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Assessing the feasibility of using a data-
driven corrosion ratemodel for optimizing
dosages of corrosion inhibitors
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Maxime Van Haeverbeke4, Thomas Diekow5, Arne Verliefde1,3 & Ingmar Nopens1,2

Optimizing dosages of corrosion inhibitors requires experimental data gathered from time-consuming
methods. The current study examines the feasibility of optimizing inhibitor dosages using a model
trained for predicting corrosion ratesmore easilymeasuredusing linear polarization resistance in a full-
scale cooling water system. A comprehensive study on variable selection showed that linearly
correlated variables are necessary to predict corrosion trends. The Sobol sensitivity of inhibitors is
trivialized by variables linearly correlated to the corrosion rate. The study highlights the importance of
achieving highmodel prediction accuracy and high Sobol sensitivity of inhibitors to the corrosion rate,
for using the model for inhibitor dosage optimization.

Corrosion can result in damage to equipment and longdowntime in cooling
water systems. Corrosion mitigation strategies commonly adopted are
maintaining a small scaling deposit on themetal surface, usage of corrosion
inhibitors, and treatment of the cooling water to remove corrosive con-
stituents such as chlorides and sulphates1–8. Corrosion inhibitors slow the
rates of both cathodic and anodic reactions by reducing the active surface or
changing the activation energy of the oxidation or reduction process9. The
development of corrosion inhibitors and investigation of their inhibition
mechanisms have been carried out with the aid of molecular modeling and
quantum chemical calculations using density functional theory10. The latter
is based on electron density, which carries information related to atoms and
molecules. Investigating micro-mechanisms requires combining first-
principles techniques based on fundamental theory, such as the density
functional theory withmolecular dynamics, peridynamic theory and finite-
element methods10. Although these methods provide comprehensive
information about the system under consideration, they are highly com-
putationally intensive. However, their prevailing interest in the field of
corrosion is apparent in obtaining insights into micro-mechanisms and
interactions among components in a water matrix and the metal surface.

The additionofmore thanone corrosion inhibitor in cooling systems is
commonly applied with the hope of synergistic effects among inhibitor
compounds improving the overall inhibition efficiency. Studies have
demonstrated the synergism of Zn2+ ions with organic corrosion

inhibitors11. Synergism between corrosion inhibitors has been investigated
using electrochemical impedance spectroscopy by Marin-Cruz et al.8 and
Touir et al.5 in cooling water systems. However, antagonistic effects among
inhibitors have also been shown when water qualities change12. Thus, the
inhibitive effectiveness of corrosion inhibitors depends on complex inter-
actions between background ions and other inhibitors2–5,11,12, as well as the
metal under test6. These effects are very difficult to predict a priori. There-
fore, the determination of corrosion rates, as well as inhibition efficiency in
real-life aqueous environments, is commonly done via pilot tests and time-
consuming and costly experiments (e.g. using electrochemical impedance
spectroscopy)7,8.

Model development is an alternative method for capturing the
synergism among multiple corrosion inhibitors and ions present in the
system. Research reported on modeling corrosion inhibition using data-
drivenmodels has focused onpredicting an aspect related to inhibitors, such
as the inhibition efficiency. Corrosion inhibitionofmild steel in sulfuric acid
has beenmodeled by Edoziuno et al.13. They analyzed corrosion inhibition-
related process parameters and their relationships to obtain optimal inhi-
bitor concentration, immersion time, and acid concentration that max-
imized inhibitor efficiency. Omran et al.14 conducted a factorial
experimental design to maximize the inhibition efficiency in a system of
mild steel and water-containing plant extracts. Ansari et al.15 optimized the
interactive effects of temperature, the concentration of inhibitor and
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immersion time for a maximum response of inhibition efficiency using the
Response Surface Method (RSM) in a C38 steel/H2SO4 solution. Com-
mercial software such as French-Creek models16 can optimize multiple
inhibitors, but only sequentially. For instance, Ferguson et al.16 demonstrate
how the orthophosphate dosage is first optimized, and subsequently, the
copolymerdosage is optimized.These studies have specificallymeasured the
corrosion inhibition efficiency and modeled it with respect to concentra-
tions of corrosion inhibitors and ions. Corrosion inhibition efficiency can be
measured using complex and time-consuming techniques such as electro-
chemical impedance spectroscopy and potentiodynamic polarization
techniques.

Corrosion rates of cooling water are conveniently measured in large-
scale plants using linear polarization resistance (LPR) in an hourly or daily
basis. In the meantime, concentrations of several ions are also regularly
measured and recorded. It would be advantageous to use these measure-
ments to replace, or at least minimize the use of costly and time-consuming
methods such as potentiodynamic polarization techniques for optimizing
dosages of corrosion inhibitors. Due to the complexity in the corrosion
inhibition process, data-driven models such as neural networks are most
appropriate. These models aim to counter the complexity and the time-
intensive character of pilot-scale, lab-scale or molecular modelling
experiments.

Authors of the current study identify the following essential properties
when using a model developed for predicting the corrosion rate for opti-
mizing inhibitor dosages:
• The prediction accuracy of the model should be satisfactory.
• The model should identify the relationship between the corrosion rate

and corrosion inhibitors sufficiently.

