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1 Introduction

Multi-loop Feynman integrals provide essential information about the analytic properties of
scattering amplitudes in quantum field theory. They are at the core of making theoretical
predictions for collider physics and are often the main bottleneck for the calculation of
precise predictions for scattering processes. A particular challenge is the computation of
Feynman integrals for two-loop five-particle processes. In recent years, great effort has
been dedicated to such computations resulting in the calculation of all integrals for fully
massless processes [1–7], all integrals for processes with one massive external particle and
all massless internal particles [8–13], and, more recently, the calculation of the first master
integrals contributing to five-particle processes involving an external massive top-quark pair
and one massive propagator [14].
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Figure 1. Examples of two-loop Feynman diagrams proportional to the number of light flavors
nf contributing to leading-color two-loop scattering amplitudes for the process gg → tt̄H. The red
double lines represent top quarks and the external cyan dashed line the Higgs boson. Light quarks are
represented by black solid lines and gluons by black springy lines.

A particularly important five-point process is that of tt̄H production at hadron colliders,
which gives a direct constraint on the top-quark Yukawa coupling. First observed at the LHC
in 2018 [15, 16], this process has by now allowed to constrain deviations from a Standard-
Model-like Yukawa coupling at the 10% level — an impressive achievement that already
challenges the precision of existing theoretical predictions. It is expected that by the end of
the high-luminosity run at the LHC, measurements will be able to constrain such coupling at
the 3–5% level and will be dominated by theory uncertainties [17, 18]. This creates a pressing
need for next-to-next-to-leading-order (NNLO) QCD corrections [19–21].

The tt̄H production process been studied extensively, with the leading-order (LO) pre-
dictions known since the mid-eighties [22, 23]. Next-to-leading order (NLO) QCD corrections
were first computed in refs. [24–29], and subsequently further improved by the resummation
of soft-gluon effects [30–36], the inclusion of first-order electroweak corrections [37–39], the
study of NLO off-shell effects [40–42], and the NLO QCD matching to parton-shower event
generators [43–46]. Recently, the first NNLO QCD calculation has appeared [47], where the
two-loop amplitudes were approximated by a soft expansion in the momentum of the Higgs bo-
son (pH → 0). Obtaining the exact two-loop scattering amplitudes is thus of great importance
for the completion of the NNLO QCD corrections to tt̄H production at hadron colliders.

As a first step towards this goal, in this work we compute a set of two-loop master integrals
contributing to the production of a top-quark pair in association with a Higgs boson at hadron
colliders. We focus on the Feynman integrals arising in the calculation of the leading-color
two-loop QCD scattering amplitudes for the parton-level processes gg, qq̄ → tt̄H including
a closed light-quark loop. Examples of related Feynman diagrams are given in figure 1
(see [48, 49] for a discussion about the color decomposition of related scattering amplitudes).
The corresponding amplitudes and Feynman integrals depend on seven different kinematic
scales, including the mass of the top quark (which also enters internal lines of Feynman
diagrams) and the mass of the Higgs boson. Importantly, we note that these integrals also
arise in the two-loop scattering amplitudes for processes such as pp → tt̄Z and e+e− → tt̄+2j.

The set of Feynman integrals that we study is organized in terms of three integral families
and contains a total of 127 master integrals. We compute the integrals with the method
of differential equations [50–55], constructing a basis of master integrals that satisfies a set
of differential equations in ϵ-factorized form [55]. Having found such a basis, we uncover
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a novel feature of these Feynman integrals: their analytic description requires a nested
square root function of the external kinematics. We then show that the differential equations
can be expressed in terms of 152 differential one-forms, of which we are able to express all
but four in d log form. In such a compact form, our analytic differential equations clearly
manifest the singularity structure of the integrals. We then explore the analytic properties
of the master integrals by considering the iterated integrals which arise in solutions to the
differential equations. Moreover, we solve the differential equations numerically using the
generalized series expansion method [56] as implemented in the DiffExp package [57]. The
required boundary values in the numerical solutions are obtained with the auxiliary mass
flow method [58–60] as implemented in the AMFlow package [61]. We provide in the
supplementary material of this article a Mathematica implementation based on DiffExp
that allows to solve the system of differential equations for points in the physical phase space.

The rest of this article is organized as follows. In section 2 we present the kinematic
properties for the process studied and define a series of relevant Lorentz invariant functions.
In section 3 we define the families of Feynman integrals that we study and describe the related
master integrals. In section 4 we give details of our procedure to build the basis of master
integrals that satisfy ϵ-factorized differential equations and our method of determining the
analytic form of said differential equations. In particular we discuss the determination of
the corresponding “alphabet” of one-forms, and how we construct d log forms. In section 5
we consider the analytic structure of Feynman integrals, first discussing the alphabet in
subsection 5.1 and then exploring the analytic properties of the corresponding function space
in subsection 5.2. In section 6 we present numerical results based on generalized series
expansions. We describe in subsection 6.3 the ancillary files provided with this article. Finally,
in section 7 we give our conclusions and outlook. Appendices A, B, and C contain a detailed
description of the integral bases we have constructed.

2 Scattering kinematics and notation

We consider the scattering process

q1(p4) q2(p5) → t(p1) H(p2) t̄(p3) , (2.1)

where the initial pair of partons (q1, q2) is either a gluon pair or a massless quark/anti-quark
pair. For convenience we work in an all-incoming convention for the external momenta,
such that momentum conservation is expressed as

∑5
i=1 pi = 0. The momenta fulfill the

on-shell conditions

p2
1 = p2

3 = m2
t , p2

2 = q2 , p2
4 = p2

5 = 0 , (2.2)

where mt is the mass of the top quark and we have kept the momentum squared of the
external massive boson in terms of the variable q2. We write general kinematic invariants
in terms of the scalar products vij = 2pi · pj , although for convenience we sometimes also
use the Mandelstam variables sij = (pi + pj)2. The kinematic invariants can be expressed
in terms of 7 independent variables which we choose to be

s⃗ = {v12, v23, v34, v45, v15, m2
t , q2} , (2.3)
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together with the parity-odd invariant

tr5 = 4iϵµναβ pµ
1 pν

2pα
3 pβ

4 , (2.4)

which is written in terms of the fully antisymmetric Levi-Civita symbol. In terms of these
variables we can write all remaining scalar products as

v13 = v45 − v12 − v23 − 2m2
t − q2 ,

v14 = v23 − v45 − v15 + q2 ,

v24 = v15 − v23 − v34 − q2 ,

v25 = v34 − v12 − v15 − q2 ,

v35 = v12 − v34 − v45 + q2 .

(2.5)

When we consider the scattering process of equation (2.1), the physical phase space in the
diag(1,−1,−1,−1) Minkowski metric is a region in the space of Mandelstam variables that
is specified by the following set of inequalities

m2
t > 0 , q2 > 0 ,

v12 ≥ 2 mt q , v23 ≥ 2 mt q , v34 ≤ 0 , v15 ≤ 0 ,

v45 ≥ (2mt + q)2 , det G(pi, pj , pk) ≥ 0 , det G(p1, p2, p3, p4) ≤ 0 ,

(2.6)

where q =
√

q2, the indices i, j, k = 1, . . . , 5, and we define the Gram matrix according
to G(q1, . . . , qn)ij = qi · qj .

The integrals considered in this paper can be expressed in terms of a basis of special
functions. One finds that these functions possess algebraic branch points on various surfaces.
Some are given by the zero sets of the following Gram determinants

∆(1)
3 = −4 det G(p1, p2) = v2

12 − 4m2
t q2 , (2.7)

∆(2)
3 = −4 det G(p2, p3) = v2

23 − 4m2
t q2 , (2.8)

∆(3)
3 = −4 det G(p1, p2 + p3) = (q2 + v23 − v45)2 − 4m2

t v45 , (2.9)

∆(4)
3 = −4 det G(p1 + p2, p3) = (q2 + v12 − v45)2 − 4m2

t v45 , (2.10)

∆(5)
3 = −4 det G(p2, p3 + p4) = (q2 + v34 − v15)2 − 4q2(m2

t + v34) , (2.11)
∆5 = 16 det G(p1, p2, p3, p4) = tr2

5 . (2.12)

An important subtlety here is that one cannot identify tr5 with
√

∆5 as the first picks up a
sign under parity, while the second is invariant. For simplicity, when handling the algebraic
branch points, we will use

√
∆5 instead of tr5 throughout this paper, analogous to the

conventions of ref. [10]. Two further surfaces are given by the zero sets of the functions

C1 = q2(q2 − 4m2
t ) , (2.13)

C2 =
[
(q2 + v12)(q2 + v23) − q2v45

][
(q2 + v12)(q2 + v23) − (q2 − 4m2

t )v45
]

. (2.14)

These functions can be associated to the maximal cut of one-loop Baikov polynomials [62]
of the Feynman integrals in figure 2. Alternatively, they can be understood as modified
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Figure 2. One-loop Feynman integrals whose maximal cut Baikov polynomials are related to the C1
and C2 functions in equations (2.13) and (2.14). The red double lines represent massive internal and
external lines (associated to top quarks in tt̄H production) while the dashed cyan line denotes an
external off-shell line (associated to the Higgs boson in tt̄H production).
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Figure 3. Two-loop Feynman integrals with leading singularities associated to the r1, r2 and r3
functions in equations (2.15)–(2.17). Diagram lines are as in figure 2.

Cayley determinants (see e.g. ref. [63]). Three additional functions associated to leading
singularities of the two-loop Feynman integrals shown in figure 3 will also be needed, and
we define them according to

r1 = (v24 + v25)2 − 4q2v45 , (2.15)
r2 = [q2v35 + v23(v35 + v45)]2 − 4m2

t v45[v23v25 − q2(v15 + v35)] , (2.16)
r3 = [q2v14 + v12(v14 + v45)]2 − 4m2

t v45[v12v24 − q2(v14 + v34)] . (2.17)

In contrast to previous two-loop five-point master integral computations, the algebraic branch
point structure is richer and involves nested square roots. Indeed, we will need to employ
square roots of the quantities

N± = q2
(

Nb ±
√

N2
b − Nc

)
, (2.18)

where

Nb = q2
[
(v14 + v15)2 + (v34 + v35)2

]
− 2m2

t (v24 + v25)2 , (2.19)

Nc = C1(v12 − v23)2(v24 + v25 + 2v45)2 . (2.20)
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Note that there is a subtlety when considering square roots of N±, as such roots are not
algebraically independent from

√
C1. This follows as the N± fulfill

N+ · N− = (q2)2 Nc . (2.21)

In practice, throughout this manuscript, we choose to use this relation to define the symbol√
N− in terms of the functions

√
N+ and

√
C1 according to√

N− ≡
√
C1

q2(v12 − v23)(2q2 + v12 + v23 − 2v45)√
N+

. (2.22)

When considering algebraic branch points an important associated algebraic object is the
Galois group. The Galois group is composed of all automorphisms of the field extension that is
implicitly defined by the functions with such branch point singularities. In previous two-loop
five-point Feynman integral computations, the automorphisms were given by transformations
that flipped the signs of square roots in the algebraic functions. Naturally, the more
complicated square root structure that we find by considering square roots of N± results in
elements of the Galois group that are more intricate. Clearly, we have the standard sign flip
associated to

√
N+. However, we can see from equation (2.22) that the sign flip of

√
N− is

achieved simultaneously with the sign flip of
√
C1. Further, we also have the automorphism

α :
√

N+ ↔
√

N− ,
√

N2
b − Nc ↔ −

√
N2

b − Nc , (2.23)

which simultaneously flips the sign of the “inner” square root, and swaps
√

N+ with
√

N−.
Finally, we also note that there is an interesting relevant kinematic map. Specifically,

the set of integrals maps into itself under

Z : p1 ↔ p3, p4 ↔ p5 , (2.24)

with p2 left unchanged. Under this map our set of independent kinematic variables in
equation (2.3) transforms as:

{v12, v23, v34, v45, v15, m2
t , q2} Z−→ {v23, v12, v15, v45, v34, m2

t , q2} , (2.25)

and then all functions defined above transform under Z according to

∆(1)
3 ↔ ∆(2)

3 , ∆(3)
3 ↔ ∆(4)

3 , r2 ↔ r3 ,
√

N− → −
√

N− , (2.26)

while ∆(5)
3 , ∆5, C1, C2, r1 and N+ remain invariant. Naturally, α and Z can be composed

and we denote the composition as [α ◦ Z], which acts on a function f as

[α ◦ Z](f) ≡ α (Z(f)) . (2.27)

3 Feynman integral families

There are six types of eleven-propagator Feynman integral families, namely one penta-box,
two hexa-triangle, and three hepta-bubble families that contribute to the considered scattering
amplitudes. We start by analyzing the number of master integrals that are associated to
them. To find them we construct integration-by-parts (IBP) identities [64–66] employing
numerical evaluations, independently obtained with the software packages Kira [67, 68] and
FIRE [69]. We find the following three main structures for the master integrals.
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Penta-box integral family: This family is associated to the propagator structure of the
left diagram of figure 1. We find that this family has 111 master integrals, including
integrals with 3 to 8 propagators. We label this family of integrals as T1, and we specify
it below in detail. We notice that this integral family maps into itself under the Z
transformation introduced in the previous section.

