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Highlights 
Significant improvements in limited pro-
teolysis coupled to mass spectrometry 
(LiP-MS) protocols, including advanced 
digestion and data acquisition methods, 
have expanded its capabilities for struc-
tural proteomics. 

LiP-MS has been used in diverse 
experimental models, including mam-
malian  cells, microbial, fungal, and  
plant systems, and  also  biofluids, 
offering new insights into protein 
function and interactions. 
Limited proteolysis coupled to mass spectrometry (LiP-MS) has emerged as a 
powerful proteomic tool for studying protein conformations. Since its introduc-
tion in 2014, LiP-MS has expanded its scope to explore complex biological sys-
tems and shed light on disease mechanisms, and has been used for protein drug 
research. This review discusses the evolution of the technique, recent technical 
advances, including enhanced protocols and integration of machine learning, 
and diverse applications across various experimental models. Despite its 
achievements, challenges in protein extraction and conformotypic peptide iden-
tification remain. Ongoing methodological refinements will be crucial to over-
come these challenges and enhance the capabilities of the technique. 
However, LiP-MS offers significant potential for future discoveries in structural 
proteomics and medical research. 
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LiP-MS can be used to investigate dis-
ease mechanisms, offering insights into 
protein dynamics in conditions such as 
cancer and neurodegenerative diseases. 

Recent studies leverage LiP-MS for 
drug–target interaction profiling to aid 
the discovery and development of novel 
therapeutics. 

LiP-MS is expected to advance struc-
tural proteomics and (bio)medical 
research, thereby aiding biomarker 
discovery and therapeutic target 
identification.
Marking accessible regions in protein structures using a MS-based read-out 
The structure of a protein can be affected by several factors, including binding to other molecules, 
protein modifications, and fluctuations in its direct environment (e.g., cell temperature and osmolarity). 
Such structural changes may alter the functions of proteins, signal their degradation, or lead to their 
relocalization to cellular organelles or subcellular structures; these changes can also be hallmarks of 
protein-folding diseases [1]. 

MS remains the key technology for comprehensive and unbiased proteome analysis, and 
bottom-up proteomics (see Glossary) is the primary technology employed. Different MS-
based methodologies were developed to study the structures and conformations of individual 
proteins, protein complexes, and entire proteomes (Box 1). Notably, in 2014, Picotti and col-
leagues introduced limited proteolysis coupled to mass spectrometry (LiP-MS) [2], a proteolytic 
approach that has become transformative for studying changes in protein structures on a 
proteome-wide scale. LiP-MS relies on the controlled proteolytic cleavage of proteins with a 
broad-specificity protease. By limiting the duration of this proteolysis step, the protease 
predominantly targets and marks surface-exposed and flexible protein regions because both 
surface accessibility and local structural flexibility influence digestion efficiency. Conditions 
that lead to structural changes in such protein  regions result in altered  proteolytic marks,
which are revealed upon MS-based analysis (Figure 1). LiP-MS has been applied to various 
biological systems, including bacteria, yeast, mammalian cell lines, tissue samples, and cere-
brospinal fluid (discussed later).

We first discuss seminal work on the development of the technique and then highlight recent 
advances and applications of LiP-MS, focusing on how it has been applied to non-complex 
matrices (e.g., single proteins) and used to explore human diseases for drug screening and bio-
marker discovery (Table 1). We also discuss examples of LiP-MS in non-human systems and de-
scribe current challenges and future perspectives.
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Box 1. Structural proteomic approaches involving the use of chemicals 

In hydrogen–deuterium exchange MS (HDX-MS) studies, the rate at which protein-bound hydrogens (particularly the back-
bone hydrogens on the amides in peptide bonds) are exchanged for deuterium atoms present in the solution (deuterated 
water) is determined by measuring the mass shifts of peptides [48]. This exchange rate depends on the conformational 
state of the protein and is thus influenced by the involvement of protein backbone amides in protein secondary structures 
(e.g., α-helices and β-sheets), their exposure on the protein surface, and their involvement in protein–small-molecule or 
protein–protein binding interfaces, among others. As such, changes in HDX rates are proxies for changes in protein con-
formations and protein interactions with other (bio)molecules. Although HDX-MS was originally applied to individual pro-
teins, larger protein complexes have also been analyzed (e.g., [49]). Aside from the rather limited structural resolution, a 
disadvantage of HDX-MS is that it has not yet been applied to complete proteomes. 

A method related to HDX-MS is the stability of proteins from rates of oxidation (SPROX) method in which rates of chemically 
induced, peptide-bound methionine oxidation under increasing protein denaturing conditions are measured by quantitative 
MS [50]. SPROX-alike methods such as fast photochemical oxidation of proteins (FPOP) [51] and hydroxyl radical footprinting 
(HRF)-MS [52] lead to oxidation of many more amino acids than only the rare amino acid methionine, and thus lead to more 
refined structural protein analyses. All these oxidation-based methods can be applied to complete proteomes. 

Chemical crosslinkers covalently freeze protein–protein interactions. Such crosslinked proteins are digested into peptides 
which are analyzed by MS. A plethora of crosslinkers that differ in the protein functional groups they target, and the spacer 
length between these groups, can be used for crosslinking MS (XL-MS) studies. Such studies have focused on individual 
protein complexes [53] and on complete proteomes [54]. XL-MS does not yet seem to have found widespread adaptation 
by the structural proteomics field, possibly because of difficulties in the identification of crosslinked peptides. However, 
progress is being made with the introduction of MS-cleavable crosslinkers and tailored database search algorithms that 
reduce the database complexity problem in XL-MS proteomic data, leading to more efficient identification of crosslinked 
peptides [55]. In addition, the introduction of crosslinkers holding handles that allow the enrichment of crosslinked pep-
tides, such as the phosphonate-based PhoX crosslinker, is moving the XL-MS field forwards [56]. 