Data-driven modeling studies carried out in the literature have
demonstrated the corrosion rate can be predicted with adequate prediction
accuracy.Aghaaminiha et al.17 developeda randomforestmodel topredict the
corrosion rate of mild steel in CO2 aqueous solutions with the mean squared
error ranging from0.005 to 0.093 as a functionof timeover 160 hours.Coelho
et al.18 comprehensively compares the prediction accuracies of different types
of data-driven models. Machine learning models that have been reported in
corrosion literature are kernel-based methods such as support vector
regression, backpropagationneural network, deepneural network, tree-based
models such as random forest, and gradient-boosted decision trees. The study
by Coelho et al.18 reveals that kernel-based methods such as support vector
regression have higher prediction accuracy across different corrosion topics.
Although these studies have reported high testing performances, themethods
employed individing thedata set into training and test sets for a propermodel
evaluation were not clearly described. It is important to demonstrate that the
model is capable of predicting events ahead of time. Such events can be
defined as changes in corrosion rate in response to varying operational and
environmental factors. A study by Zhi et al.19 demonstrates the difficulty of
predicting corrosion rates in diverse conditions.

The relationship between inhibitors and corrosion rate is not as direct
as that between inhibitors and inhibition efficiency. Other factors, such as
pH have a higher impact on the corrosion rate than inhibitor dosages.
During the training process of a data drivenmodel such as a neural network,
the model assigns weights to connections between the input variables and
the output.More often thannot, themodel assigns highweights to a handful
of variables while the significance of the remainder is diminished20.
Therefore, it is likely that the weights assigned to corrosion inhibitors is
dependent on other variables used as inputs to the model.

The taxonomy of variable selection for model development has been
discussed in several studies20–22. Selection methods are most commonly
classified into linear and nonlinear filter, wrapper, and embeddedmethods.
Studies have been carried out to identify suitable variable selection meth-
odologies per field of study23,24. A comparison of how commonly used
variable selectionmethods affect the corrosion rate prediction accuracy and
the significance assigned to corrosion inhibitors has not been carried out to
the best of the authors’ knowledge.

Therefore, the current study investigates the feasibility of reliably
developing and using a data-driven model trained to predict the corrosion
rate for optimizingmultiple corrosion inhibitors simultaneously. In view of
the stated gaps noted in the literature and challenges experienced when
developing a predictive model for corrosion using cooling water data sets,
the current study investigates the impact of common variable selection
methods on the prediction accuracy of corrosion rate and sensitivity of
corrosion inhibitors to the predicted corrosion rate.

Methodology
Figure 1 presents an overview of the methodology followed for demon-
strating how combinations of input variables affect the prediction accuracy
of corrosion rate as well as the significance assigned by the model to cor-
rosion inhibitors. The software used in this study are mentioned in Sup-
plementary Table 1.

Data set
A data set containing daily measurements of water qualities, chemical
concentrations, and corrosion rates (mm/year) of mild steel pertaining to
the years 2020 to 2023 was obtained from a cooling water circuit of a
chemical plant. The corrosion rates were measured using a mild steel LPR
probe (linear polarization resistance) embedded in an epoxy resin (to
minimize crevice corrosion) inserted into the piping of a cooling water
circuit. The sensor is mounted horizontally in the side branch of a tee, with
the flow entering the tee through the top branch and flowing away from the
base of the sensor, towards the tips of the electrodes.

Hourly corrosion rates were recorded. As only daily concentrations of
ions and inhibitorswere available, the corrosion rateswere averaged to daily
values. Variables available in the data set are shown in Table 1. All variables
in Table 1 were not used for model development. Value ranges of each
variable shown in Table 1 are given in Supplementary Table 2.

The mean, standard deviation, median, coefficient of variation, skew-
ness and kurtosis of each variable shown in Table 1 is given in Supple-
mentary Table 3. Physical properties and concentrations in the data set had
been maintained between practical limits throughout 3 years. Among the
corrosion inhibitors analysed in this study, benzotriazole has the highest
coefficient of variation (0.38). A kurtosis of 3.26 indicates that the standard
deviation is due to frequentmodestly sized deviations. Lowest coefficients of
variations among the inhibitors can be observed in inhibitor A and ortho-
phosphate (0.1 and 0.12, respectively). However, their coefficient of varia-
tion is similar to that of CWFR (0.11). The higher kurtoses of
orthophosphate (5.7) and zinc (7.04) indicate that most of their values are
closer to the mean. The coefficient of variation of zinc (0.24) is higher than
inhibitor A, orthophosphate and CWFR. The correlation coefficients and
the p-values for testing the hypothesis that there is no relationship between
the variables and the corrosion rate (null hypothesis) are mentioned in
SupplementaryTable 4. The relationship between the corrosion rate and the
variables are nonlinear as the corrosion process is a complex phenomenon.
Therefore, the values of the correlation coefficients are low. However, as
evident in Supplementary Table 4, the low p values of the variables indicate
that the null hypothesis (that no relationship exists between the corrosion
rate and the variables) can be rejected. Therefore, the data is suitable for
model development.

All variables shown in Table 1 affect the corrosion rate. Orthopho-
sphate is a widely known corrosion inhibitor25. Benzotriazole is commonly
used to mitigate corrosion of copper26. However, it has also been proven
effective for mild steel27. Inhibitor A is a proprietary chemical tailored to
minimize corrosion. Zinc acts as a cathodic corrosion inhibitor by forming
complexes with hydroxide ions and precipitating on metal surfaces28.
Phosphates and phosphorous based compounds provide anodic as well as
cathodic protection to metals29,30. However, phosphorous-based com-
pounds and TOC could contribute to microbial corrosion31. Microbial
corrosion is an unavoidable phenomenon in cooling systems32. Therefore,
the bacterial count is as an important factor affecting corrosion rate. Ca2+

and Mg2+ contribute to scaling deposits that often act as a protective
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covering preventing corrosion of metal surfaces33. Therefore, antiscalants
that are added to regulate scaling deposits affect corrosion.Minute amounts
of copper dispensed from copper-containing parts of the cooling system
could plate on steel surfaces and induce rapid galvanic effect on them as the

distance between steel and copper is high in the galvanic series34. Effect of
Nitrate ions on corrosion varies depending on water chemistry, type of
metal and physical parameters such as temperature. Nitrates could aggra-
vate corrosion through adsorption and reduction to ammonium35,36 while
also reducing the chances of corrosion by passivation37. Halogenated
organic compounds (AOX) are harmful to the environment. The addition
of benzotriazole contributes to the AOX concentration26. Variables such as
free chlorine, chloride ions, pH, conductivity and temperature are widely
known to affect corrosion.