Hexa-triangle integral family: This family is associated to the propagator structure of
the central diagram in figure 1. We find that this family contains 46 master integrals, of
which 38 are already contained in the T1 family. This leaves 8 distinct master integrals
all of which are contained in a penta-bubble subsystem with 19 master integrals. We
label this subsystem as T̃2

1 and specify it in detail below. The hexa-triangle integral
family does not transform into itself under the Z map, therefore the 8 distinct master
integrals above map under Z to 8 additional independent master integrals. We denote
the corresponding integral family by Z(T̃2).

Hepta-bubble families: These families are associated to the propagator structure of the
right diagram in figure 1. They can be described in terms of the propagator structures
that result from a massless bubble insertion in each of the internal massless lines of the
corresponding one-loop diagram. We find that each of these families contain 19 master
integrals, all of which are contained in the T1, T̃2, and Z(T̃2) families described above.

In summary we have 127 two-loop master integrals, decomposed into three distinct
Feynman integral families that we denote as T1 (with 111 master integrals), T̃2 (with 8
independent master integrals), and Z(T̃2) (with 8 independent master integrals). In the
following subsections, as well as in appendices A and B, we give further details about them.
We notice that for completeness, in appendix C we also provide details of our basis of one-loop
master integrals for the propagator structure of the diagram shown in figure 7. In the
following, we will refer to the one-loop topology as T0.

3.1 The penta-box family T1

The T1 family is an eleven-propagator Feynman integral family, where three propagators
are introduced to make the family complete, such that all scalar products between loop
momenta and external momenta can be expressed in terms of inverse propagators. It is
defined according to

T1[ν⃗] =
∫

ddℓ1
iπd/2

ddℓ2
iπd/2

ρ−ν9
9 ρ−ν10

10 ρ−ν11
11

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5 ρν6

6 ρν7
7 ρν8

8
, (3.1)

where ν⃗ = (ν1, · · · , ν11) is a vector of integers (the propagator powers) and νi ≤ 0 for i = 9, 10
and 11. We work in dimensional regularization with d = 4 − 2ϵ and the inverse propagators

1The T̃2 notation is chosen to remind that this (sub)family is part of a bigger 8-propagator family (to be
denoted as T2) that appears in the full calculation of tt̄H amplitudes and of which only the T̃2 portion is
relevant for this paper.
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Figure 4. The propagator structure associated to the T1 integral family, with the routing of loop
momenta ℓi (i = 1, 2) chosen as in equation (3.2). The red double lines represent massive propagators
or external on-shell momenta (with mass mt), the black solid lines represent massless propagators or
external on-shell momenta, and the cyan dashed line represents an external off-shell momentum. The
integers labeling the external lines refer to the corresponding momenta pi (i = 1, · · · , 5) as defined
in section 2, while the blue inner integers correspond to the inverse propagators ρj (j = 1, · · · , 8) as
defined in equation (3.2).

are defined according to

ρ1 = ℓ2
1 , ρ2 = (ℓ1 + p1)2 − m2

t , ρ3 = (ℓ1 + p12)2 − m2
t ,

ρ4 = (ℓ1 + p123)2 , ρ5 = (ℓ1 + ℓ2)2 , ρ6 = ℓ2
2 , (3.2)

ρ7 = (ℓ2 + p5)2 , ρ8 = (ℓ2 + p45)2 ,

where pi···j = pi + · · · + pj . These propagators correspond to the diagram shown in figure 4,
to which we add the three irreducible scalar products

ρ9 = (ℓ1 − p5)2 , ρ10 = (ℓ2 − p12)2 − m2
t , ρ11 = (ℓ2 − p1)2 − m2

t . (3.3)

The integral family T1 defines a vector space of integrals. Each element of this vector space
can be systematically expressed in terms of basis elements with the help of IBP identities. As
described above, the dimension of this vector space is dim (T1) = 111. There is a lot of freedom
in the choice of a basis of integrals, the so-called master integrals, and in section 4 we describe
how we construct a basis that satisfies a set of differential equations in ϵ-factorized form. In
such way we make explicit the singularity structure of all master integrals. We notice that 50
master integrals of T1 have never been studied in the literature, with the rest being one-loop
squared integrals, 3-propagator integrals, integrals with all massless propagators, or integrals
studied in ref. [14]. In appendix A we include the definition of all 111 integrals in our basis.

3.2 The penta-bubble family T̃2

The penta-bubble family T̃2 is defined according to:

T̃2[ν⃗] =
∫

ddℓ1
iπd/2

ddℓ2
iπd/2

ρ−ν7
7 ρ−ν8

8 ρ−ν9
9 ρ−ν10

10 ρ−ν11
11

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5 ρν6

6
, (3.4)

where νi ≤ 0 if i = 7, . . . , 11. The inverse propagators are defined according to

ρ1 = ℓ2
1 , ρ2 = (ℓ1 + p5)2 , ρ3 = (ℓ1 + p15)2 − m2

t ,

ρ4 = (ℓ1 + p125)2 − m2
t , ρ5 = (ℓ1 + ℓ2 − p4)2 , ρ6 = ℓ2

2 , (3.5)
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Figure 5. The propagator structure associated to the T̃2 integral family, with the routing of loop
momenta ℓi (i = 1, 2) chosen in equation (3.5). See caption of figure 4 for details on the notation.

which correspond to the diagram shown in figure 5. We add the following five irreducible
scalar products to complete the family

ρ7 = (ℓ1 − p3)2 , ρ8 = (ℓ2 − p1)2 , ρ9 = (ℓ2 − p2)2 ,

ρ10 = (ℓ2 − p3)2 , ρ11 = (ℓ2 − p4)2 . (3.6)

The integral family T̃2 defines a vector space with dim(T̃2) = 19. As described above, only 8
of those integrals are not included in the T1 family, and 4 of them have never been studied in
the literature. Considering also the Z(T̃2) family introduces 16 more master integrals in our
analysis. In appendix B we include the definition of all T̃2 master integrals not included in T1.

4 Differential equations in ϵ-factorized form

The method of differential equations [50–55] has become one of the most used approaches
for computing master integrals, especially in the case of integrals involving multiple scales.
In practice, it turns out that obtaining the analytic form of the differential equation can be
challenging. Nevertheless, a major simplification is achieved when the master integrals are
chosen to satisfy a differential equation in ϵ-factorized form [55]. Despite great theoretical
progress (see e.g. [70–79]), finding such sets of master integrals for multi-scale problems
remains a major problem. In this section we give details of our approach to construct a
basis of master integrals satisfying ϵ-factorized differential equations, which builds upon the
approaches presented in refs. [80, 81] and in refs. [8, 10, 82].

Let us denote a basis of master integrals as J⃗ for a family of Feynman integrals T .
The integrals J⃗ are functions of the kinematic invariants s⃗ and the dimensional regulator
ϵ = (4 − d)/2. A basis of master integrals satisfies a set of first-order partial differential
equations

∂J⃗

∂si
= Bi(s⃗, ϵ) J⃗ , (4.1)

where the Bi(s⃗, ϵ) are N × N matrices, with N = dim(T ) and entries which are rational
functions of ϵ. If the choice of basis J⃗ does not include algebraic functions of s⃗, such as
square roots, then the differential equation matrices Bi(s⃗, ϵ) are also rational functions of
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s⃗. Differential equations of the form (4.1) are neither easy to construct, nor easy to solve.
To remedy these difficulties, we change to a basis of master integrals I⃗ via J⃗ = UI⃗, which
satisfy differential equations of the form

∂I⃗

∂si
= ϵ Ai(s⃗)I⃗ . (4.2)

The differential equation matrices Ai(s⃗ ) are related to those of the original differential
equation by

ϵ Ai(s⃗) = U−1Bi(s⃗, ϵ)U − U−1 ∂U

∂si
. (4.3)

The key feature of equation (4.2) is that it is in “ϵ-factorized” form. In general, finding a
basis of master integrals I⃗ that satisfies such differential equations is a non-trivial task. We
describe our approach in the next section. In practice, we find that we are able to achieve
such an ϵ-factorized form with a change of basis matrix U that is algebraic in the kinematic
invariants and rational in ϵ. Hence, the Ai(s⃗ ) are algebraic in the kinematics invariants.

In practice, it is useful to unify the 7 differential equations into a single one using the
language of differential forms. In such a language, we write that

dI⃗ = ϵ
κ∑

α=1
Mα ωαI⃗ , (4.4)

where we express the differential equation in terms of a set of κ linearly independent differential
one-forms ωα. We call such a one-form a “letter”, and the full collection of all κ letters, the
“alphabet”. The coefficient matrices Mα are N × N matrices with rational number entries.

In the following subsections we describe the procedure to construct our basis of master
integrals I⃗ that satisfy equation (4.4), alongside the associated set of letters ωα, and rational
number matrices Mα.

4.1 Construction of master integral basis

In order to construct a basis of master integrals that satisfy an ϵ-factorized differential
equation, we follow the strategies employed in refs. [8, 10, 82]. Starting from a choice of
master integrals, for example by following the Laporta algorithm [66], we construct the
differential equations (4.1) on a fixed kinematic point while keeping the full ϵ dependence.
This allows to explore the analytic form of the differential equations as a function of the
dimensional regulator for multiple choices of integral bases in an efficient way. We employ
the Kira program [67, 68] for these reductions using finite fields Fp where p is a large prime
number [83, 84]. We then follow a number of approaches to refine the basis choice, building
on experience from the literature and using a variety of techniques that we summarize here.

As a first step, we search for a collection of master integrals where the differential
equations are linear in ϵ. That is, we search for a basis such that the matrix Bi(s⃗, ϵ) in
equation (4.1) takes the form

Bi(s⃗, ϵ) = B
(0)
i (s⃗) + ϵB

(1)
i (s⃗) . (4.5)
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We proceed in a bottom-up fashion, starting with master integrals with the fewest number of
propagators. For integrals with a low number of propagators, we search through a collection of
basis integrals with raised propagator powers, until the differential equations take a form that
is linear in ϵ. Often, such bases must be normalized by various ϵ-dependent functions, which
we read from the differential equations evaluated on a numerical kinematic point. A number
of such basis choices can be interpreted as dimension shift relations [85, 86] of subloops, such
as considering tadpole and bubble subloops into 2 − 2ϵ dimensions. This procedure gives rise
to a large number of integrals in our basis, for example those given in equations (A.16), (A.84)
and (A.102). For many integrals with a higher number of propagators, we instead consider
simple tensor insertions in order to arrive at a differential equation that is linear in ϵ.

From the refined starting point of equation (4.5), we apply a number of techniques to
obtain ϵ-factorized differential equations. For integrals with box or pentagon subloops, we
follow techniques introduced elsewhere in the literature [8, 10, 13]. Some examples were
constructed by considering a four-dimensional d log-form integrand analysis (see e.g. [74]).
Others make use of numerators built from ϵ-dimensional scalar products [4]

µij = ℓ
[d−4]
i · ℓ

[d−4]
j , i, j = 1, 2 , (4.6)

where we write the loop momenta as ℓi = (ℓ[4]
i , ℓ

[d−4]
i ), i.e. decomposing them in terms

of their 4- and (d − 4)-dimensional parts. Examples of integrands obtained through this
procedure for T1 can be found in equations (A.89), (A.101) and (A.121), and for T̃2 in
equations (B.4), (B.8) and (B.9).

For many other integrals, it was fruitful to employ an approach based on the structure of
the ϵ → 0 limit of the differential equation matrix. One advantage of the linear-in-ϵ form
is that a change of basis matrix that satisfies

∂

∂si
U = B

(0)
i (s⃗ )U , (4.7)

will result in a differential equation in ϵ-factorized form. This allows us to use techniques based
on the Magnus exponential [87], which we combine with analytic reconstruction techniques.
In practice, we work sector by sector,2 or equivalently block by block of B

(0)
i , and make a

series of partial basis changes to sequentially improve the basis. In most sectors we find that
the B

(0)
i are triangular, and proceed in two stages. In the first stage, we restrict our analysis

of equation (4.7) to diagonal entries, which reduces equation (4.7) to a collection of 1 × 1
systems. In practice, we find that these systems take the form

∂

∂si
u = biu , where bi = ∂

∂si
log(b̃) , (4.8)

where u is a diagonal entry of U and bi are diagonal entries of B
(0)
i . By analytically

reconstructing the bi and integrating, we find an associated normalization of the corresponding
integral. We note that it may be the case that the bi are rational, while b̃ is algebraic. In
practice, we find that this procedure is often easier to automate than a leading singularity

2A sector of a Feynman integral family refers to integrals that share the same set of inverse propagators
with positive powers.
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Figure 6. The “kite7” sector with seven master integrals. When studying the differential equations
for these integrals using Magnus exponential techniques, the associated matrix is not triangular.
The result of the Magnus exponential for this sector introduces the nested square roots

√
N± (see

section 2).

calculation in momentum space. In the second stage, we can assume that the relevant block
of each B

(0)
i is strictly lower triangular. As an example, let us assume that the relevant block

is 2 × 2. Larger cases can be similarly handled. One then has that

∂

∂si
U =

(
0 0

b10,i 0

)
U , where b10,i = ∂

∂si
b̃10 , (4.9)

and in practice we find that b̃10 is an algebraic function of the kinematics. This differential
equation is then solved by

U =
(

1 0
b̃10 1

)
, (4.10)

which can be read as an instruction to redefine the second integral in the block by subtracting
the first with a factor of b̃10. When encountering situations like this, we analytically reconstruct
b10 to find the associated basis change. Example of integrals obtained through this procedure
are in equations (A.104), (A.108) and (A.118) for T1.

