanatory power (37.3% of 290 

the deviance) with annual precipitation (PC1), vegetation type, and the spatial spline all 291 

affecting SES.PDQ. Forests and sites with increased precipitation had higher SES.PDQ (Fig. 5). 292 

Modeling the log ratio between SES.FDQ and SES.PDQ confirmed that effects of SES.PDQ 293 

dominate, accounting for 30.8% of the deviance (Fig. 6).  294 

To explore effects of environmental predictors on overall patterns of coupling and 295 

decoupling, we modelled the relationship between SES.FDQ and SES.PDQ as an ordered 296 

categorical variable with three states. This acknowledges that while there is only one way for 297 

communities to be coupled, decoupling can occur with either PD > FD, or FD > PD. Doing this 298 

resulted in a model that explained 10.2% of the deviance (Fig. S 5). Annual precipitation (PC1), 299 

precipitation seasonality (PC5), and forest / non-forest had the most power to discriminate 300 

the three categories. 301 

 302 

 303 

 304 
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Discussion 305 

Plant communities differ in their functional and phylogenetic composition. Here, we modelled 306 

relationships between functional and phylogenetic diversity in plant communities across the 307 

globe to infer which factors best predict these separate facets of diversity. Values of 308 

functional and phylogenetic diversity tend to be decoupled, suggesting global patterns of 309 

community assembly are primarily driven by either functional or phylogenetic diversity rather 310 

than the two being integrated. Recent climatic conditions and past climatic conditions tended 311 

to drive differences in functional diversity (FD). As predicted, we found higher phylogenetic 312 

diversity (PD) in forest vs. non-forest communities. The log ratio of FD and PD varied with 313 

vegetation type (forest vs. non-forest) and recent climatic conditions, in line with what we 314 

observed for PD. 315 

Contrary to our hypothesis, we found a negative but weak relationship between FD and PD at 316 

the global scale (Fig. 2 A). As PD is often considered to be a proxy for capturing unmeasured 317 

patterns of species functional traits, we expected a positive relationship between FD and 318 

PD40, as postulated also by theoretical studies25. The negative correlation observed at the 319 

global scale shows that functional and phylogenetic diversity are more often decoupled than 320 

coupled in plant communities, with communities either having high phylogenetic or 321 

functional diversity, which is in line with recent results in grassland communities26. 322 

Additionally, distribution of traits across phylogenies can vary at small spatial scales, leading 323 

to both trait clustering and overdispersion15,20. This indicates that, contrary to the expected 324 

coupling of FD and PD, closely related species often exhibit considerable differences in trait 325 

values, while phylogenetically distant species can often share similar trait values. It is possible 326 

that co-occurring species with similar traits differ in other, not easily measurable traits, e.g., 327 

herbivory resistance, which are captured by phylogeny but less so by other functional traits.  328 

Functional clustering could reflect equalizing competitive dynamics in neutrally assembled 329 

communities41 or broader-scale environmental filters. Additionally, when considering 330 

lineages’ biogeographic histories, phylogenetic clustering could arise due to recent stochastic 331 

extinctions or limited dispersal following allopatric speciation42.  332 

The observed negative covariation between PD and FD might also be explained by the 333 

different impacts of biotic interactions and environmental filtering across communities41,43,44. 334 



 13 

In phylogenetically clustered communities, competitive exclusion may act as a primary 335 

mechanism, favoring the co-existence of species with dissimilar phenotypes and thus higher 336 

FD. In contrast, environmental filtering seems to be the driving process in communities with 337 

low FD and high PD. Here, only species with specific phenotypes are admitted to the 338 

community45, but if these come from different clades, the community will exhibit functional 339 

convergence but phylogenetic variation. This pattern also suggests that species can differ in 340 

features not captured by the traits we use to calculate FD46. Since most communities show 341 

decoupling with high FD (53%), competition may drive global plant community assembly 342 

processes most strongly. However, we must consider that trait divergence can also arise from 343 

environmental factors that are spatially nested and interact with each other in filtering 344 

species within a community. That is, trait divergence is generated within the studied 345 

community units when the filtering effects of fine-scale environmental factors, such as those 346 

related to soil and herbivory, interact with and are nested within coarse-scale factors, such as 347 

climate14. In communities with intermediate values of PD, environmental filtering and 348 

competitive exclusion appear to be equally important, resulting in coupled communities. 349 

