
ChronosGuard: A Hierarchical Machine Learning
Intrusion Detection System for Modern Clouds
Miel Verkerken∗†, José Santos∗†, Laurens D’hooge∗, Tim Wauters∗, Bruno Volckaert∗, Filip De Turck∗

∗ IDLab, Department of Information Technology at Ghent University - imec, 9000 Ghent, Belgium
Email: {miel.verkerken, josepedro.pereiradossantos, laurens.dhooge, tim.wauters; bruno.volckaert, filip.deturck}@UGent.be

Abstract—Traditional Intrusion Detection Systems (IDSs) have
been a cornerstone of network security for many years. Never-
theless, with the advent of containerized applications in the last
few years, there is a growing need to understand how intrusion
detection can adapt to these dynamic environments. This paper
presents ChronosGuard, a hierarchical machine learning (ML)
IDS designed for containerized environments. ChronosGuard’s
adaptable architecture consists of multiple components, each
optimized for deployment in varying configurations ranging
from monolithic to micro-service architectures. The performance
impact of various factors such as network topology, work-
load orchestration, and deployment strategies has been assessed
through extensive experiments concerning the scalability and
resource utilization of ChronosGuard. Results show the effective
prioritization of benign traffic of up to 85% compared to
malicious traffic, the negligible impact of small network delays
on performance metrics, and up to 10% decrease in response
times with network-aware orchestration for complex deployment
configurations. This study introduces a robust, containerized
IDS that can be easily adapted to meet various operational
needs, ranging from a full privacy-preserving local deployment
to a scalable cloud deployment but also provides foundational
insights for future research into optimizing containerized security
solutions.

Index Terms—Security, Machine Learning, Intrusion Detection
Systems, Cloud Computing, Containers, Kubernetes

I. INTRODUCTION

In our digitized world, the extensive use of interconnected
systems and digital technologies amplifies the importance of
cybersecurity for individuals, institutions, and organizations
[1], [2]. Critical infrastructure systems such as power grids,
electronic healthcare, and financial systems are often dis-
tributed, and their potential breaches pose severe global risks.
Operational, financial, and personal losses can be significant
in such events. To counteract such threats, it is essential
to implement robust cybersecurity measures. Various tools
and techniques [3]–[5] exist for preventing, detecting, and
mitigating cybersecurity risks. These complementary tools
can be collectively deployed to satisfy the required security
standards. Among these, Intrusion Detection Systems (IDSs)
[6], [7] play a crucial role.

An IDS is designed to monitor a network or system and to
identify malicious activities or potential intrusions. Typically,
it serves as a second line of defense, supplementing a firewall.
A firewall, which is the primary defensive layer, enhances

† Miel Verkerken and José Santos contributed equally to this work.

security by managing incoming and outgoing traffic and
enforcing network restrictions. However, firewalls also have
inherent limitations [8], [9]. They only secure the perimeter
of the system, offering no protection against internal threats.
Historically, the focus was on preventing unauthorized external
access while safeguarding authorized internal users, a concept
contradicting the zero-trust principle, which assumes no secure
zones. In addition, their capacity to examine network traffic
is limited, and the adoption of encrypted traffic further under-
mines their deep packet inspection capabilities. This is where
an IDS, commonly advertised as the next-generation firewall,
proves its worth.

Over the last decade, the intersection of Machine Learning
(ML) and IDS has gained the attention of cybersecurity
researchers, primarily driven by breakthroughs in Artificial
Inteligence (AI) [10], [11]. The ML algorithms empower IDS
to learn patterns and identify anomalies from massive amounts
of data, enabling the detection of both known and unknown in-
trusions. With the widespread use of containerized applications
and cloud infrastructures, monitored systems are typically
distributed across various geographical locations [12], [13].
To protect these modern complex environments, there is a
need for a distributed hierarchical IDS, capable of effectively
monitoring and protecting each layer from the user devices to
the cloud infrastructure itself [14].

This paper introduces ChronosGuard, a containerized im-
plementation of a highly adaptable, multi-tiered hierarchical
IDS designed to minimize latency and bandwidth require-
ments while preserving privacy constraints. A comprehen-
sive experimental analysis has been conducted to measure
ChronosGuard’s performance through multiple metrics, such
as latency, throughput, and resource utilization. Also, the eval-
uation assesses the influence of other factors including cloud
infrastructure topologies, deployment strategies, container or-
chestrators, queue sorting algorithms, workload scenarios, and
load patterns. The main contributions of this paper are twofold:

• Deployment-ready containerized hierarchical multi-
stage IDS: The implementation of a multi-stage hierar-
chical IDS, consisting of four containerized key compo-
nents, deployed via four distinct deployment strategies.
The artefacts 1 have been made publicly available to
facilitate future research and replication of our results.

1https://github.com/idlab-discover/ChronosGuard



• Comprehensive evaluation of a containerized IDS
deployment: Through a multitude of experiments con-
ducted on a Kubernetes (K8s) cluster, the impact of
infrastructure topologies, container orchestrators, queue
sorting algorithms, deployment strategies, workload sce-
narios, and traffic load patterns on the performance of
containerized IDSs is extensively studied.

