
1

Fast 3D Gaussian Splatting Rendering via Easily
Integrable Improvements

Laurens Diels, Michiel Vlaminck, Wilfried Philips, Senior Member, IEEE, and Hiep Luong

Abstract—The recently introduced 3D Gaussian Splatting and
subsequent methods have achieved significantly reduced inference
times for novel view synthesis. To reduce this rendering time
even further, in this paper we propose four improvements which
are fully compatible with the high-level Gaussian Splatting
formulation and can thus be incorporated into most methods
based on this paradigm. Most notably, we alter the way Gaussians
are duplicated across tiles by allowing for non-square axis-aligned
Gaussian bounding boxes whose sizes take into account the
Gaussian’s opacity information. Our experiments demonstrate
that we can decrease the 3D Gaussian Splatting rendering times
by up to a factor of almost 4.

Index Terms—3D rendering, computational efficiency, Gaus-
sian Splatting

I. INTRODUCTION

NOVEL view synthesis has received increased interest in
the last few years thanks to the revolutionary methods of

Neural Radiance Fields (NeRF) [1] and 3D Gaussian Splatting
[2]. NeRFs represent a scene implicitly, encoded into the
parameters of a neural network. While this method produces
high quality renders, it is very slow, both at training and
inference time. Although subsequent papers [3], [4], [5] have
been able to reduce these significantly, real-time rendering on
commodity hardware is still not attainable without resolution
compromises.

3D Gaussian Splatting (3DGS) takes a different, more
explicit approach, representing a scene as a collection of
Gaussian functions with opacity and color information. For
a given camera pose, these are then splatted together to
form a new image. In this manner 3DGS achieves com-
petitive training times, and extremely fast rendering. It has
consequently spawned a class of follow-up methods. Most
of these, including [6], [7], [8], [9], directly build upon
3DGS’s open-source diff-gaussian-rasterization
package. Any improvement to the core Gaussian Splatting
rendering process will, therefore, automatically help such
derived methods.

We propose the following improvements.
• We alter the way 2D Gaussian axis-aligned bounding

boxes are created, allowing for non-square rectangles
taking into account opacity information. This significantly
reduces the number of duplicated Gaussians across tiles.

• We immediately and explicitly filter out Gaussians whose
projection falls too far outside of the screen. Additionally,

All authors are with the imec research group of Image Processing and
Interpretation (IPI) of Ghent University, as well as with the university’s UAV
Research Center (URC).

we make sure to only launch GPU-threads for non-filtered
out Gaussians, in order to reduce warp divergence.

• To speed up the evaluation of the opacity-scaled Gaussian
functions in each tile, we precompute features common
to the different pixels in this tile.

• We make the tile size increase with the rendering reso-
lution.

We will go over these improvements in more detail in
Section III, and will evaluate them experimentally in Section
IV. But first we review the theory of 3D Gaussian Splatting
rendering.

II. OVERVIEW OF 3D GAUSSIAN SPLATTING RENDERING

In this section we provide a brief overview of the way 3DGS
handles image rendering. For more details, we refer to the
original paper [2].

A trained 3DGS model represents a scene as a collection
{(Gi, τi,Hi)}i, where

• Gi is a 3D Gaussian function defined by a mean mi ∈ R3

and covariance matrix Ci ∈ R3×3:

Gi(x;mi,Ci) = exp

(
−1

2
(x−mi)

TC−1
i (x−mi)

)
for all x ∈ R3;

• τi ∈ [0, 1] is the associated opacity;
• Hi ∈ R(d+1)2×3 is a matrix of spherical harmonics

coefficients up to degree d (typically 3), used to represent
viewpoint-dependent color.

To render an image for given camera intrinsics and extrin-
sics, the 3D Gaussians are first projected to image-space (or
normalized device coordinates). By linearizing this projection,
a 3D Gaussian Gi is transformed into a 2D Gaussian Gi,
defined by a 2D mean µi ∈ R2 and covariance matrix
Σi ∈ R2×2. The depth of the 3D Gaussian mean is also stored
and used to filter out Gaussians in front of the near clipping
plane. The spherical harmonics coefficients are evaluated to an
RGB color ci ∈ [0, 1]3 (although technically the components
are allowed to exceed 1 at this stage).