However, the relative importance of these mechanisms is difficult to test as we do not know 350 

whether species are excluded from any given community due to the environmental 351 

conditions, biotic interactions, dispersal limitation, or interactions among multiple 352 

factors14,47. FD and PD could then be decoupled in communities where geographical and local 353 

drivers differentially combine with biotic interactions to affect species’ functional and 354 

phylogenetic relationships.  355 

We observed no clear spatial patterns relating functional to phylogenetic diversity. Plots with 356 

coupled and decoupled FD and PD often occurred in geographical proximity, suggesting that 357 

local factors can dominate community assembly within regions (Fig 2 B). Previous studies 358 

reported geographical patterns of functional diversity based on climatic conditions, such as 359 

precipitation gradients48. Similarly, phylogenetic diversity tends to decrease polewards49,50. 360 

Studies on the global distribution of PD showed striking differences across ecoregions or 361 

biomes51,52. Such regional diversity patterns rarely translate into global patterns as broad- 362 

scale environmental conditions rarely correspond to local ecological conditions. Nevertheless, 363 

treating relationships between functional and phylogenetic diversity as a three-level 364 

categorical variable (“Decoupling with higher PD”, “Coupling”, “Decoupling with higher FD”) 365 
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allowed us to demonstrate that coarse-scale environmental factors do play a role (Fig. S 5). 366 

This suggests that even though we could not explain the full range of possible combinations 367 

of FD and PD, broader biogeographical patterns emerge. 368 

Although SES.FDQ and environmental conditions sometimes covary, we failed to show that 369 

SES.FDQ is strongly driven by those conditions at the global scale (Fig. 4). In particular, 370 

functional diversity was not well explained by recent climatic conditions and climatic 371 

variability after the Last Glacial Maximum (LGM). This is in line with studies suggesting that 372 

the functional composition of local communities depends mostly on local factors, such as 373 

land-use history, soil properties, and microclimatic conditions24,53. However, a fine 374 

classification of biomes as functional units or vegetation types, as was done in a recent 375 

Europe-wide analysis on climate-trait relationship54 might  increase the explanatory power of 376 

our model. 377 

Phylogenetic diversity (SES.PDQ) was consistently higher in forests compared to non-forest 378 

ecosystems, suggesting that different layers within forest communities support diverse 379 

evolutionary histories (Fig. 5). Most tree species belong to predominantly woody families, 380 

many of which are phylogenetically distant from other plant families, augmenting the 381 

phylogenetic diversity found in forest ecosystems31–33. This is particularly true for forest 382 

conifers which represent a clade of woody species that separated from today’s angiosperms 383 

as early as 300 Mya19. Many forest understories also support cryptogams (including vascular 384 

ferns and lycopods) with distinct evolutionary histories relative to trees, further increasing 385 

phylogenetic diversity in forests55,56. These taxa also occur as epiphytes in tropical forests, 386 

contributing to their increased phylogenetic diversity. Stable microclimatic conditions under 387 

a closed canopy could also create conditions favoring species from distinct families57,58. 388 

Although stratification appeared to increase phylogenetic diversity, it did not increase 389 

functional diversity. 390 

Overall, our findings suggest that while forest ecosystems display high phylogenetic diversity, 391 

the functional diversity of plant species in forests may be limited by convergence in functional 392 

traits across different layers. These analyses represent the first attempt to understand global 393 

relationships between functional and phylogenetic diversity but come with limitations. 394 

