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Depth-Visual-Inertial (DVI) Mapping System
for Robust Indoor 3D Reconstruction
Charles Hamesse1,2, Michiel Vlaminck2, Hiep Luong2, and Rob Haelterman1

Abstract—We propose the Depth-Visual-Inertial (DVI) map-
ping system: a robust multi-sensor fusion framework for dense
3D mapping using time-of-flight cameras equipped with RGB
and IMU sensors. Inspired by recent developments in real-
time LiDAR-based odometry and mapping, our system uses
an error-state iterative Kalman filter for state estimation: it
processes the inertial sensor’s data for state propagation, followed
by a state update first using visual-inertial odometry, then
depth-based odometry. This sensor fusion scheme makes our
system robust to degenerate scenarios (e.g. lack of visual or
geometrical features, fast rotations) and to noisy sensor data, like
those that can be obtained with off-the-shelf time-of-flight DVI
sensors. For evaluation, we propose the new Bunker DVI Dataset,
featuring data from multiple DVI sensors recorded in challenging
conditions reflecting search-and-rescue operations. We show the
superior robustness and precision of our method against previous
work. Following the open science principle, we make both our
source code and dataset publicly available.

Index Terms—Mapping, Localization, RGB-D Perception,
Search and Rescue Robots

I. INTRODUCTION

IN the context of defence and security operations, search
and rescue missions or emergency response, accurate and

up-to-date 3D maps are critical, demanding lightweight and
robust sensor systems capable of rapid deployment in chal-
lenging environments. Traditional LiDAR-based mapping sys-
tems, often mounted on tripods or mobile platforms, offer
high accuracy but their deployment and operation remains
difficult in these resource- and time-constrained scenarios.
Recent advancements in solid-state LiDARs have enabled
smaller, more portable systems [1]. However, even these may
be unsuitable for highly dynamic environments or scenarios
requiring minimal user burden, i.e. operating in a hands-free
manner. Depth cameras present various advantages as they
are lightweight, small enough to be worn or helmet-mounted,
less expensive and, finally, consume less power. However, they
suffer from severe accuracy and range limitations compared to
LiDARs. Recent developments in 3D mapping with specific
adaptations for depth sensors such as SSL-SLAM [2] or
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Fig. 1. Block diagram illustrating the full pipeline of the proposed depth-
visual-inertial (DVI) mapping system.

VoxelMap [3] only use depth maps, even though off-the-
shelf depth cameras often come with hardware-synchronized,
integrated RGB camera and IMU sensor [4], [5]. This makes
them sensitive to fast motion and degenerate environments
lacking abundant geometrical features. To address these chal-
lenges, we propose the depth-visual-inertial (DVI) mapping
system, a robust multi-sensor fusion framework for dense 3D
mapping using lightweight DVI sensors. On top of the depth-
based odometry and mapping error-state iterative Kalman filter
(ESIKF) proposed in VoxelMap [3], we integrate IMU-based
state propagation, visual-inertial odometry state correction
using a loosely-coupled formulation. The system is illustrated
in Figure 1. We make our system more robust to visual and
geometrical degeneracies by implementing a novel adaptative
covariance estimation method as well as a solution remapping
algorithm, extending the method proposed initially in [6]. To
evaluate the performance of our system, we collect a new
dataset with three DVI sensors (based on passive stereo, active
stereo and time-of-flight). Our results show that our method
is a viable option for real-life mapping scenarios in complex
indoor environments. We open source our code1 and dataset2.

Our contributions are the following:
• The Bunker DVI Dataset: a new dataset captured with

three different DVI sensors (passive stereo, active stereo
and time-of-flight) in a bunker-like environment with
challenging trajectories to reflect the conditions of search-
and-rescue operations.

1Code: https://github.com/charleshamesse/dvi-mapping-system
2Dataset: https://charleshamesse.github.io/bunker-dvi-dataset/

https://github.com/charleshamesse/dvi-mapping-system
https://charleshamesse.github.io/bunker-dvi-dataset/
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• The DVI Mapping System: A sensor fusion system based
on the error-state iterative Kalman filter for DVI mapping,
including two novel components:

– An adaptative covariance estimation method to fuse
visual-inertial odometry observations in the ESIKF.

– A soft solution remapping method with auto-
threshold to handle degenerate observations.

• Novel insights on the performance of DVI sensors and
methods for 3D reconstruction based on the extensive
evaluations of our algorithm and its ablated variants,
compared against state-of-the-art and industry standard
methods.