Next, to obtain a rendered image R, the Gaussians are
sorted based on depth and alpha-blended together. Concretely,
at every pixel location (u, v) we obtain the RGB color

R(u, v) =
∑
j

αj(u, v)Tj(u, v)cj ∈ [0, 1]3. (1)

Here

αj(u, v) = τjGj

(
(u, v)T ;µj ,Σj

)
∈ [0, 1], (2)



2

Tj(u, v) =
∏
k<j

(1− αk(u, v)) (3)

is the transmittance, and Gaussians are ordered by increasing
depth. For reasons of numerical stability, indices j with
αj(u, v) < ϵ := 1/255 are skipped in (1) and (3).

As for any given pixel the contribution of most Gaussians
will be negligible, summing over all Gaussians is terribly
inefficient. Therefore, a tiling scheme is employed where the
image to render is divided into an axis-aligned regular grid
of tiles. By converting 2D Gaussians into a (not necessarily
tight) axis-aligned bounding box, it can easily be determined
which Gaussians affect which tiles. The rendering process
described above is then handled independently for each tile,
where for each pixel in a tile, we only sum over the sorted
list of Gaussians affecting the tile. For massive parallelization
on a GPU, each tile corresponds to a thread-block, and each
pixel in a tile to a thread.

In summary, 3DGS rendering consists of three phases:
1) Projection: Project Gaussians to camera, filter
2) Tiling: Divide screen in grid of tiles, assign each (re-

maining) 2D Gaussian to tiles, duplicate Gaussians (one
copy for each assigned tile), sort per tile on depth

3) Tile rendering: Render all pixels in a tile by alpha-
blending the (duplicated) Gaussians assigned to this tile.

III. PROPOSED IMPROVEMENTS

We propose four improvements to the reference 3DGS
implementation [2], available at https://github.com/graphdeco-
inria/gaussian-splatting. Our changes do not affect the high-
level description of the previous section. The most notable
change is in the way how it is determined whether a Gaussian
should be assigned to a tile (Subsection III-A).

In this section we will mostly consider a single Gaussian at
a time. To not complicate the notation we will then drop the
subscript of Gaussian index (i or j).

A. Tile intersections
The conversion of a 2D Gaussian into an axis-aligned

bounding box is done as follows in the reference 3DGS
implementation. First the 2D Gaussian is converted to a 99%
confidence elliptical disk. Note that this requires (implicitly)
adding normalization to the Gaussian function in order to
obtain a probability density function. The length of the semi-
major axis of the ellipse is approximately r := 3

√
λ, where

λ is the largest eigenvalue of Σ and where 3 is an approxi-
mation of the square root of 9.21, the 0.99-quantile of a χ2-
distribution with two degrees of freedom. This r is then used
as the radius of a circle centered at the 2D Gaussian mean,
the circumscribed square of which is used as the Gaussian’s
bounding box. This is illustrated in Fig.1a. Determining which
tiles the bounding box intersects is now trivial.

In our proposed approach we replace the probabilistic argu-
ment and additionally allow for non-square bounding boxes.
Since a Gaussian will be skipped at locations where its α-
value (2) is less than ϵ, we will consider the Gaussian level
set E at ϵ/τ , defined by x ∈ E if and only if

(x− µ)TΣ−1(x− µ) = 2 ln
τ

ϵ
=: γ (4)

(a) Original (b) Proposed

Fig. 1. The axis-aligned bounding box for a Gaussian with projected mean

µ = 0, covariance matrix Σ =

(
5 1
1 2

)
and opacity τ = 0.2, for

the original 3DGS implementation (a) and our proposed approach (b). The
Gaussian ellipse ((a): boundary of 99% confidence elliptical disk of the
associated Gaussian distribution, (b): ϵ

τ
-level set, see also (4)) is drawn in

light blue and the bounding box in light green. For the original approach (a)
we also draw in white the circumscribed circle to the ellipse, illustrating their
notion of radius.

for any x ∈ R2. Note that E = ∅ when γ < 0, i.e., τ < ϵ. From
now on we will then assume that γ ≥ 0. Using s := x1 − µ1

and t := x2 − µ2, and writing the entries of Σ−1 in terms of
those of (the symmetric) Σ, we obtain the equation

s2Σ22 − 2stΣ12 + t2Σ11 − γ detΣ = 0.