Although sPlot represents a global harmonized database of vegetation plots, its coverage is 395 
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uneven across biomes and vegetation types, potentially biasing our results. We attempted to 396 

correct for this by down-sampled data from the temperate zone in favour of data from the 397 

tropics to an environmentally balanced subset. However, we observed an even stronger 398 

negative relationship between FD and PD. This suggests that tropical plant communities 399 

contribute disproportionately to this pattern. In addition, data in sPlot were collected using 400 

various sampling protocols and approaches, sometimes including only woody species and 401 

using plots of different shapes and sizes. We sought to partially overcome this problem by 402 

including predictors related to plot record characteristics (see Methods) and by calculating 403 

standardized effect sizes. Still, we do not know how these biases may have affected 404 

correlations between FD and PD. We also lacked information on the successional status of the 405 

vegetation plots, potentially influencing our results if early successional stages are lower in 406 

FD and PD compared to later successional communities. Because species abundance data are 407 

not well standardized in sPlot, it was more robust to use presence-absence data, but this 408 

might limit comparisons with other studies. It is also possible that the functional traits we 409 

selected might affect the relationships between functional and phylogenetic diversity we 410 

observed, especially given that we used only three traits to calculate FD. We note, however, 411 

that our results were robust to which traits were selected, individually or jointly, for 412 

calculating FD, with these not affecting the relationship between FD and PD (Fig. S 7, Tab. S 413 

1).  414 

Polytomies included in constructing the phylogeny might have led us to underestimate PD59, 415 

which is why we used standardized effect sizes for PD. Additionally, we found the same 416 

negative pattern when we considered functional dispersion and mean pairwise distance (Fig. 417 

S 1 E) as proxy for FD and PD, where the latter is known to show different dispersion patterns 418 

than PDQ
60. However, when including PD as an explanatory variable in future studies, it is 419 

important to consider the relationship between traits and phylogeny and the potential non-420 

linearity of trait evolution. Additionally, our analysis revealed that none of the potential traits 421 

exhibited a strong phylogenetic signal in all families considered in this study (Fig. S 7 B). 422 

Moreover, it appeared that certain families tend to possess more conserved traits compared 423 

to others. This is in line with other findings that evolutionary conservation can be associated 424 

with specific traits and lineages38, but this is not a common pattern. Consequently, depending 425 

on the sampled community and plant species, different patterns may emerge in the 426 
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relationship between FD and PD. While both plant characteristics and evolutionary history 427 

play crucial roles in community assembly processes, just which interacting mechanisms 428 

operate on which underlying biotic and abiotic factors remain unclear. 429 

Our findings on the relationship of SES.FDQ and SES.PDQ, imply that ecological communities 430 

can exhibit many combinations of functional and phylogenetic diversity. The decoupling of FD 431 

and PD found here plus the overall slightly negative correlation imply that competitive 432 

exclusion may commonly occur in plant communities. Our results also highlight the need to 433 

conserve both functional and phylogenetic diversity if we are to safeguard biodiversity. Both 434 

FD and PD play key roles in community assembly and likely affect how species and their 435 

interactions within communities will respond to changing climates and other drivers of global 436 

change. Future research may reveal which regional conditions contribute to hotspots of FD 437 

and PD and why. Understanding the diverse and context-dependent nature of FD and PD will 438 

shed light on the complex dynamics of ecological communities and help us design schemes to 439 

better protect the diversity they support. 440 

  441 
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Methods 442 

Species community data 443 

The vegetation plot database sPlot29 (www.idiv.de/splot) is a harmonized collection of 444 

national- and regional-scale vegetation-plot datasets. sPlot provides geo-referenced 445 

information on the presence and abundance of all vascular plants co-occurring in a sampling 446 

area, i.e., vegetation plot. The database version sPlot 3.0 holds a total number of 1,977,637 447 

vegetation plot records from 160 datasets collected between 1873 and 2019, across six 448 

continents and most biomes, including 76,912 vascular plant species (for version 2.1, see ref. 449 

29). The size of a plot varies according to the type of vegetation being sampled; from 1 m2 in 450 

grasslands to 250,000 m2 in forest ecosystems. The vegetation type of a plot was classified as 451 

forest and non-forest based on tree layer cover and the growth form of dominant species29. 452 