II. RELATED WORK

The field of IDS has evolved significantly since the adoption
of rapid advancements in AI. Researchers increasingly adopt
ML techniques to learn malicious patterns from data or detect
suspicious activity deviating from baselines. Numerous studies
focus on the design, implementation, and optimization of ML-
based IDS, aiming to improve classification performance and
tackle aspects such as recall, precision, and the number of false
positives. However, a considerable gap remains in addressing
scalability and the practical deployment of IDS in dynamic,
real-world environments. Sharma et al. [15] conducted a sys-
tematic review on multi-objective optimizations for intrusion
detection, analyzing 25 studies across a set of nine objectives.
Yet, crucial aspects such as scalability were not considered.
Similarly, Liu et al. [16] performed a literature review on IDS
in the cloud, and only 7% of the selected studies addressed
scalability as part of their work. According to Apruzzese et
al. [17], the current ML-IDS research does not meet the practi-
cal demands of industry developers which require an increased
focus on operational viability and practical requirements. This
demonstrates the general oversight in current IDS research and
its implications for real-world applications.

Recently, several new ML-based architectures have been
proposed. In their comparison of different IDS deployment
strategies in the Internet of Things (IoT) landscape, Khraisat
and Alazab [18] found that the hierarchical strategy was ex-
tremely deployable across large and heterogeneous networks,
with the only drawback being the complexity of the IDS.
Pundir et al. [19] specified three essential requirements for an
effective IDS, including the necessity to minimize system and
network resource consumption. In addition, Lai et al. [20], [21]
have defined a theoretical three-stage ML IDS consisting of
three in-sequence tasks: pre-processing, binary detection, and
multi-class detection. Using queueing theory and simulated
annealing, the authors evaluated ten different task assignments
across edge, fog, and cloud. The results conclude that while
each task assignment presents unique benefits and drawbacks,
a hierarchical approach empowers cloud offloading, cost min-
imization, and enhanced privacy.

In summary, ChronosGuard is the first study, to the best of
our knowledge, to extensively evaluate how various factors im-
pact the performance of IDSs in containerized environments.
These factors include network topologies, deployment strate-
gies, container orchestrators, and traffic load patterns. The
outcomes of this study, combined with an in-depth analysis of
these results, offer unique insights that contribute towards the
development of more scalable and efficient security-oriented
applications.

III. SYSTEM DESIGN

This section introduces Chronosguard, a containerized
multi-stage ML-IDS specifically designed for hierarchical de-
ployments. Building on our previous research [22], which
optimized and analyzed the ML pipeline, ChronosGuard is
evaluated through extensive real-world experiments using the
K8s orchestration platform to assess its performance.

A. Components

ChronosGuard leverages a state-of-the-art multi-stage hi-
erarchical IDS methodology consisting of four main compo-
nents: preprocessing, binary classification, multi-class clas-
sification, and zero-day detection. Figure 1a illustrates the
connections and internals of the key components within the
ML-based IDS pipeline. This pipeline creates a cascading
processing sequence where each network flow is sequentially
analyzed through successive components until a final clas-
sification is achieved. An unsupervised one-class SVM and
supervised random forest are used respectively for the anomaly
detector and attack classifier with a combined performance of
0.9875 f1-score, see our prior work [22] for more details on the
hyperparameters and optimal thresholds of the ML pipeline.

Preprocessing (P) The first component receives a vector,
X = x1, x2, ...xN , encapsulating network flow characteris-
tics such as packet count, duration, and packet inter-arrival
times. This vector is transformed into a suitable format for
subsequent analysis by the ML-based anomaly detector and
multi-class classifier. Binary Classification (B) The second
component performs a lightweight anomaly detection, assign-
ing an anomaly score, λB , to each network flow based on
the network flow characteristics. Flows with a corresponding
anomaly score below a predefined threshold, τB , are classified
as benign and are excluded from further analysis. Contrarily
flows whose scores exceed this threshold are flagged as
suspicious and are forwarded to the subsequent component.
This filtering process forwards only a subset of all network
flows to subsequent stages. By doing so, it significantly
reduces bandwidth requirements and allows for the use of
more computationally intensive techniques in the stages that
follow. Multi-class Classification (M) The third component
classifies flows identified as suspicious into known attack
types based on confidence levels. A flow is assigned to the
attack category with the highest calculated probability, unless
this prediction confidence, PATKi

, falls below the threshold
τM . Flows failing to meet the minimum confidence threshold
are considered unrelated to any attack classes seen during
training and are consequently forwarded to the last component
for final analysis. Zero-day Detection (Z) The fourth and
final component utilizes the anomaly score, λB , previously
calculated by the Binary Classifier to distinguish between
zero-day or unseen attack types and benign flows erroneously
flagged as suspicious. Flows with scores exceeding a more
rigorous threshold, τZ , are categorized as zero-day attacks,
whereas those below are reclassified as benign.

2



Preprocessing
Anomaly Detector

Benign Anomaly

FalseTrue

Attack Classifier

Unknown...

TrueFalse
Benign Zero-Day

FalseTrue

Training Inference
Preprocessing (P) Zero-Day Detection (Z)Multi-Class Classification (M)Binary Classification (B)

(a) Overview of the multi-stage hierarchical IDS four key components: preprocessing (P), binary classification (B), multi-class classification
(M), zero-day detection (Z)

P B M Z

(b) Monolith

P B M Z

(c) 2-pod

P' B M ZP''

(d) 3-pod

P B M Z

(e) 4-pod

Fig. 1: (a) Illustration of ChronosGuard, detailing the interactions of the four main components. (b-e) Illustration of the multiple
deployment schemes, organized into numerous pods: (a) Monolith, (b) 2-pod, (c) 3-pod, and (d) 4-pod