II. RELATED WORK

We review recent DVI sensors as well as LiDAR- and
visual-inertial odometry and mapping algorithms.

A. DVI sensors

Most common off-the-shelf DVI sensors are marketed as
depth cameras, but come in the form of small, lightweight
systems featuring a depth sensor, an RGB camera and an IMU.
Recent depth cameras mainly use active and passive stereo
as well as time-of-flight (ToF) sensors to estimate depth. As
shown in Table I, these sensors have interesting characteristics
in terms of portability (size, weight and power) but a limited
operational range. For mapping applications in indoor spaces,
active depth sensing is preferred since these techniques are
less affected by a lack of texture (e.g. with flat walls) [7].
They also require less computational power to reconstruct the
depth maps compared to stereo matching-based devices.

B. DVI odometry and mapping

We propose to categorize the methods for odometry and
mapping with DVI sensor inputs in three groups, depending
on the way the depth information is processed:

• RGB-D: The depth map, combined with the RGB image,
allows for a direct estimation of 3D points, simplify-
ing the feature extraction, matching and triangulation
process. Popular RGB-D-based VIO algorithms include
ORB-SLAM3 [8] or VINS-Fusion (a variant of VINS-
Mono [9] with RGB-D support) or RTAB-Map [10],
commonly used in the Robot Operating System (ROS)
community. There are also more recent developments
such as VINS-RGB-D-FAST [11], which builds upon
VINS-Fusion and brings a suite of refinements to increase
robustness and accelerate the system’s performance in
resource-constrained embedded platform.

• Stereo: Two images from slightly different, rigidly at-
tached viewpoints enable the estimation of depth through
triangulation. Then, common stereo-based VIO systems
employ feature matching for spatial stereo (using left and
right images) and temporal stereo (using the history of
left and right images). Examples of stereo-based VIO
algorithms include VINS-Fusion (in its stereo variant),
OpenVINS [12] or Basalt [13]. All of these systems
are tightly-coupled systems using either sliding window

optimization or iterative Kalman filtering. In [13], [14],
B-spline continuous trajectory representations are used in
order to perform more precise sensor fusion, at the cost
of some computational expense.

• Point cloud-based: These methods operate on a point
cloud representation of the depth map obtained from
the sensor and employ variants of the iterative closest
point (ICP) algorithm to register successive point clouds
and estimate the relative pose between them. As such,
these methods borrow heavily from the field of LiDAR
odometry and mapping, where innovations in the last few
years are extremely abundant [15]–[22]. However, we fail
to see developments of similar maturity in the case of
depth cameras. In fact, state-of-the-art LiDAR-based 3D
mapping methods such as FAST-LIO [21], [22], RxLive
[23], [24] or LVI-SAM [17] have not been successfully
applied to depth cameras. This can be attributed to the
noisier and scarcer nature of the depth maps compared
to LiDAR scans, due to inherent sensor limitations. The
most recent methods for dense 3D mapping with depth
cameras include SSL-SLAM [2] or VoxelMap [3], both
of which report results with the Intel Realsense L515 and
the Microsoft Kinect for Azure. SSL-SLAM implements
a scan-to-map registration method operating on edge
and planar features to increase the tracking performance.
VoxelMap implements scan-to-map registration with an
ESIKF and a fully probabilistic voxel octree, where
each voxel contains the parameters of a plane feature,
including covariance updates arising from both point
measurement noise and pose estimation error.

Conceptually, our system shares similarities with R2Live
[23] or R3Live [24]. They are visual extensions of a LiDAR-
inertial method, our work is a visual-inertial extension of a
depth camera-based method. Then, they rely on Perspective-
n-Point reprojection for visual features, while we use the full
VIO capacity from VINS-Mono (including its rolling shutter
compensation component to maintain usability with common
off-the-shelf sensors) and implement a solution remapping
algorithm to improve the robustness.

C. DVI datasets
Common datasets for indoor 3D reconstruction with depth

sensors include TUM RGB-D [25], ICL-NUIM [26], NYU
Depth V2 [27], or OpenLORIS [28]. However, none of these
datasets combines i) multiple DVI sensors, needed to perform
a thorough system-wise comparison, ii) challenging sequences
with rapid motion and degenerate scenes in both the visual
(e.g. texture-less flat walls) and the geometrical domain (point-
ing at a single planar structure such as the ground or a wall),
and iii) the scale necessary to represent a search-and-rescue
operation context in a large-scale area. To the best of our
knowledge, such a dataset does not exist in the public domain.
For this reason, we have collected such a dataset and present
it in the next section.