A particular five-propagator sector, displayed in figure 6, involves 7 master integrals
and requires special attention, as the relevant block structure of B

(0)
i is not triangular. We

refer to this sector as the kite7. Four such integrals arise in a lower triangular block and so
an ϵ-factorizing basis can be constructed with the procedures described before. However,
it was necessary to study a non-triangular 3 × 3 block. Here, we again start by focusing
on the diagonal entries, leading to normalizations for the involved integrals which eliminate
the diagonal elements of the B

(0)
i . This leads to studying the differential equation for the

integrals with the numerators

Ñ (1)
64 = ϵ3

√
q2 4
√

N2
b − Nc

( 1
ρ3

− 1
ρ2

)
,

Ñ (1)
65 = ϵ3

√
q2 − 4m2

t
4
√

N2
b − Nc

( 1
ρ3

+ 1
ρ2

)
,

Ñ (1)
66 = ϵ2 m2

t v45(q2 + v12)(q2 + v23)
2q2 + v12 + v23

( 1
ρ2ρ6

+ 1
ρ3ρ8

)
.

(4.11)
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where the tilded notation highlights that this is an intermediate step in the production of the
final ϵ-factorized basis. The corresponding differential equations take the form

∂

∂si

Ĩ64
Ĩ65
Ĩ66

 =

 0 ai 0
ai 0 0
bi ci 0


Ĩ64

Ĩ65
Ĩ66

+ O(ϵ), where ai = 1
4

∂

∂si
log(ã) , (4.12)

and ai, bi, ci and ã are algebraic functions of the kinematics. We then work to construct
a change of basis which renders the matrix lower triangular, and therefore amenable to
the previous techniques. This leads us to focus only on the upper 2 × 2 block. To remove
this block, we solve the associated differential equation for the change of basis matrix of
equation (4.7) using the Magnus exponential. As the two off-diagonal entries involve the
same functions ai, the Magnus exponential truncates at its first order. Nevertheless, the
factor of 1

4 in equation (4.12) leads to a complicated algebraic procedure which eventually
results in removing the quartic roots in equation (4.11), but introducing the nested roots√

N± of equation (2.18). After this step, the resulting block is now lower triangular, and
can be handled as discussed above. To apply this procedure in practice, we reconstruct the
analytic form of the ai, bi and ci from numerical samples. The integrals obtained through
this procedure are presented in equations (A.65), (A.66) and (A.67).

Altogether, using this suite of approaches, we were able to construct a basis of master
integrals that satisfy a set of differential equations in ϵ-factorized form. We present the full
set of basis integrals in the appendices A and B for the T1 and T̃2 families respectively.

4.2 Analytic reconstruction of the differential equations

Given that the bases of integrals obtained in the last section satisfy a set of differential
equations in ϵ-factorized form, we are now in a position to compute the analytic form of the
differential equations. We follow the general procedure of ref. [8]. We begin by computing
κ, the number of linearly independent letters ωα that arise in equation (4.4). As described
in ref. [8], this can be computed from repeated numerical evaluations of the differential
equations. In practice, we find that the number of linearly independent letters, or the
dimension of the alphabet, is

κ = 152 . (4.13)

Furthermore, we observe that by itself the T1 family contains all 152 independent letters, and
that the families T̃2, Z(T̃2) and T0 can be expressed in terms of a subset of the same letters.

Next, we focus on reconstructing a basis of letters, onto which we will later fit the full
differential equations. This approach avoids reconstructing the functional form of each entry
of the differential equations with numerical evaluations, which can become computationally
prohibitive. Following refs. [4, 5, 8], we choose a basis of linearly independent letters by
prioritizing entries of the differential equation that lie on the block-diagonal. In practice, we
find that 80 of the letters can be obtained from maximal-cut,3 70 from next-to-maximal-cut,
and 2 are found on next-to-next-to-maximal-cut differential equations.

3For a given integral sector we call the maximal-cut differential equations those obtained when working
modulo subsectors. Correspondingly, (next-to)k-maximal-cut differential equations are those that only keep
subsectors with k fewer propagators.
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Our approach to reconstructing the basis of letters is based upon expectations for their
analytic form. Given that we have found a basis with an ϵ-factorized differential equation using
only algebraic functions, we naively expect that the letters can be expressed in d log form, i.e.

ωα = d log(Wα) , (4.14)

where Wα is an algebraic of the invariants, giving a strong constraint on the analytic structure
of the letters. We will return to the validity of this assumption later. Further constraints on
the analytic structure of the letters follow from their properties under Galois transformations.
We start with letters that are independent of the square roots and therefore have trivial
Galois transformations. We call these even letters. If a given letter ωα is even

ωα =
∑

i

ωα,i dsi , (4.15)

it is clear that the ωα,i are rational functions. Given the d log-form expectation, we should
have that

ωα,i =
∂

∂si
Wα

Wα
. (4.16)

Thus, irreducible polynomial factors of denominators of the ωα,i are natural candidates for
even letters. We therefore proceed to compute the rational functions ωα,i through functional
reconstruction techniques (see e.g. refs. [84, 88]), and take the irreducible factors as letter
candidates. In practice, this procedure allowed us to compute a set of 33 Wα, which generate
the full subspace of even letters ωα.

Next, we consider letters with non-trivial properties under Galois transformations. We
first consider those which do not depend on the nested roots

√
N± but may depend on

any other square root. In contrast to the even letters, finding the corresponding Wα of
equation (4.14) is considerably more challenging and we dedicate most of the rest of this
section to their determination. Due to the way in which the algebraic functions are introduced
into our choice of basis, the corresponding entries of the differential equation matrices (and
therefore letters) all pick up a sign under sign-flip Galois transformations. We refer to
these as odd letters. An important feature observed in all odd letters in two-loop five-point
computations to date is that the possible denominator factors of the associated differential
form correspond to the even letters. Given these two features, denoting the relevant square
root as

√
R, we are motivated to consider an initial ansatz for odd ωα of the form

ωα = 1√
R

Nα∏
β(W even

β )qαβ
, (4.17)

where Nα is a polynomially valued differential form and the qαβ take values in {0, 1} and
therefore select which even letters arise in the denominators. In order to determine these
exponents, given that the set of even letters has already been determined, we apply univariate
reconstruction approaches [89] to each of the individual ωα,i, and take the lowest common
multiple of the set in i of all denominators in the ωα,i.

Naturally, for each such letter, two steps remain: first we must determine the numerators
Nα and then we must perform the integration to rewrite ωα as a d log form. In practice
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each of these steps are computationally and theoretically demanding. Instead, we perform
both operations together, using an ansatz approach. Specifically, we build ansätze for the
arguments of our d log forms Wβ using the function

Ω1(w, R) = w −
√

R

w +
√

R
. (4.18)

For the purposes of the ansatz procedure, we will consider w as an unknown rational function
of the Mandelstam invariants. In order to constrain w, let us consider the structure of a
d log form arising from Ω1,

d log(Ω1(w, R)) = −w(dR) + 2R(dw)√
R(w2 − R)

. (4.19)

Here, we see that the denominator of the d log form is given by w2−R. If we write w = wN /wD,
where wX (with X either N or D) are polynomials and compare the denominators of
equation (4.19) and equation (4.17) we find

w2
N − Rw2

D ∼
∏
β

(W even
β )qαβ , (4.20)

where we use ∼ to state that the left-hand side and right-hand side are (polynomially)
proportional. We therefore reduce the problem to finding polynomials wN and wD that
satisfy equation (4.20). This constraint is similar to that proposed in ref. [90], however here
the product of even letters is known a priori.

In order to solve equation (4.20), we use two methods. First, we consider an ansatz for
wN and wD where they are taken to be as multivariate polynomials with rational numbers
as coefficients. That is, we write

wX =
∑

|γ⃗|=deg(wX)
τX,γ⃗

( 7∏
i=1

sγi
i

)
, (4.21)

where the τX,γ⃗ are unknown rational numbers, |γ⃗| =
∑

i γi and deg(f) is the total degree of
the polynomial f . The sum in equation (4.21) is over all exponents γ⃗ that have the same
degree as the wX . By equation (4.20), the degrees of wN and wD are constrained such
that their difference is the mass dimension of w. The degree of wD is therefore another
unknown, and in practice we vary this in the ansatz procedure. With this parametrization,
we can rewrite equation (4.20) as

w2
N − Rw2

D mod
∏
β

(W even
β )qαβ = 0 . (4.22)

The modulo operation can then be implemented with polynomial reduction techniques that
are commonly implemented in computer algebra systems (CAS). In this way, equation (4.22)
becomes a quadratic set of constraints that the τX,γ⃗ must satisfy.

Let us consider how to solve equation (4.22) given the multivariate polynomial ansätze
for wN and wD. First, note that any rescaling of equation (4.21) of the form

(τN,γ⃗ , τD,γ⃗) → (λτN,γ⃗ , λτD,γ⃗) , (4.23)
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for any non-zero λ, will leave w invariant. This implies that solutions to equation (4.22) are
not unique and come in families. This non-uniqueness can be avoided in any case where we
know that some τX,γ⃗ is non-zero as we can use the rescaling to set it to 1. For example,
if we consider a case where the degree of wD is 0, i.e. w is simply a polynomial, then it is
natural to use the rescaling to set wD = 1. In practice, we find that this results in a quadratic
system of equations for the (τN,γ⃗ , τD,γ⃗) that have a finite number of solutions. Algorithms for
enumerating the solutions of such systems are commonly implemented in computer algebra
systems. In practice, we find it helpful to further organize the system by (repeatedly) solving
all equations of the form x2 = 0. Nevertheless, if wD has non-zero degree, then it is a priori
unclear which term in wD is non-zero and we must walk through all possibilities before we
find a term which we can choose to have unit coefficient.

In practice, as the number of terms in a multivariate polynomial grows rapidly as a
function of the polynomial degree, the enumeration through all possible non-zero terms can
be computationally prohibitive. To address this problem, we consider a second approach.
Here, we single out one of the Mandelstam invariants, denoting it as si, which is chosen in
an ad-hoc manner. We then consider an ansatz for wN and wD where they are univariate
rational function in the variable si, that is

wX =
deg(wX)∑

k=0
τ

(ŝi)
X,k (si)k , (4.24)

where the τ
(ŝi)
X,k are rational functions of all invariants other than si. Here, we fix the degrees

in si of the wX to be the largest possible, without the left hand side of equation (4.20)
having greater degree in si than the right hand side of equation (4.20). With the ansatz
in equation (4.24), we again consider equation (4.22), this time implementing the modulo
operation using polynomial reduction with respect to only si. Once again, this leads to a
quadratic system of equations that the τ

(ŝi)
X,k solve. While one must also determine which

τ
(ŝi)
X,k is non-zero by enumeration, the number of terms in a univariate rational function is

much smaller, and is hence more tractable. Nevertheless, the τ
(ŝi)
X,k are rational functions, and

solving for them is a non-trivial exercise which we confront using an in-house implementation
of “companion matrix” techniques (see, for example, refs. [91, 92]). In practice, we find this
univariate ansatz method is able to handle the suite of complicated cases we study in this work.

In summary, with this ansatz procedure, we are able to construct a collection of d log
forms whose denominators must correspond to the provided differential form. We then
use these even d log forms as an ansatz for the odd forms (under a single square root) of
the differential equations. The validity of this ansatz is confirmed by a numerical fitting
procedure. Importantly, we did not directly reconstruct the numerator of equation (4.17).
Instead, we have implicitly constructed it by using the expectation that equation (4.17)
corresponds to a d log form.

Beyond the letters which are odd under a single Galois transformation, there are also
letters which are odd under two such transformations. To handle these cases, we follow an
analogous approach to the one just described. Specifically, denoting the two corresponding
roots as

√
R1 and

√
R2, we start from an ansatz for the argument of the d log form using
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the function

Ω2(w, R1, R2) = w −
√

R1
√

R2
w +

√
R1

√
R2

, (4.25)

where w is again an unknown rational function. Finally, it is sometimes useful to consider
an ansatz for the argument of the d log form using the function

Ω̃(w0, w1
√

R1,
√

R2) = (w0 + w1
√

R1 +
√

R2)(w0 − w1
√

R1 −
√

R2)
(w0 − w1

√
R1 +

√
R2)(w0 + w1

√
R1 −

√
R2)

. (4.26)

Here, w0 and w1 are unknown rational functions. Such forms of letters have been previously
found in multi-scale two-loop five-point amplitude calculations [8, 10, 14]. Indeed, early
iterations of the multivariate rational function ansatz procedure were used to determine the
most complicated letters in [10]. In practice, this can be a fruitful approach to simplify
the result as the mass dimension of the unknown functions in equation (4.26) is lower than
those of equation (4.25).