Glossary 
Bottom-up proteomics: a mixture of 
proteins is digested into peptides using 
a specific  protease such as trypsin. The  
peptide mixture generated is then 
analyzed by liquid chromatography 
coupled to tandem mass spectrometry 
(LC-MS/MS). The peptides eluting from 
a chromatographic column are ionized in 
the mass spectrometer ion source and 
detected in what is referred to as an 
MS1 spectrum, where ion intensities are 
plotted as a function of their mass-over-
charge (m/z) ratios. Depending on the 
acquisition method (DDA or DIA, 
described below), particular peptide ions 
are selected for fragmentation and 
detection in an MS2 or MS/MS 
spectrum that plots the intensity of 
peptide fragment ions. Although the 
intensities in MS1 spectra are typically 
used for peptide quantification, MS2 
peptide fragmentation spectra are used 
to identify the peptide precursors and 
thus the proteins from which they 
originated. 
Data-dependent acquisition (DDA): 
a bottom-up proteomic approach in 
which only the most abundant peptide 
ions in the MS1 spectrum, that fulfill 
predefined quality criteria, are selected 
for fragmentation. This type of analysis is 
stochastic, and therefore results in 
missing data and poor reproducibility 
between analyses. 
Data-independent acquisition (DIA): 
this type of analysis overcomes the 
limitations of DDA by selecting all 
peptide precursor ions in a large, 
predefined MS1 mass-over-charge 
region rather than single peptide ions for 
fragmentation. As such, per MS2 event, 
different peptide precursor ions are 
fragmented together and algorithms are 
used to deconvolute the resulting 
chimeric MS2 spectra into those of the 
individual peptide precursors. 
Glycoproteome: the set of 
glycosylated proteins in a cell, tissue, or 
organism. 
N-terminomics: a set of proteomic 
workflows by which peptides covering 
the N terminus of a protein are enriched 
from proteome digests before their 
analysis by MS. 
Selected reaction monitoring 
(SRM): a targeted proteomic technique 
in which only preselected peptides are 
sampled instead of stochastic sampling 
of all peptides. A mass spectrometer 
selects the peptide ions based on their 
LC column retention time and mass-
Conformational proteomics via LiP-MS 
In 2005, pulse proteolysis was introduced to assess protein stability, as proxied by measuring the 
fraction of folded proteins under protein unfolding conditions [3]. It exploits the fact that unfolded 
proteins are more susceptible to proteolysis than folded proteins. Protein unfolding was intro-
duced by adding increasing concentrations of a chaotrope, urea, to proteins. This was followed 
by a short incubation (a pulse) with a high concentration of a broad-specificity protease, 
thermolysin, which cleaves unfolded proteins with minimal cleavage of folded proteins. Using a 
quantitative gel-based readout, the rate of proteolysis was measured as a function of urea-
induced protein denaturation, and the remaining fraction of folded proteins was determined. Its 
application was limited to individual proteins in non-complex systems, necessitating the develop-
ment of novel approaches to study protein conformations on a proteome-wide scale. 

Lomenick and coworkers introduced a similar method for profiling protein–drug interactions on a 
proteome-wide scale [4]. Their drug affinity responsive target stability (DARTS) method inferred 
that, upon binding a drug, a protein becomes structurally more stabilized, rendering it more 
resistant to proteolysis. In their work, protein mixtures were, among others, incubated with the 
antiproliferative agent rapamycin, the anticancer drug didemnin B, or the polyphenolic compound 
resveratrol, followed by proteolysis using broad-specificity proteases such as subtilisin or 
thermolysin. Proteins stabilized upon binding such molecules were resolved by SDS-PAGE and 
identified following protein band excision, in-gel digestion, and bottom-up proteomics. More 
recently, the DARTS method was exploited for measuring differences in protein thermostability 
introduced by external factors (Box 2). 

Building on the pulse proteolysis and DARTS approaches, LiP-MS [2] allows more comprehen-
sive, proteome-wide mapping of protein conformational changes (Figure 1). A cell lysate or a 
liquid biopsy sample is briefly incubated with a broad-specificity protease at a low protease-to-
substrate ratio, which ensures that surface-accessible and flexible protein sites are primarily
144 Trends in Biochemical Sciences, February 2025, Vol. 50, No. 2



over-charge value as observed in an 
MS1 spectrum. When triggered, the 
selected peptide ions are fragmented 
and their most intense fragment ions are 
read out. The combination of the peptide 
characteristics and fragment ion 
datapoints must be unique for the 
studied peptides. Furthermore, by 
spiking the analyte mixtures with known 
amounts of stably isotopically labeled 
variants of the selected peptides, 
accurate peptide quantification is 
achieved. 
Structural barcodes: these barcodes 
allow the LiP-MS data of a single protein 
to be visualized in an intuitive manner. 
Using the primary amino acid sequence, 
a barcode presentation is created in 
which individual colored bars represent 
fully tryptic, semi-tryptic, and 
conformotypic peptides. In this way, a 
visual is created that shows the LiP-
affected protein regions. 
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Experimental model Condition Limited proteolysis Trypsin digestion MS analysis 

