
Optimizing Scheduling in Wireless TSN Utilizing

Genetic Algorithms

Jetmir Haxhibeqiri∗, Pablo Avila-Campos∗, Ingrid Moerman∗, Jeroen Hoebeke∗

∗IDLab - imec, Ghent University, Belgium

{jetmir.haxhibeqiri, pabloesteban.avilacampos, jeroen.hoebeke, ingrid.moerman}@ugent.be

Abstract—Time-sensitive networking (TSN) is proposed to
support deterministic communication for industrial automation
use cases. To harvest the wireless communication flexibility, TSN
features have been extended to the wireless domain as well. One
of the key TSN features is the ability to assign transmission
schedules to different traffic flows in the network with the aim
of reducing time slot access delay on each network node. In
the wireless domain, this becomes even more challenging due to
the shared medium, lower reliability, and slower transmission
rates compared to wired systems, reducing the available time
resources. In this paper we look at utilizing genetic algorithms
to support scheduling of traffic flows from different wireless end
devices in a shared schedule. Two optimization functions are
defined. The first optimization is based on minimizing the overall
shared air time between different end nodes, while the second
optimization is based on maximizing time slots that can be used
without any interference. Both optimizations aim to reduce the
collision probability. With these initial results, we identify the
best parameters for genetic algorithms and examine the initial
population’s impact on overall performance. We show that a fully
randomized initial population does not achieve the highest fitness
value, even after several generations.

Index Terms—wireless TSN, scheduling, genetic algorithms

I. INTRODUCTION

In a robotic assembly line, several robots perform tasks

like picking, placing, welding, and painting components to

assemble products. They must communicate with each other

and the central control system in real-time to coordinate move-

ments precisely. Sensors throughout the line give feedback

on component status, environmental conditions, and safety

hazards. Such interaction between robots and sensors ensures

efficient and safe operation. Such precise coordination relies

on meticulous management of time-sensitive communication

flows among network applications. Time-sensitive networking

(TSN) has emerged as a solution to advance current networks

to support this deterministic communication and continues to

attract significant attention from both academia and industry.

Currently, the TSN Working Group, which started as the

Audio Video Bridging (AVB) working group back in 2012,

has introduced several standards. These standards include

the IEEE 802.1AS for time synchronization, IEEE 802.1CB

for reliability, IEEE 802.1Qbv for time-aware shaping (TAS)

scheduling etc. Certainly, the current standards predominantly

focus on wired TSN implementations. However, eliminating

wired connections between robots, sensors, and the control

system, would not only facilitate mobility and plug-and-play

capabilities but also enhance communication flexibility and

efficiency. These advancements are crucial in realizing the

smart factory vision of Industry 4.0, where a combination of

wired and wireless TSN (W-TSN) provides seamless integra-

tion, adaptability, and optimization [1].

While the TSN standards offer mechanisms to manage and

prioritize time-sensitive traffic flows, they lack a scheduling

mechanism capable of delivering the latency and jitter guar-

antees promised by TSN. Indeed, scheduling approaches are

use-case specific and cannot be standardized. As such, to

address this deficiency, various algorithms have been pro-

posed in the literature based on different assumptions and

optimization objectives to fulfill diverse constraints. However,

many of these works overlook the specific wireless TSN,

such as lower transmission rates and reliability compared

to wired networks, as well as channel variability in time

and frequency, which necessitates continuous adaptations, for

instance, through Modulation and Coding Schemes (MCS)

index dynamic selection.

A widely used strategy for addressing the scheduling prob-

lem begins by establishing different traffic flow priorities based

on their requirements. Typically, three classes are proposed:

high time-sensitive (HTS), which corresponds to time-aware

cyclic and latency-bounded streams; low time-sensitive (LTS),

corresponding to control and configuration traffic, such as time

synchronization, which is acyclic but still latency-bounded;

and finally, best effort (BE) traffic, representing acyclic and

non-latency-bounded traffic [2]. While HTS traffic is normally

supported by selected dedicated time slots in the communica-

tion cycle and over-provisioning of air-time for the flow, the

other two traffic flows still should be supported in the same

network. This work aims to optimize time resource sharing

to maintain acceptable time-sensitive advantages for LTS and

BE traffic in W-TSN. Optimization of the air-time resources

between different wireless end devices and traffic flows relies

on the learning and adaptability of genetic algorithms.

The structure of the paper is outlined as follows. Section II

discusses related work on scheduling while section III provides

background information on genetic algorithms. Section IV

describes the optimization problem, while section V details the

simulation environment. Section VI presents achieved results,

while section VII gives concluding remarks.

