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Abstract—When an electric drivetrain is ordered for 

deployment under load conditions different from those 

encountered during its design and testing phases, it is crucial to 

evaluate its performance beforehand. However, the 

experimental validation of the efficiency of an electric drivetrain 

for a new load profile is time-consuming and costly. This article 

proposes a digital twin approach to estimate the efficiency of an 

entire drivetrain for a new load profile—one that has not yet 

been tested on the physical asset. The parameters of the digital 

twin are determined through a system-level optimization study, 

utilizing measured data from the load cycles in the time domain. 

Utilizing this digital twin, the efficiency of the drivetrain is 

estimated for a new load profile. Subsequently, experimental 

validation is conducted. The results demonstrate that the 

proposed approach is accurately assessing drivetrain 

performance in terms of efficiency for new load profiles, 

facilitating informed decision-making in deployment scenarios.  

 

Keywords— digital twin, drivetrain, power electronics, 

permanent magnet motor, gearbox, validation  

I. INTRODUCTION 

Industry 5.0 launches several terminologies into our world in 

terms of artificial intelligence, cyber-physical systems, the 

internet of things, and so on. All those terms briefly aim to 

achieve more intelligent, efficient and communicative 

systems. Nowadays virtual validation is one of the hottest 

topics in the industry and academia. Virtual validation aims to 

understand the performances of a product without doing any 

tests, which is very important for the industry to avoid costly 

and tedious experiments at all for new scenarios [1].  

 A digital twin of a product is essential to perform a virtual 

validation. A digital twin is a digitalized model of a product, 

which can be developed from pure physics based models to  

metamodels, and is fed by field data from the existing 

products.  Digital twin technology has been applied to various 

fields; however, there is limited literature available on its 

application in the field of electric drivetrains. In electric 

drivetrains, digital twins are primarily utilized for parameter 

estimation in motor control and condition monitoring, with the 

goals of fault diagnosis and smart maintenance [2-3]. 

Rassõlkin [4] proposed a digital twin of an electric motor 

based on an empirical model to estimate the performance of 

the electric propulsion. 

Rodríguez et al. studied a digital twin of an electric drivetrain 

to predict the thermal behaviour of an inverter [5]. In [6], a 

digital twin for three phase inverter-driven permanent magnet 

(PM) motors is investigated in terms of parameter estimation. 

However, these studies have limitations such as: 1) The digital 

twin and parameter identification were carried out only for an 

individual drivetrain component, such as the motor. A holistic 

digital twin representing the entire drivetrain, comprising 

components like power electronics, motor, gearbox, and load 

motor, is lacking. 2) The motor's digital twin parameters were 

obtained by fitting on a limited number of load data points, 

rather than the full drive cycle data to take into account all 

dynamic behaviour. 3) Furthermore, to the author's 

knowledge, the virtual validation of the efficiency of an 

electric drivetrain for new load profiles has not been 

performed in literature. It is crucial to understand how these 

drivetrains will perform under different load cycles for which 

no experimental data are available. 

 In this study, a digital twin of a complete drivetrain is 

developed to virtually validate efficiency for new load 

profiles. The key contributions of this article are as follows: 

 

1. A digital twin of a complete electric drivetrain is 

developed, encompassing power electronics, motor, 

gearbox, and load. This also integrates the dynamics 

and interactions among its components. 

2. By employing the digital twin, the efficiency of new 

load profile is estimated and also validated through 

experiments.  

3. The digital twin is developed on simple, readily 

available output and input data from the drivetrain, 

with no need for additional sensor data. 

II. APPROACH FOR VIRTUAL VALIDATION 

A. Drivetrain topology for which validation is needed 

The electric drivetrain consists of a power electronic 

converter, cable, electric motor (permanent magnet 

synchronous machine), gearbox and load: see Fig. 1. This is 

a typical drivetrain for many applications in industry or 

automotive.  