Condition 1 

Induced conformational 
changes 

No conformational 
changes 

Condition 2 Conformotypic 
peptides 

Mammalian cell 
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Figure 1. Schematic of the limited proteolysis coupled to mass spectrometry (LiP-MS) workflow. Proteins are 
extracted from an experimental model system, such as purified recombinant proteins, bacteria, yeast, mammalian cells, 
biofluids, or tissue, under native(-like) conditions. Each proteome extract is split into a control sample and a sample to be 
subjected to limited proteolysis with a broad-specificity protease (e.g., proteinase K, subtilisin, thermolysin, pepsin, papain, or elas-
tase) that cleaves solvent-exposed, accessible, and flexible regions, thus generating structure-specific protein fragments that differ 
between conditions. These protein fragments are then denatured and fully digested with trypsin to generate peptides that are 
measurable by bottom-up proteomics. The peptide mixture includes conformotypic peptides that can be either fully tryptic or 
semi-tryptic. Lastly, all samples are subjected to an unbiased MS analysis. K and R indicate tryptic termini. N- and C-terminal 
semi-tryptic peptides are indicated by ~LiP and LiP~K respectively. Abbreviations; K, lysine; R, arginine; RT, retention time.
cleaved, thereby marking them. Next, the protease is inactivated by heating, which also induces 
protein denaturation, followed by full protein digestion with trypsin, which cleaves at the C-
terminal side of arginines and lysines. A control sample not treated with the broad-specificity pro-
tease undergoes full trypsin digestion. Combining limited proteolysis with full trypsin digestion 
creates fully tryptic and semi-tryptic peptides. In the LiP samples, fully tryptic peptides originate 
from buried protein regions inaccessible to the broad-specificity protease and from protease-
accessible regions that are structurally rigid and limit proteolysis. Comparing the levels of fully 
tryptic peptides between control and LiP samples may reveal peptides from accessible and/or 
flexible regions because their levels are expected to decrease in LiP samples (Figure 1). Semi-
tryptic peptides predominantly result from proteolysis at surface-exposed and/or flexible regions 
by the broad-specificity protease, and are uniquely present or are found at highly increased levels 
in LiP samples. Peptides whose levels differ between control and LiP samples are proxies for the 
conformation of the proteins they originated from and are therefore termed conformotypic pep-
tides (Figure 1). In the original LiP-MS publication [2], targeted, selected reaction monitoring 
(SRM)-based assays were used to quantify such peptides.

Detailed LiP-MS protocols have been published by Picotti and colleagues in 2017 and 2023, and 
we refer to these for full technical descriptions [5,6]. Several key improvements were introduced 
[6], including digesting samples with a combination of endoproteinase-LysC and trypsin, rather
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Table 1. Overview of LiP-MS applications discussed in this review 

Key findings Species Material Refs 

Individual proteins 

Potential polymer alternatives for PEG for protein 
bioconjugation 

Human Recombinant 
interferon-α2a protein 

[15] 

Interactions between respiratory syncytial virus F 
glycoprotein and antibodies, adenylyl cyclase 8, and 
calmodulin; differential interactomes of RAB GTPases 
and α-synuclein in different structural states 

Human, bovine Recombinant proteins, 
HEK-293T cells 

[16] 

Contact sites and conformational changes between AC8 
and its regulators 

Bovine Recombinant adenylyl 
cyclase AC8 

[17] 

Human disease mechanisms and protein drug discovery 

Significant changes in protein abundance and structure 
due to CALR mutations 

Human Primary granulocytes 
(isolated from peripheral 
blood) 

[18] 

251 proteins with altered conformations due to 
dephosphorylation 

Human MCF-7 cells [19] 

HSP60 as the most significantly altered protein upon LPS 
stimulation 

Mouse RAW264.7 cells [20] 

Insights into compound 1 binding to the ATP pocket of 
CDK family members 

Human U2OS cells [21] 

Crellastatin A as a potent PARP-1 inhibitor; potential 
probe for new PARP-1 inhibitors 

Human HeLa cells [22] 

Binding of gracilioether A revealed USP5 regions 
protected from proteolysis; insights into molecular 
interactions 

Human HeLa cells [23] 

Mortalin as primary target of mycalin A; disrupted 
mortalin–p53 complex promotes apoptosis in tumor cells 

Human HeLa cells [24] 

PP2A as a direct target of lomitapide; induced 
AMPK-regulated autophagy and CRC cell death 

Human HCT116 and HT29 cells [25] 

RANBP3 as a direct target of NU2058; increased 
RANBP3 binding to β-catenin, thus promoting nuclear 
export and inhibiting c-MYC 

Human DLD1, HCT15, RKO, 
and SW620 cells 

[26] 

IQGAP2 as a key target of isoliquiritigenin; lipid-lowering 
effects mediated through the IQGAP2–CREB–SIRT1 axis 

Human HepG2 cells [27] 

DLAT as a key target of hyperforin; enhanced 
mitochondrial function and promoted weight loss 

Mouse C3H10T1/2-derived 
adipocyte cells 

[28] 

Concentration-dependent interactions of α-amanitin 
affecting protein synthesis pathways 

Human, mouse Huh7 and AML12 cells [29] 

TXNRD1 isoforms 2 and 3 as targets of elovanoid-N34; 
induced structural changes in the FAD interface domain 

Human Retinal pigment epithelial 
(RPE) cells 

[30] 

MAPK3 as target of trihydroxy-phenolacetone (THP); 
THP counteracted PS-NP-induced damage by inhibiting 
nerve cell apoptosis 

Rat Primary cell cultured by 
hippocampal neurons 

[31] 

ACE2 as a direct binding target of benzoylaconitine Human HEK-293T cells [32] 

Biomarker discovery in neurodegenerative disease 

LiP peptides have higher discriminatory power than 
protein levels of α-synuclein; identified 76 proteins 
with conformational changes in CSF from PD 
patients 