B. Containerized Deployments

ChronosGuard’s architecture is highly configurable within
a containerized environment, impacting overall system per-
formance significantly. This research evaluates four distinct
deployment configurations, depicted in Figures 1b through 1e,
ranging from a monolithic to a fully micro-serviced archi-
tecture. A “pod” in K8s refers to the smallest deployable
unit, typically containing one or more containers that share
resources. ChronosGuard’s key components are preprocessing
(P), binary classification (B), multi-class classification (M),
and zero-day detection (Z).
Monolithic Deployment (PBMZ) integrates all four compo-
nents within a single pod. This configuration allows the least
flexibility in terms of scaling due to its non-granular scaling.
2-Pod Deployment (PB-MZ) separates the components into
two groups: preprocessing with binary classification and multi-
class classification combined with zero-day detection.
3-Pod Deployment (P’B-P”M-Z) divides the preprocessing
component into two parts: preprocessing for the binary clas-
sifier (P ′), which computes X ′, and preprocessing for the
multi-class classifier (P ′′), which computes X ′′. These are
paired with the binary (B) and multi-class (M) components,
respectively. The zero-day detection remains by itself.
4-Pod Deployment (P-B-M-Z): Represents a true micro-
service deployment, with each component operating indepen-
dently within its own pod. This configuration allows the most
scaling flexibility due to its granularity.

IV. METHODOLOGY

This section outlines the methodology employed to eval-
uate ChronosGuard. The evaluation framework is described,
including experiment automation, data collection, and load
generation, followed by the specification of the used software
and hardware in the experimental testbed.

A. Evaluation Framework

To support a comprehensive analysis of ChronosGuard’s
performance across various configurations and scenarios
within cloud environments, a custom testbed has been de-
signed and implemented on top of K8s. This testbed is
designed to automate the execution of a multitude of ex-
periments, each exploring a different permutation of factors
that potentially impact the IDS’s performance. Cumulatively,
several thousand experiments were executed over the course
of one month. The automation of this testing methodology
is achieved through custom bash and Python scripts. These
scripts are responsible for critical functions, such as experi-
ment initialization, load generation, and data collection.

Key to the evaluation framework is the capability to provide
a controlled and consistent environment for each test itera-
tion. This is achieved by initiating each experiment with a
fresh deployment within K8s, ensuring that no residual data
or configurations from previous tests influence the results.
This approach guarantees that each set of tests is conducted
under uniform conditions, producing reliable and reproducible
results. To facilitate this, a Bash script is used to orchestrate
the experimental setup. The script interfaces directly with the
K8s API using Kubectl, the command-line tool that allows for
efficient management and operation of Kubernetes clusters.
Load Generation for ChronosGuard is generated using Lo-
cust [23], a popular open-source load testing framework.
This framework enables the simulation of both benign and
malicious user interactions with the IDS. Benign users submit
benign network flows to the hierarchical IDS, simulating a
normal baseline network operation, while malicious users send
malicious network flows, emulating potential cybersecurity
threats. To reflect a realistic scenario, the ratio of benign to
malicious users is set at 4:1, similar to popular benchmark
datasets [24]. Furthermore, the probability of a malicious user

3



selecting a known attack type is intentionally set at twice
the likelihood of selecting an unknown attack type, further
mirroring potential real-world attack distributions.

At the beginning of each experiment, the load generator
loads a collection of 59,435 network flows extracted from
the CIC-IDS-2017 benchmark dataset [25], comprising benign
flows, five distinct known attacks, and unknown attacks. After
initialization, each user submits only one simultaneous request
to ChronosGuard, ensuring a controlled load simulation. The
simulated users randomly sample a network flow from the
appropriate category from the initially loaded collection.
Data Collection within the ChronosGuard evaluation frame-
work is divided into two primary categories: resource and per-
formance metrics, each essential for a comprehensive analysis
of system performance. This dual approach to data collection
not only improves the understanding of ChronosGuard’s oper-
ational efficiency but also enables performance evaluation by
correlating resource utilization with system responsiveness.
Resource Metrics are continuously monitored by K8s
kubelets, which track CPU usage, memory consumption, and
network bandwidth every two seconds. This data is aggregated
by Prometheus at the same interval. After each experimental
run, the data is queried from the Prometheus metric server
and saved in CSV format. This systematic collection and
aggregation process ensures detailed resource usage statistics
are available for subsequent analysis.
Performance Metrics are the primary focus here is on the col-
lection of response times for each network request processed
by ChronosGuard. To achieve this, custom event handlers
within Locust are implemented to record the latency from
when a network flow is transmitted to when its associated
prediction is received. These response times are then exported
into a single CSV file on the host running Locust, along with
experiment and flow properties, providing a granular view of
the system’s responsiveness under various load conditions.
The Testbed Infrastructure utilizes the imec Virtual Wall
(VWall) infrastructure located at IDLab, Belgium. The setup
comprises a single K8s cluster with ten nodes (Ubuntu 20.04.2
LTS), each equipped with dual hexacore Intel E5645 CPUs,
24GB RAM, and dedicated Gigabit NICs. The K8s cluster has
been set up with Kubeadm and Kubectl version v1.22.4, and
Docker version 20.10.12. Network delays are emulated using
TC [26] to simulate different network topologies.
The Experimental Setup systematically evaluates each per-
mutation of variables through a series of repeated independent
experiments, each comprising eleven distinct steps character-
ized by a progressively increasing load. In each step, network
load is generated by a predefined number of users over a
30-second interval. This period is followed by a 10-second
user spawning phase, during which new users are gradually
introduced at a consistent rate of one user per second. The
procedural flow of these operations is illustrated in Figure 2.
The experiment begins with a single user, gradually increasing
the user count linearly in each subsequent step, ending with
100 users in the final step. To reflect a realistic scenario, the
ratio of benign to malicious users is set at 4:1. At each step,

Fig. 2: Diagram showing a single experimental run: traffic load
incrementally increases from one to a maximum of 100 users.