We now return to the collection of letters that depend on the nested square roots
√

N±. In
these cases, we construct the full differential form using functional reconstruction techniques.
In practice, this was the most computationally demanding reconstruction procedure. In all but
four cases, these were then integrated to d log forms using ad-hoc techniques. The remaining
four letters proved resilient to being cast in d log form. In these cases, one can show that the
geometry associated to the square roots in the integrand is that of an elliptic curve. While
there is a wealth of literature where such cases can be cast in d log form, it is important to
emphasize that this is a property of the form itself. Indeed, a priori, algebraic forms involving
an elliptic curve could correspond to differentials of first, second or third kind. Given that the
differential equation is in ϵ-factorized form, and the change of basis matrix is only algebraic,
this is perhaps a surprising statement. Nevertheless, such cases have arisen [93]. Currently,
we are not aware of any technique that could definitively classify the nature of such algebraic
forms and we suggest that this would be an interesting avenue for future investigation.

Finally, with this complete alphabet in hand, we determine the rational number matrices
Mα of equation (4.4) using the procedure described in ref. [8]. Specifically, we sample the
differential equation κ times, and use this information to fit the differential equations onto the
basis of letters, yielding the Mα and therefore the analytic form of equation (4.4). Note that for
this procedure to work it is enough to know the partial derivatives of the letters ωα for which
we could not find a d log form. We provide the results of this procedure in the next section,
as well as in a series of files in the supplementary material that we describe in section 6.3.

5 Analytic structure of the Feynman integrals

Given our analytic determination of an ϵ-factorized differential equation for the Feynman
integrals studied in this paper, we are now in the position to investigate the analytic structure
of these integrals. In the following we first discuss the organization of the letters in the
alphabet of the differential equation and afterwards the analytic structures of the solution
of the Feynman integrals.
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5.1 The alphabet

In section 4, we described a procedure to determine a set of 148 out of 152 letters as d log
forms and that can be used to express the differential equation matrices. Here we present
the results of that procedure, that is the analytic forms for the letters. Almost all letters
are so-called d log-forms, and take the form

ωα = d log(Wα) , (5.1)

for some expression Wα that is algebraic in the Mandelstam invariants, depending on a limited
series of square roots defined in section 2. In a slight abuse of language, in situations where
there is no ambiguity, for letters ωα that are in d log form we will also call the associated
Wα a letter. As a first organizational criteria for the alphabet, we note that a number of
letters do not arise in iterated integral solutions before O(ϵ5) and hence do not contribute
to the NNLO QCD corrections to associated physical observables. We will return to this
discussion in section 5.2. We denote the set of letters that do contribute as relevant letters
and consider these first.

The first set of relevant letters that we consider are those that appear in the first entry
of iterated integral solutions,

{W1, . . . , W7}=
{

s12 − m2
t , s23 − m2

t , s34 − m2
t , s15 − m2

t , v45, m2
t ,

q2+
√
C1

q2−
√
C1

}
. (5.2)

Note that one such letter is algebraic, and is odd under the Galois transformation associated
to

√
C1. This letter can readily be associated to the one-loop bubble shown in figure 2(a).
Beyond the first entries, the letters can be organized in terms of the square roots that

arise. The first class does not depend on any square root and are denoted by even letters.
There are 33 such relevant letters, and we arrange them by mass dimension. Besides the
6 even letters already accounted for in the first entries, we find 13 additional letters which
are linear in Mandelstam invariants

{W8, . . . , W20} = {q2, s12, s23, s34, s15, v24, v25, v14, v35,

v34 + v45, v15 + v45, s12 − s34, s23 − s15} . (5.3)

We make use next of the object tr±, which we define as4

tr±(i1, . . . , in) ≡ tr
([1 ± γ5

2

]
/pi1

· · · /pin

)
. (5.4)

This object is multilinear in the momenta, and allows us to rewrite many expressions in a
form that manifestly vanishes in limits where involved momenta become soft.

We obtained 4 more even letters which are quadratic in Mandelstam invariants

{W21, . . . ,W24}= {tr+(4151),tr+(4353),tr+(15[2+3][4+5]),tr+(34[1+2][4+5])} , (5.5)
4Let us comment on a subtlety in representing letters in terms of tr±. If one re-expresses such objects in

terms of Mandelstam invariants, one may find an explicit dependence on tr5 and not
√

∆5. In our alphabet,
in such a case we make the replacement tr5 →

√
∆5, such that all of our letters are parity invariant. This is

the same convention as used in ref. [10].
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and 8 additional even letters which are cubic

{W25, . . . , W32} = {tr+(125215), tr+(324234), tr+(124214), tr+(235325),

m2
t (v15−v34)2 + q2v15v34, m2

t v2
25 + q2v15(v15+v25),

m2
t v2

24 + q2v34(v24+v34),

m2
t ([v24+v25]2 − 4q2v45) − s13(v12v23 − q2s13)} .

(5.6)

Finally, there is a single even letter that is quartic in Mandelstam invariants

W33 = tr+[43(4 + 5)151(4 + 5)3] , (5.7)

and a single even letter that is sextic

W34 = (m2
t v24v25)2 + (q2)2v14v15v34v35

+ q2m2
t

(
[v14v15−v34v35]2 − v24v25[v14v15+v34v35]

)
. (5.8)

Beyond these letters, there are letters which transform under the subgroup of the Galois
group associated to each square root. We first consider the letters which are invariant under
the Galois operation α associated to the nested roots

√
N± (see equation (2.23)), but do

transform under the Galois operation associated to a sign flip of the other square roots. As
it is standard, we organize these letters so that under the action of the associated Galois
group element, they pick up a sign. We begin with those that only transform non-trivially
under a single Galois transformation, organizing all letters making use of Ω1(w, R1) from
equation (4.18). Note that, in principle, w is a rational function, and we organize our letters
by the mass dimension of the numerator of w when considered in common denominator
form. Beginning with cases which are linear in Mandelstam variables we have the following
collection that depend on the roots of three-mass Gram determinants ∆(n)

3 and r1

{W35, . . . , W47} =
{

Ω1
(
v12, ∆(1)

3

)
, Ω1

(
v23, ∆(2)

3

)
, Ω1

(
2m2

t + v12, ∆(1)
3

)
,

Ω1
(
2m2

t + v23, ∆(2)
3

)
, Ω1

(
q2 + v23 + v45, ∆(3)

3

)
,

Ω1
(
q2 + v12 + v45, ∆(4)

3

)
, Ω1

(
v13 + v12, ∆(3)

3

)
,

Ω1
(
v13 + v23, ∆(4)

3

)
, Ω1

(
v15 − v14, ∆(3)

3

)
,

Ω1
(
v35 − v34, ∆(4)

3

)
, Ω1

(
v12 + v25, ∆(5)

3

)
,

Ω1
(
v23 + v24, ∆(5)

3

)
, Ω1(v24 + v25, r1)

}
.

(5.9)

The next set of letters is quadratic in the Mandelstam variables

{W48, . . . ,W59}=
{

Ω1

(
v12v15−2m2

t v25
v15

,∆(1)
3

)
, Ω1

(
v23v34−2m2

t v24
v34

,∆(2)
3

)
, (5.10)

Ω1

(
v12v14−2m2

t v24
v14

,∆(1)
3

)
, Ω1

(
v23v35−2m2

t v25
v35

,∆(2)
3

)
, (5.11)
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Ω1

(
q2v15−(2m2

t +v15)(v15−v34)
v15

,∆(5)
3

)
, (5.12)

Ω1

(
v25(v13+v14)−v12(v35+v45)

v15
,∆(5)

3

)
, (5.13)

Ω1

(
v24(v13+v35)−v23(v14+v45)

v34
,∆(5)

3

)
, (5.14)

Ω1

(
q2−2m2

t +2m2
t v34
v15

,C1

)
, Ω1

(
q2(v25+2v15)

v25
,C1

)
, (5.15)

Ω1

(
q2(v24+2v34)

v24
,C1

)
, (5.16)

Ω1
(
(q2+v12)(q2+v23)−q2v45,C2

)
,

tr+(1435)
tr−(1435)

}
, (5.17)

where we observe that only the last letter depends on
√

∆5 and can be written compactly
by making use of tr±. Next, we collect the letters whose numerator is degree 3 in common
denominator form,

{W60, . . . , W69} ={
Ω1

(
2m2

t v24v25 − q2(v14v15 + v34v35)
v34v35 − v14v15

, C1

)
,

Ω1

(
2m2

t v45 + v12v23 − q2s13 − 2m2
t v34v45
v15

, C2

)
,

Ω1

(
v14v35 − v13v45 − v34v45 + v15v35 −

2m2
t v15v45
v34

, r2

)
,Z(W62),

Ω1

(
v14v15 + (m2

t + s14)v25 + s25v45 −
(q2 + s25)v15v35

v25
, r2

)
,Z(W64),

Ω1

(
(m2

t − s23)v15v35 + q2s14v45 − (s23s25 + m2
t v25)v45

v15 + v45
, r2

)
,Z(W66),

Ω1

(
m2

t v35 − s23v35 − v23v45 + 2m2
t v25v45
v35

, r2

)
,Z(W68)

}
,

(5.18)

where we make use of the Z operation defined in equation (2.24). Furthermore, we find that
5 letters can also be written compactly in terms of tr±.

{W70, . . . , W74} =
{tr+[124154]

tr−[124154] ,
tr+[124234]
tr−[124234] ,

tr+[125145]
tr−[125145] ,

tr+[125235]
tr−[125235] ,

tr+[143(4 + 5)15]
tr−[143(4 + 5)15]

}
.

(5.19)

Finally, there is a single sextic case

W75 = Ω1

(
v14v25−v15v24−v12v45 + 2

v25

[
q2v15v45 − W25w̃75

]
, ∆5

)
, (5.20)
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where we write the letter in a way that emphasizes its simplifications on the W25 = 0 surface
and make use of the auxiliary function

w̃75 = (m2
t v2

24v25 + q2v34[v14v15 + v14v35 + v35v45])
(m2

t v24v25[v15 − v34] − q2[s24 + v12]v15v34)
. (5.21)

Beyond this, a number of letters depend on two square roots, and are odd under the sign
flip of each of them. We find that we can cast these in one of two forms. First, there are
21 letters which make use of Ω2(w, R1, R2) of equation (4.25). While w could, in principle,
be a rational function, we find that it is always polynomial. Organizing again by the mass
dimension of w, there are 10 quadratic cases

{W76, . . . , W85} ={
Ω2
(
v12[v14 + v15] − 2m2

t [v24 + v25], ∆(1)
3 , ∆(3)

3

)
,Z(W76),

Ω2
(
v13[v24 + v25] − v23[v14 − v15], ∆(1)

3 , ∆(4)
3

)
,Z(W78),

Ω2
(
v12v23 − 2q2v13, ∆(1)

3 , ∆(2)
3

)
,

Ω2
(
v12v23 + v45[2m2

t − v13] − q2s13, ∆(3)
3 , ∆(4)

3

)
,

Ω2
(
2q2s13 − v12[v12 + v23], ∆(1)

3 , r1
)

,Z(W82),

Ω2
(
v12v45 − q2[2s13 + v12] − s13v23, ∆(3)

3 , r1
)

,Z(W84)
}

.

(5.22)

We also obtained the following 10 cubic cases which are more complicated

{W86, . . . , W95} ={
Ω2
(
w̃86, ∆(1)

3 , C2
)

,Z(W86), Ω2
(
w̃88, ∆(3)

3 , C2
)

,Z(W88),

Ω2
(
q2(v12v23 + 4m2

t v45 − q2s13), C1, C2
)

,

Ω2
(
w̃91, ∆(1)

3 , ∆5
)

,Z(W91), Ω2
(
w̃93, ∆(3)

3 , ∆5
)

,Z(W93),

Ω2
(
q2[2m2

t s13 + v15v34 + v14v35 − v13v45] − 2m2
t s24s25, C1, ∆5

)}
,

(5.23)

where we have defined the following polynomials

w̃86 = q2m2
t (v34 + v35 − 3s13 − v23)

− v12[s13(s14 + s15) + v14v23 + v15v23 + v13v45] ,

w̃88 = q2s13(s13 + v12) + 2m2
t v23v45 + v12(v14v23 + v15v23 − s13v45 + v13v45) ,

w̃91 = v12(v15v23 + s13v25 − v12v35)
+ 2m2

t [s24s25 + v2
25 − q2(s13 + v45)] − 2q2s13v15 ,

w̃93 = v12(v15v34 − v14v35) − s13(v25v34 − v24v35) + v13v45(v24 − v25) .