In addition to variables shown in Table 1, historical values of benzo-
triazole, inhibitor A, orthophosphate, zinc, and flow rate were also con-
sidered. Historical values refer to values of a variable from a previous time
period. For example, zinc(t-1) refers to the zinc concentration from a day
prior to the considered day. Historical values of the corrosion rate were not
considered in thefirst part of this study, as the significantly higher sensitivity
of historical corrosion rates makes it difficult to assess the diminished
impact of other variables on the predicted corrosion rate. However, they are
considered when the final model is presented with an example-result on
how inhibitors are optimized at the end of this study. Historical values for
inhibitors (i.e. benzotriazole, inhibitor A, orthophosphate and zinc) are
considered up to three days (i.e. t-1, t-2, t-3). Those of CWFR was con-
sidered up to 4 days as the corrosion rate was visually highly correlated to
CWFR, as shown in Fig. 2. It is assumed that high flow rates contribute to

Fig. 1 | Researchmethodology.An overview of how
input variable selection methods were used to assess
the feasibility of optimizing inhibitor dosages.
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Table 1 | Input variables available in the data set

Variables Variables Variables Variables

pH NO−
2 AOX Inhibitor A

KS8,2 and KS4,3 Ca/Mg Total Fe Benzotriazole

Temperature (oC) Cl Dissolved Fe Zinc

Turbidity ClO2
− TOC Orthophosphate

COD Ca Silicates Cooling water flow rate
(CWFR) – kg/h

Total inorganic
Nitrogen (TIN)

NO3
− Cu Filtered substances

Conductivity Mn Total chlorine Corrosion rate

Total Carbon Na Dissolved zinc Thickening agent

Total inorganic
Carbon (TIC)

NH4
+ Organic

phosphorous
HCO3

−

Free chlorine SO4
3− Bacterial count Total phosphate

Concentrations are given in mg/L.
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greater shearing of the corrosion fouling layer37. As the development of the
corrosion fouling layer is time-dependent, longer historical CWFR could be
relevant to the prediction of the corrosion rate.

Data preprocessing
All variables were normalized between 0 and 1 using Eq. 1 as

xnorm ¼ x � xmin

xmax � xmin
ð1Þ

Outlier removal was carried out using a method known as the ‘local
outlier factor’ (LOF). This method is based on computing the local density
deviation of a given data point with respect to its neighbors and was
implemented using the sci-kit learn python library38. The LOFmethod was
found to be superior to Z-score method. The Z-score method is highly
reliant on themean of the data. As pointed out byMay et al.20, themeanwill
be affected if a large number of outliers is present in the data set.

Variable selection
Five variable selection methodologies were applied in this study.
1. Pearson correlation coefficient (PCC)

PCC is determined by

PCC ¼
P

xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �x
� �2 P

yi � �y
� �2q ð2Þ

where, xi and yi are i
th input vector and output value in the sample; �x

and �y mean values of x and y.
PCC is a popular linearmethodof examining the correlation between
twovariables. Themagnitude of the correlation suggests the degree of
the linear correlation existing between two variables, while the sign of
the value obtained suggests whether the variable is enhancing or
inhibiting to its counterpart.

2. Point-wise mutual information (point-wise MI)
Point-wise MI is determined by

Point� wiseMI x; y
� � ¼ log

P x; y
� �

P xð ÞP y
� � ; ð3Þ

where P x; y
� �

is the joint probability distribution of x (an input
variable) and y (the output variable). Reader is referred toMay et al.39

for further details on point-wise mutual information. A Gaussian
kernel was used to estimate the probability distributions. MI is a

nonlinear filter used to quantify the correlation between two
variables. Variables with high positive pointwise MI values are
ranked high.

3. Partial mutual information (Partial MI)
Partial MI uses the same concept as mutual information; however, it
enables the reduction in uncertainty in predicting the output while
quantifying the additional mutual observation gained by adding
another variable (Z) into a set of already establishedvariables (X).The
algorithm employed for implementing partial MI is shown in Sup-
plementary Figure 1. Further details of the partial MI algorithm have
been presented byMay et al.39. The last step of the algorithm involves
selecting a variable thatmaximizes the pointwisemutual information
(I v; uð Þ). It was noted that the values of I v; uð Þ were negative.
Therefore, selecting the highest value of I v; uð Þ could be done as per
themagnitude of I v; uð Þ or based on themore positive value of I v; uð Þ.
Thus, partial MI was implemented in twoways1: positive partial MI -
selection of variables giving priority to more positive pointwise
mutual information (I v; uð Þ) and2 magnitude-based partial MI -
selection of variables giving priority to the magnitude of pointwise
mutual information (I v; uð Þ).

4. Model-embedded weights-based variable selection using the XGBoost
implementation of gradient-boosted decision trees
XGBoost regression has been successfully used in a multitude of
applications including corrosion for prediction and computing fea-
ture importance40. Feature importances were extracted from an
XGBoost model trained with data. The xgboost python package was
used for this purpose. Readers are referred to Pedregosa et al.38 for
more details of the method.

Themethods discussed from1 to 4provide a ranking of variables in the
order of importance. The selection of the optimal number of variables for
model development was done as displayed in Supplementary Figure 2.