 
 

Fig. 1. Topology of the considered electric drivetrain 

The details of the test setups for these drivetrains will be 

given in section V. 

B. Conventional approach for validation 

When a new electric drivetrain is designed for a given 

application, the typical approach for validation is shown in 

Fig. 2. The physical products are called “motion products” 

(MP), which are sold at customers and which operate “in the 

field” e.g. at their premises or on the road in case of vehicles.  

We discuss the approach in Fig. 2 in detail. In the design 

phase, typically models are made to simulate the performance 

of the drivetrain. When the designer is satisfied with the 

simulated results, a physical validation is done: a prototype is 

built and tested on a test rig in a laboratory. As the testing is 

on a laboratory setup, a lot of detailed and accurate data is 

typically collected: torque and speed waveforms, current and 

voltage waveforms, temperatures… If the physical validation 

reveals shortcomings, the design is updated.  

Then, mass production is started: this is the right part of 

Fig. 2. These motion products are “in the field”, and the 

quality of available data is typically lower because not all 

quantities are measured. In the conventional approach, these 

field data are not used to improve the model (feedback arrow 

in dashed line). 

Also, in this conventional approach, drivetrain performance 

is typically simulated using models based on datasheet 

values. However, these models do not accurately reflect real 

system behavior at the full system level, as we will show in 

Section VI. 

More importantly, if a new load profile is needed for which 

no data are available, this conventional approach requires a 

new physical test campaign for this new load profile. 

C. Virtual validation approach 

The idea in this paper is to use many available data sets 

on the many drivetrains in the field to develop a digital twin, 

in order to predict the efficiency of the drivetrain for non-

tested load profile.  

This approach has two advantages: first, there is no need 

to do additional measurements on the lab setup; second, the 

variations that occur in the “identical” products in the field, 

are automatically taken into account. In this paper, we limit 

ourselves to 1 motion product A1 (MP-A1), but the approach 

is valid for n products. 

The approach is shown in Fig. 3, and is explained in detail 

based on this figure. We start from a model of the drivetrain, 

containing several parameters. 

 

 
Fig. 2. Conventional approach for validation, and manufacturing of many 

motion products (MP) that run in the field. 

 
Fig. 3. Virtual validation approach. 

The identification of the parameters’ values is done based on 

MP-A1 measurement data in different environmental 

conditions, and the result is a digital twin. The model details 

are given in section III. 

Next, the virtual validation is done for a new load profile. 

The virtual validation means running the digital twin for new 

load cycle, resulting in a computed output that takes into 

account the information obtained from product in the field. In 

this paper, we choose the average efficiency over a drive 

cycle of a vehicle as output quantity. If the drivetrain 

efficiency for the new load profile meets the requirement, 

manufacturing can commence (arrow from virtual validation 

to manufacturing). 

It is worth noting that data from the n products in the field 

can now also be used to enhance the alignment between 

digital twin predictions and experimental data. This gives n 

digital twins, one for each physical product. The n digital 

twins can be merged into one “fleet digital twin”, but in this 

paper, we consider just one physical product (MP-A1).  

III. COMPONENT MODELS OF THE DRIVETRAIN 

This section covers the drivetrain model, which consists 

of component models for power electronics, electric motor 

and gearbox. The drivetrain scheme is displayed in Fig. 4 and  

 

 
Fig. 4. Components in the drivetrain model, and measured quantities used 

for the identification of the parameters. 

 



shows measured quantities which can be used for 

identification of the parameters. The following subsections 

provide the details about the component models and the 

parameters. 

A. Model of the power electronics 

This part focuses on the modelling of the bidirectional 

two-level three-phase voltage source inverter using an 

analytical approach. The equivalent circuit of the IGBT 

power inverter is illustrated in Fig. 5. 

The modeling of the traction inverter will emphasize a 

half-bridge layout to facilitate the formulation process. It is 

possible to analyze the performance of IGBT switches and 

their anti-parallel diodes during conducting and non-

conducting states through the use of the equivalent circuits of 

the power modules. This will be achieved through equivalent 

circuits utilizing the DC voltage to characterize the on-state 

voltage drop and a resistor to account for conduction losses. 