Human CSF [1] 

38 proteins with altered abundance; CD5L formed 
covalent complexes with IgM in elder mice 

Mouse CSF [35] 

53 regions in 12 proteins with conformational changes Human CSF [36]
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Table 1. (continued)

Key findings Species Material Refs

23 proteins with structural alterations; highlighted 
gender-specific changes and elevated complement 
protein levels 

Human CSF [37] 

Protein conformational studies in bacteria, yeast, and plants 

Fructose-1,6-bisphosphatase (FBP)-mediated regulatory 
mechanism in glucose uptake 

Escherichia coli 
BW25113 

Cell lysate [7] 

Species-specific enzyme interaction patterns with 
different metabolites 

Different 
bacterial species 

Cell lysate [38] 

Molecular events during osmotic stress and heat shock Saccharomyces 
cerevisiae 
BY4742 

Cell lysate [7] 

Features of reversible protein aggregation S. cerevisiae 
BY4742 

Yeast LiP data from 
Cappelletti et al. 

[39] 

Age-related alterations in protein translation and folding; 
identified GLT1 polymerization as affecting amino acid 
homeostasis 

S. cerevisiae 
BY4741 

Cell lysates [40] 

Xenon-induced conformational changes in 60 proteins 
involved in ATP-driven and glycolytic processes 

S. cerevisiae 
S288c 

Cell lysates [41] 

Optimized LiP protocol for plant material with a focus on 
metabolite–protein interactions 

Arabidopsis and 
Marchantia 

Roots, seedlings, 
liverworts 

[42]
than trypsin alone, thus reducing the overall digestion time and increasing the digestion reproduc-
ibility [7]. Furthermore, the overall proteome depth and reproducibility (because of fewer missing 
values) increased by using MS-based data-independent acquisition (DIA) rather than data-
dependent acquisition (DDA) [8]. To analyze such DIA data, a spectral library based on iden-
tified DDA MS/MS spectra was used. 

Further innovations emerged that have increased our understanding of drug–target interactions, 
notably through LiP small-molecule mapping (LiP-SMap), which systematically detects proteins 
that become differentially susceptible to protease cleavage upon binding a small molecule [8]. 
Such altered susceptibility is either a direct result of small-molecule binding, which shields particular 
protein regions from digestion, or secondary to drug-induced changes in protein conformation. 
Complementing this approach, LiP-Quant incorporates machine learning to improve target identi-
fication accuracy, thus enabling drug-binding affinity estimations in complex biological mixtures [9]. 
For detailed analysis of LiP-MS data, a new R package was introduced, MSstatsLiP [6]. In addition 
to providing different types of data quality measures, MSstatsLiP performs a statistical analysis on 
peptide LiP-MS data to identify conformotypic peptides and, among others, plots LiP-MS data as 
structural barcodes on the primary protein sequence to reveal those protein regions that were 
surface-exposed, structurally flexible, or underwent induced conformational changes. Recently, 
FragPipe LiP processor (FLiPPR) was created to further improve LiP-MS data analysis by more ef-
fectively dealing with missing data, which remains an inherent problem in MS-based proteomics 
[10,11]. The way in which FLiPPR fills in missing data increases the statistical power and helps 
to identify structural changes. In addition, FLiPPR makes statistical corrections more organized 
and implements data merging at three levels – precursor ions, peptides, and cut-sites – enabling 
detailed data integration and more consistent and straightforward LiP-MS data analysis [12]. 

LiP-MS applications to individual proteins 
LiP-MS started as a technique to study single purified proteins [13,14] and has since evolved to a 
powerful tool for exploring protein conformational changes in complex biological samples.
Trends in Biochemical Sciences, February 2025, Vol. 50, No. 2 147
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Box 2. Protein thermostability measurements for functional proteome studies 

In 2014, Savitski and colleagues took the cellular thermal shift assay (CETSA) [57] to the next level by introducing an MS-
based read-out in their thermal proteome profiling (TPP) method [58]. CETSA and TPP are based on the same principle: 
the thermal stability of a protein will change upon binding a small molecule or drug. In these methods, equal amounts of 
purified proteins, a cell or tissue lysate, or even intact cells and tissues, are divided over several fractions which are all in-
cubated with a small molecule or drug of interest. Each fraction is then brought to a set higher temperature, creating a tem-
perature gradient across the different fractions. By increasing the temperature, proteins will start to unfold, aggregate, and 
precipitate. These precipitated proteins can be removed from a protein mixture by a simple centrifugation step, allowing 
sampling of the remaining soluble proteins. The latter can be analyzed by SDS-PAGE and western blotting (CETSA) or 
by MS (TPP) to generate protein melting curves in which the fraction of soluble proteins is plotted as a function of time. 
The temperature at which half of a studied, individual protein remains soluble is called the protein melting temperature, 
and this melting temperature depends on the initial stability of that particular protein. TPP studies focused initially on iden-
tifying the targets and off-targets of small molecules and drugs or drug candidates [59,60]. More recently, TPP has been 
applied to establish a so-called meltome atlas of the proteomes of different model species [61] to identify aggregation-
prone proteins in human cells [62] and to better understand the functional roles of proteoforms [63]. Interestingly, Zhang 
et al. showed that drug-bound proteins precipitate in buffers with a higher concentration of organic solvents as compared 
to their drug-free counterparts, and that their solvent-induced protein precipitation (SIP) approach can also be used to 
identify drug targets [64]. Most recently, a thermostability-assisted limited proteolysis-coupled MS (TALiP-MS) approach 
was developed to aid drug target discovery. It complements TPP and LiP-Quant for target identification and increased 
the number of target peptides detected in LiP-MS experiments by up to eightfold [65]. 
Applied to purified proteins, LiP-MS allows one to probe structural features under highly con-
trolled conditions, thereby providing insights into structural dynamics, bioconjugation behavior, 
and interaction specificity. Such earlier studies paved the way for LiP-MS applications in more 
complex systems such as cell lysates, which will be discussed later (Table 1). 