Vegetation plot records were included in the study if the cumulative coverage of species for 453 

which both trait and phylogenetic information was available accounted for at least 50% of the 454 

relative vegetation cover in that plot (see below). 455 

In addition,  we used sPlotOpen39, which is an environmentally balanced, open-access subset 456 

of sPlot, as a benchmark of our results, both when testing for the effect of trait selection when 457 

calculating functional diversity, and for the effect of uneven coverage of sPlot data across the 458 

Earth`s biomes. 459 

Functional diversity 460 

Plant functional traits were available from the gap-filled version of the TRY 5.0 database61–64. 461 

We calculated functional diversity as Rao’s quadratic entropy (FDQ) as well as functional 462 

dispersion (FDis) for all vegetation plots in sPlot 3.0. The calculation of Rao’s quadratic 463 

entropy65 is based on a Gower distance matrix calculated for the species present in each 464 

vegetation plot. FDis was computed from the uncorrected species-species distance matrix 465 

with the function dbFD from the R-package FD66,67.  We based this calculation on three 466 

functional traits selected to cover most of the variation within plant traits and to represent 467 

different axes in the plant economic spectrum, i.e., belowground and resource strategy of 468 

acquisition or conservation (specific root length, specific leaf area) and reproduction strategy 469 

of quality or quantity (plant height)37,68. To evaluate the influence of trait selection on the 470 

http://www.idiv.de/splot
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relationship of functional and phylogenetic diversity, we calculated FDQ on eight functional 471 

traits (specific leaf area, specific root length, seed mass, plant height, leaf phosphorus and 472 

nitrogen content, leaf dry matter content, chromosome number), both taken individually and 473 

jointly. We did this additional analysis based on the sPlotOpen subset only, since calculating 474 

standardized effect sizes (see below) of FD calculated on eight traits in all plots was 475 

computationally unfeasible, even using a High-Performance Cluster. Additionally, considering 476 

all eight traits for the complete dataset would have led to a loss of approximately 2000 species 477 

(~10% of species considered in this study, see below) due to missing data in the TRY database. 478 

Functional traits can be conserved in the phylogeny. This was tested with two evolutionary 479 

models, i.e., Blomberg`s K and Pagel`s λ, where the latter is known to be more robust against 480 

incomplete resolved phylogenies or suboptimal branch lengths17,18. Blomberg`s K and Pagel`s 481 

λ were calculated using the function phylosig from the R-package picante69. In contrast to 482 

other tests for phylogenetic signals both models can be used to compare phylogenetic signals 483 

across different phylogenies17, which needs to be done as a global plant phylogeny is simply 484 

too large for an appropriate calculation of phylogenetic signals. Therefore, the phylogenetic 485 

signal for each trait was calculated within each family. All eight functional traits showed either 486 

no or low phylogenetic signals for Pagel`s ʎ and Blomberg`s K (Fig. S 7 B & C). Therefore, we 487 

assume that there is also no phylogenetic signal across vascular plants for the considered 488 

traits. 489 

Phylogenetic diversity 490 

For all species present in sPlot, a phylogenetic tree was built using the function phylo.maker 491 

from the R-package V.PhyloMaker70. The phylogenetic backbone of the package is the 492 

combination of GenBank taxa with a backbone provided by the Open Tree of Life, version 9.1 493 

(GBOTB), for seed plants71 and the clade of pteridophytes72. Missing genera were inserted to 494 

the half point of the family tree. This approach was evaluated by ref. 73, who showed that 495 

phylogenetic indices based on the calculated tree were highly correlated with indices based 496 

on the “PhytoPhylo megaphylogeny” (updated phylogenetic tree from ref. 72). Species that 497 

could not be inserted by the phylo.maker were bound to the half of the terminal level of a 498 

sister species if only one species was available in this genus, or to the most recent ancestor 499 
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(MRCA) if the genus included more than one species. This additional binding was done with 500 

the bind.node function from the R-package phytools74. 501 

The computed phylogenetic tree for sPlot contained 160 families with 68,052 of 76,912 502 

species (88%) present within the database. Additional 3,802 species were included, with 503 