Linearly correlated, co-occurrent, and less co-occurrent variables.
Three terms are used to categorize variables encountered in this study:
linearly correlated, co-occurrent, and less co-occurrent variables. The
term ‘linearly correlated’ refers to variables that are considered most
relevant by PCC. Co-occurrent variables are considered most relevant by
positive point-wise MI. Less co-occurrent variables are high in the
magnitude of point-wise mutual information and top-ranked by
magnitude-based partial MI, yet not by positive partial MI.

Sensitivity analysis of variables. Sobol sensitivity analysis of input
variables was carried out to evaluate the impact corrosion inhibitors had
on the predicted corrosion rate. The main purpose of the analysis is to
identify how different types of variables affect the Sobol sensitivity of
corrosion inhibitors. Most modeling studies that had been carried out on
optimizing corrosion inhibitors had focused on predicting quantities
such as corrosion inhibition efficiency13–15, which is a more direct con-
sequence of the inhibitors than the corrosion rate. Therefore, it is
important to get a clear understanding of the sensitivity of corrosion
inhibitors in a model trained to predict the corrosion rate.

Data division
Definition of the test data set to evaluate the model’s ability to
predict future events. According to a review by Bowden et al.41, optimal
data division for applications inwater resources requires ensuring similar
statistical properties among training, validation, and test data sets. While
paying due consideration to statistical properties warrants adequate
training, defining a test data set based on statistical properties does not
guarantee that corrosion events will be well predicted. Therefore, cross-
validation was carried out by dividing the time-series data, as shown in
Fig. 3.

The corrosion profile was divided into divisions of approximately 300
consecutive days where each division defines an event. The model was

Fig. 2 | Corrosion rate versus CWFR as a function of time. Filled black circles
represent measured corrosion rate over time. The light blue-green continuous line
represents the corresponding cooling water flow rate maintained in the circuit.
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trained with nearly 900 daily measurements, shown by blue markers in
Fig. 3, and tested with the remaining 300 consecutive daily measurements
represented by the black continuous line in Fig. 3. For example, when the
first 300 data points were defined as the test data set, the remaining 900were
used for training. Thus, a total of four models were trained, one per each
division using data points represented by filled blue circles. Eachmodel was
tested with data points indicated by black clear circles.

The corrosion profile shown in Fig. 3 pertains to 4 years of data.
Periodical increases in corrosion rate noted in Fig. 3 correspond to summer
months when the cooling water flow rate is increased to meet the required
cooling capacity. As the temperature of cooling water, which is generally
drawn from a nearby water body, is high during summer, CWFR is
increased to enhance the circuit’s heat capacity. As previously mentioned,
increasing the flow rate may result in the shearing of the barrier layer
between the metal surface and the bulk fluid. As the barrier layer is formed
by inhibitors and corrosion fouling deposits, the removal of the barrier layer
enables easier access for corrosive ions towards the metal surface.

The events denoted by the four divisions of Fig. 3 are unique. The test
data set of Division 1 demonstrates corrosion rates well within the total
range of the data set without any special occurrences. Division 2 represents
corrosion rates that are influenced by the occurrence of filtered substances,
likely due to an operational event that was only noted in this time period.
Division 3 consists of lowest corrosion rates available in the data set. Divi-
sion 4 consists of highest corrosion rates available in the data set. Therefore,
the model’s generalization ability, extrapolation ability and its capability of
handling responses to operational changes are tested through the division
shown in Fig. 3.

Data division in input variable selection. Input variable selection was
carried out using the entire data set. Training and test data sets used for
input variable selection were defined based on statistical properties, i.e.
themean and the standard deviation of the training data set weremade to
be approximately equal to those of the test data set41. Such an equitable
distribution was ensured by first condensing all variables to one variable
using principal component analysis and it was used to generate a normal
distribution curve as shown in Fig. 4. The distribution curve was parti-
tioned into sections of constant width (e.g. w ¼0.1) where two

consecutive partitions were allocated to the training data set and the third
consecutive partition was allocated to the test data set. The process was
repeated from the negative-most Z-score to the positive-most Z-score.

The Z-score was computed as

Z� score ¼ x � μ

σ
ð4Þ

where μ is the mean and σ the standard deviation of the data set.
The width w is varied from 0.1 to 0.4 at intervals of 0.1, and the

algorithm in Fig. 4 is repeated each time. The width w is changed to make
sure that the performance of the selected variables remains high through
varied apportioning of data points in the test data set in an informed
manner.

Fig. 3 | Division of the corrosion profile for cross-validation. Filled blue circles represent data points allocated to the training data set. Black clear circles represent data
points allocated to the test data set.

Fig. 4 | Data division according to statistical properties. Blue circles represent data
points allocated to the training data set. Orange stars represent data points allocated
to the test data set.
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Support vector regression
As per a comprehensive review on the use of machine learning in corrosion
by Coelho et al.18, support vector regression has demonstrated high gen-
eralization ability and prediction accuracy across several corrosion topics.

The mathematical model of SVR is given by Eq. 5.

y ¼
Xk

i¼1

βiK xi; x
� �þ b

β ¼ α� � α ð5Þ

where ‘k’ is the number of support vectors; α, α�– Lagrangemultipliers; xi –
input vector of support vector; b–bias; x – input vector; y–output,K xi; x

� �

is the kernel, for which the radial basis function was used.
More information on the support vector regressionmodel can be read

in Welling42.
Parameters that need to be tuned in a SVR are the box constraint (C,

which was set to 1), error sensitivity parameter (ε, set to 0.005) and the
smoothing parameter of the radial basis function (γ, set to 0.7). Values of the
parameters were determined using a global exhaustive search method.

