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ABSTRACT

Obtaining state-of-the-art data on the Mangrove cover extent is im-
portant to monitor possible responses to environmental changes such
as land use change and mangrove ecosystem degradation caused by
climate change. In this study, we examined the possibility of species-
specific mapping within the mangrove area in Suriname based on the
fusion of Sentinel-1 and Sentinel-2 data using the Google Earth En-
gine platform and a Random Forest classifier. To do this, a 2-level
classification scheme was developed. In the first level, the mangrove
cover was discriminated from mangrove graveyards and other land
cover classes (kappa index of 0.8 ). In the second level, the dominat-
ing mangrove species were successfully classified within the living
mangrove cover (kappa index of 0.75). Secondly mangrove above-
ground biomass (AGB) was estimated on a national scale, based on
fused Sentinel-1 and Sentinel-2 data and national mangrove forest
inventory data by using a Support Vector Regression (SVR) machine
learning technique, resulting in a root mean square error (RMSE) of
32.181 Mg.ha−1 and a R2 of 0.542.

Index Terms— mangroves, species mapping, above-ground
biomass, sentinel-1, sentinel-2, support vector regression

1. INTRODUCTION

Mangrove forests are proven to have a significant potential in the
context of climate change mitigation [1]. Although coastal morpho-
dynamics have not proven to result in net losses for the national
mangrove forest cover of Suriname on a decadal scale [2], effects
resulting from ongoing climate change have the potential to alter
this balance, ultimately resulting in a decrease in the mangrove for-
est cover extent. Remote sensing offers the tools to efficient and
accurate mapping of mangroves on large scales in a repetitive way,
without the need for extensive field visits. This is especially crucial
for Mangroves, where field visits are tough.
The overall goal of this study was to evaluate the potential of fused
Sentinel-1 and Sentinel-2 data to assess the actual state of mangrove
forests in Suriname. Two objectives are covered: (i) the development
of classification method in order to map the distribution of (dominat-
ing) mangrove species and mangrove graveyard stands using Google
Earth Engine[3], (ii) to evaluate the possibilities of regional man-
grove above-ground biomass (AGB) mapping with the aforemen-
tioned remote sensing data based on national forest inventory data.

2. MATERIALS AND METHOD

2.1. Study area

The study area consists of the entire mangrove covered coastal area
of Suriname. Mangroves are present at both the 350 km long coast-
line and upstream of ocean bound rivers [2]. Three mangrove species
can be found frequently in the area: Avicennia germinans along
the sea front, Rhizophora mangle inland along rivers under brackish
conditions and Languncularia racemosa, a pioneer species present
in small patches at the sea front and in estuarine stages.

2.2. Field survey

A field campaign was organised in 2018-2019 to collect mangrove
forest inventory data as a part of the National Forest Inventory [2].
A total of 11 Sampling Units (SU) were established equally over the
study area. Each SU consists out of 4 principal sampling plots (PSP)
with a size of 20x100m, along a straight 700m transect. The PSP
units were subdivided in 20 10x10m main assessment plots (MAP).
Within the PSP’s, all trees with a diameter at breast height (DBH)
greater than 10cm were measured. In addition, trees with a DBH
between 5-10 cm were measured in MAP 3, 4, 17 and 18 of every
PSP. Other carbon pools, such as lying dead wood, soil and roots
were also measured, but not further included in this study. Single
tree AGB estimations were obtained by using allometric equations.
A set of potential applicable equations were analysed by Wip [4],
where the species-specific equations developed by Fromard et al.
[5] and Smith & Whelan [6] were finally chosen. The used equation
for each mangrove species is given in Table 1.
The forest inventory also included decay records of every standing
tree, with levels ranging from 0.5 to 3 (Figure 1). For every level
of decay the leave and branch loss was taken into account by an
adjustment factor (Kauffman & Donato, [7]). In case of the level
3 decay trees, trunk specific equations where used as proposed by
Fromard et al. [5].

Additional to the mangrove forest inventory, drone pictures were
taken from the mangrove canopy, serving as reference material dur-
ing the training sample collection for the image classification.