The average signal model is employed to achieve a rapid 

simulation, leveraging the benefits of the analytical model. 

Fig. 6 illustrates the use of the average signal model in the 

context of sinusoidal PWM (SPWM) modulation technique. 

The digital twin proposed in this study serves as a 

platform for evaluating efficiency of the power converter. 

Consequently, it is critical to include power converter losses  

in the modelling process. The following section details the 

calculation of these losses. The dissipation of the IGBT 

power module primarily includes conduction loss ����� and 

switching loss ���. The average power loss of the IGBT is 

expressed as follows: 

��	
� � ���� � ���          (1) 

The loss in the anti-parallel diode is determined by both the 

forward conduction loss and reverse recovery loss ���� as: 

������ � �′���� � ����                                                        (2) 

      To simplify the model, threshold voltage drop, on-

resistance, and switching energy loss are considered 

temperature-independent in the following formulation. The 

conduction losses for the IGBT and the anti-parallel diode are 

calculated as the product of the current �� flowing through the 

collector or anode and the saturation voltage (on-state 

voltage) over the conducting period. The conduction loss can 

be expressed as: 

����� �  
! "#�$�%

& � '�$�( *
+ ,                                                  (3) 

where .�/  is the equivalent voltage drop of the IGBT and 

diode and 0�/ is the equivalent on-resistance. The switching 

loss is formulated as: 

��� � 1�/ 2��                                                                            (4) 

where 1�/ represents the equivalent switching energy of the 

IGBT (ON and OFF switching) and diode blocking energy, 

and 2�� is the switching frequency of the inverter in hertz. 

Summing all losses yields to the final loss formulation as: 

�4��� � 5 67 � 5! �8 � 59�8! � 5+67�8                         (5) 

Where 5 , 5! , 59 , and 5+  are the switching loss factor, 

voltage drop factor, on-resistance factor, and dynamics 

factor, respectively, and 67 representing the rotor speed. 

B. Model of the electric motor  

This section describes the modeling of the electric motor, 

which is permanent magnet synchronous motor (PMSM) 

having interior (embedded) magnets. 

 
Fig. 5. Equivalent circuit of IGBT-based power inverter. 

 
Fig. 6. PWM phase voltage using SPWM technique. 

The dynamic model of PMSM can be given in a dq-rotor 

reference frame as:  

;< � 0�=< � ><
�?@
�A � BC>�=� � BCDEF                                (6) 

;� � 0�=� � >�
�?H
�A I BC><=<                                              (7) 

where vd and vq, id and iq, and Ld and Lq are d-axis and q-axis 

components of voltage, current, and inductance, 

respectively. DEF depicts the flux-linkage of the permanent 

magnets. Rs is the stator resistance, and ωe is the electrical 

angular speed.  

       The electromagnetic torque K� of the PMSM consists of 

the reluctance torque and the magnet torque: 

K� � 1.5M=/NDEF � N>� I >/O=�O                                         (8) 

       The iron loss is, according to Bertotti’s formula, 

expressed as a function of frequency (f) and maximum flux 

density (Bm), as presented in (9). Here, kh, kc and ke, are the 

coefficients in the three terms in (9), representing hysteresis, 

eddy current and excess coefficients, respectively. For the 

simplicity of the digital twin creation, ke is used as 0.1 [7]. 

The copper loss of the motor is given by (10).  

MQ��� � 5R2ST! � 52!ST! � 52 .UST .U                        (9) 

M � 3�!0�                                                                          (10) 

The total motor losses can be determined by summing the 

contributions from (9) and (10). The motor efficiency is then 

defined as the ratio of mechanical output power M�XY to 

electrical input power MQ�. 