II. RELATED WORK

TSN scheduling can be broadly categorized into exact

scheduling methods and approximate scheduling methods.



Exact methods encompass techniques like Integer Linear

Programming (ILP), Satisfiability and Optimization Modulo

Theories (SMT/OMT) [3], and constraint programming. In

contrast, approximate methods comprise heuristics, artificial

intelligence (AI), and genetic algorithms [2].

Scheduling traffic flows in wired TSN is a well-established

problem that has garnered significant interest from the research

community in the past. In [4], a method called Greedy

Randomized Adaptive Search Procedure (GRASP) has been

applied to solve the gate control lists (GCL) solution problem

when combining HTS and LTS traffic types. This solution

focuses on worst-case end-to-end delays and demonstrates that

an optimal combination of transmission time slots between

HTS and LTS, may reduce the worst-case end-to-end delay.

In [5], authors present the no-wait packet scheduling solution

for GCLs when time-aware shaping is applied. While some

works propose only scheduling, others, such as [6], include

routing in the optimization problem by introducing an objec-

tive function that incorporates the waiting time of flows and

flow schedulability. Similarly, authors in [7] address routing

and scheduling in a multi-hop wired TSN as an iterated integer

linear programming problem.

While ILP is a well-studied technique for TSN scheduling

in wired networks, formulating the problem can be complex,

and it often requires substantial computational time to obtain

a solution. Therefore, to overcome this challenge, techniques

based on machine learning (ML) algorithms are gaining trac-

tion. In [8], authors present a scheduling method that is based

on a deep reinforcement learning (DRL) algorithm improving

the efficiency and schedulability of traffic flows for more than

35% compared to heuristics. However, ML-based scheduling

methods still require time to train the model, or in the case

of DRL, there is always a trade-off between the exploration

and exploitation phases. Other works have employed genetic

algorithms for the scheduling problem as an approximate

method only for wired TSN [9].

Compared to wired TSN, in W-TSN network dynamicity

is not composed only by the different traffic flows but also

due to node mobility and utilization of dynamic MCS. This

poses an additional challenge in the scheduling of wireless

links. In [10], authors propose a cross-traffic scheduling, where

inbound traffic shaping is performed based on frame length

shaping, while the outbound traffic scheduling is done based

on queue status. In [11], network dynamism is emphasized in

the scheduling problem attributed to changes in the number of

traffic flows.

III. BACKGROUND TO GENETIC ALGORITHMS

Genetic algorithms are based on natural selection and ge-

netics that search through all the possibilities of the solution

space, evolving from less optimal solution towards optimal

or near-optimal solutions. In order to explain how genetic

algorithms work, first we will list a number of notions that

will be used. A subset of all possible solutions is recognized

as population. Initial population is the subset of solutions

from which optimization starts. One solution in the population

represents a chromosome that is composed of several genes

taking several possible values. Lastly, a fitness function is

defined to determine how close to an optimal solution a

solution is. The fitness function takes a chromosome as input

and gives the chromosome suitability as output [12]. In order

for a population to evolve, genetic operations need to be

performed in the initial and subsequent populations, such as:

parent selection, crossover, mutation, survivor selection, etc.

The first step in genetic algorithm is to calculate the fitness

function of each chromosome in the population. The fitness

function should be easy to calculate in order to speed up

the search process. A selected set of parents (chromosomes)

will mate and recombine in the second step to generate the

new chromosomes for the upcoming generation. Usually, the

parents are selected from chromosomes with the highest fitness

value. Several techniques are used for parent selection, such

as roulette wheel selection, k-way tournament selection, rank

selection, or even random selection technique.

The third step in the genetic algorithm is the crossover

process, where from more than one parent one or more off-

springs are generated. Similarly, in crossover step a number

of techniques can be used, like the one-point or multi-point

crossover, uniform crossover, arithmetic recombination, etc.

The fourth step in the genetic algorithm is mutation. Mu-

tation represents a small tweak of genes in chromosomes

happening with a low probability. The last step is survivor

selection which determines which chromosomes need to be

removed from the next generation and which will be passed

from the current generation to the other.

IV. OPTIMIZATION PROBLEM

A. Shared vs dedicated time slots in schedules

Scheduling in W-TSN involves controlling each node’s

channel access, which includes transmission queues and a

gated mechanism. In the case of W-TSN, the gated mechanism

must be synchronized across devices due to the shared wireless

medium. In this work, we assume that W-TSN utilizes standard

IEEE 802.11 with this gated mechanism implemented on top.