TABLE I: Overview of the experimental parameters.

Variable # Values

Topology 2 Cluster, Edge-Cloud
Deployment 4 Monolith, 2-pod, 3-pod, 4-pod
Scheduler 2 Kube-Scheduler (KS), Diktyo
Sorting Alg. 9 Priority, QoS, Cycle, (Alt. / Rev.) Kahn / Tarjan
Scenarios 3 Initial, Scale-up, Scale-down
Users 11 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Repetition 8/10 1-8 (Edge-fog-cloud), 1-10 (Cluster)

key performance and resource utilization metrics are collected.
These detailed results at every stage enable a thorough assess-
ment of the system’s scalability and responsiveness, providing
insights into its performance under varying operational loads
and experiment configurations.

B. Evaluated Variables

Table I presents a detailed overview of the evaluated vari-
ables and their respective values.
Network Topology Figure 3 shows the two distinct cloud
topologies evaluated in this study: the cluster and edge-fog-
cloud. On one hand, Figure 3a presents a highly available
cluster configuration, where nodes are provisioned within a
single region with similar network connections. Consequently,
this produces negligible inter-node delays in the order of
microseconds. On the other hand, Figure 3b presents a multi-
region cluster, where network delays vary considerably. Delays
range from negligible among the cloud nodes to as much as
15ms between cloud and edge.
Deployment Strategy In this study, four distinct deployment
configurations are evaluated, ranging from a combined mono-
lithic deployment of all four stages to a true micro-service
deployment, where each stage is deployed individually. The
CPU and memory requests and limits for each configuration
are displayed in Table II. The resource allocation is designed
such that the cumulative total remains consistent across all
deployment strategies. Additionally, the first components (P,
B) are allocated a relatively larger share of resources compared
to the subsequent components (M, Z), as they handle the full
load before passing only a fraction of the requests to the
subsequent ML components in the pipeline.
Orchestration Schedulers and Sorting Algorithms The K8s
component responsible for scheduling operations is known
as KS, the default scheduler in K8s. Our experiments con-
sidered two distinct schedulers: KS and Diktyo [27]. While

4



cloud

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

< 1 ms

Legend:

(a) Cluster topology with similar network connections.

n1

cloud

n3

fog 1

n7

edge1

n2

n8

edge2

n9

edge3

n10

edge4

n4

fog 2

n5

fog 3 n6

fog 4

10 ms

3 ms

Legend:

5 ms

(b) Edge-fog-cloud topology with different network delays.

Fig. 3: Illustration of the evaluated cloud infrastructures.

TABLE II: Deployment properties of ChronosGuard compo-
nents: CPU and memory requests (R) and limits (L).

App. Deployment CPU R/L (mCPU) MEM R/L (MiB)

Monolith PBMZ 1000/2000 512/1024

2-pod PB 700/1400 384/768
MZ 300/600 128/256

3-pod
P’B 500/1000 256/512
P”M 400/800 192/384
Z 100/200 64/128

4-pod

P 450/900 192/384
B 250/500 128/256
M 200/400 128/256
Z 100/200 64/128

KS primarily focuses on optimizing resource usage across all
cluster nodes, Diktyo considers both application dependencies
and infrastructure topology during pod scheduling within K8s
to find network-aware placement schemes for containerized
applications. To determine the optimal allocation order, Diktyo
also considers pod dependencies specified by developers to
sort pods based on topological sorting information [28]. Our
evaluation assessed several topological sorting algorithms,
which define the preferred deployment order for pods in a
multi-pod application with interdependencies, as detailed in
Table III. In contrast, KS applies the default priority sorting
algorithm available in K8s, yielding an identical order to Kahn
since all our pods have the same priority level.
Scenario Each experiment is conducted across three sequential
scenarios: the initial phase, with one instance per pod in the
deployment strategy; the scale-up phase, where each pod is in-
creased to five replicas; and the scale-down phase, where three
instances of each pod are terminated, leaving two instances per

TABLE III: Orchestration order for the different deployment
schemes of ChronosGuard.

Deployment Algorithm Topological order

Monolith KS [PBMZ]

2-pod

KS [PB, MZ]
Kahn Tarjan & Cycle [PB, MZ]
Alt. Kahn & Alt. Tarj. [PB, MZ]
Rev. Kahn & Rev. Tarj. [MZ, PB]

3-pod

KS [P’B, P”M, Z]
Kahn Tarjan & Cycle [P’B, P”M, Z]
Alt. Kahn & Alt. Tarj. [P’B, Z, P”M]
Rev. Kahn & Rev. Tarj. [Z, P’M, P”B]

4-pod

KS [P, B, M, Z]
Kahn Tarjan & Cycle [P, B, M, Z]
Alt. Kahn & Alt. Tarj. [P, Z, B, M]
Rev. Kahn & Rev. Tarj. [Z, M, B, P]

pod. This increases the total available resources by 5-fold and
2-fold compared to the initial phase and enables studying the
impact of application scheduling.
Simulated Users The variable users quantifies the number of
concurrent users spawned by the Locust load generator. Each
user is configured to only send a single concurrent request
to ChronosGuard; therefore, the number of users directly
determines the load intensity directed at the system. Thus,
an increase in the number of users directly corresponds to an
increased load.
Repetition To ensure statistical significance and reliability of
the experimental results, each experiment is replicated multiple
times. Specifically, for the cluster topology, each experiment
is replicated ten times, with the load generator, simulating an
ingress point, systematically rotated across each node in the
cluster to ensure a balanced evaluation. Similarly, for the edge-
fog-cloud topology, each experiment is repeated eight times,
with the load generator cycled twice over each edge node.