Z � 8�[\
8�]

� 8�]^8_�``
8�]

                                                                    (11) 

C. Model of the gearbox 

The efficiency of the gearbox is modelled through a 

power loss model that considers the churning, meshing, 

rolling, sliding, drag, sealing, and belt losses. This model is 

coupled with a lumped thermal model to predict the 

temperature and update the oil viscosity. 



The losses of the gearbox and belt assembly can be 

defined as Eq. (12) where Ma��� represents the total power loss 

of the gearbox and belt assembly: 

Ma��� � Mb��c � M�cX�� � Md�e�Q�f � M��ea � Md�aY            (12) 

In (12), Mb��c represents the load-dependent losses due to 

the frictional losses in the gear pair [8] and can be a function 

of friction coefficient, f, load, velocity, and geometry: 

Mb��c � 2g2, ijkl, ;mijn=op, qmjrmospt                           (13) 

where the friction coefficient can be calculated using 

Benedict and Kelley’s empirical equation [8]:  

2 � u ijq v w x*yz{
|}#~�*�                                                         (14) 

in which ��� , .� , � , � , �  are sliding velocity, sum of the 

rolling velocities, lubricant density, kinematic viscosity, and 

normal load per unit length, respectively. Additionally, u  

and u! are model parameters. M�cX�� is the load-independent 

losses which arises in the partial oil immersion conditions [9]: 

M�cX�� � 2gB, �, �, 0m, �s, qmjrmosp, j=i im;mi, �t         (15) 

where B ,  0e , �r,  �  are the rotational speed, Reynolds 

number, Froude number, and model constant, respectively. 

The bearing-related effects can be divided into rolling 

M��aaQ�f, sliding M�aQ�Q�f, and drag M��ef losses: 

Md�e�Q�f� � M��aaQ�f � M�aQ�Q�f � M��ef                              (16) 

This model computes all the bearing related losses using 

the equations and tables provided by [10] and [11]. Finally, 

M��ea  and Md�aY  represent the seal and belt-related power 

losses. In this paper M��ea  is assumed to be independent of 

load and rotational speed. Additionally, a viscous friction 

model is used to model the belt-pully losses.  

As the power loss is related to the viscosity and, consequently 

temperature (Fig. 7), a lumped parameter thermal model is 

used to predict the temperature: 

rn�,�/Δ���Xb�got � Iℏ��/Δθ�Xb� � Ma���                     (17) 

where rn�,�/  is the equivalent heat capacity including the 

gears, bearings, shafts, and oil. Additionally, Δ��Xb� �
��Xb� I �∞ and ℏ��/ are the difference between the sump 

and ambient temperature and the equivalent heat transfer 

coefficient, respectively. Detailed information about gearbox 

modeling and identification can be found in [12].  

IV. DIGITAL TWIN OF THE DRIVETRAIN 

The model of the complete drivetrain is called digital twin if 

the identification of parameters is done using measured data 

of one physical asset. Therefore, the component models of 

section III need identification of the parameter values. This 

identification procedure is explained in this section. In this 

paper, the identification is done one time with several load 

cycles for a given product, but a further extension can be 

repeated the procedure during the lifetime of the product, so 

that also ageing effects are included in the digital twin. The 

parameters in the drivetrain digital twin, listed in TABLE I 

along with their datasheet/reference values, will be re-

identified based on real experimental data. The other 

parameters described in section III are set as constant.  

An approach is required for identifying the parameters, 

using the measurement data of quantities shown in Fig. 4. The 

identification approach uses the component models explained 

in section III and an optimization algorithm to fit the 

parameter values for a given load profile. 