Wireless transmissions have lower data rates than wired

ones. Therefore, a smaller communication cycle improves

time slot access delay but requires more shared air-time

for different traffic flows. However, due to limited air-time

space, not all queues can have dedicated time slots. Queues

for LTS and BE traffic flows often use shared time slots,

where contention can increase because of the TSN schedule.

Even with a gated mechanism, nodes must follow the IEEE

802.11 listen-before-talk (LBT) protocol. If two nodes try to

access the channel at the beginning of a shared time, they

will start distributed coordination function (DCF) interframe

spacing (DIFS) simultaneously. Consequently, this results in

simultaneous transmission commencement, leading to packet

collision, increasing contention within the time slot, and

wasting valuable air-time as seen in Figure 1.

To avoid this issue, time slots for LTS traffic can start at

different times, having different shared air-time amounts [13].

By shifting the start times, contention can be optimized within



Fig. 1: Shared time slot contention

Fig. 2: Share time slot prioritization

the same shared air-time space for all LTS and BE traffic flows.

Unlike shared time slots, dedicated time slots are assigned to

a single traffic flow, typically used for HTS traffic. A node

needs reserved channel access at least at the beginning of the

time slot to ensure dedicated access. Once the transmission

starts, other nodes will defer due to the LBT mechanism as

shown in Figure 2.

B. Optimization

First, we define the variables and constraints that would be

considered in the scheduling problem. Let denote with C the

TSN communication cycle length, containing the set T of all

n time slots (T1, T2, . . . , Tn) for n different LTS and/or BE

traffic flows initiated by different wireless nodes. Each time

slot can have a different length that is based on the MCS index

selected by the node and the packet length of the assigned

traffic flow. Also, let ti denote the starting time of the time

slot Ti inside C. From the perspective of the genetic algorithm,

the initial population P will contain a number of schedules

SCk, where k ∈ {1, ..,K} and K is the initial population

size. A single chromosome/schedule SCk contains the n(T )
genes with values ti, where n() is the cardinal number of T .

To reduce the artificial packet collision and contention

between nodes, ti offsets in the communication cycle, C,

should be determined. As such, the following optimization

problem is defined:

• Decision variables: t1, . . . , tn representing the starting

times of each time slot inside the communication cycle.

• Objective function: minimize the total overlap between

all n time slots. The total overlap of a given schedule is

defined as the sum of overlaps between each pair of slots:

O(SCk) =

n−1
∑

i=1

n
∑

j=i+1

OL(Ti, Tj) (1)

where,

OL(Ti, Tj) =

max

(

0,min

(

ti+length(Ti), tj+length(Tj)

)

−max(ti, tj)

)

• Constrains:

– Time slots within communication cycle boundaries:

ti + length(Ti) ≤ C for i = 1, 2, . . . , n
– Non-negativity constrain: ti ≤ 0 for i = 1, 2, . . . , n

When a time slot does not need to be shared, a penalty

function can be added to the objective function. As such, the

objective function value will be increased based on how much

the shared time-space deviates for a certain time slot from a

given threshold. In that case, the combined objective function,

including both the fitness and penalty components, will be:

O(SCk) = O(SCk) + P (SCk) (2)

where penalty function is defined as:

P (SCk) =

n−1
∑

i=1

n
∑

j=i+1

(

max

(

0, OL(Ti, Tj) − h

))

(3)

where, h, is a threshold that can be adjusted according to the

problem requirements. If the overlap between two given time

slots is below h, the penalty is zero.

The above optimization function can be translated to a linear

fitness function for the genetic algorithm as in equation 4:

F1 =
1

|
∑ n

i=1
Ti − C − O(SCk)|

(4)

for
∑ n

i=1
Ti − C − O(SCk) ̸= 0, otherwise fitness function

will be 1. This fitness value will check how far the total shared

time-space of the actual schedule is from the optimal share

space
∑ n

i=1
Ti − C. By writing it as a ratio we bound the

fitness function values between 0 and 1. As such, maximizing

the fitness function (that is the aim of the genetic algorithm)

will minimize the objective function. The fitness function re-

flects the quality of the solution based on the total overlap, and

the penalty function penalizes schedules for violating the non-

overlap constraint for certain time slots. The algorithm need

to strike a balance between minimizing overlap (maximizing

fitness) and avoiding excessive penalties. Additional penalties

will always decrease the solution’s fitness.