V. RESULTS

This section presents the obtained results through the
evaluation of ChronosGuard. The results analyze the effec-
tiveness of different architectural approaches across several
performance metrics including response times, throughput, and
resource utilization.

A. Prioritization of benign traffic

In an optimal scenario, an IDS should minimally disrupt the
normal operations of the networks it protects, adding as little
latency as possible to benign traffic while detecting attacks
within seconds. Our analysis of the experimental data collected
reveals a significant difference in processing times between
benign and malicious network flows. Notably, benign traffic
benefits from substantially lower median response times than
attack and zero-day traffic across all evaluated deployment
strategies, as illustrated in Figure 4. The most pronounced
differences in response times are observed in the configura-
tions utilizing 2-pod and 3-pod deployments, where the median
response time for benign flows is reduced by 85% and 75%,
respectively, in comparison to malicious traffic. Conversely,

5



0 250 500 750 1000 1250 1500 1750 2000
Median Response Time (ms)

Monolith

2-pod

3-pod

4-pod
De

pl
oy

m
en

t S
tra

te
gy

550

272

308

1639

610

1756

1256

1859

612

1767

1896

1939

Zero-Day
Attack
Benign

Fig. 4: Median response times by flow type: a significant
reduction for benign versus malicious traffic across all deploy-
ment strategies, minimizing latency for normal operations.

the difference in response times is less pronounced within the
monolith and 4-pod deployment, with benign traffic showing
a smaller reduction in median response times of respectively
10% and 12% relative to malicious flows. These results for
the 4-pod deployment deviate from the other microservice
deployments, which can be attributed to suboptimal static
resource allocation across the pods (see Section V-D). The
lowest median response times for benign traffic were observed
for the 3-pod deployment during the scale-up scenario with 1
and 10 users, respectively, yielding 27 and 46 ms of latency.

In conclusion, the multi-stage hierarchical IDS consistently
prioritizes benign traffic over malicious by achieving lower
average processing times, regardless of the deployment strat-
egy selected. However, it is the adoption of a micro-service
architecture that significantly enhances this effect, demonstrat-
ing the capability to reduce benign response times by up
to eight-fold compared to a monolithic deployment through
strategically offloading the processing of suspicious network
flows and the ability to allocate resources for each IDS com-
ponent independently. Moreover, a micro-service architecture
can reduce the absolute median response time for benign flows
up to 51% (for 2-pod) compared to a monolith architecture.

B. Cluster vs Edge-Fog-Cloud architecture

The comparative analysis of the results reveals no significant
differences between the cluster and edge-fog-cloud topolo-
gies in terms of throughput, latency, or resource utilization.
Figure 5 presents the throughput averaged over the repeated
experiment runs, relative to the load generated by the locust
users for the default KS across the three scenarios and two
topologies. The results were nearly identical for the initial,
scale-down, and scale-up scenarios in both topologies. The
detailed performance metrics in Table IV reveal only minor
variations between the cluster and edge-fog-cloud topology in
terms of throughput and response time. The minimal intro-
duced delay in node-to-node communication within the edge-
fog-cloud topology does not significantly affect performance.
Specifically, the small increase in communication delay, in the
order of a few milliseconds, is considered negligible in contrast
to the more substantial inference times associated with the
employed ML models.

TABLE IV: Impact of the topology on throughput and re-
sponse times for KS, computed over all users and scenarios.

Scenario Topology Throughput
(req/s)

Response Time (ms)

Median Mean 95th Pctl

Initial Cluster 33 1235 1725 3364
Edge-fog-cloud 33 1240 1730 3380

Scale-down Cluster 65 637 882 1856
Edge-fog-cloud 64 640 896 1845

Scale-up Cluster 157 267 349 796
Edge-fog-cloud 154 266 351 817

C. Topological-aware orchestration

Topological-aware orchestration represents a paradigm
within application deployment that takes into account pod
dependencies and inter-node network latencies, in contrast to
the default KS, which prioritizes optimal resource utilization
across all the cluster nodes. This methodology ensures that
the deployment order is optimized for network efficiency,
potentially reducing latency and enhancing overall application
performance. The selected deployment strategy is crucial as it
directly correlates with the number of pods to be scheduled.
For instance, a monolithic application, characterized by a
singular pod, presents only one deployment permutation and
lacks communication inter-dependencies, thus simplifying the
orchestration process. Conversely, as the complexity and pod
count of an application increase, so do the permutations for
network-aware sorting and inter-pod dependencies, introduc-
ing a multitude of potential deployment sequences. The load
scenario also significantly impacts the orchestration process,
with the required number of pods varying—specifically, one,
two, and five pods, respectively, for each scenario, multiplied
by the number of pods of the selected deployment strategy.