2.3. Sentinel-1/2 data preprocessing in Google Earth Engine

Both the Sentinel-1 SAR and Sentinel-2 MS data were accessed and
preprocessed through the Google Earth Engine platform [3].
A 10m cloud-free Sentinel-2 composite was created for the entire
coastal zone of Suriname within the period of August-November
2019, covering the dry season. The Sentinel-2 surface reflectance
collection was filtered to a maximum of 30% cloud probability and



Table 1. Overview of the selected biomass equations. B= biomass
(kg), Dbh= diameter at breast height, d= an adjustment factor for
tree decay.[4] ( aused for trees with Dbh > 10 cm )

Species group Equation Source
Allometric relations for tree decay levels 0, 1 & 2

Avicennia germinans B = d ∗ 0.14 ∗Dbh
2.4 [5]

Rhizophora mangle B = d ∗ 0.128 ∗Dbh
2.6 [5]

Laguncularia racemosa B = d ∗ 0.1023 ∗Dbh
2.5 [5]

Laguncularia racemosaa B = d ∗ 0.362 ∗Dbh
1.93 [6]

Allometric relations for tree decay level 3
Avicennia germinans B = 0.070 ∗Dbh

2.59 [7]

Rhizophora mangle B = 0.05875 ∗Dbh
2.62 [7]

Laguncularia racemosa B = 0.203 ∗Dbh
2.09 [7]

Fig. 1. Mangrove tree decay levels, with corresponding adjustment
factor d for the levels 0 - 2, as used in Table 1 (adapted from Howard
et al. [8])

clouds were masked based on the ’Sen2Cloudless’ cloud masking al-
gorithm [9]. Sentinel-2 derived vegetation indices (NDVI, MNDWI,
NDWI, IRECI) were added to the image stack, together with a Man-
grove specific Vegetation Index (MVI) developed by [10]. Finally, a
median reducer was applied on the remaining image collection.
The Sentinel-1 Ground Range Detection (GRD) collection in Google
Earth Engine is already preprocessed to a calibrated, ortho-corrected
product with the aid of the Sentinel-1 toolbox [11]. The S1-
collection was further filtered to retain only images in Interfero-
metric Wide (IW) mode, both VV and VH-polarizations and to the
same area and period as the Sentinel-2 composite. A speckle filter
was applied to reduce the pepper-salt effect. To retrieve a final image
for both the VV and VH polarisation, a mean reducer was applied.
Ultimately the Sentinel-2 composite, the vegetation indices and the
Sentinel-1 VV,VH backscatter images were merged into one final
image.

2.4. Mangrove cover and species mapping

A two-level classification approach was chosen in order to distin-
guish the mangrove cover and mangrove graveyard stands from other
land use classes in a first level and to enable a species-specific clas-
sification within the mangrove cover in the second level (Table 2).
Languncularia racemosa was not included in the species classifica-
tion, because it grows only in small patches in the Rhizopora belts
[2]. Training and validation samples were collected based on: 1)
The forest inventory campaign, with GPS data collection, 2) visual
interpretation of the UAV imagery, 3) visual interpretation of the

Sentinel-2 data, 4) overflights by plane and 5) historical data on the
mangrove ecosystem.

Table 2. The two-leveled classification scheme

For the mangrove cover classification, a Random Forest (RF)
classifier was chosen for the image classification due to its combi-
nation of robustness, good performances in similar studies on man-
groves [12]. It also is computationally light and simple to set-up and
automate [13]. The RF classifier was initialized in GEE with a max-
imum number of trees (ntree) of 60, based on parameter testing.
After classification, a Mode filter was applied to the classification
result, in order to remove isolated pixels and noise.