Optimization
The purpose of presenting the results of optimization in this paper is to
demonstrate the implications of using a data-drivenmodel that assigns low
weight and sensitivity to optimization.Other aspects of optimization are not
within the scope of this study. In order to ensure high prediction accuracy,
historical values of the corrosion rate up to 7 days (i.e. CR(t-7)) was used as
an input variable. Therefore, in practice, the model developed can only be
used for optimizing dosages of the following 7days. The reason for choosing
a week’s time for the historical values of corrosion is to ensure that all
allowances are made for the response time required for a change in the
inhibitor dosage to take effect. The remaining variables required for
developing the model used in this section were selected using the most
effective input variable selection method out of Section Variable selection.
The inhibitors (i.e. benzotriazole, orthophosphate, zinc and inhibitor A)
were also included as input variables.

The NSGA II evolutionary algorithm43 was used for optimization of
inhibitor dosages. NSGA II facilitates multi-objective optimization with
faster convergence and evaluation of solutions over a larger search space
thanmethods such as gradient descent or particle swarm optimization. The
method of optimizing inhibitor dosages using NSGA II is demonstrated in

Fig. 5. It should be noted that the inhibitors were varied to determine the
optimum values per data point while the remaining input variables of the
SVR were fixed as constants (at recorded values), per data point.

The objective functions were defined as stated in Eq. 6

f 1 ¼ 0:5× benzotriazole½ � þ 0:167× orthophosphate
� �

þ 0:167× zinc½ � þ 0:167× ½inhibitorA�

f 2 ¼ corrosion rate ð6Þ

Equation 6 represents two objective functions. The first objective
function f 1 demonstrates how the concentrations of the inhibitors are
weighted. Benzotriazole is weighted higher than the remaining inhibitors.
Therefore, the NSGA II algorithm gives higher priority to reducing the
concentration of benzotriazole over others, due to its harmful environ-
mental impact. In themeantime, the algorithmalsominimizes the corrosion
rate that is resultant from minimized concentrations of inhibitors. The
constraints imposed on this algorithm are that the concentrations of the
inhibitors are always maintained between the minimum and maximum
values in the available data set.

Results and discussion
Variable selection
The current section presents results of variables selected for model devel-
opment by the four input variable selection methods discussed in Section
Variable selection. The variables are listed in the descending order of
importance as specified by each method. The number of variables per
method was selected according to the algorithm shown in Supplementary
Figure 2. The results obtained are presented in Table 2.

A similarity can be noted among the variables chosen by PCC, positive
point-wiseMI, andpositive partialMI.W-XGBranks variables basedon the
overall weights assigned by a trained XGBoost implementation of gradient
boosted decision trees to each variable. Therefore, the method captures the
phenomenological relationship between the corrosion rate and the input
variables than PCC, pointwise MI or partial MI. Therefore, W-XGB iden-
tifies the importance of nonlinear and less co-occurrent variables such as
Nitrate. Partial MI enables identifying variables that further reduce the
uncertainty surrounding the corrosion rate that is gained by the additional
mutual observation of a variable39. Therefore, variables selected by partial
MI complement the information already embedded in the first set of vari-
ables. The first set of variables were set as corrosion inhibitors in the system.

Fig. 5 | Method for optimizing inhibitors using a
data-driven model and NSGA II. Concentrations
of benzotriazole, orthophosphate, inhibitor A and
zinc are varied such that the required dosages of
inhibitors are minimized, while maintaining the
corrosion rate at a minimum possible value. The
termination criterion used in this study is the
number of iterations of the algorithm.

Model
Input variables:

Benzotriazole – x1 mg/l

Orthophosphate – x2 mg/l

Inhibitor A – x3 mg/l

Zinc – x4 mg/l

…

Xn-1 – constant 

Xn – constant 

NSGA II

Is the 

termination 

criterion met?

Updated x1, x2, x3 and x4

End

Corrosion rate

All inputs 

x1, x2, x3

and x4

yes

no
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Thus, the remainder of the variables are expected to complement the
information embedded in the data pertaining to the inhibitors. As noted in
Table 2, CWFR is considered an important variable by all variable selection
methods. Additionally, the variable named filtered substances is considered
important by all methods shown in Table 2, even though it corresponds to a
one-time event that occurred in Division 2 of Fig. 3. W-XGB recognizes
N-containing compounds as well as historical values of Inhibitor A and
orthophosphate as important variables as opposed to PCC, point-wise MI,
and partial MI.

Test results from predicting events demonstrated in Fig. 3 using the
trained SVRwith input variables in Table 2 are illustrated in Supplementary
Figs. 3 to 6. The models developed by all variable selection methods have
predicted the rate of corrosion in Division 1 with reasonable accuracy. PCC
and MI have best predicted the corrosion rate in Division 2. None of the
models were able to successfully extrapolate less than the minimum cor-
rosion rate or higher than the maximum corrosion rate in the training data
set, as evident from the predicted corrosion profiles in divisions 3 and 4. The
minimum corrosion rate occurs in Division 3, while the maximum corro-
sion rate occurs in Division 4.

As stated in Section on Variable selection in the Methodology, partial
MI inTable 2was implemented such that variableswith high positive point-
wise mutual information were given priority. Positive point-wise MI sug-
gests that variables co-occurwith theoutput, i.e. variables that respondat the
same time as corrosionwithahighprobability.According toTable 2, there is
a significant similarity among variables selected by partial MI and PCC. It
appears that themost linearly correlated variables are similar to themost co-
occurrent variables. However, variables with negative point-wiseMI cannot
be deemed irrelevant as only a value close to 0 is considered irrelevant44.