Empirical evidence supporting the efficacy of network-
aware sorting algorithms within topological-aware orchestra-
tion is presented in Figure 6. It illustrates the distribution of
response times across different deployments within a cluster
topology during scale-up. Results reveal that the influence
of network-aware orchestration on application deployment
demonstrates a correlation to the number of pods to be
scheduled. For simpler deployments, such as those involving
monolithic, 2-pod, and 3-pod, the impact of network-aware
sorting on response times is negligible. This observation is
consistent with insights from earlier studies [29], indicating
a limited scope for optimization in less complex applications.
However, noticeable variations are observed as the deployment
complexity increases to four pods. In this case, network-
aware orchestration regardless of the sorting algorithm se-
lected, demonstrated the capability to enhance performance,
as demonstrated by slightly lower response times. Particularly,
changing from the default KS to the Reverse Kahn sorting
algorithm decreased the average response times by 10%,
significantly lowering the response time for the first quartile,
median, and last quartile from 316 to 284, 628 to 566, and 955
to 927 ms, respectively. This signifies a tangible, albeit limited,
improvement in deployment efficiency through topological-
aware orchestration and sorting.

6



1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(a) Cluster - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(b) Cluster - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(c) Cluster - scale-up

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(d) Edge-Cloud - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(e) Edge-Cloud - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

50

100

150

200

250

300

Av
er

ag
e 

Th
ro

ug
hp

ut
 (r

eq
/s

) monolith
2-pod
3-pod
4-pod

(f) Edge-Cloud - scale-up

Fig. 5: The impact of the deployment strategy on the average obtained throughput: a higher number of K8s pods per deployment
has a significantly negative influence on the throughput. Once resources are saturated, increasing the users has no further effect.

0 250 500 750 1000 1250 1500 1750 2000
Response Time (ms)

Monolith

2-pod

3-pod

4-pod

De
pl

oy
m

en
t S

tra
te

gy

Alt. Kahn (Diktyo)
Rev. Kahn (Diktyo)
Kahn (Diktyo)
Priority (KS Default)

Fig. 6: Distribution of response times across deployment
strategies in cluster topology during scale-up scenario.

D. Joint task assignment in container clouds

This analysis evaluates four unique deployment strategies
for container-based cloud environments (previously presented
Figure 1), comparing their performance to determine the most
effective configuration and the trade-offs to consider. Among
the configurations tested, the monolithic deployment outper-
forms the other strategies on the performance metrics, such as
throughput and upper-bound response times. While it exhibits
lower upper-bound response times, it is important to note that
higher median response times were observed than most micro-
service deployments. The greater performance of the mono-
lithic architecture can be attributed to the absence of inter-pod
communication, thereby reducing overhead when compared
to micro-service architectures and eliminating the need for

TABLE V: Throughput and response times across the different
scenarios for the KS and cluster topology.

Deployment Scenario Throughput
(req/s)

Response Time (ms)

Median Mean 95th Pctl

Monolith
Initial 50 971 974 1114
Scale-down 98 486 490 627
Scale-up 228 199 203 321

2 pods
Initial 38 440 1300 3313
Scale-down 73 278 645 1809
Scale-up 176 164 265 751

3 pods
Initial 28 680 1765 5567
Scale-down 58 261 814 2941
Scale-up 147 107 311 1161

4 pods
Initial 17 2847 2861 3463
Scale-down 30 1523 1579 2045
Scale-up 77 599 619 950

complex resource allocation strategies within ChronosGuard.
However, this strategy does present drawbacks in terms of
non-granular scaling and deployment flexibility:

• Local Deployment: Preserves data privacy but fails to
leverage broader cloud computing benefits.

• Cloud Deployment: Compromises privacy and requires
higher bandwidth, mitigating the primary advantages of
localized computation.

With an increase in the number of pods within the deployment,
throughput tends to decrease, a trend that primarily can be
attributed to the suboptimal allocation of resources among
the pods. Figure 7 illustrates this trend, showing that while
the monolith utilizes resources at 100% capacity, deployments
with 2, 3, and 4 pods utilize only 75%, 65%, and 55%, respec-

7



1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000
Av

er
ag

e 
CP

U 
ut

iliz
at

io
n 

(m
CP

U)

29

100
83

97 100100100100100100 96

PBMZ

(a) Monolith - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

30

99
81 93 100 98 100 99 100 99 96

18

33

26
32 34 33 36 34 34 36 34

PB MZ

(b) 2-pod - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

41
71 62 73 72 71 74 76 76 74 72

29

53
44

52 54 54 55 54 53 53 51

10

10
11

10 10 10 10 10 9 10 8

P'B P''M Z

(c) 3-pod - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

43
98 79 95 100100100100100100 9624

31
28

31 31 30 30 28 29 30 28

30

42
40

42 44 42 42 41 34 44 47

7

8
9

8 8 8 8 8 6 8 8

P B M Z

(d) 4-pod - initial

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

51

85 84 92 98 99 100100
81

100 97

PBMZ

(e) Monolith - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

59
82 84 93 98 99 100100

78
99 96

18

31 28
32 33 33 33 33

29

38 37

PB MZ

(f) 2-pod - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

40
67 66 76 80 80 82 82 74 83 82

38

56 54
64 65 67 67 66

50
62 59

6

10 9
11 11 11 11 11

10
14 13

P'B P''M Z

(g) 3-pod - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

50
83 82 92 100100100100 86 100 9510

27 24
29 28 27 27 27

25
27 26

17

33 31
35 36 37 36 36

30
40 37

3

6 6
7 6 6 6 6

6
7 7

P B M Z

(h) 4-pod - scale-down

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

38
60

76
88 95 98 98 99 92 99 97

PBMZ

(i) Monolith - scale-up

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

36
69 77 89 96 98 100 98 92 99 96

15

24
26

29 31 31 31 30 27
30 29

PB MZ

(j) 2-pod - scale-up

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

30
56 65 78 83 87 87 90 86 91 8825

51 52
59 63 67 67 68 62 66 65

9

8
9

9 9 9 9 9 8 9 9

P'B P''M Z

(k) 3-pod - scale-up

1 10 20 30 40 50 60 70 80 90 100
Number of Users

0

500

1000

1500

2000

Av
er

ag
e 

CP
U 

ut
iliz

at
io

n 
(m

CP
U)