III. BUNKER DVI DATASET

We introduce the Bunker DVI Dataset, featuring three DVI
sensors with different depth sensing modalities (passive stereo,
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TABLE I
MAIN SPECIFICATIONS OF COMMON LIGHTWEIGHT, LOW-POWER AND SMALL OFF-THE-SHELF DEPTH-VISUAL-INERTIAL SENSORS. THE RANGE COLUMN

INDICATES THE OPERATIONAL RANGE GIVEN BY THE MANUFACTURER.

Product Depth sensing technology RGB shutter Range [m] Size [mm] Weight [g] Power [W]
Realsense D455 Active stereo Global 0.60 - 6.00 124 × 26 × 36 390 3.5
Realsense L515 MEMS LiDAR Rolling 0.25 - 9.00 61 × 61 × 26 100 3.5
Kinect for Azure Time-of-Flight Rolling 0.25 - 3.00 103 × 39 × 126 440 5.9
Zed Mini Passive stereo Rolling 0.15 - 24.00 124 × 30 × 26 63 1.9

Fig. 2. Multi-sensor rig used to collect the DVI dataset. From top to bottom:
Livox Mid-360, Sevensense Core Research, Intel Realsense D455F, Microsoft
Kinect for Azure.

Fig. 3. 3D view of the Bunker DVI Dataset environment, extracted from the
ground truth map.

active stereo and time-of-flight) and designed to simulate time-
constrained mapping operations in adverse conditions, such as
those in the context of search-and-rescue missions. The dataset
has the following features:

• Different depth sensing modalities: our 3D-printed hand-
held setup, shown in Figure 2, incorporates the Sev-
ensense Core Research (passive stereo), Intel Realsense
D455F (active stereo), and Microsoft Kinect for Azure
(time-of-flight) sensors3.

• Hardware and software synchronization: The Sevensense
Core Research sensor and Livox Mid-360 are synchro-
nized using hardware PTP, while the other cameras (USB-
connected) rely on software synchronization.

• Challenging environment: the dataset was captured in
a large, 1600m2 bunker-like subterranean environment
made of rooms of all shapes and sizes, including cor-
ridors, rooms, and various objects, mirroring typical
search-and-rescue environments. Figure 3 depicts the
environment.

• Challenging data sequences: our dataset includes regular
data sequences as well as more complex sequences with
aggressive motion, dynamic human activity within the
field of view, degenerate scenarios (both geometrical and
visual) as well as abrupt lighting changes. An overview
of the sequences included in the dataset is given in Table

3This sensor is now marketed as Femto Bolt [29]

Fig. 4. Top-down view of two trajectories (Reg-1 and Reg-2) out of the six
evaluation sequences in the Bunker DVI Dataset.

TABLE II
LIST OF SEQUENCES IN THE BUNKER DVI DATASET

Name Description Length [m] Duration [s]

Calibration sequences
Static Different static poses 0.0 65
Dynamic Fast rotation and translation 0.0 33
Warm-up sequences
Small Small room loop 0.0 45
Large Large room loop 0.0 53
Evaluation sequences
Reg-1 Smooth motion, stable features 210 347
Reg-2 Faster motion, narrower spaces 297 551
Deg-Vis-1 Person moving in FoV 234 328
Deg-Vis-2 Person moving, unstable lighting 250 410
Deg-Geo-1 Light geometrical degeneracy 159 203
Deg-Geo-2 Strong geometrical degeneracy 74 85

II and illustrated in Figure 4.

A survey-grade ground truth map collected using a FARO
Focus laser scanner is provided. Similarly to recent SLAM
datasets such as MCD-VIRAL [30] or the Newer College
Dataset [31], the ground truth trajectory is determined by
registering the Livox Mid-360 point clouds to the ground
truth map after de-skewing. Extrinsic calibration was then
used to compute the trajectories of each depth camera. For
advanced users, we also provide SE3 B-spline trajectories
computed using the Ceva library4, offered with the MCD-
VIRAL Dataset.

IV. DVI MAPPING SYSTEM

Our system performs state estimation by fusing the data
from IMU, Visual-Inertial Odometry (VIO) and Depth Odom-
etry and Mapping (DOM) in the ESIKF. Afterwards, the map
is built by reprojecting the point clouds using the estimated
poses. The main components are shown in Figure 1.