C. Optimization for dedicated time slots

Even when multiple LTS and BE traffic flows share the same

airtime, it would be advantageous to allocate certain time slots

that do not overlap with others, as outlined in Section IV-A.

This ensures some packets are transmitted without contention

at the beginning of time slots. While solutions may share the

same airtime cycle, the number of time slots available for



interference-free transmission may differ. To optimize this, we

define the following objective function:

CNT TS = cnt(Ti) such that Ti /∈ OL{tj > ti+DIFS}

for i, j ≤ n and i ̸= j (5)

Here, cnt() denotes a count function, and OL() represents a

subset of the time slot set, T , comprising slots overlapped by

others after a DIFS from their starting time, ti. By maximizing

the count of non-overlapping time slots, max(CNT TS), we

enhance the W-TSN schedule.

Based on the objective function, the fitness function will be:

F2 =
CNT TS

n(T )
(6)

where n() represent the cardinal number of set T . The fitness

function values will always be between 0 and 1 and represent

how far the current schedule is from having all their time slots

not overlapped at their ti +DIFS.

V. SIMULATION ENVIRONMENT

This section describes the simulation environment and the

tools used. The following subsections present results from

various scenarios emulating different amounts of shared air

time. We highlight the most significant results from the diverse

combinations of methods used in the genetic algorithms to

provide a comprehensive understanding of the outcomes.

A. PYGad Library

The PyGAD library [14] in Python offers a robust toolkit

for using genetic algorithms across various scenarios. Users

can configure each step, including the initial generation size,

parent selection, crossover and mutation types, as well as

survivor selection methods. Additionally, parameters like the

percentage of genes to mutate and the number of tournaments

for parent selection can be customized. The most important

aspect is the user-defined fitness function.

B. Simulation environment

During the simulation, we identify three main factors af-

fecting the quality of the schedule generated by the genetic

algorithm: (i) the initial population’s impact on finding the

optimal W-TSN schedule, (ii) the influence of various method

and parameter combinations at different genetic algorithm

steps on the final fitness value, and (iii) the effect of two fitness

functions defined in section IV.

Diversity in the initial population improves the chances

of finding an optimal solution and should be maintained in

each generation. However, in the case of W-TSN scheduling,

heuristic formation of schedules might impact the optimality

of the solution. As such, we specified two initial population

options: one fully randomized and one mixed (50% random,

50% heuristic). Heuristics encompass various strategies to gen-

erate a W-TSN schedule. The first strategy involves arranging

time slots sequentially within the communication cycle until

all slots are assigned. If the total airtime of the time slots

exceeds the length of the communication cycle, slots will

cycle back to the beginning once the cycle length is reached.

The second strategy is to allocate all time slots at the start

of the communication cycle. Other strategies include ordering

the time slots from the largest one to the smallest one and

then utilizing the first assigning strategy. The last used strategy

orders the time slots from the smallest one to the largest one

and then uses the first assigning strategy. In addition to this

the size of population should be kept controlled, so does not

impact on the fitness calculation speed. In our case, we limited

the initial population size to 10 chromosomes, with the same

number of genes per chromosome.

To determine which method and which parameter selection

on each genetic algorithm step will perform the best in

our case, we specified all possible combinations between

them. The following parent selection algorithms [”tourna-

ment”, ”rank”, ”random”, ”steady-state (sss)”] are tested. For

tournament selection, a random sample of chromosomes, k,

is set at 30% of the population size. The number of parents

mating was varied from the following set [2, 4, 6, 8, 10].

For crossover methods, we utilize single- and double-point

crossover, scattered crossover, and uniform crossover. The

tested mutation methods include: random mutation, swapping

mutation, inversion mutation, scramble mutation, and adaptive

mutation. In terms of the percentage of genes to be mutated we

tested for the following combination set [10, 20, 30, 40, 50].

So the number of total combinations of different methods and

parameters in each genetic algorithm step was 2000 in total.

Adding here two different initial population types, the total

combinations that were tested for each use case was 4000.

For testing the impact of fitness function on achieved

optimality of the final W-TSN schedule we specified several

use cases depending on the percentage exceeding overall time

slot lengths compared to communication cycle length for LTS

and BE traffic. The tested exceed values were set at 5%, 10%,

20%, 40%, and 50%. For each use case, we explored all the

possible combinations mentioned in the previous paragraph.

By exploring these different scenarios, the algorithm can

effectively address a wide range of optimization objectives

and problem constraints. Moreover, we can conclude which

methods are most optimal to be chosen on each genetic

algorithm step.