Interpreted as a quadratic equation in s, it has discriminant

D(t) = 4t2Σ2
12 − 4t2Σ11Σ22 + 4γΣ22 detΣ

= 4
(
γΣ22 − t2

)
detΣ.

As detΣ > 0 by virtue of Σ being positive semi-definite,
our quadratic equation then has a solution in s if and only if
t2 ≤ γΣ22. Similarly, it has a solution in t precisely when
s2 ≤ γΣ11. Together, we obtain the tight bounding box

[µ1 −
√

γΣ11, µ1 +
√
γΣ11]× [µ2 −

√
γΣ22, µ2 +

√
γΣ22].

A comparison between our bounding box and the original
3DGS one can be found in Fig.1.

B. Explicit filtering

In the reference 3DGS implementation, Gaussians whose
2D projection falls too far outside of the screen, are not filtered
out. Instead, for the purpose of calculating the 2D covariance
matrix, and for this calculation alone, the projected mean
is clamped to an enlarged screen boundary. In practice, this
mostly results in these Gaussians hardly contributing to any
on-screen pixels. Therefore, we propose to just immediately
filter out such Gaussians. (In the CUDA part of the original
implementation the code for this already exists, but is com-
mented out.)

Additionally, in the reference implementation, filtering
(based on depth) occurs implicitly, via return statements.
While simple, this approach results in strongly differing work-
loads across different GPU-threads. We propose instead to first
explicitly filter, writing the indices of the kept Gaussians into
new arrays, and to subsequently spawn threads only for the
filtered Gaussians. In this manner all threads have a similar
workload and we reduce warp divergence.



3

C. More rendering precomputations

In the final tile rendering phase, we need to compute
αj(u, v) extremely frequently: for each pixel (u, v) in a
tile, and each (duplicated) Gaussian Gj affecting this tile.
Therefore, if we can reduce the computations for obtaining
each αj(u, v), we expect to see some performance gains, even
if we have to perform a few extra calculations beforehand.
Below we will again focus on a single Gaussian and drop the
subscript j.

Recall that

α(u, v) = τ exp

(
−1

2

((
u
v

)
− µ

)T

Σ−1

((
u
v

)
− µ

))
.

In the reference implementation this is handled by first pre-

computing and storing Σ−1 =

(
p q
q r

)
in the projection

phase, and then calculating dx = u− µ1, dy = v − µ2 and

α(u, v) = τ · exp
(
−0.5(pd2x + rd2y)− qdxdy

)
,

requiring 4 additions, 8 multiplications and one exp-
evaluation. We propose to expand this exponent as a poly-
nomial of u and v, and also absorb the τ factor into the exp.
We therefore first precompute the coefficients

z1 = −0.5p

z2 = −0.5r

z3 = −q

z4 = pµ1 + qµ2

z5 = qµ1 + rµ2

z6 = −0.5(pµ2
1 + rµ2

2)− qµ1µ2 + ln τ.

For each pixel (GPU thread) we then calculate u2, v2 and uv
once, and finally compute α for each Gaussian as

α(u, v) = exp(z1u
2 + z2v

2 + z3uv + z4u+ z5v + z6).

This requires 5 additions, 5 multiplications and one exp-
evaluation.

For the best performance we should put this precomputation
directly after the filtering step. However, u2, v2, uv, and z6
can get quite large at high rendering resolutions, leading to
numerical stability issues for 32-bit floats, as we illustrate in
the Supplementary Material. But note that only the differences
u − µ1 and v − µ2 are relevant. Consequently we can work
in any shifted pixel coordinate system. We then propose to
work in local tile coordinates, and perform the calculation of
the zi while we are collaboratively loading the 2D Gaussian’s
attributes µ, Σ−1 and τ into a block’s shared memory.