 

TABLE I 

PARAMETERS FOR IDENTIFICATION IN THE DRIVETRAIN; THE DATASHEET 

VALUES WILL BE RE-IDENTIFIED BASED ON LOAD CYCLE MEASUREMENTS 

 

Component Parameters Datasheet/reference 

value 

Power 

Electronics 

Switching loss factor 0.023 W/rpm 

Voltage drop factor 1.9V 

On-resistance factor 0.026 Ω 

Modulation factor (-) - 

Electric 

Motor 

Winding resistance (phase), 0� 0.024 Ω 

d-axis inductance, >� 0.002 H 

q-axis inductance, >< 0.0044 H 

PM flux-linkage, DEF 0.2158 Wb 

Hysteresis loss factor, kh 200 

Eddy current loss factor, kc 0.1 

Gearbox 
Meshing constant 0.013 

Seal torque coefficient - 

 

 

Fig. 7. Coupled power loss and thermal models. 

      The procedure aims to fit the calculated power of each 

component to the measured power in the several load profiles. 

The used cost function is given by  (18). 

2 � r=� "� �Q�_���lo IA
v � �Q�_�QbXaeYQ��loA

v ,                  (18) 

t represents the time of the load cycle. �Q�_��� represents the 

input power of the drivetrain over a complete load cycle in 

the time domain, while �Q�_�QbXaeYQ�� denotes the input power 

of the drivetrain as computed by the digital twin for the same 

load cycle. It is important to note that for the digital twin, the 

output power of the drivetrain serves as the input. The digital 

twin then calculates the corresponding input power based on 

this output, reflecting the vehicle behaviour where the input 

power is provided as per the vehicle's mass and speed.  

      We consider the entire energy consumption of the load 

cycle. To find the optimal parameters, 1000 iterations are 

performed. modeFRONTIER software is used for the 

optimization, in which built-in pilOPT algorithm is utilized, 

which is a multi-strategy, self-adapting algorithm that 

combines the advantages of both local and global search 

strategies. This algorithm intelligently balances real and 

response surface methodology (RSM)-based (virtual) 

optimization to effectively search for the Pareto front.  

 The process for creating the digital twin is depicted in Fig. 8. 

Initially, a datasheet model based on the component models 

outlined in Section III is prepared, and the experimental data 

are imported into the MATLAB workspace. Subsequently, 

the MATLAB codes, Simulink models, and optimization 

software are configured to communicate with each other. 

The next step involves selecting the bounds for the digital 

twin parameters within the optimization software. These 

parameters are iteratively optimized using an optimization 

algorithm. The process continues until the objective function  



   

Fig. 8. The process for developing a digital twin   

is minimized, at which point the final digital twin and the 

corresponding actual circuit parameters are obtained.  

     Once the procedure is performed for one load profile, then 

it will be repeated for the total number of load profiles of a 

single physical product. When the process is completed for 

one product, it can be applied to another product. However, 

the scope of this article is limited to the data from a single 

physical product, as discussed. 

A. Concept of stochastic digital twin 

The above described digital twin (DT) is extended to be a 

stochastic digital twin, where parameters are identified for all 

separate m number of load cycles. In other words, the 

parameters for the entire drivetrain, as specified in Table I, 

undergo fitting across m load profiles that are executed on a 

single physical product.  

By using all those fitted values for each parameter and 

assuming a normal distribution of these values, the average 

and standard deviation of each parameter are computed. As 

an example, Eq. (19) and (20) illustrate the average and 

standard deviation of the phase winding resistance 0� of the 

motor, which is also depicted in Fig. 9. Next, the mean value 

of the fitted parameters is employed in constructing the 

ultimate digital twin for the corresponding physical product. 

This model is then utilized to predict the outcomes for a new 

load profile.     

�' �  
T ∑ 0�,?T?�                                                                   (19) 

�' � �  
T ∑ g0�,? I �'t!T?�                                                 (20) 

The digital twin is extended to be a stochastic digital twin in 

order to average out shortcomings of the model. Examples of 

shortcomings are unmodeled behavior of friction in motor 

bearings, temperature effects in the components, small 

eccentricities in the motor or gearbox. Although resistance of 

a winding can be measured as a deterministic value, the 

digital twin uses the stochastic version (19-20) to account for  

 
Fig. 9. Concept of stochastic digital twin: Gaussian distribution of the fitted 

phase winding resistance 0�. 

e.g. unknown and changing temperatures, which may not be 

available from the field data of the motor. 