Partial MI determines water quality measurements that support the
prediction of the corrosion rate, in addition to the starting fixed set of pre-
determined variables (i.e. benzotriazole, orthophosphate, inhibitor A, and
zinc). In doing so, most variables were noted to have high negative point-
wiseMI.Highnegative point-wise information indicates that a variable does
not co-occur well with the output variable. In other words, such a feature is
of a probability distribution complementary to that of the output variable. A
comparison of features selected bymagnitude-based partialMI and positive
partial MI, as well as magnitude-based point-wise MI and positive point-
wise MI is given in Table 3. Nitrate was ignored from variables under
magnitude-based point-wise MI as it is highly correlated to TIN. Similarly,
HCO3

- was ignored as it is highly correlated to TIC.

Variables selected by magnitude-based partial MI shown in Table 3
include those that co-occurs less with the corrosion rate, such as organic
phosphorous, total phosphate, and AOX. KS4.3, HCO3

−, inhibitor A (t-1)
and TIC are common with magnitude-based partial MI and W-XGB. The
main difference between the sets of variables selected by positive point-wise
MI and magnitude-based point-wise MI is that the latter identifies nitrates
and TIN as important variables. As observed in Table 2, Nitrate is also
identified as important by W-XGB. As W-XGB is capable of identifying
nonlinear variables that significantly affect corrosion, it appears that
magnitude-based partial MI ensures the inclusion of variables that are non-
linearly correlated and less co-occurrent with the corrosion rate. However,
due to the lack of linearly correlated/co-occurrent variables among
magnitude-based partialMI variables, the prediction accuracy has declined,
as shown in Supplementary Table 5.

None of the variables selected by magnitude-based partial MI are
sufficiently co-occurrent and/or linearly correlated to the corrosion
rate. Therefore, the prediction accuracy of a model trained with these
variables is not adequate. In order to facilitate predicting the corrosion
rate using data-driven models, the presence of one or more co-occur-
rent/linearly correlated variables seem essential. This was demon-
strated by the addition of two co-occurrent variables: CWFR and
[Ca2+]. As shown in Fig. 2, CWFR is highly correlated to the corrosion
rate. As scaling contributes to the formation of a barrier layer between
the metal surface and the solution, Ca2+ ions contribute to the inhibi-
tion of the corrosion rate. Ca2+ concentration has also been listed as a
highly linearly correlated variable under PCC in Table 2. Therefore,
CWFR and Ca2+ were included among the top-ranked variables along
with benzotriazole, inhibitor A, orthophosphate and zinc. The
remaining variables were selected by re-implementing the partial MI
algorithm inMay et al. (2008). The number of variables was determined
with the algorithm shown in Supplementary Figure 2. The variables
resulting from repeating the magnitude-based partial MI algorithm
were Ca2+, CWFR, benzotriazole, inhibitor A, orthophosphate, zinc,
COD, AOX, zinc(t-1), total phosphate, zinc(t-3), zinc(t-2), and organic
phosphates. A comparison of prediction accuracies of models trained
with positive partialMI, magnitude-based partialMI and the latter with
Ca2+ and CWFR is given in Supplementary Table 6. It can be observed
that the addition of linearly correlated and co-occurrent variables
improved the predictive ability of the model trained with magnitude-
based partial MI variables.

Table 2 | Results of five variable selection methodologies

Rank Model-embedded weights-based variable selection using XGBoost (W-XGB) PCC Positive point-wise MI Positive partial MI

1 CWFR CWFR Filtered substances Benzotriazole

2 CWFR (t-1) CWFR (t-1) CWFR Inh. A

3 KS4.3 CWFR (t -2) CWFR (t-1) Orthophosphate

4 Nitrate CWFR (t-4) CWFR (t-2) Zinc

5 CWFR (t-3) CWFR (t-3) CWFR (t-3) CWFR (t-4)

6 CWFR (t-4) Filtered substances CWFR (t-4) CWFR (t-1)

7 Filtered substances Benzotriazole Bacterial count CWFR (t-2)

8 TOC Ca2+ Manganese CWFR

9 Manganese Manganese Thickening agent CWFR (t-3)

10 Chloride pH Ca2+ Filtered substances

11 Turbidity Bacterial count Benzotriazole Manganese

12 CWFR(t-2) Dissolved Zinc Chloride

13 HCO3
− Chloride pH

14 Orthophosphate (t-1) Benzotriazole (t-1) Dissolved Zinc

15 Inh. A (t-1) Benzotriazole(t-2) Ca2+/Mg2+

16 Benzotriazole Ca2+/Mg2+

17 TIC Benzotriazole(t-3)
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Sensitivity analysis
Sobol sensitivity analysis45 was carried out based on SVRmodels developed
using input variables selected by PCC and magnitude-based partial MI by
calculating first-order and total Sobol indices. The purpose of the analysis is
to understand the difference between the impact of linearly and nonlinearly
correlated variables on the sensitivity of inhibitors. Dissolved zinc was
omitted as a variable for model comparison as it is correlated to the total
amount of zinc. Filtered substances was also omitted as a variable, as its
values correspond to a single operational change. The main objective of the
model is to optimize dosages of benzotriazole, inhibitor A, orthophosphate
and zinc. Therefore, including variables highly correlated to the four inhi-
bitors will provide redundant information and inconvenience optimization
of the inhibitors from having to account for the correlations with the input
variables. Orthophosphate and inhibitor A are slightly correlated to total
phosphates. However, themodel prediction accuracy demonstrated in Figs.
A3 to A6 are also not perfect. In the meantime, total phosphates are highly
influenced by antiscalants added to cooling water. As antiscalants are not
accounted for by the variables included in this study, total phosphates were
not excluded. The results of the Sobol sensitivity analysis are given in
Table 4.