D. Tile size

We found a larger tile size of 16 px × 32 px to be more
efficient at higher resolutions, compared to the reference
16 px × 16 px. We then propose to use the latter when the
number of pixels to render is below 1.5 million, and the for-
mer otherwise. This threshold was determined experimentally.
Note that our implementation uses column-major indexing,
explaining why 16 × 32 will outperform 32 × 16. For row-
major indexing this will be reversed.

The ideal threshold and tile size will likely depend on
hardware architecture, but in any case we advise to not just
blindly stick with 16 px× 16 px in all situations.

Fig. 2. Timings for the three 3DGS image rendering phases, as a function
of the number of pixels to render. This uses our Baseline implementation to
render the first image of the Bicycle scene at various resolutions.

IV. EXPERIMENTS AND DISCUSSION

We implemented the rendering part of 3DGS, as well as
our modifications, in the Julia programming language, making
extensive use of CUDA.jl [10], [11]. We then compare the
rendering times of the training images from the Bicycle and
Garden scenes from the Mip-NeRF 360 dataset [12], as well
as of those of the Train scene from Tanks and Temples [13],
undistorted via COLMAP [14], [15], and the Playroom scene
from Deep Blending [16]. We render at native resolution,
except for the Mip-NeRF 360 scenes, where we additionally
render at quarter resolution on each axis. We use the official
pretrained models from 3DGS. These were trained on the low-
resolution versions of Bicycle and Garden, on Train down-
scaled to half resolution on each axis, and on native resolution
for Playroom. By timing the different implementations on the
training image, we ensure that the models are capable of well-
reconstructing the scene. We loop through the datasets 10
times for more accurate results. These are presented in Table
I. We used an Intel i9-10900X CPU and an NVIDIA 3080 Ti
GPU, in a machine running Ubuntu 22.04.

The original 3DGS method (in contrast to Mip-Splatting
[6]) is intended to be used at the same resolution at training
and inference time, explaining the worse quality at higher
rendering resolutions. In general, the results from the reference
3DGS implementation in PyTorch and CUDA are included
only for completeness, but should not directly be compared
to, as it, in contrast to our versions, also stores relevant
intermediate outputs required later for the backward pass. This
also partially explains why we require less VRAM, though
likely there is also some overhead from PyTorch involved.

The Baseline row in the table refers to our reimplementation
in Julia, without any of our proposed modifications. It seems
to subtly differ from the reference version. As can be seen
from the included PSNR values at 8-bit precision, this does
not come at the cost of rendering quality. In the Supplementary
Material we provide a qualitative comparison. Figure 2 shows
how the rendering time is distributed at different rendering
resolutions for this baseline. It will be useful for analyzing the
performance gains for the different improvements we proposed
in Section III. The results for these improvements can be found
in the next four rows of the table. Finally, Ours (full) is the
implementation where we include all four improvements.

As the filtering changes occur in the projection phase, at
which point there is no notion of rendering resolution (see
also the red area in Fig.2), the speed-up for this row is
mostly independent of resolution, instead being affected by
the number of 3D Gaussians in the trained model. As a



4

TABLE I
RENDERING SPEED (SCENE AVERAGE ± STANDARD DEVIATION), AS WELL AS AVERAGE PSNR QUALITY AND PEAK VRAM USAGE FOR THE

DIFFERENT COMPARED 3DGS RENDERING IMPLEMENTATIONS

Bicycle Bicycle Garden Garden Train Playroom
4946 x 3286 1237 x 822 5187 x 3361 1297 x 840 1959 x 1090 1264 x 832

Reference 3DGS 60.3 ± 15.3 ms 15.3 ± 1.25 ms 48.4 ± 3.21 ms 14.0 ± 0.513 ms 11.0 ± 1.15 ms 8.19 ± 1.03 ms
(PyTorch + CUDA, [2]) (20.3 dB; 8.5 GiB) (25.7 dB; 4.5 GiB) (20.6 dB; 7.1 GiB) (29.4 dB; 4.3 GiB) (23.6 dB; 2.1 GiB) (35.0 dB; 2.5 GiB)