In a bioconjugation study, non-covalent polymer interactions with interferon α2a (IFN-α2a) were eval-
uated to find new alternatives to the gold standard polyethylene glycol (PEG). The proteolytic cleavage 
patterns of IFN-α2a interacting with different polymers were comparable to those observed when 
PEG was used, and indicated weak transient interactions between the polymers and surface of 
IFN-α. Both poly(2-ethyl-2-oxazoline) (PEtOx) and linear polyglycerol (LPG) bioconjugates produced 
a similar biological activity, that was monitored using a secreted embryonic alkaline phosphatase 
(SEAP) reporter gene assay, suggesting their potential as PEG alternatives for bioconjugation [15]. 

LiP-MS was also used to evaluate different conformation-specific protein–protein interactions 
[16]. For example, applied to RAB GTPases, differential interactomes of their conformationally 
similar GDP- and GTP-bound forms were mapped, but detecting low-abundance interactors 
was cumbersome. In addition, the ability of LiP-MS to systematically compare the interactions 
of α-synuclein in its monomeric and amyloid fibril conformational states within complex cellular ex-
tracts provided a valuable dataset of putative interactors for future research. Further, known inter-
actions between the respiratory syncytial virus F glycoprotein and site-specific antibodies were 
identified, and interactions between adenylyl cyclase 8 (AC8) and calmodulin (CaM) were de-
tected, demonstrating its applicability to integral membrane proteins [16]. Building on these latter 
findings, another study determined the structure of purified bovine AC8 by cryo-electron micros-
copy (cryo-EM), followed by LiP-MS to identify contact sites and conformational changes be-
tween AC8 and its regulators [CaM, stimulatory G protein α (Gαs), and the G protein β–γ 
complex (Gβγ)], and to detect binding interfaces and regions of altered surface accessibility. 
Cross-validation with the LiP-MS datasets [16] offered deeper insights into the regulation of 
AC8 and the roles of its structured and flexible domains [17]. 

Proteome-wide LiP-MS to study human disease mechanisms and drug discovery 
The advances in LiP-MS described above paved the way for its application to complex systems 
such as cell lysates, enabling the exploration of protein interactions, structural dynamics, and
148 Trends in Biochemical Sciences, February 2025, Vol. 50, No. 2
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conformational changes on a proteome-wide scale. Recent LiP-MS studies have deepened our 
understanding of human disease pathology and identified potential therapeutic strategies 
(Table 1), as discussed below. 

LiP-MS uncovers disease mechanisms 
In the context of myeloproliferative neoplasms, calreticulin (CALR) mutations can lead to these 
rare blood cancers that are characterized by excessive production of red blood cells, white 
blood cells, or platelets. LiP-MS analysis of primary neutrophils (white blood cells) from patients 
with CALR mutations revealed that homozygous mutations significantly impacted on the 
glycoproteome, leading to chaperone defects and misfolding of myeloperoxidase. By contrast, 
the number of proteins with altered levels and/or structural changes in patients with heterozygous 
CALR mutations was low, suggesting that some cellular processes are uniquely affected by ho-
mozygous CALR mutations [18]. 

In breast cancer research, one LiP-MS study examined phosphorylation-induced protein confor-
mational changes in MCF-7 cell lysates and revealed 251 proteins with altered conformations fol-
lowing treatment with alkaline phosphatase, showing the impact of phosphorylation on protein 
structures and/or protein–protein interactions. Notably, there was little overlap between the hits 
obtained by LiP-MS and a complementary approach, stability of proteins from rates of oxidation 
(SPROX) (Box 1), emphasizing the unique capabilities of each technique in detecting conforma-
tional changes [19]. 

To better understand the molecular dynamics of acute inflammation, lipopolysaccharide (LPS)-
treated macrophages were used to study protein structural changes. HSP60 was identified as 
the most significantly altered protein. Cellular thermal shift assays further validated these findings, 
demonstrating that HSP60 exhibits enhanced thermal stability in activated macrophages and 
forms a complex lacking HSP10 [20]. 

LiP-MS applied to drug discovery studies 
CDK9 inhibitors have emerged as promising agents that disrupt transcriptional processes essen-
tial for tumor cell survival. Among these, compound 1 demonstrated strong affinity and selectivity 
for several CDK family members, namely CDK1, CDK4, CDK6, CDK9, and CDK11A. The 
peptide-level resolution offered by LiP-Quant analysis on U2OS lysates provided valuable insights 
into the binding of compound 1 in the ATP-binding pocket of these kinases. This experimental 
finding aligned with predictions made from molecular modeling, reinforcing the accuracy of 
both approaches [21]. Similarly, PARP-1 inhibitors are notable cancer therapeutics. Using 
DARTS followed by targeted LiP multiple reaction monitoring (MRM), the sulfated bis-steroid me-
tabolite crellastatin A (CreA) was identified as a potent inhibitor of PARP-1. Molecular docking 
studies supported its binding, suggesting the potential of CreA as a probe for developing new 
PARP-1 inhibitors [22]. 