41
82 82 92 99 100100100 94 99 9614

22 24 25 26 26 25 25 24 24 23

20

28 28 29 31 30 30 29 26 28 27

7

5 6 5 5 5 5 5 4 5 4

P B M Z

(l) 4-pod - scale-up

Fig. 7: The average CPU utilization across deployment strategies and scenarios under varying loads: highlighting efficiency
and scalability of micro-service architectures. The bars represent the usage percentage of the pod’s CPU limit with 95% CI.

tively. This is caused by underestimating the resource demands
for the preprocessing component, as observed in the 4-pod
deployment strategy where the preprocessing pod reaches
maximum CPU utilization under low loads, while the other
components remain underutilized. Similar, albeit less pro-
nounced under-utilization of pod resources is present for the 3
and 2 pod deployment strategies. When the throughput values
are adjusted for resource utilization, a smaller performance
gap is revealed between the micro-service architectures and the
monolith application, indicating that the reduced throughput in
multi-pod deployments is partly due to the inherent overhead
associated with micro-services. This overhead includes the
additional computational resources required for inter-service
communication, such as serialization and deserialization.

Despite their computational overhead, microservice archi-
tectures can reduce overall response times, see Table V,
minimizing the disruption for normal traffic and speeding
up the detection of known and unknown attacks. This ad-
vantage results from the ability to deploy each component
independently, allowing the system to handle the majority of
traffic—which is benign—without being slowed down by the
computationally intensive ML techniques required for attack
detection. From a resource utilization perspective, micro-
service architectures consume approximately 2x to 2.5x more

memory than monolithic setups. Furthermore, while they may
require more CPU resources, they enable more sophisticated
hierarchical deployments. For example, a deployment model
that localizes the preprocessing and binary detection compo-
nents can significantly reduce bandwidth requirements toward
the cloud—by 25%, 33%, and 44% for 2, 3, and 4 pod deploy-
ments, respectively, compared to a monolithic deployment.

Overall, while monolithic architectures offer robust perfor-
mance and lower resource demands, micro-service architec-
tures provide enhanced flexibility and responsiveness, partic-
ularly in complex, scalable environments.

E. Limitations

A limitation of this study is the static resource allocation
among ChronosGuard components. The total sum of resources
assigned across all deployment strategies is equal and the
initial components received a larger share, as they handle the
full load and pass only a fraction to subsequent components.
This allocation has proven suboptimal and could be further
improved, potentially by dynamically scaling resources based
on real-time demand. Additionally, the scope of this evaluation
of ChronosGuard is limited to the containerized components
of the ML pipeline. Crucial aspects such as traffic collection
and flow reconstruction, which are essential to IDS, were not

8



included in this study. Future studies could expand on this by
incorporating these components to provide a more end-to-end
assessment of IDS performance.

VI. CONCLUSION

In this work, a containerized hierarchical ML IDS, Chronos-
Guard, consisting of four individual components, that can
be deployed using four deployment strategies, is presented.
Through systematic experimentation, the impact of various
factors including network topology, workload orchestration,
and throughput on the performance and resource utilization of
each deployment strategy is evaluated. The analysis resulted
in several key insights: benign traffic is effectively priori-
tized across all configurations with a maximum reduction of
85% for the median response times compared to malicious
traffic and up to 51% lower response times for the micro-
service architectures compared to the monolithic deployment;
minor network delays have negligible effects on throughput
and response times; network-aware orchestration enhances the
performance of complex security ML-based applications in
cloud environments up to 10%; and there are notable trade-
offs associated with different task assignment strategies in
containerized settings. This research not only introduces a
deployment-ready, containerized IDS to the field but also
establishes a robust foundation for future studies aimed at opti-
mizing the containerization of ML-based security components.

ACKNOWLEDGMENTS

José Santos is funded by the Research Foundation Flanders
(FWO), grant number 1299323N. This work is supported by
the Belgian Chancellery of the Prime Minister (Grant: AIDE-
BOSA).

REFERENCES

[1] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A
survey,” Journal of Network and Computer Applications, 2017.

[2] F. Sierra-Arriaga, R. Branco, and B. Lee, “Security issues and challenges
for virtualization technologies,” ACM Computing Surveys (CSUR),
vol. 53, no. 2, pp. 1–37, 2020.

[3] Z. Cheng, M. Apostolaki, Z. Liu, and V. Sekar, “Trustsketch: Trust-
worthy sketch-based telemetry on cloud hosts,” in The Network and
Distributed System Security Symposium (NDSS), 2024.

[4] D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with hakcs.” in
NDSS, 2022, pp. 1–17.

[5] A. Van’t Hof and J. Nieh, “{BlackBox}: a container security monitor for
protecting containers on untrusted operating systems,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), 2022, pp. 683–700.

[6] F. Wei, H. Li, Z. Zhao, and H. Hu, “{xNIDS}: Explaining deep
learning-based network intrusion detection systems for active intrusion
responses,” in 32nd USENIX Security Symposium (USENIX Security 23).