3,348 being bound to the node of the most recent ancestor (MRCA) of already present sister 504 

species and 454 species to the half of the terminal level on the family node. The final 505 

phylogenetic tree contained 71,854 species on 32,395 nodes. A total of 31,727 species in the 506 

phylogeny also had traits in the TRY database. Of this subset, 322 species (approx. 1%) were 507 

bound to the half of the terminal level on the family node and 2766 (approx. 9%) to the MRCA.  508 

Vegetation plot records were only included in the analysis if both trait and phylogenetic 509 

information was available for at least 50% of the total relative cover of the species in that 510 

plot. In total, 1,781,836 out of 1,977,637 plot records remained. 511 

Phylogenetic diversity was calculated as Rao`s quadratic entropy (PDQ) which amounts to the 512 

mean nearest taxon distance for presence-absence data. We used the function raoD from the 513 

R-package picante69, which is based on the cophenetic distance of all n species in the 514 

phylogeny, pruned to contain only the species in that plot. To account for the non-linearity of 515 

evolutionary histories, we also calculated PDQ based on the square root-transformed 516 

cophenetic distance75. Additionally we calculated mean pairwise distance (MPD), to be 517 

compared with functional dispersion, as MPD could show opposite dispersion patterns than 518 

PDQ
60. Only species with both trait information and known phylogeny were used to calculate 519 

functional and phylogenetic diversity. 520 

Standardized effect size 521 

The species richness of the vegetation plot records ranged from one to 412 species (Fig. S 8). 522 

Functional and phylogenetic diversity indices are known to depend on species richness76–78. 523 

Especially for functional diversity, a higher number of species in a community is more likely 524 

to return higher functional diversity values than communities with fewer species77. We 525 

controlled for species richness by calculating the standardized effect size of each diversity 526 

index for every vegetation plot record79, fixing the number of species of the plot record and 527 

drawing species randomly, which is equivalent to shuffling traits across species. As species do 528 

not equally occur across the globe, we calculated our null expectations based on biome-529 
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specific species pools accounting for the frequency of species in the plot records in each 530 

biome. However, to see if the patterns also hold true for broader species pools we used the 531 

following hierarchical approach with four stages of defined species pools. For the simplest 532 

species pool, we calculated our null expectations based on all species present in the whole 533 

sPlot database, so we allowed each species to occur everywhere in the world. For a more 534 

geographically constrained approach we calculated the null expectations based on species 535 

pools within 16 phytogeographical units38 (stage 2) and ten predefined biomes (stage 3) in 536 

response to global climate variation29,80, namely: alpine, boreal zone, dry mid-latitudes, dry 537 

tropics and subtropics, polar and subpolar zone, subtropics with winter rain, subtropics with 538 

year-round rain, temperate mid-latitudes, tropics with summer rain, and tropics with year-539 

round rain. The fourth and most complex null model was based on the species pool within 540 

each biome, additionally sampling the species weighted by their frequency in the plot records 541 

within each biome. This means a species that occurred more frequently within a biome was 542 

randomly drawn more often to recalculate the null diversity index, compared to a species 543 

occurring less often. For each of the four null models, we calculated the mean and standard 544 

deviation of the distribution of null functional and phylogenetic indices across 499 draws. 545 

Vegetation plots only containing one species or for which trait and phylogenetic information 546 

was not available were excluded from functional or phylogenetic diversity calculations. 547 