Baseline 52.0 ± 14.1 ms 9.11 ± 1.25 ms 41.2 ± 3.24 ms 8.28 ± 0.533 ms 8.62 ± 1.17 ms 4.79 ± 1.02 ms
(Julia, ours) (20.4 dB; 5.9 GiB) (25.7 dB; 2.4 GiB) (20.7 dB; 4.4 GiB) (29.7 dB; 2.3 GiB) (23.7 dB; 1.3 GiB) (35.6 dB; 1.3 GiB)

Baseline 51.2 ± 14.4 ms 8.31 ± 1.27 ms 40.6 ± 3.29 ms 7.64 ± 0.695 ms 8.12 ± 1.21 ms 4.49 ± 0.981 ms
+ filtering (20.3 dB; 5.9 GiB) (25.7 dB; 2.5 GiB) (20.7 dB; 4.4 GiB) (29.6 dB; 2.3 GiB) (23.0 dB; 1.3 GiB) (35.4 dB; 1.3 GiB)

Baseline 49.7 ± 13.3 ms 8.81 ± 1.21 ms 39.5 ± 3.09 ms 8.03 ± 0.536 ms 8.31 ± 1.14 ms 4.63 ± 0.991 ms
+ precomputation (20.4 dB; 5.9 GiB) (25.7 dB; 2.4 GiB) (20.7 dB; 4.4 GiB) (29.7 dB; 2.3 GiB) (23.7 dB; 1.3 GiB) (35.6 dB; 1.3 GiB)

Baseline 46.4 ± 12.0 ms 9.12 ± 1.27 ms 36.1 ± 2.54 ms 8.26 ± 0.525 ms 7.43 ± 0.993 ms 4.80 ± 1.02 ms
+ tile size (20.4 dB; 4.2 GiB) (25.7 dB; 2.4 GiB) (20.7 dB; 3.4 GiB) (29.7 dB; 2.3 GiB) (23.7 dB; 1.0 GiB) (35.6 dB; 1.3 GiB)

Baseline 15.3 ± 1.85 ms 5.74 ± 0.628 ms 16.2 ± 0.705 ms 6.13 ± 0.437 ms 3.45 ± 0.439 ms 2.63 ± 0.648 ms
+ tile intersections (20.4 dB; 3.0 GiB) (25.7 dB; 2.2 GiB) (20.7 dB; 2.8 GiB) (29.7 dB; 2.1 GiB) (23.7 dB; 0.82 GiB) (35.6 dB; 1.2 GiB)

Ours (full)
13.8 ± 1.87 ms 4.71 ± 0.690 ms 14.6 ± 0.719 ms 5.35 ± 0.517 ms 3.17 ± 0.738 ms 2.23 ± 0.726 ms
(20.3 dB; 2.8 GiB) (25.7 dB; 2.3 GiB) (20.7 dB; 2.7 GiB) (29.6 dB; 2.2 GiB) (23.0 dB; 0.79 GiB) (35.4 dB; 1.2 GiB)

consequence, the relative improvement is greatest at lower
resolutions. The quality of the renders is occasionally slightly
reduced. But this is to be expected, as the models were trained
for the purely depth-filtering reference implementation. The
other modifications have no effect on the image quality.

The performance gains from the precomputation are greatest
at higher rendering resolutions, as there are more duplicated
Gaussians and hence α-computations. On the low-resolution
Bicycle scene, using 16×32 tiles increases the average render
time to 9.77 ms, illustrating why we only increase the tile size
at higher resolutions.

Our modification to the tile intersections makes a massive
difference, especially at higher resolutions, since we need to
sort and render many fewer duplicated Gaussians, as we will
quantify below. Also note that the render times are much more
consistent, in particular on Bicycle at native resolution. This
can be explained by the presence of large, mostly transparent
3D Gaussians. In the original approach these will affect a
significant number of tiles for certain views, leading to higher
render times. But as we take into account the low opacity, our
approach is much more effective at (not) rendering these.