4https://github.com/mcdviral/ceva

https://github.com/mcdviral/ceva
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A. Notations and conventions

Matrices and column vectors are written as upper- and
lower-case bold symbols respectively. Rn denotes the n-
dimensional real vector space. (·)T denotes the transpose
of a matrix or vector. Rotation and transformation matrices
from one reference frame to another are denoted with a left
superscript and a right subscript in the form: e.g., ATB is the
transformation matrix from frame B to frame A. Similarly, a
left superscript added to a vector denotes the frame in which
it is expressed: Ax is expressed with respect to reference
frame A. The Euclidean norm is noted ∥x∥, the Mahalanobis
norm is noted and defined as ∥x∥Σ =

√
xTΣ−1x. The skew-

symmetric matrix of a vector v ∈ R3 is noted [v]×. We
make use of the Lie groups SO(3) and SE(3), the manifold
encapsulation operators ⊞ and ⊟ and the ESIKF as defined in
[32].

B. State representation

We use the IMU frame I as the body frame of reference and
denote by G the global frame, which corresponds to the initial
IMU frame. The state estimate at a time step k is represented
by the following vector:

x̂k =
[
GR̂I,k

T Gp̂T
I,k

Gv̂T
I,k b̂T

ω,k b̂T
a,k

GĝT
,k

]T
∈ SO(3) × R3 × R3 × R3 × R3 × R3 (1)

where GR̂I,k is the rotation, Gp̂I,k is the position, Gv̂I,k

is the velocity of the body, and Gĝ,k is the gravity vector
in the global frame. b̂ω,k and b̂a,k are the gyroscope and
accelerometer biases, expressed in the IMU frame. The error-
state is written:

δx̂k = xk ⊟ x̂k

=
[
Gδr̂TI,k

Gδp̂T
I,k

Gδv̂T
I,k δb̂T

ω,k δb̂T
a,k

GδĝT
k

]T
∈ R18 (2)

where the ⊟ operator implies that Gδr̂I,k =
Log((GR̂I,k)

TGRI,k), Gδp̂I,k = GpI,k − Gp̂I,k and
all other error-state quantities defined are defined similarly.
The initial error-state covariance P0 is initialized as an
identity matrix multiplied by a small number: P0 = εI18×18.

C. Propagation with IMU

Similarly to [21] and [23], we model the IMU input uu

with its noise and bias:

u =
[
ωT aT

]T ∈ R6, (3)

w =
[
nT
ω nT

a nT
bω

nT
ba

]T ∈ R12 (4)

where nω and na are the Gaussian noises of the measurements
from the gyroscope and accelerometer, and their respective
biases bω,ba are modeled as random walk processes with
Gaussian noises nbω and nba . Using Newton’s dot notation

for time derivatives, the kinematic model of the system in
continuous time takes the form:

GṘI = GRI [ω − bω − nω]× (5)
GṗI = GvI (6)
Gv̇I = GRI(a − ba − na) +

Gg (7)

ḃω = nbω , ḃa = nba ,
Gġ = 0 (8)

In discrete time, the state transition function between time
steps k and k+1 is written: xk+1 = xk⊞(∆t g(xk,uk,wk)),
where ∆t is the time between consecutive IMU readings and
the function g is defined as:

g(xk,uk,wk) =



ωk − bω,k − nω,k
GvI,k

GRI,k(ak − ba,k − na,k) +
Ggk

nbω,k

nba,k

03×1


(9)

We refer the reader to [32] for the expressions of the error-state
δx̂k+1|k and its covariance.

D. Correction with visual-inertial odometry

Our VIO sub-system is based on VINS-Mono [9], which
we choose for its overall robustness to challenging scenarios,
as we verify further in our experiments.

1) Observation model: Each time VINS-Mono
returns a new pose of the IMU in the global frame
GTVIO,I,k+1 ∈ SE(3), we compute the incremental pose
change: VIO,I,kTVIO,I,k+1 = GT−1

VIO,I,k
GTVIO,I,k+1. We then

compute a “synthetic odometry observation” for step k + 1
by combining this relative pose with the pose of the whole
system output by the ESIKF at the k-th time step GTI,k:
GTobs,I,k+1 = GTI,k

VIO,I,kTVIO,I,k+1. To process the
SE(3) pose observation in the ESIKF update, we separate its
SO(3) and R3 components:

GTobs,I,k+1 =

[
GRobs,I,k+1

Gpobs,I,k+1

0 1

]
(10)