Focusing on protein ubiquitination, increased activity of ubiquitin carboxyl-terminal hydrolase 5 
(USP5) is associated with various cancers such as breast and lung cancer. By comparing un-
treated HeLa cell lysates to lysates treated with the marine polyketide gracilioether A (GeA), 
USP5 regions that were protected from proteolysis were identified, revealing insights into the mo-
lecular interaction between GeA and USP5, and such structural information may open the way to 
develop novel USP5 inhibitors [23]. In a related line of research, interactome characterization of the 
sponge metabolite mycalin A (MA) identified mortalin, a mitochondrial heat shock protein enriched 
in some types of cancer, as its primary target. This interaction, validated through targeted LiP-MS 
and molecular docking, suggested that MA plays a role in disrupting the mortalin–p53 complex,
Trends in Biochemical Sciences, February 2025, Vol. 50, No. 2 149
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thereby influencing p53 transcriptional activity. Indeed, MA treatment led to the overexpression of 
p53 target genes in MA-responsive cells, thereby promoting apoptosis [24]. 

In colorectal cancer (CRC), LiP-SMap was used to uncover a new application for the lipid-
lowering drug lomitapide. Protein phosphatase 2 (PP2A) was identified as a direct target of 
lomitapide, leading to autophagy and subsequent CRC cell death [25]. Surprisingly, also in 
CRC, RAN-binding protein 3 (RANBP3) was found to be the direct target of the CDK2 inhibitor 
NU2058. This interaction increased RANBP3 binding to β-catenin and promoted its nuclear ex-
port, and inhibited the transcription of MYC and cyclin D1 (CCND1), leading to cell senescence. 
Given that RANBP3 significantly regulates CRC tumorigenesis, targeting it with NU2058 could be 
a potential therapeutic strategy [26]. 

Shifting focus from cancer to liver disease, LiP-SMap profiling of the flavonoid isoliquiritigenin 
(ISO) in HepG2 cell lysates identified IQGAP2 as a key target, and the lipid-lowering effects of 
ISO were mediated through the IQGAP2–CREB–SIRT1 axis [27]. Hyperforin (HPF) was similarly 
studied, and identified DLAT, a component of the pyruvate dehydrogenase complex, as its key 
target, underscoring the potential of HFP as a therapeutic agent for obesity by enhancing mito-
chondrial function and promoting weight loss [28]. In addition, LiP-MS was used to investigate 
α-amanitin (α-AMA)-induced hepatotoxicity in human- and mouse-derived hepatocytes, and re-
vealed α-AMA effector proteins and their concentration-dependent interactions that affect protein 
synthesis pathways, including binding to RNA polymerase II [29]. 

In the realm of neurological diseases, thioredoxin reductase 1 (TXNRD1) isoforms 2 and 3 were 
identified as targets of elovanoid (ELV)-N34, an endogenously formed lipid mediator in neural 
cells. ELV-N34 was found to induce structural changes in the oxidoreductase FAD-binding do-
main of TXNRD1, reducing its activity and suggesting novel regulatory mechanisms that could im-
pact on protection against oxidative stress-related diseases and promote extended lifespan [30]. 
Another study focused on the effects of developmental exposure to polystyrene nanoplastics 
(PS-NPs) on cognitive function. Trihydroxy-phenolacetone (THP) was identified as a potential mit-
igator, and LiP-SMap identified MAPK3 as its main interactor. Further analyses revealed the im-
pact of THP on processes related to environmental stimuli, synaptic and nervous system 
functions, and apoptosis. Network analysis highlighted significant interactions involving MAPK3 
and showed that THP counteracts PS-NP-induced damage by inhibiting nerve cell apoptosis 
through downregulation of MAPK3 signaling pathways [31]. 

In cardiovascular research, LiP-MS was used to identify angiotensin-converting enzyme 2 (ACE2) 
as a potential target of benzoylaconitine (BAC), a plant-derived molecule used for the treatment of 
heart failure. Direct binding to and activation of ACE2 by BAC were confirmed with surface plas-
mon resonance and an ACE2-dependent reporter gene assay [32]. 

Protein conformations as biomarkers of neurodegenerative diseases 
LiP-MS has been used to map structural changes in proteins associated with neurodegenerative 
disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). In PD research, LiP-
MS data from cerebrospinal fluid (CSF) samples distinguished protein structural alterations 
between healthy individuals and PD patients, surpassing traditional quantitative proteomic data 
used for biomarker discovery [33,34]. Notably, changes in LiP peptides exhibited higher discrimi-
natory power than overall changes in the protein levels of α-synuclein, a known PD biomarker. 
Furthermore, integrating LiP findings with α-synuclein data enhanced disease classification accu-
racy. In total, 76 proteins with structural changes were identified in CSF samples of PD patients, 
including the α1 (III) chain of collagen (COL3A1) and peptidyl-glycine α-amidating monooxygenase
150 Trends in Biochemical Sciences, February 2025, Vol. 50, No. 2



Trends in Biochemical Sciences
OPEN ACCESS
(PAM), both of which have been linked to PD in genome-wide association studies. Although 
powerful, limitations of this study included a small dataset, sparse detection of α-synuclein, and 
no downstream validations of the identified conformotypic changes [1]. 