Finally, combining all modifications decreases the rendering
times further. Note that the tile intersection and filtering
improvements synergize, as we can also immediately filter out
Gaussians whose opacity τ falls below the α-threshold of ϵ, as
in this case the axis-aligned bounding box is empty. In total, on
the Bicycle scene at native resolution we decrease the render
time and GPU memory usage by factors of 3.77 and 2.11.

A. Number of duplicated Gaussians

To further quantify why our new axis-aligned bounding
boxes work much better than the original ones, and to
investigate whether the largest gains are due to our new
conversion from a 2D Gaussian to an elliptical disk, or due
to allowing non-square bounding boxes, we consider the total
number of duplicated Gaussians in the first image of Bicycle

(_DSC8679.JPG) at native resolution for 16× 16 tiles. For
the original bounding boxes we had 87 067 709 duplicated
Gaussians. Using our opacity-sensitive ellipse, but keeping the
bounding box square, this reduces to 55 648 264. Allowing for
non-square boxes, it further drops to 18 466 556. Finally, if
we would have pixel-perfect tile-Gaussian intersections, i.e.,
no longer approximate a 2D Gaussian by an axis-aligned
bounding box, we would only need 10 976 269. Finding these
exact intersections is computationally expensive, however.
Our approach then provides a good trade-off between the
approximation quality of the Gaussian-tile intersections, and
the time needed to compute each of these, with a low total
rendering time as a result.

Increasing the tile size to 16× 32 of course also decreases
the number of duplicated Gaussians, but now this is not a
guaranteed speed-up. As the tile grid becomes coarser, we will
assign a Gaussian to more pixels, leading to a reduction of du-
plicated Gaussians by only less than half (using the original tile
intersections: from 87 067 709 to 48 012 778 at high resolution;
from 10 207 165 to 6 988 817 at low resolution). Furthermore,
each tile then needs to (sequentially) process more Gaussians.
Additionally, the relation between thread-block size and GPU
performance is complicated: increasing the block size certainly
does not automatically improve performance.

V. FURTHER WORK

Currently, our tile size modification uses a somewhat arbi-
trary threshold. We intend to further investigate the relation
between tile size, rendering resolution and rendering time, to
hopefully obtain a more principled formula.

We will also reimplement 3DGS training, as we believe
our improvements will lead to similar performance gains. We
expect this to also eliminate any quality degradation arising
from our modifications, as the new models will be optimized
for the new setting. When this implementation is finished, we
intend to make it open-source.



5

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106,
2021.

[2] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian
splatting for real-time radiance field rendering,” ACM Trans. Graph.,
vol. 42, no. 4, pp. 139–1, 2023.

[3] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: radiance fields without neural networks,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 5501–5510.

[4] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM transactions on
graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.

[5] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Zip-NeRF: anti-aliased grid-based neural radiance fields,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2023, pp. 19 697–19 705.

[6] Z. Yu, A. Chen, B. Huang, T. Sattler, and A. Geiger, “Mip-Splatting:
alias-free 3D Gaussian Splatting,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
19 447–19 456.

[7] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin, “Deformable
3D Gaussians for high-fidelity monocular dynamic scene reconstruc-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 20 331–20 341.

[8] H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, “Gaussian
Splatting SLAM,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 18 039–18 048.

[9] P. Papantonakis, G. Kopanas, B. Kerbl, A. Lanvin, and G. Drettakis,
“Reducing the memory footprint of 3D Gaussian Splatting,” Proceedings
of the ACM on Computer Graphics and Interactive Techniques, vol. 7,
no. 1, pp. 1–17, 2024.

[10] T. Besard, C. Foket, and B. De Sutter, “Effective extensible program-
ming: unleashing Julia on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, 2018.

[11] T. Besard, V. Churavy, A. Edelman, and B. De Sutter, “Rapid software
prototyping for heterogeneous and distributed platforms,” Advances in
Engineering Software, vol. 132, pp. 29–46, 2019.

[12] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-NeRF 360: unbounded anti-aliased neural radiance fields,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 5470–5479.

[13] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and Temples:
benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

[14] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[15] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

[16] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Bros-
tow, “Deep blending for free-viewpoint image-based rendering,” ACM
Transactions on Graphics (ToG), vol. 37, no. 6, pp. 1–15, 2018.