V. EXPERIMENTAL SETUP 

An experimental setup is built to emulate different load 

profiles. The schematic of the drivetrain setup is shown in 

Fig. 10, and the details of the components are provided in 

TABLE II. The power electronics (PE) include two high 

performance AC drives, one for each motor. The two drives 

are directly connected through a DC-link, which allows to 

recirculate electrical energy from the generator (load motor) 

to the drive motor. Each drive powers and controls a single 

motor. The drive motor is a PMSM of 11kW. The load motor 

is an induction machine of 15kW: see TABLE II. The drive 

motor is connected to an industrial gearbox with helical gears. 

Lastly, a timing belt connects the gearbox to the load motor, 

which emulates a vehicle. 

 
TABLE II 

COMPONENT SPECIFICATIONS 

Component Description 

PE drive motor Nidec Unidrive M700 18.5 kW 

PE load motor Nidec Unidrive M700 18.5 kW 

Drive motor WEG W22 Magnet IE4, 11kW 

Load motor WEG W22 induction motor IE3, 15kW 

Gearbox Tramec ZA80B10, ratio 10.2:1 

Timing belt Optibelt 1696 8MHP50 ratio 3:1 

 

 

 
Fig. 10. Schematic of the drivetrain. 

 

  
Fig. 11. One of the 5 test setups showing the drives and power analyzer (left 

figure) and the drive motor and gearbox at the top, and load motor at the 
bottom (right figure). 



Five identical setups were built in order to create the 

stochastic digital twin for each of them, and in addition create 

a “fleet” digital twin of the whole fleet. The fleet digital twin 

is also a stochastic digital twin. This paper considers only 

data from 1 setup (MP-A1); results for the fleet digital twin 

based on 5 setups will be reported in future work. The motion 

product (MP-A1) is shown in Fig. 11.  

VI. RESULTS ON EXISTING LOAD PROFILES AND THE 

EVALUATION OF THE NEW LOAD PROFILE 

The load profiles for which we identified the digital twin 

parameters, are a torque staircase, given in Fig. 12-(a) and the 

new European driving cycle (NEDC), shown in Fig. 12-(b). 

One torque staircase load profile and 4 NEDC load profiles 

are measured on MP-A1 setup and data are used for the 

creation of the DT of the drivetrain. The approach explained 

in Fig. 8 is applied to identify all of the drivetrain’s parameter 

values. 

As we used five load profiles, we obtain m=5 values for 

each parameter. From these 5 values, the stochastic digital 

twin parameters are obtained, e.g. as in (19) and (20). As a 

showcase, two fitted parameter values of the drivetrain 

component (power electronics) are given in Fig. 13. The 

average values of the parameters are clearly seen from the 

figure. For the other fitted parameters, mean and standard 

deviation values are given in TABLE III. 

We can now evaluate how good this stochastic digital twin is. 

Fig. 14 shows the efficiencies obtained in the 4 measured 

NEDC cycles, efficiency computed by the datasheet values 

based model and efficiency computed by the stochastic 

digital twin. It is clearly seen from the figure that the DT gives 

a better prediction than the datasheet based model. Note that 

Fig. 14 is not yet a virtual validation, because it shows results 

of the DT for the load profile that it was trained with. The aim 

of the DT is to show the prediction performance for a new 

load profile that was not used for training. This is done in the 

next paragraph.  

As a new load profile, not used for training, the 

Worldwide harmonized Light Vehicle Test Procedure 

(WLPT) is selected. 

 
                                 (a)                                                    (b) 

Fig. 12. (a) Torque staircase (b) NEDC load profiles. 

 
Fig. 13. Parameter identification results for power electronics using 1 torque 

staircase dataset and 4 NEDC datasets. 