Standardized effect sizes (SES) were obtained by subtracting the mean index of the 548 

randomized data from the observed index and dividing the result by the standard deviation 549 

of the index of the randomized data. 550 

Definition of coupling and decoupling 551 

To measure the percentage of coupled and decoupled communities a confidence interval was 552 

defined. We randomly drew one million values from a uniform distribution, defined between 553 

the minimum and maximum of observed standardized effect sizes of Rao´s quadratic entropy 554 

based on functional traits (SES.FDQ) as explanatory variable. We created a correlated response 555 

variable by adding an error from a normal distribution, obtained from the mean and the 556 

standard deviation of the observed SES.FDQ. We fitted a linear model and extracted the 557 

intercept and the confidence interval. Communities with an observed value of SES.FDQ were 558 

considered coupled if the standardized effect sizes of Rao´s quadratic entropy based on 559 

phylogenetic distance (SES.PDQ) fell within this interval. Based on this, we defined three 560 
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categories of community patterns, i.e., “Decoupling with higher FD than PD”, “Coupling” and 561 

“Decoupling with lower FD than PD”. This variable was later used as an ordered categorical 562 

response. Additionally, we calculated the log ratio between SES.FDQ and SES.PDQ as 563 

log(SES.FDQ/SES.PDQ) after scaling the values between 0.001 and 1. Positive and negative 564 

values define the deviation with higher and lower SES.FDQ than SES.PDQ, respectively, from a 565 

perfect coupled community.  566 

Explanatory variables 567 

Recent climatic conditions (1981-2010) were represented by the 19 bioclimatic variables from 568 

CHELSA v.2.181,82. A principal component analysis (PCA) was performed to reduce data 569 

dimensionality. In the following analyses, we only used the first five PCA axes, collectively 570 

accounting for 92.3% of the explained variation. We interpreted the axes based on the highest 571 

loadings of the corresponding climatic variable as follows: annual precipitation for PC1; mean 572 

daily air temperature of the coldest quarter and mean daily minimum air temperature of the 573 

coldest month for PC2; annual air temperature range for PC3; isothermality for PC4; and 574 

precipitation seasonality for PC5 (Tab. S 2, Fig. S 9). 575 

Mean air temperature variability after the Last Glacial Maximum (LGM) was derived from the 576 

open-access StableClim v1.1. dataset, containing estimates from 21,000 years ago at 2.5° 577 

spatial resolution83. Climatic variability represents rapid global warming during the last 578 

deglaciation during the Bølling-Allerød transition84 on land and sea. The mean temperature 579 

variability between 21,000 B.P. and 100 A.D. was used as index for the climatic variability after 580 

the LGM. 581 

All climatic variables were extracted for each plot with the extract function from the R-582 

package raster85. 583 

Not all vegetation plot records were complete in terms of the sampled functional groups. 584 

Records from tropical forest plots often contained either only tree data, or tree and shrub 585 

data. As the exclusion of those plots would have substantially reduced the spatial coverage of 586 

our model, we added the nominal predictor variable called ‘plants recorded’ to our models 587 

to partially control for this source of bias. The variable ‘plants recorded’ has four values: all 588 

vascular plants, only dominant species, all woody plants, only trees. Additionally, we used the 589 
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vegetation type (forest vs. non-forest) from the vegetation plot database sPlot as predictor 590 

variable.  591 

In total, we prepared eight explanatory variables, five related to the recent climatic 592 

conditions, one to past climatic variability, and two to plot record characteristics. 593 

Statistical modelling 594 

A generalized additive model (GAM) was used to model the relationship between functional 595 

and phylogenetic diversity, either expressed as observed Rao`s quadratic entropy (for 596 

phylogenetic diversity also after a square root transformation of the distance matrix), or as 597 

standardized effect size of Rao`s quadratic entropy, functional dispersion and mean pairwise 598 

distance. A GAM is a generalized linear model in which the linear response can depend on 599 

unknown smooth functions of the explanatory variables. To account for the spatial structure 600 

of the data, the spatial coordinates were included as smooth spherical splines. All GAMs 601 

included a basis penalty smoother spline on the sphere (bs = ”sos”), applied to the geographic 602 

coordinates of every plot, thus taking spatial autocorrelation into account. The explanatory 603 

variable was included as linear predictors without any smooth function. The model was 604 

performed using the function gam from the R-package mgcv86–91, defined as following: 605 

gam(SES.FDQ ~ SES.PDQ + s(Longitude, Latitude, bs = "sos"), family = "gaussian", method = 606 