We model the observation noise as additive zero-mean
Gaussian noise on both components with nVIO,k+1 =
[nT

r,k+1 nT
p,k+1]

T ∈ R6, with nVIOk+1 ∼ N (0,N),N ∈
R6×6. From here, we use the superscript j to indicate the
current update iteration and drop the k+1 subscript to improve
readability. The observation Zj

VIO ∈ SE(3) and the observation
function hVIO are defined as:

Zj
VIO = hVIO(x,nVIO) (11)

=

[
GRI ⊞ nr

GpI ⊞ np

0 1

]
(12)

=

[
GR̂j

I ⊞
Gδr̂jI ⊞ nr 0

Gp̂j
I ⊞

Gδp̂j
I ⊞ np 1

]T

(13)

=

[
GR̂j

IExp(Gδr̂jI)Exp(nr) 0
Gp̂j

I +
Gδp̂j

I + np 1

]T

(14)
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Fig. 5. Number of visual features tracked related to the relative translation
error, shown in the active part of the Deg-Vis-1 sequence. The Pearson
correlation coefficient is -0.31, indicating a moderate negative correlation.

The residual is defined as the ⊟-difference between the actual
measurement Zj

VIO and the value of the measurement function
with the noise set to zero:

rjVIO = Zj
VIO ⊟ h(x̂j ,0) (15)

= h(x,nVIO)⊟ h(x̂j ,0) (16)

≈

[
Gδr̂jI + nr

(GR̂j
I)

T (Gδp̂j
I + np)

]
∈ R6 (17)

From there, we compute a first order approximation to fuse
the distribution imposed by the residual with the distribution
of the propagated state:

rjVIO ≈ Hj
VIO,δxδx̂

j +Hj
VIO,nnVIO (18)

where Jacobians can be derived by simple inspection of (17).
2) Adaptative covariance estimation: By default, VINS-

Mono does not output any covariance with its pose estimate,
as in practice there is no way to compute it in a manner
both fast and reliable5. To this end, we propose an adaptative
covariance heuristic based on the number of tracked features.
As illustrated in Figure 5, this number can be used as an online
indicator for the current odometry accuracy. Especially when
the maximum number of features is tracked in a stable manner
(flat-top peaks in the figure), the relative translation error
(RTE) is at a minimum. We start with a default covariance
matrix in the form of V∗ = εVIOI6×6 where εVIO is a number
entered as a parameter. We find that to ensure the VIO update
has an influence during the ESIKF update, εVIO should be
set to a very small value (e.g. 10−6), in order to balance the
weight of the VIO residual with that of the all the point-to-
plane residuals. Then, we use the number of tracked features
in the current frame Fk+1 and the target number of features
to track F ∗ (a parameter of VINS-Mono, here set to 300). At
each frame, the proposed covariance Vk+1 is computed with:

Vk+1 =

(
1 +

F ∗ − Fk+1

γ

)
V∗ (19)

where γ ∈ R>0 is a parameter determining the level of
covariance increase due to a sub-optimal number of tracked
features. In Experiment I, we show the influence of tuning the
parameter γ on the performance of the whole system.

5VINS-Mono uses a nonlinear least squares problem formulation, solved
with Ceres [33]. See http://ceres-solver.org/nnls covariance.html.

E. Correction with point cloud odometry and mapping

1) Observation model: Our Depth Odometry and Mapping
(DOM) sub-system follows the implementation of [3]. Each
voxel contains the parameters of a probabilistic plane element
(normal and its covariance, center and its covariance). Each
point of each new scan is matched against the current map. For
the i-th point-to-plane match, the observation model function
hDOM,i yields the point-to-plane distance zjDOMi ∈ R and is
defined as:

zjDOMi = hDOM,i(x,nDOM,i) = nT
i (

GTj
Isi − ti) (20)

= (n̂i ⊞ δn̂i)
T ((GT̂j

I ⊞
GδT̂j

I)(ŝi + δŝi)− t̂i − δt̂i) (21)

= (n̂i ⊞ δn̂i)
T
(
(GR̂j

I ⊞
Gδr̂jI)(ŝi + δŝi)

+(Gp̂j
I +

Gδp̂j
I)− t̂i − δt̂i

)
(22)

where nDOM,i = [δn̂T
i δt̂Ti δŝTi ]