TABLE III 

FITTED PARAMETERS OF THE DRIVETRAIN 
 

Component Parameters Mean 

Value 

Standard 

Deviation 

Power 
Electronics 

Switching loss factor 0.0267 0.00947 

Voltage drop factor 2.335 0.8178 

IGBT/diode on-resistance (Ω) 0.0325 0.0055 

Modulation factor (-) 0.0018 0.0012 

Electric 
Motor 

Winding resistance (phase), 0� 0.0215 0.0104 

q-axis inductance, >< 0.00407 0.00218 

d-axis inductance, >� 0.00195 0.0009 

PM flux-linkage, DEF 0.17237 0.0208 

Hysteresis loss factor, kh 235.75 49.36 

Eddy current loss factor, kc 0.3395 0.1135 

Gearbox 
Meshing constant 0.0258 0.0122 

Seal torque coefficient 0.38515 0.1977 

 

The digital twin – trained by staircase and NEDC cycles data 

– is now run for the WLTP. To evaluate how good the DT 

performs, 4 WLTP cycles are also run experimentally. All 

results are compared in Fig. 15. It is observed that the 

datasheet model prediction overestimates the efficiency, 

while the DT prediction is well aligned with the experiments. 

Note that the blue measurements data were not used in digital 

twin creation, in order to get a virtual validation. 

The Fig. 14 and Fig. 15 give the comparison of load 

cycles by taking the overall efficiency. It is better to have a 

close look to one of the load cycles in the time domain. The 

comparison of input power and losses from the experiment 

and the digital twin prediction for WLTP load cycles is shown 

in Fig. 16a and Fig. 16b. Fig. 16a illustrates the input power 

of the drivetrain, both measured directly and obtained from 

the digital twin. The experimental losses are computed via 

measured input and output power of the drivetrain. The same 

approach is performed in the digital twin, results are 

compared in Fig. 16b. It can be observed that the digital twin 

prediction of WLTP is well matched with experiment.  

 

 

Fig. 14. Efficiency of the NEDC drive cycles; using datasheet values (green), 

measurements on the 4 setups (blue), and the digital twin predicted average 

(red). The blue measurement results were used to identify the digital twin, 
hence the red prediction is not a virtual validation. 

 
Fig. 15. Efficiency of the WLTP drive cycle; using datasheet values (green), 

measurements on the 4 setups (blue), and the digital twin predicted average 
(red).  



 
(a) 

 
        (b) 

Fig. 16. Experiment and digital twin comparison for WLTP. (a) Input power 

of drivetrain (b) Experimentally computed (measured Pin-Pout) and the digital 
twin prediction of the losses. 

VII. SIMILARITY ANALYSIS OF VIRTUAL PREDICTION  

For measured load profiles, i.e. profiles for which data are 

available, a similarity analysis is done to compare the digital 

twin prediction with measurements, and assess how similar 

they are. Equation (21) is employed to quantify the similarity 

between the output of the digital twin and experimental data. 

� � w1 I � �����
T ¡¢£¤£¥¦���§¨(© I ���§¨(

T ¡¢£¤£¥¦���§¨(©�� ∗ 100   g21t 
Here PL-DT and PL-exp represent the losses from the digital 

twin and from experiments as function of time, i.e. at each of 

the N number of points in the load profile. Note that S is also 

a time series of N points.  

The similarity assessment for the WLTP cycle is given in 

Fig. 17. The scatter plot illustrates the degree of similarity 

between the experimental data and the Digital Twin output 

across all speed points of the WLTP cycle within the time 

domain. It is clear that there is a strong similarity between the 

digital twin and the experimental results. This indicates that 

the proposed digital twin has good accuracy in predicting the 

efficiency of new load profiles.  

If the similarity is not sufficient in certain regions of the 

load profile, the digital twin can be improved by adding 

unmodelled behavior. However, this is beyond the scope of 

this article. 