"REML") 607 

SES.FDQ is the standardized effect size of Rao's quadratic entropy based on the three selected 608 

functional plant traits and SES.PDQ is the standardized effect size of Rao's quadratic entropy 609 

based on the phylogenetic distances of species present in the community. This step was done 610 

for the complete dataset and for the sPlotOpen subset, for which we considered the eight 611 

traits, both individually and jointly, for calculating standardized effect size of FD. 612 

To model the relationship between either functional or phylogenetic diversity and the set of 613 

the eight explanatory variables described above, we used a two-step approach. In the first 614 

step, we used Boosted Regression Trees (BRTs) to select relevant explanatory variables and 615 

quantify their relative influence. In the second step, we fitted GAMs using functional, 616 

phylogenetic diversity or their log ratio as response variables, and the predictors selected in 617 
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the first step as explanatory variables. We did this because fitting a full GAM algorithm with 618 

all predictors would lead to convergence issues, due to the huge number of data points.  619 

BRTs are a machine-learning technique used in regression and classification having few prior 620 

assumptions and being robust against overfitting and collinearity. They are known to uncover 621 

nonlinear relationships as well as interactions among predictors. The parameters of the BRT 622 

were set as follows: a tree complexity of five and a bag fraction of 0.5. The learning rate was 623 

set to 0.01 with a maximum number of 20,000 trees. The BRTs were calculated using the 624 

gbm.step routine from the dismo package92. An explanatory variable was considered relevant 625 

in the model if its relative influence was greater than 12.5%, which is the expected influence 626 

of a variable if all the eight predictors had an equal relative importance. 627 

The variables that were considered as relevant from the BRTs were then used in a second set 628 

of GAMs, having as response variable either functional diversity (SES.FDQ), phylogenetic 629 

diversity (SES.PDQ) or their log ratio, and as explanatory variables those that turned out to be 630 

relevant in the corresponding BRT. Additionally, we fitted a GAM with the ordered categorical 631 

response of coupling and decoupling against the environmental predictors, which were 632 

selected by the BRTs for functional and phylogenetic diversity. As the three categories were 633 

not equally represented, we sampled 10,000 communities for each category and repeated 634 

the GAM 100 times, besides running the same model on the complete (unbalanced) dataset. 635 

The spatial coordinates were included as smooth spherical splines in all models as explained 636 

above. As not all vegetation plot entries in sPlot are classified as forest / non-forest the 637 

number of observations for the environmental models was 1,497,238. The prediction of each 638 

explanatory variable was performed using the prediction function from the R-package 639 

marginaleffects93 by predicting the explanatory variable based on the sequence between the 640 

minimum and maximum of the variable in the original data and the GAM model. The plotted 641 

regressions were obtained by extracting the residuals from a GAM without the explanatory 642 

variable of interest. 643 

For plotting, functional and phylogenetic variables were averaged for each grid cell with a size 644 

of 863.8 km2. The spatial smoother within the GAM was plotted at the same resolution based 645 

on the following model (example based on SES.FDQ): 646 
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gam (SES.FDQ ~ 1 + s(Longitude, Latitude, bs = "sos"), family = "gaussian", method = "REML") 647 

All analyses were performed in R 4.1.394. 648 

Data availability 649 

Source data are provided with this paper. All calculated biodiversity indices necessary to 650 

reproduce the results of this manuscript are available at: https://doi.org/10.25829/idiv.3574-651 

mpmk2195 652 

The vegetation-plot raw data for sPlotOpen is available at: 653 

https://www.idiv.de/de/splot/splotopen.html 654 

The vegetation-plot raw data contained in the sPlot database are available upon request by 655 

submitting a project proposal to sPlot’s Steering Committee. The proposals should follow the 656 

Governance and Data Property Rules of the sPlot Working Group available on the sPlot 657 

website (www.idiv.de/splot).  658 

Code availability 659 

All R scripts used for this study can be found in our GitHub repository at 660 

https://github.com/georghaehn/Haehn-et-al-2024-FD-PD-coupling. 661 
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Figures 699 