When comparing 1st order Sobol sensitivities of magnitude-based
partial MI with and without CWFR and Ca2+, the relative sensitivities
assigned to corrosion inhibitors, especially benzotriazole, decline notably
upon the addition of variablesmore linearly correlated to the corrosion rate.
As observed in Fig. 6, the Sobol sensitivity of zinc is low in both instances
when magnitude-based partial MI was used. Based on Table 4, historical
values of zinc appear to have a higher influence on the corrosion rate than
the present value. Among variables considered by PCC pH, benzotriazole
andCWFR,have thehighest 1st order Sobol indices.Therefore, theyhave the
highest sensitivity to corrosion rate.

Total Sobol index is an overall sensitivity accounting for sensitivity of a
variable to the output as well as interaction effects among other variables.
The highest total Sobol indices of PCC variables can be observed in pH,
benzotriazole, and zinc.

The 1st-order Sobol sensitivity of benzotriazole among magnitude-
based partial MI (without CWFR and Ca2+) and PCC variables are similar.
The sensitivity of benzotriazole is lowwhen themodel is trainedwith partial
MI variables with CWFR and Ca2+. Therefore, unique combinations of
variables have an impact on the Sobol sensitivity of an inhibitor. It appears
that linearly correlated and co-occurrent variables are suitable for predicting

trends of corrosion rate, whereas, magnitude-based partial MI variables
ensure a high Sobol sensitivity of corrosion inhibitors to the corrosion rate.

Optimization
Model prediction accuracy and sensitivity to corrosion inhibitors were
considered vital for optimization of corrosion inhibitors in this study.
Although PCC variables demonstrated the highest prediction accuracy, it is
apparent from Supplementary Fig. 6 that the predictions largely fluctuate
from the measured rates. Therefore, historical values of corrosion rate were
includedas an input variable.Asdescribed inSectiononOptimization in the
Methodology, the historical value of the corrosion rate 7 days prior to the
considered time ‘t’, CR (t-7),wereused ashistorical values.The remainderof
the input variables (in addition to the inhibitors) were selected using PCC.
Variables used for model development are benzotriazole, inhibitor A,
orthophosphate, zinc,CR (t-7),CWFR,CWFR(t-7) andbenzotriazole (t-7).
Sobol sensitivity indices with respect to the variables are given in Table 5.

It is clear from Table 5 that the sensitivity of CR(t-7) is significantly
higher than other variables. The Sobol sensitivities of benzotriazole,

Table 3 | Comparison of ranking generated by magnitude-based and positive partial MI

Ranking Magnitude-based partial MI Positive partial MI Magnitude based point-wise MI Positive point-wise MI

1 Benzotriazole Benzotriazole Filtered substances Filtered substances

2 Inhibitor A Inhibitor A CWFR CWFR

3 Orthophosphate Orthophosphate CWFR (t-1) CWFR (t-1)

4 Zinc Zinc CWFR (t-2) CWFR (t-2)

5 COD CWFR (t-4) CWFR (t-3) CWFR (t-3)

6 AOX CWFR (t-1) CWFR (t-4) CWFR (t-4)

7 Zinc (t-1) CWFR (t-2) Bacterial count Bacterial count

8 Total phosphates CWFR Manganese Manganese

9 Zinc (t-3) CWFR (t-3) TIN Thickening agent

10 Zinc (t-2) Filtered substances Thickening agent Ca2+

11 Ca2 +/Mg2+ Manganese Ca2+ Benzotriazole

12 Organic phosphate Benzotriazole Chloride

13 TIC Chloride pH

14 KS4,3 pH Dissolved Zinc

15 Inhibitor A (t-3) TIC Ca2+/Mg2+

16 Inhibitor A (t-2)

17 Sulfate

Fig. 6 | Bar chart demonstrating that inhibitors are given higher priority when
magnitude-based partial MI is used for variable selection. The 1st order Sobol
sensitivity of benzotriazole, inhibitor A and orthophosphate are highest among
variables chosen bymagnitude-based partialMI. The decline in the sensitivity of zinc
is due to zinc (t-2) and zinc(t-3) being correlated to zinc, which have higher sensi-
tivities as presented in Table 4.
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inhibitor A, orthophosphate and zinc are notably lower than the Sobol
sensitivity of CR(t-7). Prediction of events indicated in Fig. 3 is shown in
Fig. 7.

A significant improvement of the prediction accuracy can be observed
upon the addition of CR(t-7) as a variable. In order to demonstrate how
model structure affects prediction accuracy as well as Sobol sensitivities of
inhibitors, the SVR was compared with two other models that have fre-
quently demonstrated high predictive performance in the corrosion litera-
ture: XGBoost implementation of gradient based decision trees (XGB) and
Gaussian process regression (GPR). Apart from the fact that they are all
regression models SVR, GPR and XGB differ from each other. SVR is
deterministic (each input always provides the same output), GPR is prob-
abilistic based on Bayesian inference (provides a distribution over functions
that fit the data) with uncertainty quantification. GPR is non-parametric
with complexity adapting to the datawhile SVR is parametric and assumes a
specific form of the function it fits (e.g., polynomial). XGB builds an
ensemble of decision trees sequentially, where each new tree corrects errors
madeby theprevious trees,while SVRusesmathematical optimisation to try
and find the hyperplane that best fits the data (with kernel functions to deal

with non-linearity in the data). Input variables indicated in Table 5 were
used for the model comparison. As demonstrated in Supplementary Figure
7, the prediction accuracies of GPR and XGB are similar to SVR. As shown
in Supplementary Table 7, Sobol sensitivity analysis reveals that GPR and
XGBmodels also assign thehighest sensitivity to themost linearly correlated
variable (CR(t-7)).

The model was used to optimize inhibitor dosages and minimize the
corrosion rate as described in the section on Optimization under the
Methodology. It should be noted that the inhibitors were varied to deter-
mine the optimumvalues per data pointwhile the remaining input variables
of the SVR shown inTable 3werefixed as constants (at recorded values), per
data point.