T ∈ R9 encodes the noise
of the observation, as n̂i and δn̂i are the plane normal and
its associated noise, t̂i and δt̂i are the plane center and its
associated noise, and finally ŝi and δŝi are the point and its
associated noise. The expression of the residual becomes as
follows:

rjDOM,i = zjDOM,i ⊟ hDOM,i(x̂
j ,0) (23)

= nT
i (

GTj
Isi − ti)− n̂T

i (
GT̂j

I ŝi − t̂i) (24)

= (n̂i ⊞ δn̂i)
T
(
(GR̂j

I ⊞
Gδr̂jI)(ŝi ⊞ δŝi) (25)

+(Gp̂j
I ⊞

Gδp̂j
I)− (t̂i + δt̂i)

)
− n̂T

i (
GT̂j

I ŝi − t̂i)

≈ Hj
DOM,i,δxδx̂

j +Hj
DOM,i,nnDOM,i ∈ R (26)

2) Degeneracy handling with soft solution remapping: It is
known that the performance of depth cameras can be strongly
degraded in various environments [34]. Often, this degradation
will lead to fewer points returned in each depth map, and in
turn, fewer geometrical features. This may increase degeneracy
and drift. To mitigate these issues, we implement the solu-
tion remapping method described in [6], which proposes to
analyse the eigenvalues of the product HTH ∈ Rn×n, where
H = [(Hj

DOM,1,δx)
T , (Hj

DOM,2,δx)
T , . . . , (Hj

DOM,m,δx)
T ]T , m

is the number of residuals and n is the dimensionality of the
state. If the i-th eigenvalue is below a certain threshold ζ set
as user-input parameter, the update in the i-th direction of
the eigenspace is discarded. Using the notation e1, ..., en for
the eigenvectors corresponding to the eigenvalues λ1, ..., λn of
HTH, the remapped solution δx̂j

SR is determined with:

Ef = [e1, ..., em, em+1, ..., en]
T (27)

Eu = [0, ...,0, em+1, ..., en]
T (28)

δx̂j
SR = E−1

f Euδx̂
j (29)

where m is the number of eigenvalues smaller than ζ (with
0 ≤ m ≤ n), Ef is a matrix whose rows are the eigenvectors
of HTH, and Eu is the same matrix but the eigenvectors
corresponding to eigenvalues smaller than ζ are set to zero.
Tuning the parameter ζ is commonly done by hand. Now,
through experimentation we find that this binary thresholding
is a rather strict measure which can make the parameter tuning

http://ceres-solver.org/nnls_covariance.html
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process difficult: a slightly too high ζ can quickly lead to
significantly worse solutions. To cope with this, we propose a
soft version of this update by modifying Eu :

Eu = [
λ1

ζ
e1, ...,

λm

ζ
em, em+1, ..., en]

T (30)

We show in Experiment II that this soft solution remapping
has a positive effect on the accuracy of the system. Finally,
we propose an automated initialization procedure for tuning
ζ: when the system starts, we collect all eigenvalues for a
duration of tinit, set to 10s in our experiments. Making the
assumption that there is no degeneracy in the beginning of the
sequences until tinit, the eigenvalues collected must be higher
than our desired threshold. After tinit, we take the minimum
eigenvalue and set ζ to its value multiplied by 10−2 for a
safety margin, avoiding to discard useful updates.

V. EXPERIMENTS

We evaluate our system using the RMS absolute translation
error (ATE) as main criterion. All of our experiments are
executed on an ASUS NUC 13 Pro NUC13ANHi7 with an
Intel Core i7-1360P CPU.