Simulations are performed as follows. For each use case, the

initial population is generated and then all the combinations

are tested for 100 generation rounds.

VI. RESULTS

The following subsections present the fitness values analyz-

ing different variations.

A. Impact of initial population

For both initial population types (fully random and random

mixed with heuristics), we compared various combinations of

methods and parameters in each step of the genetic algorithms.

Figure 3 shows fitness value updates over generations for a

sub-set of cases when tournament-based parent selection was



(a) Fully random initial population

(b) Mixed 50% random population with 50% heuristics

Fig. 3: Fitness values update over different generations for dif-

ferent combinations of tournament-based parent selection. F1

function was used. NOTE that the legend shows the following

parent selection cross− over mutation mutation % and

parents mating

used combined with different methods for cross-over and mu-

tation. The mutation percentage and number of parents mating

was kept fixed at 10% and 2, respectively. Here, the total time

slot lengths exceed the cycle length by 40%. With a fully

randomized population, the initial fitness value is low at 0.5

regardless of the method and parameter combination (Figure

3a). Conversely, a mixed initial population with 50% heuristics

achieves an initial fitness value above 0.95 (Figure 3b). These

graphs indicate that heuristic-based initial populations lead to

optimal W-TSN schedules after several generations, with a

fitness value exceeding 0.99. Moreover, even without applying

genetic algorithms, heuristic solutions provide better initial W-

TSN schedules than fully randomized populations.

B. Impact of the selection of different parameters on the

overall performance

Initial tests showed that different combinations of methods

and parameters yield different fitness values for the same initial

population. To identify the combination that gives the highest

fitness (F1) value, we tested 2000 different combinations as

specified in subsection V-B.

Table I shows the best combination for each use case,

determined by the percentage that total air time of time slots

exceeds the communication cycle. When the excess was small

(5% and 10%), the fitness value after 100 generations remained

low for fully randomized initial populations. This is because

small excesses allow most time slots to be scheduled sequen-

tially, reducing shared air time. However, random assignments

result in higher shared air time initially, which can not be fixed

even after 100 generations. A similar effect was observed for

20% excess, with a fitness of 0.6. In contrast, mixed initial

populations consistently achieved fitness values above 0.99.

The best and most frequent method for parent selection

was tournament-based selection. Single-point crossover was

found to produce the highest fitness values, likely due to

our chromosome length of 45-50 genes; longer lengths may

require further testing. For mutations, random mutation was

most effective, with 10% being the optimal percentage of

mutative genes.

C. Impact of fitness function

The fitness value varies based on the optimization function.

For F2 (defined in section IV-C), the genetic algorithm aims

to maximize the number of interference-free time slots at

their start. Optimizing for interference-free slots often results

in a schedule that is far from the target of having all slots

interference-free at their start.

Figure 4 shows the fitness values over different generations

for sub-set of cases when tournament-based parent selection

was used combined with different methods for cross-over and

mutation. The mutation percentage and number of parents

mating was kept fixed at 10% and 2, respectively. The excess

in total time slot air time over the communication cycle was set

at 50%. The fitness values are much lower compared to Figure

3 due to the more challenging optimization target. Achieving

all interference-free slots at their start is harder with a larger

airtime excess. However, the relationship between fitness value

and initial population remains consistent: mixed populations

(random and heuristic) result in higher fitness values.

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed how genetic algorithms can be

utilized for generating W-TSN schedules where LTS and BE

traffic flows can shared the same air time and network. We

defined two different fitness functions. One that optimizes the

overall shared time slots in the schedule by minimizing that,

and the second one that maximizes the number of time slots

in the communication cycle that can be used interference-free.

Utilizing the PyGAD library in Python we simulate all

the possible combinations for different selected methods

and parameters in different steps of the genetic algorithm.

We demonstrate that the tournament-based parent selection

method consistently yields the highest fitness values across all

cases. Single-point cross-over method proved to be the best

choice in combination with the random mutation method.

Regarding the impact of the initial population, it was noticed

that a fully randomized initial population does not give the

highest fitness function even after 100 generations. For this,

a mixed initial population where 50% of chromosomes are

generated randomly and 50% of them are generated with

certain heuristic techniques gives a higher fitness value when

optimized for the air-time overlap. In the case of a fitness



Use case Initial population Parent selection Cross-over Mutation Mutation % Nr. parents mating Fitness value

5%
Fully random Tournament Scattered Random 10 8 0.23

Mixed Tournament Single point Random 10 2 1

10%
Fully random SSS Uniform Swapping 30 4 0.5

Mixed SSS Single point Swapping 50 10 0.99

20%
Fully random Tournament Two points Random 10 8 0.6

Mixed Tournament Single point Swapping 50 4 0.99

40%
Fully random Tournament Single point Random 10 8 0.94

Mixed Tournament Two points Random 10 8 0.99

50%
Fully random Tournament Scattered Random 10 2 0.98

Mixed Tournament Single point Random 50 4 0.99

TABLE I: The best combination of methods/parameters for each use case and initial population with fitness value after 100th generation.