VIII. CONCLUSION 

In this paper, a digital twin of complete drivetrain is 

developed.  It is capable of performing virtual validation of 

load profiles that have not been previously tested. The output 

of the digital twin for a new load profile is verified by 

experimental test and similarity analysis. The presented 

digital twin is developed based on one physical product.  

 
Fig. 17. The similarity between outcomes from the digital twin and 

experimental loss results during the WLTP cycle. 

 In the future, we will extend this approach to multiple 

drivetrain products. For this, four additional identical 

drivetrains have been built to gather data and create a fleet 

digital twin. 

 

ACKNOWLEDGMENT: This research is financially 

supported by Flanders Make SBO project DT for Validation 

of Dynamic Performance & Reliability of Motion Systems. 

 

IX. REFERENCES 

[1] F. Tao, H. Zhang, A. Liu and A. Y. C. Nee, "Digital Twin in Industry: 
State-of-the-Art," in IEEE Transactions on Industrial Informatics, vol. 
15, no. 4, pp. 2405-2415, April 2019. 

[2] M. Ibrahim, V. Rjabtšikov, S. Jegorov, A. Rassõlkin, T. Vaimann and 
A. Kallaste, "Conceptual Modelling of an EV-Permanent Magnet 
Synchronous Motor Digital Twin," 2022 IEEE 20th International 
Power Electronics and Motion Control Conference (PEMC), Brasov, 
Romania, 2022. 

[3] Z. Chen, D. Liang, S. Jia, L. Yang and S. Yang, "Incipient Interturn 
Short-Circuit Fault Diagnosis of Permanent Magnet Synchronous 
Motors Based on the Data-Driven Digital Twin Model," in IEEE 
Journal of Emerging and Selected Topics in Power Electronics, vol. 11, 
no. 3, pp. 3514-3524, June 2023 

[4] A. Rassõlkin et al., "Interface Development for Digital Twin of an 
Electric Motor Based on Empirical Performance Model," in IEEE 
Access, vol. 10, pp. 15635-15643, 2022. 

[5] B. Rodríguez, E. Sanjurjo, M. Tranchero, C. Romano, and F. González, 
"Thermal parameter and state estimation for digital twins of E-
powertrain Components," IEEE Access, vol. 9, pp. 97384-97400, 2021. 

[6] W. Song, Y. Zou, C. Ma and S. Zhang, "Digital Twin Modeling Method 
of Three-Phase Inverter-Driven PMSM Systems for Parameter 
Estimation," in IEEE Transactions on Power Electronics, vol. 39, no. 
2, pp. 2360-2371, Feb. 2024. 

[7] K. Yamazaki and N. Fukushima, "Iron-Loss Modeling for Rotating 
Machines: Comparison Between Bertotti's Three-Term Expression and 
3-D Eddy-Current Analysis," in IEEE Transactions on Magnetics, vol. 
46, no. 8, pp. 3121-3124, Aug. 2010. 

[8] Benedict GH, Kelley BW. Instantaneous coefficients of gear tooth 
friction. ASLE transactions, 4(1):59-70, 1961. 

[9] Zhu B, Wang X, Luo L, Zhang N, Liu X. Influence of lubricant supply 
on thermal and efficient performances of a gear reducer for electric 
vehicles. Journal of Tribology, 144(1), 011202, 2022. 

[10] Harris TA, Kotzalas MN. Essential concepts of bearing technology, 
CRC press, 2006. 

[11] SKF Group, SKF general catalogue, 2008. 

[12] M. Zadeh Fard, A., Vanpaemel, S., Janssens, D., Kirchner, M., 
Laurijssen, K., Divens, N., Claeys, C., Pluymers, B., Naets, F. (2023). 
Assessing the accuracy of a thermo-mechanical model of a gearbox. In: 
4th Future of Road Mobility Forum - FORM Forum scientific 
proceedings, (17-22). 

 

0 200 400 600 800 1000 1200 1400 1600

Time [sec]

0

2000

4000

6000

8000

10000

Experiment

Digital Twin