A. Experiment I: VIO adaptative covariance estimation

TABLE III
ACCURACY (ATE) OF OUR METHOD WITH DIFFERENT γ VALUES

`````````Sequence
γ-value 1 10 100 1000 ∞

Deg-Vis-1 1.108 0.716 0.579 0.660 0.620
Deg-Vis-2 0.550 0.546 0.411 0.447 0.448

We start by experimenting with the value of γ as described
in Section IV-D. We run our complete system on the two
visually degenerate sequences of the Bunker DVI Dataset
with γ-values ranging from 1 (large penalty for low num-
bers of tracked features) to ∞ (no penalty at all). We see
that among the γ values sampled, we achieve best results
with γ = 100, which means that in the extreme case of
having no feature tracked at all, the proposed covariance is
Vk+1 = (1 + 300−0

100 )V∗ = 4V∗.

B. Experiment II: Degeneracy handling with solution remap-
ping

To evaluate our soft solution remapping (SSR) component,
we run the method on our depth-inertial pipeline (without
VIO fusion), varying the ζ-value and comparing against the
hard solution remapping (HSR). Results of this experiments
are displayed in Figure 6, and show that the proposed SSR
effectively enlarges the basin of performance-improving values
for the parameter ζ. Next, we test our auto-threshold tuning
procedure. In Figure 7, we report the tests of our system on
all six sequences of the Bunker DVI Dataset in three con-
figurations: no SR, HSR and SSR (both with auto-threshold).
Without surprise, we see that neither HSR or SSR affects the
non-degenerate sequences (Reg-1 until Deg-Vis-2). Then, we
notice that the auto-SSR positively effects the accuracy of the
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Fig. 6. Relative ATE (ATE with the given ζ-value / ATE without SR) for
different ζ-values ranging from 1 to 106. DG* refers to the Deg-Geo-*
sequences, and SSR / HSR to soft and hard SR.
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Fig. 7. ATE of our system with different solution remapping (SR) methods.

system in the geometrically degenerate sequences Deg-Geo-1
and Deg-Geo-2. What is more, in the Deg-Geo-2 sequence,
the auto-HSR fails to decrease the error (likely due to a too
high ζ for this sequence), but auto-SSR manages to alleviate
the issue and improves the performance over the baseline.

C. Experiment III: Comparison with the state-of-the-art and
ablation study

This experiment aims to evaluate the performance of DVI
odometry and mapping algorithms in the three categories
(RGB-D, stereo and point cloud-based) and depth sensing
modalities (ToF, active stereo (AS) and passive stereo (PS)).
We use the three DVI sensors available in the Bunker DVI
Dataset: Microsoft Kinect for Azure (K4A), Intel Realsense
D455F (D455F) and Sevensense Core Research (7S)6. We
evaluate both industry standards (e.g. VINS-Mono [9],
RTABMap [10]) and more recent state-of-the-art methods
(such as VINS-RGBD-FAST [11] (referred to as VINS-
RGBD-F), OpenVINS [12]). These methods are chosen for
their state-of-the-art performance (robustness, precision and
speed) on portable computing systems (without GPU). Note
that we exclude methods based on deep learning and neural
radiance fields (NeRFs) as they require a GPU and are
notoriously slower and less robust, especially in uncontrolled
and perturbed environments as we consider here. Whenever
possible, we use the parameters provided by the authors of the
method for the sensor. Otherwise, we tune the parameters on
the calibration and warm-up sequences. Table IV summarizes
our results.

6The implementation of passive depth stereo is based on https://github.com/
sevensense-robotics/alphasense stereo demo

https://github.com/sevensense-robotics/alphasense_stereo_demo
https://github.com/sevensense-robotics/alphasense_stereo_demo
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TABLE IV
ATE [M] OF THE STATE-OF-THE-ART METHODS AND ABLATION STUDY OF OUR PROPOSED SYSTEM ON THE BUNKER DVI DATASET

Sequence Regular-1 Regular-2 Deg-Vis-1 Deg-Vis-2 Deg-Geo-1 Deg-Geo-2
Device K4A D455F 7S K4A D455F 7S K4A D455F 7S K4A D455F 7S K4A D455F 7S K4A D455F 7S
Depth tech. ToF AS PS ToF AS PS ToF AS PS ToF AS PS ToF AS PS ToF AS PS
IMU-RGB
VINS-Mono 4.59 2.79 0.97 9.90 7.07 2.06 6.43 6.33 2.16 5.15 5.60 25.52 4.73 3.57 1.26 1.29 1.68 0.34
OpenVINS 8.21 39.71 4.38 F1 38.35 6.48 F1 18.52 4.15 F1 F2 F2 F1 18.86 69.09 F1 6.66 1.37
IMU-RGB-D
VINS-RGBD-F 6.12 3.54 1.39 2.49 8.39 3.78 20.42 6.37 10.15 6.94 4.48 31.22 5.47 7.61 1.89 3.80 1.49 0.67
RTABMap 8.19 8.39 0.37 45.40 22.01 F3 16.20 31.70 F3 31.46 11.04 F3 17.77 42.71 30.23 9.39 10.58 7.07
IMU-Stereo
OpenVINS - - 4.65 - - 4.09 - - 3.26 - - F2 - - 3.05 - - 1.68
VINS-Fusion - - 3.52 - - 5.15 - - F4 - - 4.86 - - 4.51 - - 2.89