(5.24)

At last, there is a single letter that is quartic in Mandelstam variables

W96 = Ω2(w̃96, C2, ∆5) , (5.25)
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where

w̃96 = [q2s13 − v12v23][v15v34 − v14v35 + s13v45] − 2m2
t [2q2s13 + s24v12 + s25v23]v45 . (5.26)

Next, we have a number of letters which can be expressed more compactly in terms
of Ω̃(w0, w1

√
R1,

√
R2) of equation (4.26). Organizing by the mass dimension of w0, there

are five linear cases

{W97, . . . , W101} =
{

Ω̃
(

v25,

√
∆(1)

3 ,

√
∆(5)

3

)
,Z(W97),

Ω̃
(

q2 + v12,

√
∆(1)

3 ,
√
C1

)
,Z(W99),

Ω̃
(

v34 − v15,

√
∆(5)

3 ,
√
C1

)}
,

(5.27)

and 11 quadratic cases

{W102, . . . , W112} =
{

Ω̃
(
v14(s34−s12) − v15v35 + v25v45, v45

√
C1,

√
r2
)

,Z(W102),

Ω̃
(

(q2 + v12)v14, v45

√
∆(1)

3 ,
√

r3

)
,Z(W104),

Ω̃
(

v15v24 − v25v14, v45

√
∆(1)

3 ,
√

∆5

)
,Z(W106),

Ω̃
(

v15v24 − v25v14 − v25v45, v45

√
∆(5)

3 ,
√

∆5

)
,

Ω̃
(
(q2 + v23)v34,

√
C2,

√
r2
)

,Z(W109),

Ω̃
(
v15v34 + v15v35 + v34v45,

√
∆5,

√
r2
)

,Z(W111)
}

.

(5.28)

A remaining set of letters depend on the nested root, with non-trivial Galois properties.
Firstly, we have a set of 6 letters, which are odd with respect to the sign-flip of

√
N+, given by

{W113, . . . , W118} ={
Ω1
(
q2[v45 + s13 − q2], N+

)
, α(W113),

Ω1
(
q2[v12−v23], N+

)
Ω1

(
f1

v24+v25
, N+

)
, α(W115),

Ω1

N+([v14−v15] − [v34−v35]) + (q2 − 4m2
t )(v24−v25)f1

2(q2[v14−v15][v34−v35] − m2
t [v24−v25]2) −

√
N2

b −Nc

, N+

 ,

α(W117)
}

,

(5.29)

where we use the α operation defined in equation (2.23), W115 and W116 are given as products
of two Ω1 functions and we also introduced the following polynomial

f1 = q2(v12−v23)(v45 + s13−q2) . (5.30)
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We find a single letter that is odd under the α transformation (2.23)

W119 = Ω1
(
Nb + q2(4[2m2

t − v13]v45 − [v12 − v23]2), N2
b − Nc

)
. (5.31)

A further set of 10 letters have non-trivial Galois transformations with respect to the sign
flips of both

√
N+ and another square root

{W120, . . . , W129} ={
Ω2(f1, r1, N+) , α(W120),

Ω2

(1
2f1 + N+

2q2 , ∆(3)
3 , N+

)
,Z(W122), α(W122), [α ◦ Z](W122),

Ω2
(
−q2[v12−v23]([q2+v12][q2+v23] − [q2−4m2

t ]v45), C2, N+
)

, α(W126),

Ω2

(
(N+r1 − f2

1 )f2 − 4q2N+∆5
N+(v25−v24) + q2f1([v15 − v14] − [v34 − v34]) , N+, ∆5

)
, α(W128)

}
,

(5.32)

where we defined the auxiliary function

f2 = q2(v15v34 + v14v35 − v13v45) − 2m2
t (v24v25 − q2v45) . (5.33)

A remaining class of letters we were unable to express in terms of d log forms. All
such letters can be found in the maximal-cut differential equation of the kite7 integrals in
figure 6. Notably, the four letters are generated by a single letter, ωE . Specifically, this
set of letters is given by

{ω130, . . . , ω133} =
{

ωE ,Z(ωE), α(ωE), [α ◦ Z](ωE)
}

, (5.34)

where one can write ωE in the form

ωE = ΩE

m2
t (q2 − v23)W32

√
∆(2)

3
√

N+
√

N2
b − Nc

, (5.35)

where ΩE is a polynomially-valued differential form. Importantly, one can understand the
singularities of ωE by expanding around the zeros of the denominator, which correspond
to a number of surfaces. We find that around each such surface ωE has at worst single
poles. Analytic expressions for these one-forms are provided in the supplementary material
(see section 6.3).

The final set of relevant letters are all square roots,

{W134, . . . , W143} =
{√

C1,

√
∆(1)

3 ,

√
∆(2)

3 ,

√
∆(3)

3 ,√
∆(4)

3 ,

√
∆(5)

3 ,
√
C2,
√

∆5,
√

r2,
√

r3

}
. (5.36)

Let us stress that {ω134, . . . , ω143} are Galois invariant as d log(
√

f) = 1
2d log(f). It is

interesting to note that the root
√

N2
b − Nc does not appear among the list of letters.

– 23 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
4

Beyond this, we finally have a set of 9 irrelevant letters, which do not arise in solutions
to the differential equation before O(ϵ5), and hence are not expected to contribute to the
NNLO QCD corrections of associated physical observables. Firstly, we have two Galois
invariant letters

{W144, . . . , W145} = {tr+(4252), tr+[53(4 + 5)141(4 + 5)3]} . (5.37)

These are followed by a set of Galois non-trivial letters,

{W146, . . . , W151} ={
Ω1(v25 − v24, r1) ,

tr+[1425]
tr−[1425] ,

tr+[14153(4 + 5)]
tr−[14153(4 + 5)] ,

Ω1

(
(v12v23−q2s13)(v14v34+v15v35) + 2m2

t (v15−v34)(v35−v14)v45
v14v34−v15v35

, C2

)
,

Ω2
(
s13[v15v24 − v14v25] + q2[v15v34 − v14v35] − v45[s24v34 − s25v35], r1, ∆5

)
,

Ω̃
(
v14v34 − v15v35,

√
C2,
√

∆5
)}

.

(5.38)

Finally, one of the square roots itself is an irrelevant letter:

W152 =
√

r1 . (5.39)

5.2 Analytic structures of the function space

In this section, we explore properties of the space of functions that arises in the Feynman
integrals under consideration. Given the ϵ-factorized differential equation (4.4), one can find
solutions for the differential equation order by order in the dimensional regulator ϵ in terms of
Chen’s iterated integrals [94, 95]. These special functions have proven to be a powerful tool for
exploring analytic and numerical properties of multi-scale integrals (see e.g. refs. [7, 11, 13]).
In the following, we discuss the classes of iterated integrals that can arise in the solution to
our differential equation and leave construction of dedicated solutions to future work.

We denote by I⃗i the vector of pure integrals, where i =0, 1 or 2 refers to the families
T0, T1, and T̃2 respectively (see section 3 and appendix C for details). We expand the
integrals in ϵ and define

I⃗i(ϵ, s⃗) =
∞∑

n=0
ϵnI⃗

(n)
i (s⃗) , (5.40)

where by construction the expansions start at O(ϵ0). By equation (4.4), each term in the
ϵ expansion can be constructed iteratively as

I⃗
(n)

i (s⃗) = b⃗
(n)

i (s⃗0) +
152∑
α=1

Mα

∫
γ

ωα I⃗
(n−1)

i (γ) , (5.41)

where γ is a path that connects the points s⃗0 and s⃗ and b⃗
(n)

i (s⃗0) are the vectors of boundary
values. In order to study the classes of iterated integrals that arise, in this section we
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work modulo boundary values, except for the leading term I⃗
(0)

i = b⃗
(0)

i (s⃗0), i.e. we set
b⃗

(n)
i (s⃗0) = 0 for n ≥ 1.

The integrals in equation (5.41) can be expressed in terms of the iterated integrals, which
we define recursively according to

[ωj1 , . . . , ωjm ]s⃗0
(s⃗) =

∫
γ

ωjm

[
ωj1 , . . . , ωjm−1

]
s⃗0

(γ) ,

[ ]s⃗0
(s⃗) = 1 .

(5.42)

These functions form a graded algebra with their weight defined by the depth m of nested
integrations. They also fulfill shuffle algebra relations [95]

[ωa1 , . . . , ωam ]s⃗0
(s⃗) [ωb1 , . . . , ωbn ]s⃗0

(s⃗) =
∑

c⃗∈a⃗�b⃗

[
ωc1 , . . . , ωcm+n

]
s⃗0

(s⃗) , (5.43)

where the shuffle operator � combines in all possible ways the components of the vectors
a⃗ and b⃗ but keeping always the relative order of the components of both of them. We use
these iterated integrals to express the master integral coefficients I⃗

(n)
i as a combination

of weight n functions

I⃗
(n)

i (s⃗) ∼ J⃗
(n)

i (s⃗) where J⃗
(n)

i (s⃗) =
152∑

j1,...,jn=1
c⃗

(n)
i;j1,...,jn

[ωj1 , . . . , ωjn ]s⃗0
(s⃗) , (5.44)

the coefficients c⃗
(n)

i;j1,...,jn
are vectors of rational numbers and ∼ is an equivalence relation

working modulo boundary terms b⃗
(n)

i (s⃗0) for n ≥ 1. According to equation (5.40), if we assign
a weight of −1 to ϵ, all master integrals have a uniform weight equal to 0 at all orders in ϵ.

As one can see from equation (5.41), to construct these solutions we need the constants
I⃗

(0)
i . The boundary constants are obtained from numerical evaluations using AMFlow as

described in the upcoming section 6. We also provide for convenience the explicit weight-0
boundary terms in appendices A, B and C. Using these boundary constants, we construct
the iterative solutions J⃗

(n)
i (s⃗ ).

We will now discuss a number of properties of these solutions. First, as commented
at the end of the previous subsection, we find that nine letters do not arise in iterated
integral solutions up to weight 4: {

ω144, . . . , ω152
}

, (5.45)

that is, they do not enter in any of the corresponding [ωj1 , . . . , ωjn ]s⃗0
functions appearing

in the solutions {J⃗
(n)

0 , J⃗
(n)

1 , J⃗
(n)

2 ,Z(J⃗ (n)
2 )} for n ≤ 4. Next, we analyze the space of linear

combinations of iterated integrals that arise in the combined solutions to all two-loop Feynman
integrals considered in this work, in order to give an idea of the complexity of the function
space. First, we compute the number of linearly independent functions at each order in
ϵ, finding 121 linearly independent functions at weight 4. Furthermore, we have explicitly
checked that the linear relations that one finds between the J⃗

(n)
i are also linear relations of

the J⃗
(n′)

i for n′ < n ≤ 4. That is, relations at higher weight also hold at lower weight. It
would be interesting to find an explanation for this phenomenon. Due to the shuffle algebra
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n Linearly independent Irreducible

1 7 7
2 31 16
3 85 69
4 121 114

Table 1. Working modulo boundary constants up to weight 4, the number of linearly independent
and irreducible functions at each weight n for the combined set of two-loop integral solutions
{J⃗

(n)
1 , J⃗

(n)
2 ,Z(J⃗ (n)

2 )}.

n
√

∆(1)
3

√
∆(2)

3

√
∆(3)

3

√
∆(4)

3

√
∆(5)

3
√

∆5
√
C1

√
C2

√
r1

√
r2

√
r3

√
N+

1 0 0 0 0 0 0 1 0 0 0 0 0
2 1 1 1 1 1 0 5 1 0 0 0 0
3 4 4 4 4 4 1 6 4 0 1 1 2
4 6 6 9 9 4 7 6 6 1 1 1 2

Table 2. Working modulo boundary constants up to weight 4, the number of linearly independent
functions at each weight n that are odd under the operation

√
X → −

√
X, which arise in the combined

set of two-loop integral solutions {J⃗
(n)

1 , J⃗
(n)

2 ,Z(J⃗ (n)
2 )}.

of equation (5.43), some of these functions are actually products of lower weight functions.
Therefore, we also compute the number of linearly independent functions modulo such shuffle
relations, which we obtain with the help of the PolyLogTools package [96]. This tells us
the number of linearly independent irreducible functions and we find 114 such irreducible
functions at weight 4. We summarize the results of this analysis in table 1. The total number
of independent master integrals in the families T1, T̃2 and Z(T̃2) is 127. Given that we
encounter at weight four 121 linearly independent functions, it means, that modulo boundary
constants, there are six non-trivial relations between the master integrals arising at weight 4.

In order to further understand the properties of the functions which arise as solutions to
our differential equations, we also explore the behavior of the space of special functions under
Galois transformations. More precisely, in table 2 we show the number of linearly independent
functions in the solutions to the two-loop integrals, {J⃗

(n)
1 , J⃗

(n)
2 ,Z(J⃗ (n)

2 )}, for k = 1, . . . , 4
that are odd under the transformation

√
X → −

√
X. The only Galois transformation acting

non-trivially at weight 1 is that of the sign flip of
√
C1. Galois transformations associated to

sign flips of five-point square roots, i.e
√

∆5,
√

r2,
√

r3, do not enter until weight 3. The Galois
transformation associated to the sign flip of the nested root

√
N+ first acts non-trivially at

weight 3. Interestingly, the Galois transformation associated to the sign flip of √
r1 first

acts non-trivially at weight 4. Finally, we also studied the number of linearly independent
functions arising in the two-loop integrals, {J⃗

(n)
1 , J⃗

(n)
2 ,Z(J⃗ (n)

2 )}, which are odd under the
action of α. At weights 1 and 2 there are no such functions, while at weights 3 and 4 there
is a single such function.
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6 Numerical evaluations of the master integrals

In this section, we present numerical results obtained for the master integrals. The compact
structure of their analytic differential equations (4.4) makes it naturally suitable for efficient
numerical evaluations. While a more detailed implementation ready for phenomenological
studies is left to future work, here we provide tools for their evaluation and present benchmark
values up to order O(ϵ4) for all of the integrals in the physical phase space for the scattering
process in (2.1). In terms of Mandelstam invariants, this space is defined by the relations
in (2.6). Our numerical evaluations make use of the public packages AMFlow [61] and
DiffExp [57].