In AD studies, LiP-MS elucidated protein structural dynamics linked to aging and neurodegener-
ation. One study profiled the CSF proteomes of young and old mice, and identified 38 protein 
groups with altered abundance, particularly IgM immunoglobulins [35]. Six high-confidence can-
didates showed structural changes associated with aging, including proteins such as KNG1, 
ITIH2, Lp-PLA2, and 14-3-3 that are known to associate with AD. Another LiP hit, the CD5 
antigen-like protein (CD5L), was found to form covalent complexes with IgM, as validated by 
western blot analysis, and this interaction increased with age. Such findings point to potential bio-
markers and mechanisms relevant to aging and neurodegenerative diseases, and these await 
validation in larger (human) cohorts [35]. Another AD study analyzed human CSF samples across 
disease stages – healthy controls, mild cognitive impairment (MCI), and AD. Significant conforma-
tional changes were identified in 53 regions of 12 proteins when comparing controls to disease 
groups, pointing to a possible functional relevance of these proteins in AD progression [36]. A third 
study combined N,N-dimethyl leucine (DiLeu) isobaric tag labeling with LiP-MS (DiLeu-LiP-MS) to 
quantify structural changes in proteins from AD serum samples. High-pH peptide fractionation before 
liquid chromatography and tandem MS (LC-MS/MS) enhanced proteome coverage, enabling the 
detection of 23 proteins with structural alterations, seven of which are implicated in AD pathogenesis. 
The ability of the method to identify gender-specific protein changes and elevated complement 
protein levels highlights its potential for high-throughput structural protein analysis across various 
biological systems [37]. 

LiP-MS applications beyond human health and disease: insights from bacterial, 
yeast, and plant systems 
Although LiP-MS has led to significant strides in studying human health and disease, its applications 
extend far beyond these contexts and it has been effectively employed in other biological systems, 
including bacteria, yeast, and plants. In this section we delve into LiP-MS studies across these 
model systems (Table 1), showing the versatility and impact of LiP-MS in non-human systems. 

Bacteria 
LiP-MS has been instrumental in understanding bacterial protein function and adaptation to en-
vironmental changes. For example, LiP-MS was used to study bacterial nutrient adaptation by 
growing Escherichia coli on eight different carbon sources. This revealed distinct metabolite–pro-
tein interactions and identified fructose-1,6-bisphosphatase as a regulator of glucose uptake [7]. 
In addition, LiP-SMap was employed to study metabolite-level regulation of enzymes of the Calvin 
cycle and central carbon metabolism in four autotrophic bacteria. This study uncovered extensive 
enzyme interactions with metabolites such as ATP, GTP, GAP, acetyl-CoA, and citrate, particu-
larly at higher concentrations, and highlighted species-specific interaction patterns [38]. 

Yeast 
Yeast, a model organism for cellular and molecular biology, has also been studied by LiP-MS tech-
niques. Cappelletti et al. utilized LiP-MS to capture a range of molecular events during the yeast re-
sponse to acute osmotic stress, including allostery, altered enzyme activity, site occupancy, and 
phosphorylation, with single functional site resolution. Their analysis identified not only proteins 
that were phosphorylated upon osmotic shock, as detected by phosphoproteomics, but also re-
vealed changes in additional proteins, demonstrating the complementary nature of structural and 
phosphoproteome analyses. Furthermore, in heat-shocked yeast, LiP-MS provided insights into 
protein aggregation, chaperone–client interactions, and potential allosteric regulation of
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chaperones, showcasing the ability of the technique to detect complex protein dynamics under 
stress conditions [7]. 

Similarly, using LiP-MS, 96 yeast proteins undergoing significant structural changes during heat 
shock were identified, revealing both pronounced and subtle alterations in protein structures. Fur-
thermore, this study shed light on the sequence features that may help to predict whether pro-
teins will aggregate reversibly, demonstrating that both disordered and structured regions 
contribute to protein phase separation under stress conditions [39]. 

Another study examined aging-related protein structural changes in budding yeast and focused 
on abundant proteins. It revealed age-related alterations of proteins involved in translation, fold-
ing, and metabolism, and identified glutamate synthase GLT1 polymerization as a key factor in 
disrupting amino acid homeostasis during aging. Inhibiting Glt1 polymerization restored amino 
acid balance, enhanced mitochondrial function, and extended lifespan in aged cells, illustrating 
the potential of Glt1-polymerization-based control of yeast longevity. Despite focusing on early 
aging processes and abundant proteins, LiP-MS provided insights into subtle age-related 
changes in protein activity. However, the need for more comprehensive temporal mapping was 
noted [40]. 

Beyond the classical stress-response studies, protein–gas interactions in yeast lysates have been 
explored. Incubation of yeast lysates with xenon (Xe) revealed Xe-induced conformational 
changes in 60 proteins, none previously known to interact with Xe. These Xe-interacting proteins 
were primarily involved in ATP-driven and glycolytic processes [41]. 

Plants 
Building on the successes observed in bacterial and yeast systems, the LiP protocol has recently 
been optimized for use with plant material, focusing on metabolite–protein interactions. It has 
been successfully applied to tomato roots, Arabidopsis seedlings, and Marchantia liverworts, 
demonstrating the general applicability of this technique to a wide range of plant species. This 
adaptability opens new avenues for exploring plant protein dynamics and their interactions with 
metabolites in various physiological contexts [42]. 

Challenges of LiP technologies for studying protein conformations 
As the previous sections illustrate, LiP technologies have greatly contributed to our understanding 
of how proteins conformationally act when confronted with different types of molecular 
perturbators or cellular stressors. Nevertheless, in our opinion, the current LiP technologies 
face several challenges. 

Challenges associated with cell lysis 
First, most LiP studies have been performed on cells or tissues that were gently lysed, avoiding 
the use of strong detergents in high concentrations because these are likely to destroy tertiary 
and quaternary protein structures. However, under such gentle lysis conditions, not all types of 
proteins will be efficiently extracted and especially membrane proteins will be under-represented 
in the lysates. Note that, for this reason, the thermal proteome profiling method was adapted to 
allow thermal profiling of membrane proteins by including mild detergents during protein extrac-
tion [43] or by including biotinylation of cell-surface proteins to affinity-capture these proteins [44]. 