[7] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and M. A. Khan,
“Performance analysis of machine learning algorithms in intrusion
detection system: A review,” Procedia Computer Science, 2020.

[8] A. Voronkov, L. H. Iwaya, L. A. Martucci, and S. Lindskog, “Systematic
literature review on usability of firewall configuration,” ACM Computing
Surveys (CSUR), vol. 50, no. 6, pp. 1–35, 2017.

[9] L. Ceragioli, P. Degano, and L. Galletta, “Are all firewall systems equally
powerful?” in Proceedings of the 14th ACM SIGSAC Workshop on
Programming Languages and Analysis for Security, 2019, pp. 1–17.

[10] G. Apruzzese, L. Pajola, and M. Conti, “The cross-evaluation of machine
learning-based network intrusion detection systems,” IEEE Transactions
on Network and Service Management, 2022.

[11] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel, “When malware is packin’heat;
limits of machine learning classifiers based on static analysis features,”
in Network and Distributed Systems Security (NDSS) Symposium 2020.

[12] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[13] A. Luckow, K. Rattan, and S. Jha, “Pilot-edge: Distributed resource
management along the edge-to-cloud continuum,” in 2021 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2021, pp. 874–878.

[14] R. V. Mendonça, A. A. Teodoro, R. L. Rosa, M. Saadi, D. C. Melgarejo,
P. H. Nardelli, and D. Z. Rodrı́guez, “Intrusion detection system based
on fast hierarchical deep convolutional neural network,” IEEE Access,
vol. 9, pp. 61 024–61 034, 2021.

[15] S. Sharma, V. Kumar, and K. Dutta, “Multi-objective optimization
algorithms for intrusion detection in IoT networks: A systematic review,”
Internet of Things and Cyber-Physical Systems, 2024.

[16] Z. Liu, B. Xu, B. Cheng, X. Hu, and M. Darbandi, “Intrusion detection
systems in the cloud computing: A comprehensive and deep literature
review,” Concurrency and Computation: Practice and Experience, 2022.

[17] G. Apruzzese, P. Laskov, and J. Schneider, “SoK: Pragmatic Assessment
of Machine Learning for Network Intrusion Detection,” in 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P), Jul. 2023.

[18] A. Khraisat and A. Alazab, “A critical review of intrusion detection
systems in the internet of things: techniques, deployment strategy, vali-
dation strategy, attacks, public datasets and challenges,” Cybersecurity,
vol. 4, no. 1, p. 18, Mar. 2021.

[19] S. Pundir, M. Wazid, D. P. Singh, A. K. Das, J. J. P. C. Rodrigues, and
Y. Park, “Intrusion Detection Protocols in Wireless Sensor Networks
Integrated to Internet of Things Deployment: Survey and Future Chal-
lenges,” IEEE Access, 2020, conference Name: IEEE Access.

[20] Y.-C. Lai, D. Sudyana, Y.-D. Lin, M. Verkerken, L. D’hooge, T. Wauters,
B. Volckaert, and F. De Turck, “Machine learning based intrusion
detection as a service: task assignment and capacity allocation in a multi-
tier architecture,” in Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, Dec. 2021.

[21] Y.-C. Lai, D. Sudyana, Y.-D. Lin, M. Verkerken, L. D’hooge, T. Wauters,
B. Volckaert, and F. D. Turck, “Task Assignment and Capacity Allo-
cation for ML-based Intrusion Detection as a Service in a Multi-tier
Architecture,” IEEE Transactions on Network and Service Management,
2022.

[22] M. Verkerken, L. D’hooge, D. Sudyana, Y.-D. Lin, T. Wauters, B. Volck-
aert, and F. D. Turck, “A Novel Multi-Stage Approach for Hierarchical
Intrusion Detection,” IEEE Transactions on Network and Service Man-
agement, 2023.

[23] “locustio/locust,” Mar. 2024, original-date: 2011-02-17T11:08:03Z.
[Online]. Available: https://github.com/locustio/locust

[24] L. Liu, G. Engelen, T. Lynar, D. Essam, and W. Joosen, “Error
Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and
CSE-CIC-IDS-2018,” in 2022 IEEE Conference on Communications and
Network Security (CNS), Oct. 2022, pp. 254–262.

[25] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization:,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy, 2018.

[26] A. N. Kuznetsov, “tc(8) — linux manual.” accessed on 28 May 2023.
[Online]. Available: https://man7.org/linux/man-pages/man8/tc.8.html.

[27] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-
aware scheduling in container-based clouds,” IEEE Transactions on
Network and Service Management, 2023.

[28] T. Ahammad, M. Hasan, and M. Zahid Hassan, “A new topological sort-
ing algorithm with reduced time complexity,” in Intelligent Computing
and Optimization: Proceedings of the 3rd International Conference on
Intelligent Computing and Optimization 2020 (ICO 2020), 2021.

[29] J. Santos, M. Verkerken, L. D’Hooge, T. Wauters, B. Volckaert, and
F. De Turck, “Performance Impact of Queue Sorting in Container-
Based Application Scheduling,” in 2023 19th International Conference
on Network and Service Management (CNSM), Oct. 2023.

9

https://github.com/locustio/locust
https://man7.org/linux/man-pages/man8/tc.8.html

	Introduction
	Related Work
	System Design
	Components
	Containerized Deployments

	Methodology
	Evaluation Framework
	Evaluated Variables

	Results
	Prioritization of benign traffic
	Cluster vs Edge-Fog-Cloud architecture
	Topological-aware orchestration
	Joint task assignment in container clouds
	Limitations

	Conclusion
	References