2.5. Above-ground biomass modeling

The Sentinel-1 and Sentinel-2 image stack was masked in GEE
with the classified area of the living Mangrove and downloaded for
further use in python. The AGB-values (in kg) on tree level derived
from the mangrove forest inventory data was used. Every PSP was
divided into areas of 20x20m, further called a Biomass Assessment
Plot (BAP). Only trees with a Dbh > 10 cm were considered for
analysis. The AGB values per tree where summed for every BAP
and divided by the BAP area. Finally, the AGB-values were recal-
culated to Mg.ha−1.
Within every BAP, the mean pixel values for the Sentinel-1 and
Sentinel-2 derived features were calculated. Also, the dominating
tree species derived from the species map was added as an additional
feature. The features were then scaled by removing the mean and
scaling to unit variance. The data was then randomly splitted into
train- and test-data, with a portion of 25% as test data.
A Support Vector Regression (SVR) model available within the
scikit-learn package in Python was chosen to predict the region
mangrove AGB-values [14]. Multiple studies have already shown
that using a machine learning approach such as SVR can succesfully
estimate Mangrove AGB with fused multispectral and SAR data.
[15]. A grid search optimization with a 10-fold cross validation
on the traindata was used in order to find the optimal parameters
for the SVR model. Different kernels (’rbf’, ’linear’, ’sigmoı̈d’),
regularisation parameters ’C’ (0.1, 1, 10, 100, 1000), kernel coef-
ficients ’gamma’ (1, 0.1, 0.01, 0.001, 0.0001) and epsilon values
(0, 0.1, 0.2, ..., 1) were included during the grid search. The re-
sulting performance parameters root mean square error(RMSE)
an the coefficient of determination (R2) are used to calculated the
performance of the final model based on the testdataset.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Mangrove species map

The used Random Forest classifier used in Google Earth engine was
successful for both the Level-1 and Level-2 mangrove cover maps.



Fig. 2. Top: the coastal zone of Suriname with the classified mangrove map. Bottom left: subset of the final mangrove species map. Bottom
right: predicted AGB values for the subset.

The results are evaluated by calculating an error matrix and deriv-
ing accuracy metrics, as overall accuracy (OA) and kappa index of
agreement (KIA). For the Level 1 map, an OA of 84,81% and a KIA
of 0.80 was reached. The Level 2 map reached an OA of 91.57% and
a KIA of 0.76. After classification, the mangrove species map was
merged with the mangrove graveyard cover, resulting in one general
mangrove map, as shown in Figure 2.

The spectral separability was analyzed by plotting a spectral re-
sponse curve for each of the land cover classes, shown in Figure
3, indicating sufficient spectral separability between the (mangrove)
cover classes.

Fig. 3. Spectral profiles of the land cover classes extracted from the
Sentinel-2 image.

3.2. Mangove AGB in relation to Sentinel-1 and Sentinel-2 data

A grid search algorithm was performed in order to find the opti-
mal parameters for a Support Vector Regression (SVR) model. The
grid search was fitted on AGB estimates derived from the mangrove
forest inventory data and the optimal parameters were evaluated by

a 10-fold cross validation strategy. The resulting optimized SVR-
model reached a root mean square error (RMSE) of 32.195 Mg/ha
and a R2 of 0.475, based on the test dataset (Figure 4).
The final map was visualized with the aid of QGIS. The field ob-
servations support this map, confirming that the riverine mangroves
(dominated by Rhizopora spp.) have the largest carbon storing po-
tential per surface area and area with mangrove decay, has a lower
AGB value.

Fig. 4. Scatter plot of the observed vs predicted mangrove above-
ground biomass, resulting from the final SVR model.

4. CONCLUSIONS AND PROSPECTS

In this research the current state of the mangrove forest in Suri-
name was succesfully determined, based on Sentinel-1 and Sentinel-
2 fused data in GEE. The classification approach yielded good re-
sults, for both the mapping of the living mangrove cover and man-
grove graveyard stands (kappa of 0.80). Within the living mangrove
cover, a species-specific classification was performed to gain insight
in the distribution of the two dominating mangrove species: Avicen-



nia germinans and Rhizopora spp. (kappa of 0.75).
Preliminary results indicated also that AGB estimations based

national forest inventory data and the sentinel-1/2 fused data is
promising. By taking spatial characteristics of the area into account,
national estimations of mangrove carbon stock - classically only
based on field inventory data - could be improved. Addition of other
above-ground carbon pools, such as trees with Dbh < 10cm, could
further improve the estimations.

Recent and future sensors could also improve the estimates.
Space light detection and ranging (LiDAR) samples taken by the
Global Ecosystem Dynamics Investigation (GEDI) for example
have the ability to measure biomass relevant variables as forest
canopy height and canopy vertical structure. We want to investigate
how GEDI-derived features could further improve the AGB model.

Suriname is relatively species-poor. For further studies, the
method that has been applied in this research will also be evaluated
in Bangka Island, Indonesia with a higher richness of mangrove tree
species.
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