According to Fig. 8 the optimized concentrations of benzotriazole is set
to nearly zero throughout the entire time period. Optimized concentrations
of orthophosphate, inhibitor A and zinc are also set to minimum values for
1100 days. However, the optimized corrosion rate follows the trend of
measured rates despite the significant decreases in the inhibitor con-
centrations. The model appears to depend on CR(t-7), which is the most
linearly correlated to the corrosion rate, to make predictions. The lack of
sensitivity to inhibitors has resulted in the model barely accounting for the
large decreases in inhibitor dosages.

The optimized corrosion rate is slightly higher than measured rates at
low corrosion rates. The increase in corrosion rate in response to decreases
in inhibitor dosages can be expected. The optimized corrosion rates appear
tobe less thanmeasured rates at high corrosion rates.However, the inhibitor
concentration transported to the surface of the metal decreases as the
inhibitor dosages decreases as drastically as shown in Fig. 8. This should
result in an increase in the corrosion rate. Studies carried out byBarmatov et
al.46 andKhan et al.47 demonstrate how the corrosion rate increaseswhen the
inhibitor dosages are decreased at high flow rates.

Therefore, regardless of the highprediction accuracy, inhibitors cannot
be optimized using a data-driven model if it overlooks the impact of inhi-
bitors by assigning insignificant Sobol sensitivities. It is apparent that in any
data-driven model trained to improve the prediction accuracy of the cor-
rosion rate, linearly correlated or co-occurrent variables are given the
highest priority.

Table 4 | Sobol sensitivity analysis of PCC and partial MI variables

PCC Magnitude-based partial MI Magnitude-based partial MI+CWFR+Ca2+

Variables 1st order
Sobol index

Total
Sobol index

Variables 1st order
Sobol index

Total
Sobol index

Variables 1st order
Sobol index

Total
Sobol index

Benzo 0.062 0.204 Benzo 0.069 0.160 Ca2+ 0.114 0.177

Inh. A 0.005 0.067 Inh. A 0.073 0.122 CWFR 0.181 0.402

Ortho 0.019 0.193 Ortho 0.038 0.131 Benzo 0.013 0.231

Zinc 0.017 0.096 Zinc 0.001 0.105 Inh. A 0.002 0.056

CWFR 0.052 0.111 COD 0.006 0.070 Ortho. 0.030 0.130

CWFR (t-1) 0.006 0.057 AOX 0.020 0.080 Zinc 0.005 0.070

CWFR (t -2) 0.011 0.041 Zinc (t-1) 0.005 0.029 COD 0.056 0.160

CWFR (t-4) 0.019 0.053 Total phosphate 0.075 0.120 AOX 0.012 0.067

CWFR (t-3) 0.013 0.049 Zinc (t-3) 0.037 0.060 Zinc(t-1) 0.0002 0.015

Ca2+ 0.012 0.108 Zinc (t-2) 0.024 0.047 Total phosphate 0.040 0.110

Manganese 0.019 0.082 Ca2 +/Mg2+ 0.043 0.131 Zinc(t-3) 0.017 0.041

pH 0.177 0.339 Organic
phosphate

0.021 0.059 Zinc(t-2) 0.003 0.019

Bacterial count 0.001 0.063 TIC 0.006 0.086 Organic
phosphate

0.020 0.093

Chloride 5.2E-05 0.061 KS4,3 0.102 0.179

Benzotriazole (t-1) 0.016 0.095 Inh. A (t-3) 0.001 0.037

Inh. A (t-2) 0.003 0.042

Sulfate 0.015 0.087

Table 5 | Sobol sensitivity of input variables

Variables 1st order Sobol index Total Sobol index

Benzotriazole 0.015 0.023

Inhibitor A 0.002 0.011

Orthophosphate 0.002 0.007

Zinc 0.0006 0.012

CR (t-7) 0.773 0.817

CWFR 0.082 0.113

CWFR (t -7) 0.025 0.060

Benzotriazole (t-7) 0.003 0.024

Manganese 0.0006 0.002

Nitrite 0.0007 0.001
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As discussed in the Section on Variable selection in the Methodology,
variables selected using magnitude-based partial mutual information give
higher priority to inhibitors. The shortcoming of magnitude-based partial
mutual information was that the model prediction accuracy was not suffi-
cient. However, it is possible to use deep neural networks (DNNs) for

improving the prediction accuracy of corrosion rate based on these vari-
ables. Although, DNNs can capture nonlinearities well, they are extremely
data-hungry models. Therefore, the only remaining alternative is to inte-
grate mechanistic aspects of corrosion with a data-driven component. As
corrosion is a complex process involving several reactions, it is not possible

Fig. 8 | Results of optimization. Figure 8 demonstrates how the corrosion rate responds to the optimized concentrations of benzotriazole, inhibitor A, orthophosphate
and zinc.

Fig. 7 | Model prediction accuracy for the four divisions shown in Fig. 3 The R2 and RMSE of the predictions of the four divisions are given in Table 6.
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to rely on a mechanistic model alone. Therefore, a combination of
mechanistic as well as data-driven, also known as a hybrid modelling
approach must be employed to facilitate optimizing inhibitor dosages.

Data availability
Data used to conduct the study was obtained from a large-scale chemical
plant. The authors are not at the liberty to share the data set, as it is con-
fidential. The prime objective of this study is to demonstrate the feasibility of
usingdatadrivenmodels trained to predict the corrosion rate for optimizing
the dosages of corrosion inhibitors. Therefore, the conclusions of the study
canbe replicatedusing anydata set large enough to train adatadrivenmodel
containing water qualities and the respective corrosion ratemeasured using
linear polarization resistance.
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