Furthermore, all lysis methods inevitably dilute proteins in buffers that do not resemble intracellular 
conditions. Such protein dilutions also affect equilibria in protein complexes and protein confor-
mations in general, which implies that lysates may poorly represent cellular conditions.
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Outstanding questions 
Given the current technical limitations 
of the LiP-MS technology, how many 
protein conformational changes are 
not captured by this technology? 

Because LiP currently cannot be 
directly applied to living cells, are 
the conformational protein  changes  
captured via LiP in cell  lysates 
identical to those occurring in the 
endogenous environment of the 
protein, namely the cellular context? 

Because different conformotypic 
peptides can be identified from a 
single protein, how can one correctly 
distinguish between the peptides 
that have captured the relevant 
conformational changes directly 
induced by an added compound or 
a stressor and  those that report  
irrelevant indirect, bystander, or 
longer-distance effects? 

Especially in higher eukaryotes, one 
protein-coding gene does not give 
rise to a single protein, but instead to 
a collection of proteins. These chemi-
cally different protein variants, or 
proteoforms, among others, originate 
from differential splicing of immature 
transcripts and a staggering number 
of protein modifications, often with 
crosstalk between these modifica-
tions. At the very least, such 
proteoforms are present at different 
levels in a population of cells and may 
well adopt different conformations. 
How can we tweak conformational 
proteomic technologies in such a way 
that proteoform-specific conforma-
tions can be distinguished? 

At a given point in time, in how many 
different conformations is a single  
proteoform present in a living cell, and 
how many of these are important for 
that proteoform to exert its function?
Finally, if lysis conditions cause partial disruption of cellular organelles, compartmentalized pro-
teins may be released and engage into aberrant, non-physiological complexes with proteins 
that they would not normally encounter. In the case of enzymes, this can lead to altered protein 
modifications, thereby leading to aberrant protein conformations. Circumventing the actual lysis 
step in LiP studies would solve this problem, meaning that, ideally, the LiP step should be per-
formed in living cells. 

Challenges associated with peptide identification 
A second challenge is the identification of semi-tryptic conformotypic peptides, especially those that 
lack the C-terminal lysine or arginine residues that are generated by trypsin. By their very nature, 
semi-tryptic peptides are shorter than tryptic peptides and are therefore often more hydrophilic 
and thus less well retained on the chromatographic column used before MS analysis. Because 
they have fewer peptide bonds, they also generate fewer fragment ions, resulting in less informative 
peptide fragmentation spectra, which in turn hampers unambiguous identification. Furthermore, 
semi-tryptic peptides that do not end with lysine or arginine are less basic than the majority of the 
other peptides present in the mixture. They will thus suffer from ionization suppression, implying 
that larger amounts of such peptides are needed to reach a given sensitivity threshold. 

Several solutions have been described that, when implemented in LiP-MS workflows, tackle 
some of the issues described here. For instance, following incubation of a protein mixture 
with a broad-specificity protease, an N-terminomics workflow could be used to label the novel 
N-termini generated in a protein by proteolytic digestion, which allows further enrichment of the 
semi-tryptic conformotypic peptides carrying these novel N-termini. Several N-terminomics 
workflows are available (reviewed in [45]); however, all of these consume time and sample, but 
yield analyte mixtures that are largely devoid of confounding tryptic peptides, thereby making 
the identification of semi-tryptic conformotypic peptides more efficient. At the level of peptide 
identification, machine learning-based algorithms have been applied to boost the identification 
of non-tryptic peptides such as immunopeptides [46,47]. Therefore, one may expect that, 
when applied to LiP-MS data, such machine learning-based algorithms will also boost the iden-
tification of semi-tryptic conformotypic peptides. 

Another challenge of LiP-MS is the difficulty in detecting peptides from low-abundance proteins and 
low-abundance peptides in general. Failure to detect these may obscure valuable structural insights 
regarding, among others, (low-abundance) proteins that play crucial roles in cellular function. Peptide 
enrichment strategies or advanced data-acquisition methods may mitigate some of these challenges, 
but they are not universally effective across all sample types or protein abundance levels. 

Challenges associated with interpreting LiP-MS data 
Interpreting LiP-MS data presents another challenge. Significant changes in the levels of (semi-) 
tryptic peptides can arise from various molecular events, such as alterations in protein folding, 
conformation, or binding to small molecules and other proteins. For example, reduced levels of 
a semi-tryptic peptide might reflect a conformational change but could equally indicate a 
bound ligand that shields specific protein regions from proteolysis. This ambiguity complicates 
the interpretation of data at a protein structure level, and often necessitates additional techniques 
to accurately attribute observed proteolytic changes to specific structural changes. 

Concluding remarks 
In summary, LiP-MS has established itself as a versatile and powerful proteomic tool that can offer 
novel insights into protein conformations and dynamics, and has clearly evolved to encompass a 
broad range of applications. These include studying different, complex biological systems,
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understanding disease mechanisms, aiding drug discovery, identifying disease biomarkers, and char-
acterizing protein interactions with various (bio)molecules, as well as the structural impact of protein 
modifications and environmental stress. Despite its successes, challenges remain, particularly in pro-
tein extraction and peptide identification. Future directions may include in-cell approaches for native 
protein studies, advancing peptide enrichment strategies for low-abundance conformotypic 
peptides, and integrating machine learning for more accurate peptide identification and structural in-
terpretation. Such advances will be crucial to further enhance the capabilities of the technique (see 
Outstanding questions) and promise to unlock further insights into protein dynamics and contribute 
to advances in health and disease research.
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