IMU-Cloud
RTABMap 0.36 F5 F5 0.81 17.37 F5 1.96 F5 F5 0.48 F5 F5 9.06 F5 F5 4.14 F5 F5
VoxelMap* 0.26 F5 F5 0.26 F5 F5 1.32 F5 F5 0.95 F5 F5 8.76 F5 F5 10.32 F5 F5
Ours (D)* 0.25 F5 F5 0.27 F5 F5 1.34 F5 F5 0.95 F5 F5 5.68 F5 F5 8.19 F5 F5
Ours (DI) 0.22 F5 F5 0.22 F5 F5 0.75 F5 F5 1.70 F5 F5 10.64 F5 F5 6.32 F5 F5
IMU-RGB-Cloud
Ours (DVI) 0.28 F5 F5 0.28 F5 F5 0.63 F5 F5 0.46 F5 F5 4.00 F5 F5 1.44 F5 F5
The symbol “-” indicates that the method is not evaluated for this sensor, i.e. in the case of a stereo-based method with time-of-flight sensors (no stereo

pair) or active stereo depth sensors (left and right images show the IR pulses, making conventional stereo matching impossible). “*” indicates that the IMU
is not used. Bold and underline fonts indicate the per-sequence best and second-best result. The F1 to F5 indicate the type of failure, explained in greater

detail in the text below.

General remarks. First, we notice that RGB, RGB-D and
stereo methods are generally more robust (fewer total failures)
than cloud-based methods. However, in the cases where the
cloud-based methods do work, they are significantly more
precise. As a side note, this further justifies our choice of
fusing VINS-Mono (the most robust visual-inertial system,
as it does not crash in any sequence) with VoxelMap (most
precise depth-based system, until geometrical degeneracies are
found). We also notice that, in this challenging dataset, the
simple but well-engineered VINS-Mono often performs better
than the more complex RGB-D or stereo methods. Finally,
in cases where visual degeneracy is not too important, we see
that the methods evaluated using data from the 7S device often
yield excellent results, which can be attributed to the specific
VIO-related characteristics of this sensor (such as precise time
synchronization between IMU and cameras, global shutter
sensors and wide angle lenses).

Study of failure cases. During each evaluation, we take
note of the failure events, classify them and summarize them
using the F1, . . ., F5 in the table:

• F1: Tracking lost during fast motion (also, the algorithm
does not model rolling shutter RGB cameras as in K4A)

• F2: Tracking was lost after an abrupt light change.
• F3: The depth map from passive depth was very noisy.

(Degraded lighting conditions and flat walls negatively
impact the passive depth accuracy.)

• F4: Divergence happened when the person was walking
close to the front of the sensors, creating too many
unstable features.

• F5: The point clouds are too noisy for registration.

Unreported results. In addition to the successful executions
reported in the table, we also experimented with ORB-SLAM3

[8], Fast-LIO [21], SLICT [18], VoxelMap++ [35], but we
could not make these methods work for any of the evaluation
sequences, either due to tracking loss, divergence or crash.

Performance of the DVI Mapping System. Although
shown to work only with the ToF DVI sensor, we see that
our proposed system achieves the most robust results on the
dataset. It successfully estimates the full trajectory in all
sequences and yields either the best accuracy or a competitive
one.

TABLE V
TIME TO PROCESS ONE FRAME, IN MILLISECONDS.

DOM SR IMU VIO Frame processing time [ms]
× 64.2

× 35.8
× × 66.3
× × 66.8
× × × 96.1
× × × 69.5
× × × × 98.7

On Table V, we report the average time to process one
frame in each DVI Mapping System configuration. Clearly,
the two main sub-systems (DOM and VIO) take up the most
processing time. The IMU propagation and solution remapping
both add only a few milliseconds of processing time. The
complete system takes just below 100ms to process a frame,
meaning that it would run in real-time on a 10 FPS dataset.

VI. CONCLUSION

In this paper we have developed an error-state iterative
Kalman filter (ESIKF) sensor fusion framework for depth-
visual-inertial (DVI) 3D mapping. The system specifically
targets small form-factor time-of-flight depth-visual-inertial
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sensors, which are not supported by major state-of-the-art
LiDAR mapping algorithms. The framework has been imple-
mented with open-source technologies, developed in C++ with
the ROS framework. We have conducted experiments to assess
the performance and effectiveness of our sensor fusion scheme
on a new challenging dataset. Our results suggest that our
system may provide comparable or superior performance to
existing methods designed for similar sensors. Following open
science principles, we release our code and dataset publicly.
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