(a) Fully random initial population

(b) Mixed 50% random population with 50% heuristics

Fig. 4: Fitness values update over different generations for dif-

ferent combinations of tournament-based parent selection. F2

function was used. NOTE that the legend shows the following

parent selection cross− over mutation mutation % and

parents mating

function that optimizes the number of interference-free time

slots the achieved fitness values were lower due to the hardest

target to reach (all time slots being interference-free). Future

work will be to test such algorithms in real network scenarios

and how to integrate such algorithms with network controller.

ACKNOWLEDGMENT

This research was partially funded by the Flemish FWO

SBO S003921N VERI-END.com project and the Flemish

Government under the “Onderzoeksprogramma Artificiële In-

telligentie (AI) Vlaanderen” program.

REFERENCES

[1] A. Larrañaga, M. C. Lucas-Estañ, I. Martinez, I. Val, and J. Gozalvez,
“Analysis of 5G-TSN Integration to Support Industry 4.0,” IEEE Inter-

national Conference on Emerging Technologies and Factory Automation,

ETFA, vol. 2020-September, pp. 1111–1114, 9 2020.
[2] H. Chahed and A. Kassler, “TSN Network Scheduling—Challenges and

Approaches,” Network 2023, Vol. 3, Pages 585-624, vol. 3, no. 4, pp.
585–624, 12 2023.

[3] L. De Moura and Bjorner Nikolaj, “Satisfiability Modulo Theories:
Introduction and Applications,” Communications of the ACM, vol. 54,
no. 9, pp. 69–77, 9 2011.

[4] V. Gavrilut and P. Pop, “Scheduling in time sensitive networks (TSN)
for mixed-criticality industrial applications,” IEEE WFCS - Proceedings,
vol. 2018-June, pp. 1–4, 7 2018.

[5] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” ACM International Conference Proceeding

Series, vol. 19-21-October-2016, pp. 203–212, 10 2016.
[6] Y. Wang, P. Yu, and Y. Cheng, “Joint Scheduling Algorithm of

Routing and GCL Based on Tabu Search,” 2022. [Online]. Available:
https://doi.org/10.21203/rs.3.rs-1713179/v1

[7] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Routing and
Scheduling of Time-Triggered Traffic in Time-Sensitive Networks,”
IEEE Transactions on Industrial Informatics, no. 7, 7 2020.

[8] X. He, X. Zhuge, F. Dang, W. Xu, and Z. Yang, “DeepScheduler:
Enabling Flow-Aware Scheduling in Time-Sensitive Networking,” IEEE

INFOCOM 2023, 2023.
[9] M. Pahlevan and R. Obermaisser, “Genetic Algorithm for Scheduling

Time-Triggered Traffic in Time-Sensitive Networks,” IEEE International

Conference on Emerging Technologies and Factory Automation, ETFA,
vol. 2018-September, pp. 337–344, 10 2018.

[10] C. Liu, Y. Hong, J. Wang, C. Liu Sr, L. Tian, and J. Xu, “Hierarchical
cross traffic scheduling based on time-aware shapers for mobile time-
sensitive fronthaul network,” Wireless Communications and Mobile

Computing, vol. 2024, no. 1, p. 8882006, 2024.
[11] Z. Li, J. Yang, C. Guo, J. Xiao, T. Tao, and C. Li, “A Joint Scheduling

Scheme for WiFi Access TSN,” Sensors 2024, Vol. 24, Page 2554,
vol. 24, no. 8, p. 2554, 4 2024.

[12] M. Michell, “An introduction to genetic algorithms,” 1998. [Online].
Available: http://books.google.com/books?id=0eznlz0TF-IC

[13] Özkaya, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Simulating and
validating openwifi W-TSN in ns-3,” IEEE WFCS2024, the 20th IEEE

International Conference on Factory Communication Systems, 2024.
[14] A. F. Gad, “PyGAD: An Intuitive Genetic Algorithm Python Library,”

Multimedia Tools and Applications, 6 2021.