6.1 Boundary values

Solving linear differential equations requires a single set of boundary values, the b⃗
(n)

i (s⃗0)
vectors in equation (5.41). For numerical solutions these boundary values can be computed to
very high precision, in generic regions of parameter space and up to high orders in ϵ with the
auxiliary mass flow method [58–60]. We use this method to extract boundary values, with 100
decimal digit precision, in the physical region employing the corresponding implementation
provided in the AMFlow package [61]. First, we use AMFlow to numerically compute a
set of scalar master integrals in the following phase space point in the physical region (2.6)

s⃗0 =
{562

11 ,
89
11 ,−36

13 ,
305
3 ,−52

21 ,
9
56 ,

360
197

}
, (6.1)

with s⃗ as in equation (2.3) and where the figures are in units of the regularization scale.
Afterwards, we perform basis transformations into the bases constructed in section 4.1, I⃗i(s⃗0)
(i = 0, 1, 2), keeping terms up to O(ϵ4). We deliver the boundary values in the supplementary
material (see section 6.3).

6.2 Numerical results and validation

In this section, we provide numerical benchmark results for the following phase space points
in the physical region (2.6)

s⃗1 =
{19

3 ,
46
3 ,−24

7 ,
383
5 ,−61

28 ,
25
118 ,

97
896

}
,

s⃗2 =
{124

3 ,
34
3 ,−100

13 ,
518
5 ,−36

5 ,
176
255 ,

37
9

}
,

s⃗3 =
{

47 , 5 ,−25
12 , 96 ,−23

49 ,
149
593 ,

62
61

}
,

s⃗4 =
{

73781 , 74098 ,−82315 , 307009 ,−76978 , (173)2 , (125)2
}

,

(6.2)

with s⃗ as in equation (2.3) and were figures are in units of the regularization scale. These
points have been chosen randomly in the physical phase space, except for s⃗4 where we have
forced the invariants m2

t and q2 to have values associated to corresponding parameters of
the Standard Model of particle physics. We use the differential equations (4.4) to transport
the master integrals I⃗i from the boundary (6.1) to the points s⃗j for j = 1, . . . , 4. To this
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end, we employ the method of generalized series expansions (see e.g. refs. [8, 56]) using the
implementation provided by the package DiffExp [57].

This procedure works directly for obtaining numerical results for the master integrals
I⃗0 and I⃗2 associated to the families T0 and T̃2 respectively. However, to evaluate I⃗1(s⃗j) we
required an additional step. This is due to a feature of the DiffExp package. DiffExp
numerically solves the differential equation by moving on a straight segment between the
initial and final points. As it does this, it requires to perform analytic continuations when
crossing singularities, which might be endpoints of branch cuts. In particular DiffExp has
implementations to handle the analytic continuation of logarithmic functions and those of
square roots of polynomials. However, our ϵ-factorizing basis of master integrals for the
T1 family, specifically in the kite7 integrals shown in equations (A.65) and (A.66), include
the nested square roots

√
N± of equation (2.18).

Due to this feature, and for practical reasons, we choose to resolve this by constructing
an auxiliary integral basis where the integrals in (A.65) and (A.66) are replaced by

N aux
64 = ϵ3(q2)2

( 1
ρ3

− 1
ρ2

)
, (6.3)

N aux
65 = ϵ3(q2)2

( 1
ρ3

+ 1
ρ2

)
, (6.4)

while all other integrals match our ϵ-factorizing basis. Using equation (4.3) we transform
the differential equations of the ϵ-factorizing basis to the auxiliary basis, which results in
differential equations matrices Bi(s⃗, ϵ) that are explicitly linear in ϵ, as in equation (4.5). We
explicitly checked for the auxiliary basis the integrability condition[

Bi(s⃗, ϵ), Bj(s⃗, ϵ)
]

= ∂Bj(s⃗, ϵ)
∂si

− ∂Bi(s⃗, ϵ)
∂sj

. (6.5)

In this auxiliary basis, the basis integrals do not involve nested square roots, and therefore
neither do the matrices Bi. In this way, we construct a form of the differential equation
suitable for use with the DiffExp package. We provide these expressions in the supplementary
material (see subsection 6.3). After the transport is done we make a basis change from
the auxiliary basis to the ϵ-factorizing basis. We note that the file size of the differential
equations in the auxiliary basis is considerably larger than the ϵ-factorized basis. Indeed, this
is a general feature of working with an ϵ-factorized basis, which renders compact analytic
expressions for the differential equations.

In tables 3, 4, and 5 we show numerical results up to O(ϵ4) for the point s⃗1 of equa-
tion (6.2). We include a selection of our master integrals in the families T1 and T̃2, but in the
supplementary material we provide high-precision numerical results for all master integrals
for the integral families T0, T1, T̃2 and Z(T̃2). Tables 3 and 4 display some of the most
complex integrals in T1: the box-triangle integrals (A.99)–(A.104) and the penta-box inte-
grals (A.120)–(A.122). We choose to display the integrals (A.99)–(A.104) since they involve
five-point kinematics, and mix with the kite7 integrals via the differential equation during
integration. In addition we provide in table 5 the penta-bubble integrals (B.8) and (B.9) of T̃2.

We observe that high-precision evaluation can be achieved with our differential equations
and leave more detailed analysis of numerical features to future work. Although we consider
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O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗1)88 0 0 −1.697405869 8.990085874
+2.959793778 i

−23.70912261
+12.35416236 i

(I⃗1)89 0 0 0 −3.703380133
+5.885655074 i

−15.40231055
−6.37555295 i

(I⃗1)90 0 0 0 3.703380133
−5.885655074 i

13.15415510
+20.45624479 i

(I⃗1)91 0 0 5.811380795
−2.687806077 i

−14.63593742
+31.14397715 i

−66.82494671
−70.56864014 i

(I⃗1)92 0 −1.461994703 i −4.592991817
+4.774264642 i

−2.99771383
−17.32856509 i

31.78963784
−7.30297630 i

(I⃗1)93 0 0.4534743273 −2.546669141
−1.424631615 i

10.954658459
+0.602688704 i

−12.24416802
+16.57486204 i

Table 3. Numerical results up to O(ϵ4) for the integrals (I⃗1)88 through (I⃗1)93 evaluated at the phase
space point s⃗1 of equation (6.2). See equations (A.99)–(A.104) for the definition of the integrals.

O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗1)109 0 0 0 −3.703380133
+5.885655074 i

2.149576969
−10.432322830 i

(I⃗1)110 0 0 0 0 0

(I⃗1)111 0 0 −1.306045093
−12.647039669 i

2.05552771
+25.35139955 i

−85.55528965
−75.93834102 i

Table 4. Numerical results up to O(ϵ4) for the integrals (I⃗1)109 through (I⃗1)111 evaluated at the phase
space point s⃗1 of equation (6.2). See equations (A.120)–(A.122) for the definition of the integrals.
Consistent with the fact that it is an evanescent integral (see e.g. [97]) we find that the value of (I⃗1)110
is 0 through O(ϵ4).

O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗2)18 0.5 −4.931720031
+4.712388980 i

6.90383844
−36.51486280 i

63.72515614
+86.40251641 i

−188.2874920
−14.5546057 i

(I⃗2)19 0 0 0 3.703380133
−5.885655074 i

11.33274441
+26.71395384 i

Table 5. Numerical results up to O(ϵ4) for the integrals (I⃗2)18 and (I⃗2)19 evaluated at the phase
space point s⃗1 of equation (6.2). See equations (B.8) and (B.9) for the definition of the integrals.
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these numerical explorations to be preliminary, we note that when compared to evaluations
using the AMFlow package, the evaluations based on our differential equations took more
than two orders of magnitude less computation time to achieve results with comparable
precision, using comparable computing resources.

The high-precision numerical evaluations that we have obtained provide a highly non-
trivial validation of the analytic form of the differential equation that we have computed.
Indeed we compared the results obtained with independent evaluations using AMFlow in all
the points s⃗j (j ≥ 1). We find excellent agreement, that is, agreement to 95 or more decimal
digits. We have also performed comparisons with fully numerical integrations for a handful
of integrals via sector decomposition [98] and tropical Feynman integration [99], employing
the corresponding implementations in the packages pySecDec [100] and feyntrop [101].
Agreement is observed, though restricted to only the few decimal digits that the numerical
integration errors allow.

6.3 Supplementary material

We provide a series of files containing our analytic results, numerical benchmarks, and the
computer script we use for numerical solutions to the differential equations. Here, we describe
each of the files included.

README.md: Instructions to run the computer script transport.wl and a description of all
the files in the supplementary material.

transport.wl: A script which performs the transport of all integral families to one of the
phase space points in equation (6.2), as specified by a command-line argument.

roots.m: Contains the definition of all square roots (see section 2) appearing in the differential
equations.

oneForms.m A list of all 152 one-forms as described in section 5.1.

X/muijs.m: Replacement rules for the expressions for µij insertions in terms of inverse
propagators ρi for the integral families

X ∈ { T0, T1, T2, ZT2 } .

X/basis.m: Machine-readable files containing the definitions of our integral bases as written
in the appendices A, B, and C.

X/M_alpha.m: The rational coefficient matrices Mα of the corresponding one-forms for the
integral family X.

T1/deq/d_1.m: The entries of the differential equation matrix in the auxiliary integral basis
of T1 which can be written in d log form.

T1/deq/d{v12,v23,v34,v45,v15,mTsq,qsq}_{0,1}.m: These 14 files provide the extra dif-
ferential equation matrices in the T1 auxiliary basis, to complete the information
included in T1/deq/d_1.m.
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X/boundaries.m: Contain values of the ϵ-factorizing integral basis (see appendix A–C) at
the point s⃗0 in equation (6.1) with 100 digit accuracy for all integral families.

X/benchmarks/sn.m: Benchmark numerical results with 30-digit accuracy for all master
integrals at the points s⃗n specified in equation (6.2).

points.m: Machine-readable version of the physical phase space points in equation (6.2).

7 Conclusions

In this paper we have presented the first set of two-loop master integrals needed for the
NNLO QCD corrections to tt̄H production at hadron colliders. These seven-scale master
integrals are some of the most complex ones computed to date. We have provided the master
integrals needed for the calculation of the two-loop leading-color QCD scattering amplitudes
that are proportional to the number of light flavors (nf ) for the processes gg, qq̄ → tt̄H. We
have constructed a basis of master integrals that satisfy ϵ-factorized differential equations
and have computed the analytic form of the differential equations that they fulfill in a
compact manner, by writing them in terms of 152 differential one-forms. Some of these
differential one-forms involve complicated algebraic functions of invariants, including nested
square root functions. Using Chen’s iterated integrals we also studied the properties of the
functions that arise in solutions of the master integrals. Furthermore, we have provided
high-precision numerical evaluations employing generalized series expansions and boundary
values obtained with the auxiliary mass flow method. These numerical evaluations provide
a highly non-trivial validation of our results.

Given the phenomenological relevance of the associated production of a top-quark pair
and a Higgs boson, our results will have an important impact in the physics programs
at the LHC and the high-luminosity LHC. We expect to continue refining the numerical
implementations of the integrals presented here to allow fast and precise evaluations of the
associated scattering amplitudes. We also anticipate to continue studying a larger set of
master integrals as needed for a complete set of scattering amplitudes for this process at
leading color, beyond the light-quark loop case, where preliminary investigations show the
presence of Feynman integrals with elliptic maximal cuts.

Acknowledgments

We thank Samuel Abreu and Vasily Sotnikov for helpful conversations. The work of F.F.C.,
G.F. and L.R. is supported in part by the U.S. Department of Energy under grant DE-
SC0010102. This work has been made possible in part through the support of the FSU
Council on Research and Creativity (“Black Holes Under the Microscope”; SEED Grant,
2023). M.K. is supported by the DGAPA-PAPIIT grant IA102224 and the PIIF grant at
UNAM. L.R. acknowledges the Aspen Center for Physics, supported by National Science
Foundation grant PHY-2210452, and its kind hospitality while she was working on this
project. The authors acknowledge the Instituto de Física (UNAM) for providing computing
infrastructure and Carlos Ernesto López Natarén for his HPC support. The computing for
this project was partly performed on the HPC cluster at the Research Computing Center
at the Florida State University (FSU).

– 31 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
4

A Master integral basis for the T1 Feynman integral family

In this appendix we provide the definition of all master integrals that we have computed
for the Feynman integral family T1 which is shown in equations (3.1), (3.2), and (3.3). We
organize them in subsections from the integrals with the least (3) to the integrals with
the most (8) propagators.

For each integral we provide information which exactly specifies it and can be used to
reproduce our results in any common software for computing Feynman integrals. This includes:

IBP sector: A binary code computed for each integral sector, i.e. for each group of integrals
that share the same set of inverse propagators with positive powers. A sector is defined
by the non-negative propagator powers ν⃗ = {ν1, . . . , ν11} according to

sector ≡
11∑

n=1
2n−1Θ(νn − 1/2) .