700 
Figure 1: Conceptual figure of the relationship between functional and phylogenetic diversity 701 

after Ref. 20 & 21. If functional diversity is proportional to community phylogenetic diversity, 702 

we consider the community to be coupled (diagonal). The extremes are the results either of 703 

phylogenetic clustering in combination with trait convergence (bottom left) or phylogenetic 704 

overdispersion in combination with trait divergence (top right). Decoupled communities can 705 

be either observed if a community shows phylogenetic overdispersion in combination with 706 

trait convergence (bottom right) or if it shows phylogenetic clustering with trait divergence 707 

(top left). 708 



 27 

709 
Figure 2: The relationship of standardized effect size of quadratic functional (SES.FDQ) and 710 

phylogenetic diversity (SES.PDQ). SES.FDQ is based on three functional traits: specific leaf area, 711 

plant height and specific root length. A SES.FDQ as a function of SES.PDQ with the linear 712 
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regression slope (blue) after accounting for spatial autocorrelation within a general additive 713 

model (7.8% explained deviance). Additionally, the line of coupling with the 1:1 relationship 714 

(black) and the confidence interval (gray, see Methods), with 31.38% of the observations lying 715 

within the confidence interval and 53.03% and 15.6% show decoupling, with either FD > PD or 716 

FD < PD, respectively. B Mean log ratio of standardized effect sizes of functional (SES.FDQ) and 717 

phylogenetic diversity (SES.PDQ) per raster cell (863.8 km2). Negative values indicate higher 718 

observed SES.PDQ than SES.FDQ and vice versa. The extracted values from the spatial 719 

smoothing spline from the general additive model can be found in Fig. S 2 D. 720 

721 
Figure 3: Results of the Boosted Regression Trees for A SES.FDQ, B SES.PDQ and C the logarithm 722 

of the ratio between SES.FDQ and SES.PDQ. An explanatory variable was considered relevant 723 

in the model when its relative influence was greater than 12.5%, indicated by the dashed line, 724 

which is the expected influence of a variable if all eight predictors had the same relative 725 

importance. The signs indicate the direction of the significant effects based on the partial 726 

dependence models (Fig. S 3 & 4). Explanations of the abbreviations can be found under Fig. 727 

2; LGM Refers to last Glacial Maximum. 728 
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Figure 4: Predictors of 729 
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the standardized effect size of functional diversity (SES.FDQ). Residuals of SES.FDQ as a function 730 

of A temperature of the coldest quarter and month (PC2), B precipitation seasonality (PC5), 731 

and C climatic variability after the last glacial maximum. The generalized additive model 732 

(GAM) explained 4.6% of the deviance. The solid line shows the regression obtained from the 733 

GAM. The density hexagons show the distribution of the residuals of the model without the 734 

explanatory variable of interest. The smooth term of SES.FDQ can be found in Fig. S 6 A. 735 

736 
Figure 5: Predictors of standardized effect size of phylogenetic diversity (SES.PDQ). Residuals 737 

of SES.PDQ as a function of A annual precipitation (PC1), and B vegetation type. The 738 

generalized additive model (GAM) explained 37.3% of the deviance. The solid line shows the 739 

regression obtained from the GAM. The density hexagons show the distribution of the 740 

residuals of the model without the explanatory variable of interest. The smooth term of 741 

SES.PDQ can be found in Fig. S 6 B. 742 

743 
Figure 6: Predictors of the log ratio between the standardized effect size of functional diversity 744 

(SES.FDQ) and phylogenetic diversity (SES.PDQ). Residuals of log(SES.FDQ/SES.PDQ) as a 745 

function of A annual precipitation (PC1), and B vegetation type. The generalized additive 746 

model (GAM) explained 30.8% of the deviance. The solid line shows the regression obtained 747 

from the GAM. The density hexagons show the distribution of the residuals of the model 748 

without the explanatory variable of interest. The smooth term of log(SES.FDQ/SES.PDQ) can be 749 

found in Fig. S 6 C. 750 
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