Figure: Each integral sector is shown with a figure that contains the associated propagators
in accordance with the full family presented in figure 4.

Numerator insertions: For each integral we present its corresponding numerator insertion
N (1)

j where the superscript indicates that this integrand belongs to the T1 family and
where the index j is an integer between 1 and 111. That is, the integral is defined as

(
I⃗1
)

j
=
∫

ddℓ1
iπd/2

ddℓ2
iπd/2

N (1)
j

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5 ρν6

6 ρν7
7 ρν8

8
,

where νi ∈ {0, 1}. Notice that we employ kinematic invariants and functions defined in
section 2.

For completeness, we also print the values of the integrals at weight 0 as used in the
discussion of iterated integral solutions of section 5.2,

I⃗
(0)

1 =
{

1, 1, 0,−1
2 , 0,−1, 0,−1, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

1
2 , 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0,−1
4 , 0, 0,−1

4 , 0, 0, 0,−1
6 , 0,− 5

12 , 0,− 5
12 , 0,−1

6 , 0,−1
4 ,

0,−3
4 , 0,−5

6 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1
4 , 0, 0,−5

6 , 0,−3
4 , 0,−1

4 ,

0,−5
4 , 0,−5

4 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5
24 , 0,

1
6 , 0,

11
24 , 0,

5
12 ,

11
24 , 0,

5
12 ,

5
24 , 0,

1
6 , 0, 0, 0, 0

}
.

(A.1)

I⃗1: 3 propagator integrals

Sector: 50

1

2

3

4

5

5

2

6 N (1)
1 = ϵ2(1 − 2ϵ)(1 − 3ϵ)(2 − 3ϵ)

(1 − 4ϵ)m2
t

. (A.2)
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Sector: 52

1

2
3

4

5
5

6

3

N (1)
2 = ϵ2

(
q2 + v12

ρ6
− 2m2

t

ρ3

)
1
ρ5

, (A.3)

N (1)
3 = ϵ2(q2 + m2

t + v12) 1
ρ3ρ5

. (A.4)

Sector: 56
1

2

3
4

5
4

5

6 N (1)
4 = ϵ(1 − 2ϵ)(1 − 3ϵ)(2 − 3ϵ)

v45
. (A.5)

Sector: 82

1
2

3

4
5

7

5

2

N (1)
5 = ϵ2(m2

t + v15) 1
ρ2ρ7

, (A.6)

N (1)
6 = ϵ2

(
2m2

t

ρ2
− v15

ρ5

)
1
ρ7

. (A.7)

Sector: 84

1

2
3

4
5

7

5

3

N (1)
7 = ϵ2(m2

t + v34) 1
ρ3ρ7

, (A.8)

N (1)
8 = ϵ2

(
2m2

t

ρ3
− v34

ρ5

)
1
ρ7

. (A.9)

Sector: 146

1
2

3
4

5

2

5

8

N (1)
9 = ϵ2(q2 + m2

t + v23) 1
ρ2ρ8

, (A.10)

N (1)
10 = ϵ2

(
2m2

t

ρ2
− q2 + v23

ρ5

)
1
ρ8

. (A.11)

Sector: 162

123

4

5

6

8

2

N (1)
11 = ϵ2(1 − 2ϵ)(1 − ϵ)

m2
t

. (A.12)

I⃗1: 4 propagator integrals

Sector: 54
1

2

3

4

5

2

3
65

N (1)
12 = ϵ3

√
∆(1)

3
1
ρ5

, (A.13)

N (1)
13 = ϵ2√C1

[
(1 − 2ϵ)

( 1
ρ2

+ 1
ρ3

)
− ϵ

ρ5

]
. (A.14)
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Sector: 58

1

2

3

4

5

2

4
65

N (1)
14 = ϵ3

√
∆(3)

3
1
ρ5

, (A.15)

N (1)
15 = ϵ2

[
(1 − 2ϵ)(q2 + m2

t + v23) 1
ρ2

− ϵ(q2 + v23 + v45) 1
2ρ5

]
. (A.16)

Sector: 60

1

2

3

4

5

4

3
65

N (1)
16 = ϵ3

√
∆(4)

3
1
ρ5

. (A.17)

Sector: 85

1

2

3

4

5

1

3
75

N (1)
17 = ϵ3(q2 + v12 − v34) 1

ρ5
. (A.18)

Sector: 86
1

2

3

4

5

2

3
75

N (1)
18 = ϵ3

√
∆(5)

3
1
ρ5

, (A.19)

N (1)
19 = ϵ2√C1

[
(1 − 2ϵ)

( 1
ρ2

+ 1
ρ3

)
− ϵ

ρ5

]
. (A.20)

Sector: 89

1

2

3

4

5

1

4
75

N (1)
20 = ϵ2(1 − 2ϵ)(1 − 3ϵ) . (A.21)
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Sector: 90
1

2

3

4

5

2

4
75

N (1)
21 = ϵ3(q2 + v23 − v15) 1

ρ5
. (A.22)

Sector: 147

1

2

3

4

5

2

1
85

N (1)
22 = ϵ3

√
∆(3)

3
1
ρ5

. (A.23)

Sector: 149

1

2

3

4

5

3

1
85

N (1)
23 = ϵ3

√
∆(4)

3
1
ρ5

, (A.24)

N (1)
24 = ϵ2

[
(1 − 2ϵ)(q2 + m2

t + v12) 1
ρ3

− ϵ(q2 + v12 + v45) 1
2ρ5

]
. (A.25)

Sector: 150

1

2

3

4

5

3

2
85

N (1)
25 = ϵ3

√
∆(2)

3
1
ρ5

, (A.26)

N (1)
26 = ϵ2√C1

[
(1 − 2ϵ)

( 1
ρ2

+ 1
ρ3

)
− ϵ

ρ5

]
. (A.27)

Sector: 165
1

2

3

4

5
6
8

1
3

N (1)
27 = ϵ2(1 − 2ϵ)(q2 + m2

t + v12) 1
ρ3

. (A.28)
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Sector: 166

1

2

3

4

5

6
8

2
3 N (1)

28 = ϵ2(1 − 2ϵ)
√
C1

1
ρ3

. (A.29)

Sector: 169
1

2

34

5
6
8

1
4

N (1)
29 = ϵ2(1 − 2ϵ)2 . (A.30)

Sector: 170
1

2

34

5
6
8

2
4 N (1)

30 = ϵ2(1 − 2ϵ)(q2 + m2
t + v23) 1

ρ2
. (A.31)

Sector: 178

1

2

3

4

5 8

6
25

N (1)
31 = ϵ3

√
∆(3)

3
1
ρ2

, (A.32)

N (1)
32 = ϵ3

√
∆(3)

3
1
ρ5

, (A.33)

N (1)
33 = ϵ2

[
m2

t v45
ρ2ρ6

+ ϵ(q2 + v23 − v45)
( 1

ρ2
+ 1

2ρ5

)]
.

(A.34)

Sector: 180

1

2

3

4

5 8

6
35

N (1)
34 = ϵ3

√
∆(4)

3
1
ρ3

, (A.35)

N (1)
35 = ϵ3

√
∆(4)

3
1
ρ5

, (A.36)

N (1)
36 = ϵ2

[
m2

t v45
ρ3ρ8

+ ϵ(q2 + v12 − v45)
( 1

ρ3
+ 1

2ρ5

)]
.

(A.37)

I⃗1: 5 propagator integrals

Sector: 62
12

3 4

5

2

3

4

65
N (1)

37 = ϵ3(1 − 2ϵ)
√

∆(2)
3 , (A.38)

N (1)
38 = ϵ3√C2

1
ρ5

. (A.39)
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Sector: 87
1

2 3

4

5

1

2

3

75
N (1)

39 = ϵ3(1 − 2ϵ)
√

∆(1)
3 , (A.40)

N (1)
40 = ϵ3(q2 + v12)v15

1
ρ5

. (A.41)

Sector: 91
1

2

3 4

5

1

2

4

75
N (1)

41 = ϵ3(1 − 2ϵ)
√

∆(3)
3 , (A.42)

N (1)
42 = ϵ3v45v15

1
ρ5

. (A.43)

Sector: 93
1

2

3 4

5

1

3

4

75
N (1)

43 = ϵ3(1 − 2ϵ)
√

∆(4)
3 , (A.44)

N (1)
44 = ϵ3v34v45

1
ρ5

. (A.45)

Sector: 94

12

3 4

5

4

3

2

75
N (1)

45 = ϵ3(1 − 2ϵ)
√

∆(2)
3 , (A.46)

N (1)
46 = ϵ3v34(q2 + v12) 1

ρ5
. (A.47)

Sector: 118
1

2

3 4

5
2

5
3

6

7

N (1)
47 = ϵ4(q2 + v12 + v15 − v34) , (A.48)

N (1)
48 = ϵ3v15(q2 + v12) 1

ρ5
. (A.49)
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Sector: 122
1

2

3

4

5
2

5
4

6

7

N (1)
49 = ϵ4(v45 + v15) , (A.50)

N (1)
50 = ϵ3v45v15

1
ρ5

. (A.51)

Sector: 124

12

3

4

5
4

5
3

7

6

N (1)
51 = ϵ4(v34 + v45 − v12 − q2) , (A.52)

N (1)
52 = ϵ3v45v34

1
ρ5

. (A.53)

Sector: 151
1

2 3

4

5

1

2

3

85
N (1)

53 = ϵ3(1 − 2ϵ)
√

∆(1)
3 , (A.54)

N (1)
54 = ϵ3√C2

1
ρ5

. (A.55)

Sector: 167
1

2

3

4

5
6
8

1
2

3 N (1)
55 = ϵ3(1 − 2ϵ)

√
∆(1)

3 . (A.56)

Sector: 171
1

2

3

4

5
6
8

1
2

4 N (1)
56 = ϵ3(1 − 2ϵ)

√
∆(3)

3 . (A.57)

Sector: 173
1

2

3

4

5
6
8

1
3

4 N (1)
57 = ϵ3(1 − 2ϵ)

√
∆(4)

3 . (A.58)
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Sector: 174

1

2

3

4

5

6
8

4
3

2 N (1)
58 = ϵ3(1 − 2ϵ)

√
∆(2)

3 . (A.59)

Sector: 181

1

2

3

4

5
6

5
8

1

3

N (1)
59 = ϵ4

√
∆(4)

3 . (A.60)

Sector: 182

1

2

3

4

5

6
5

8

3

2

N (1)
60 = ϵ4√r1 , (A.61)

N (1)
61 = ϵ3v45

√
∆(2)

3
1
ρ8

, (A.62)

N (1)
62 = ϵ3v45

√
∆(1)

3
1
ρ6

, (A.63)

N (1)
63 = ϵ3√C2

1
ρ5

, (A.64)

N (1)
64 = ϵ3

[√
N+

2

( 1
ρ3

− 1
ρ2

)
+
√
C1
√

N−

2q2

( 1
ρ3

+ 1
ρ2

)]
, (A.65)

N (1)
65 = ϵ3

[√
N−

2

( 1
ρ3

− 1
ρ2

)
+
√
C1
√

N+

2q2

( 1
ρ3

+ 1
ρ2

)]
, (A.66)

N (1)
66 = ϵ2 m2

t v45(q2+v12)(q2+v23)
2q2+v12+v23

( 1
ρ2ρ6

+ 1
ρ3ρ8

)
+ϵ3

(
C

(1)
66

1
ρ5

+C
(2)
66

1
ρ6

+C
(3)
66

1
ρ8

)
+ϵ3

(
C

(4)
66

( 1
ρ3

+ 1
ρ2

)
+C

(5)
66

( 1
ρ3

− 1
ρ2

))
+C

(6)
66

[
ρ2 N (1)

36 −ρ3 N (1)
33 +ρ2ρ8 N (1)

3

]
+C

(7)
66

[
ρ5 N (1)

28

]
+C

(8)
66

[
ρ6 N (1)

26 −ρ8 N (1)
13

]
+C

(9)
66

[
ρ3ρ6 N (1)

10 +ρ2ρ8 N (1)
2

]
+C

(10)
66

[
ρ3ρ6 N (1)

9

]
. (A.67)

The coefficients for N (1)
66 read

C
(1)
66 = (q2+v12)(q2+v23)−(q2−2m2

t )v45
2 , (A.68)

C
(2)
66 = (2m2

t +v12)(q2+v23)v45
2q2+v12+v23

, (A.69)
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C
(3)
66 = (2m2

t +v23)(q2+v12)v45
2q2+v12+v23

, (A.70)

C
(4)
66 = 1

2

[
Nb−m2

t (v12−v23)2−2q2v2
45

2q2+v12+v23
+(q2+2m2

t )v45

]
, (A.71)

C
(5)
66 = (v12−v23)

2

[
(q2−m2

t )− q2v45
2q2+v12+v23

]
, (A.72)

C
(6)
66 = 2(q2+v23)

2q2+v12+v23
, (A.73)

C
(7)
66 = q2−2m2

t√
C1

, (A.74)

C
(8)
66 = (q2−2m2

t )(v12−v23)
2(2q2+v12+v23)

√
C1

, (A.75)

C
(9)
66 = q2+v12

2(2q2+v12+v23) , (A.76)

C
(10)
66 = v12−v23

2q2+v12+v23
. (A.77)

Sector: 186
1

2

34

5
6

5
8

2

4 N (1)
67 = ϵ4

√
∆(3)

3 . (A.78)

Sector: 211

1

23

4

5

8
5

7

2

1

N (1)
68 = ϵ4(v15 + v45 − v23 − q2) , (A.79)

N (1)
69 = ϵ3v45v15

1
ρ5

. (A.80)

Sector: 213

1

2

3

4

5

8
5

7

3

1

N (1)
70 = ϵ4(v34 + v45) , (A.81)

N (1)
71 = ϵ3v34v45

1
ρ5

. (A.82)
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Sector: 214

1

2

3

4

5

8
5

7

3

2

N (1)
72 = ϵ4(q2 + v23 + v34 − v15) , (A.83)

N (1)
73 = ϵ3v34(q2 + v23) 1

ρ5
. (A.84)

Sector: 242

1

2

34

5

8

7

6

52

N (1)
74 = ϵ3v45(m2

t + v15) 1
ρ2

, (A.85)

N (1)
75 = ϵ3v45

(
v15
ρ5

− m2
t

ρ2

)
. (A.86)

Sector: 244
1

2

34

5

6

7

8

53

N (1)
76 = ϵ3v45(m2

t + v34) 1
ρ3

, (A.87)

N (1)
77 = ϵ2v45

(
v34
ρ5

− m2
t

ρ3

)
. (A.88)

I⃗1: 6 propagator integrals

Sector: 95
1

2

3

4

5

1

2

3

4

75 N (1)
78 = ϵ3(1 − 2ϵ)

√
C2 , (A.89)

N (1)
79 = ϵ3√∆5

µ11
ρ5

. (A.90)

Sector: 126

4

5

1

2

3

2

5

4

3
6

7

N (1)
80 = ϵ4√r2 , (A.91)

N (1)
81 = ϵ3√∆5

µ11
ρ5

. (A.92)
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Sector: 175

1

2

3

4

5

8
6

4 3

21 N (1)
82 = ϵ3(1 − 2ϵ)

√
C2 . (A.93)

Sector: 183

1

2 3

4

5
3

5

1

2
8

6

N (1)
83 = ϵ4(q2 + v12)

√
∆(3)

3 . (A.94)

Sector: 190
12

3

4

5

2

5

4

3
6

8 N (1)
84 = ϵ4(q2 + v23)

√
∆(4)

3 . (A.95)

Sector: 215

5

4

2

3

1

3

5

1

2
8

7

N (1)
85 = ϵ4√r3 , (A.96)

N (1)
86 = ϵ3√∆5

µ11
ρ5

. (A.97)

Sector: 245
3

5

1

4

2
8

5

6

7
3

1 N (1)
87 = ϵ4v45(v12 − v34 + q2) . (A.98)
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Sector: 246

1

2

4

3

5

8

5

6

7
3

2

N (1)
88 = ϵ4v45

√
∆(5)

3 , (A.99)

N (1)
89 = ϵ3√∆5

µ12
ρ5

, (A.100)

N (1)
90 = ϵ3√∆5

µ22
ρ5

, (A.101)

N (1)
91 = ϵ3v45

[
q2ρ9

( 1
ρ2

− 1
ρ3

)
+2ϵ(v34−v15)

−(q2+v23)ρ7
ρ8

+(q2+v12)ρ7
ρ6

]
, (A.102)

N (1)
92 = ϵ3v45

√
C1

[
ρ9

( 1
ρ2

+ 1
ρ3

)
+2ϵ

+ρ7

( 1
ρ8

+ 1
ρ6

)]
, (A.103)

N (1)
93 = ϵ3 v45

v15−v34

[
ϵ
(
(v15−v34)2−q2(v15+v34)

)
+(m2

t (v15−v34)2+q2v15v34)
( 1

ρ2
+ 1

ρ3

)]

− v15+v34
v15−v34

q2

2
√
C1

N (1)
92 . (A.104)

Sector: 250
1

4

3

5

2
6

5

8

7
2

4 N (1)
94 = ϵ4v45(v23 − v15 + q2) . (A.105)

I⃗1: 7 propagator integrals

Sector: 247
1

4
3

5

2

6

5

8

7

1

2

3

N (1)
95 = ϵ4(q2+v12)v15v45 , (A.106)

N (1)
96 = ϵ4v45

√
∆(1)

3 ρ9 , (A.107)

N (1)
97 = ϵ4(q2+v12)

[
v45ρ11−(v23−v15+q2)ρ6

]
, (A.108)

N (1)
98 = ϵ4

√
∆5µ12 . (A.109)
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Sector: 251
3

5
1

4

2
8

5

6

7

4

2

1

N (1)
99 = ϵ4v15v2

45 , (A.110)

N (1)
100 = ϵ4v45

√
∆(3)

3 ρ9 , (A.111)

N (1)
101 = ϵ4v45

[
v45ρ11+ 1

ϵ
(q2+v12)ρ6

ρ5

(
ρ8−

ρ4

2

)]
.

(A.112)

Sector: 253
3

5
1

4

2

8

5

6

7

4

3

1

N (1)
102 = ϵ4v34v2

45 , (A.113)

N (1)
103 = ϵ4v45

√
∆(4)

3 ρ9 , (A.114)

N (1)
104 = ϵ4v45

[
v45ρ10+ 1

ϵ
(q2+v23)ρ8

ρ5

(
ρ6−

ρ1

2

)]
.

(A.115)

Sector: 254
3

5
1

4

2

8

5

6

7

4

3

2

N (1)
105 = ϵ4(q2+v23)v45v34 , (A.116)

N (1)
106 = ϵ4v45

√
∆(2)

3 ρ9 , (A.117)

N (1)
107 = ϵ4(q2+v23)

[
v45ρ10−(v12−v34+q2)ρ8

]
, (A.118)

N (1)
108 = ϵ4

√
∆5µ12 . (A.119)

I⃗1: 8 propagator integrals

Sector: 255

5

4

3

2

1

7

6

5

8
4

3

2

1
N (1)

109 = ϵ4v45
√

∆5µ11 , (A.120)

N (1)
110 = ϵ4v45

√
∆5µ12 , (A.121)

N (1)
111 = ϵ4v45

√
C2ρ9 . (A.122)

B Master integral basis for the T̃2 Feynman integral family

In this appendix we provide the definitions of all master integrals that we have computed for
the Feynman integral family T̃2 which is shown in equations (3.4), (3.5), and (3.6). Notice
that we do not include definitions of integrals in this family that coincide with those presented
in appendix A (see section 3 for details). We present the definitions in subsections organized
from the integrals with the least (4) to the integrals with the most (6) propagators.
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For each integral we provide information which exactly specifies it, as explained in the
introduction to appendix A. The generic integral belonging to this integral family is defined as:

(
I⃗2
)

j
=
∫

ddℓ1
iπd/2

ddℓ2
iπd/2

N (2)
j

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5 ρν6

6
,

where the superscript of the numerator insertion N (2)
j indicates that this integrand belongs

to the T̃2 family, where the index j is an integer between 1 and 19, and where νi ∈ {0, 1}.
Notice that we employ kinematic invariants and functions defined in section 2.

For completeness, we also print the values of the integrals at weight 0 as used in the
discussion of iterated integral solutions of section 5.2,

I⃗
(0)

2 = Z
(
I⃗

(0)
2

)
=
{
− 1

2 , 0,−1, 1, 0, 0,−1
8 , 0, 0, 0, 0,

1
2 , 0, 0,−1

8 , 0, 0,
1
2 , 0

}
. (B.1)

I⃗2: 4 propagator integrals

Sector: 53

5

1

2

3

4

1

3
65

N (2)
5 = ϵ3(q2 + v23 − v15) 1

ρ5
. (B.2)

Sector: 57

2

1

5

4

3

4

1
65

N (2)
7 = ϵ3v34

1
ρ5

. (B.3)

I⃗2: 5 propagator integrals

Sector: 55

1 2

3

45

1

2

3

65

N (2)
12 = ϵ3(1 − 2ϵ)v15 . (B.4)

– 45 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
4

1

2

3

4

5

1

ℓ1

2

3

4

5

Figure 7. The propagator structure asociated to the T0 integral family, with the routing of loop
momenta chosen in equation (C.1). See caption of figure 4 for details on the notation.

Sector: 59
5

1

2 3

4

1

2

4

65

N (2)
13 = ϵ3(1 − 2ϵ)(q2 + v12 − v34) . (B.5)

Sector: 61

1

2 3

45

1

3

4

65
N (2)

14 = ϵ3(1 − 2ϵ)
√

∆(5)
3 , (B.6)

N (2)
15 = ϵ3(q2 + v23)v34

1
ρ5

. (B.7)

I⃗2: 6 propagator integrals

Sector: 63

1

2

3

4

5

1

2

3

4

56 N (2)
18 = ϵ3(1 − 2ϵ)v15(q2 + v12) , (B.8)

N (2)
19 = ϵ3√∆5

µ11
ρ5

. (B.9)

C Master integral basis for the T0 Feynman integral family

For completeness in this appendix we provide a basis of pure master integrals for the one-loop
Feynman integral family related to the propagator structure of the diagram in figure 7
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and defined as follows:

T0[ν⃗] =
∫

ddℓ1
iπd/2

1
ρν1

1 ρν2
2 ρν3

3 ρν4
4 ρν5

5
, (C.1)

where the inverse propagators are defined by:

ρ1 = ℓ2
1 , ρ2 = (ℓ1 + p1)2 − m2

t , ρ3 = (ℓ1 + p12)2 − m2
t ,

ρ4 = (ℓ1 + p123)2 , ρ5 = (ℓ1 − p5)2 . (C.2)

This family has dim (T0) = 18 and we present our choice of pure master integral in the
following subsections organized from the integrals with the least (1) to the integrals with
the most (5) propagators.5

For each integral we provide information which exactly specifies it, as explained in the
introduction to appendix A. The generic integral belonging to this integral family is defined as:

(
I⃗0
)

j
=
∫

ddℓ1
iπd/2

N (0)
j

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5

,

where the superscript of the numerator insertion N (0)
j indicates that this integrand belongs

to the T0 family, where the index j is an integer between 1 and 18, and where νi ∈ {0, 1}.
Notice that we employ kinematic invariants and functions defined in section 2.

For completeness, we also print the values of the integrals at weight 0 as used in the
discussion of iterated integral solutions of section 5.2,

I⃗
(0)

0 =
{

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1
2 ,

3
2 ,

3
2 ,

1
2 , 0

}
. (C.3)

I⃗0: 1 Propagator Integral

Sector: 2

123 4 5

2

N (0)
1 = ϵ(1 − ϵ)

m2
t

. (C.4)

I⃗0: 2 Propagator Integrals

Sector: 5
1

2
3

4

5
1

3
N (0)

2 = ϵ(q2 + m2
t + v12) 1

ρ3
. (C.5)

Sector: 6

1

2

3

4

5

3
2

N (0)
3 = ϵ

√
C1

1
ρ2

. (C.6)

5We notice that a canonical basis for this integral family has already been presented in ref. [102].
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Sector: 9
1

2

3
4

5 1

4 N (0)
4 = ϵ(1 − ϵ) . (C.7)

Sector: 10
1

2

3
4

5
2

4
N (0)

5 = ϵ(q2 + m2
t + v23) 1

ρ2
. (C.8)

Sector: 18

1
2

3

4
5 5

2
N (0)

6 = ϵ(m2
t + v15) 1

ρ2
. (C.9)

Sector: 20
1

2
3

4
5

5

3
N (0)

7 = ϵ(m2
t + v34) 1

ρ3
. (C.10)

I⃗0: 3 Propagator Integrals

Sector: 7
1

2

3

4

5

2

3
1 N (0)

8 = ϵ2
√

∆(1)
3 . (C.11)

Sector: 11

1

2

3

4

5

2

1
4 N (0)

9 = ϵ2
√

∆(3)
3 . (C.12)

Sector: 13

1

2

3

4

5

4

3
1 N (0)

10 = ϵ2
√

∆(4)
3 . (C.13)
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Sector: 14
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5

3

2
4 N (0)

11 = ϵ2
√

∆(2)
3 . (C.14)

Sector: 22
1

2

3

4

5

2

3
5 N (0)

12 = ϵ2
√

∆(5)
3 . (C.15)

I⃗0: 4 Propagator Integrals

Sector: 15
12

3 4

5

2

3

4

1 N (0)
13 = ϵ2√C2 . (C.16)

Sector: 23
1

2 3

4

5

1

2

3

5 N (0)
14 = ϵ2v15(q2 + v12) . (C.17)

Sector: 27
1

2

3 4

5

1

2

4

5 N (0)
15 = ϵ2v45v15 . (C.18)
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Sector: 29
1

2

3 4

5

1

3

4

5 N (0)
16 = ϵ2v45v34 . (C.19)

Sector: 30

12

3 4

5

4

3

2

5 N (0)
17 = ϵ2v34(q2 + v23) . (C.20)

I⃗0: 5 Propagator Integrals

Sector: 31
1

2

3

4

5

1

2

3

4

5 N (0)
18 = ϵ2√∆5 µ11 . (C.21)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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