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A B S T R A C T

This study investigates the adoption of Digital Beehive Monitoring Technology (DBMT) based on a survey with
844 beekeepers across 18 European countries, shedding light on their characteristics, current usage patterns,
expected benefits, and the determinants influencing technology adoption. Notably, 79.1 % of beekeepers had yet
to embrace any form of digital monitoring, while 20.9 % engaged in limited monitoring, primarily focused on
hive weight. The perceived benefits of DBMT were explored, with hive management facilitation, colony health
enhancement, winter loss reduction, and time-saving emerging as primary expectations. A quarter of beekeepers
expressed uncertainty regarding these anticipated benefits, underscoring the need for increased awareness and
education about the advantages of DBMT. Logistic regression is used to uncover key determinants influencing
DBMT adoption, emphasizing the role of professionalism, regional disparities, and active participation in bee-
keepers’ associations. The application of the Theory of Planned Behaviour (TPB) through Structural Equation
Modelling reinforced the central role of beekeepers’ personal attitudes in shaping their intention to adopt DBMT,
with social norms and perceived behavioural control providing complementary albeit minor influences. The
findings imply that hobbyist beekeepers may be more involved in beekeeping as a nature-centric activity,
whereas professional beekeepers demonstrate a greater inclination toward digitalisation. With the so-called
social tipping point of 25 % for technology adoption being almost reached, this study provides a timely
empirical perspective on the European beekeeping sector’s evolution towards digitalisation, so-called Apiculture
4.0.

1. Introduction

1.1. Background and rationale

The honey bee (Apis mellifera) plays a crucial role in providing
pollination services to agri- and horticulture, and in procuring apiary
products such as honey, pollen, propolis and beeswax. Honey bees are
therefore of great societal, environmental, and economic concern. Yet,
the challenges facing the beekeeping sector are multiple. For more than
three decades, beekeepers have experienced high honey bee colony

winter losses due to a range of health-related threats such as parasites,
pathogens, pesticides exposure, and reduced floral resources (Goulson
et al., 2015; Vanbergen and the I.P. Initiative, 2013). These factors are in
some cases exacerbated by limited beekeeper experience and inadequate
beekeeping management training (Jacques et al., 2017) to deal with
continuing and emerging challenges facing beekeepers, including
adverse climate change impacts in specific regions (Van Espen et al.,
2023). These high winter losses are persisting over time (Gray et al.,
2020). Meanwhile, digitalisation is rapidly transforming the agri-food
sector in its quest for becoming more sustainable and resilient (Finger,
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2023). The transition towards digital agriculture – also referred to as
Agriculture 4.0 (Araújo et al., 2021) – can provide opportunities for
innovation, employing digital technologies to tackle contemporary and
future challenges in the beekeeping or apicultural sector too. In their
horizon scanning exercise with experts, Willcox et al. (2023: 2) effec-
tively identified “greater availability of technology and automation to
remotely monitor bee colony health” as the main opportunity facing
managed bees in European agricultural systems. Meanwhile, Shepherd
et al. (2020: 5083) mentioned that “for the potential of digital tech-
nologies [in agriculture] to be truly realised, the technology has to be
implemented on a large scale” and further that “history suggests this
[diffusion and adoption of digital technologies in agriculture] could be a
slow process”. Enabling digital technologies (e.g., sensors and networks)
are increasingly available, and with numerous digital products on the
market (e.g., hive monitoring systems), beekeepers have started
embracing digital beekeeping tools. Meanwhile, the world’s beekeepers
have been referred to be “a profession particularly slow to adopt”
technologies such as apiary management software (Hassler et al., 2021:
13). However, at present and to the best of our knowledge, information
about the state and insight into the drivers of uptake of digital tech-
nologies in the European beekeeping sector remains limited. This is
precisely where the present research comes into play.

Preventing loss of honey bee colonies requires a better understanding
beyond assessing the effects of short and long-term stressors on indi-
vidual bees (Ulgezen et al., 2021; van Dooremalen et al., 2018) and/or
identifying potential risk factors, e.g., via surveillance studies (Olate-
Olave et al., 2021). For beekeepers, it is essential to anticipate losses
early enough to apply mitigating actions (van Dooremalen and van
Langevelde, 2021). Therefore, advanced methods for early warning of
potential honey bee colony losses are urgently needed (van Dooremalen
et al., 2018; van Dooremalen and van Langevelde, 2021). To estimate
the health status of a honey bee colony, beekeepers currently still largely
rely on physical interventions, consisting of manually opening the hives
and visually inspecting the colony for anomalies, such as, e.g., the
presence of parasites or viruses, symptoms of diseases, and colony traits
like queen and brood presence and status, colony and brood size, and
honey and pollen storage. Taking apart the hive components for in-
spections disturbs colonies, entails risking injury and loss of bees and
queens, and may provoke defensive behaviour in the bees or robbing
across adjacent hives. Moreover, such visual inspections using classical
measurements only provide a momentary snapshot of a colony.
Considering the complex and dynamic characteristics of honey bee
colonies, momentary data are most likely unsuitable for mapping and
predicting changes in the colony health status or colony losses (Ulgezen
et al., 2021; van Dooremalen and van Langevelde, 2021). Manual
monitoring is also labour-intensive and physically challenging for bee-
keepers, which may eventually result in beekeepers turning away from
their hobby or business, like Potts et al. (2010) showed in the bee-
keepers’ response to increased costs and labour as a consequence of the
emergence of the Varroa destructor parasite. Therefore, automated
monitoring tools and related digital technologies could have consider-
able potential as possible predictors for colony health status and losses.
They are non-disruptive for the bees, and could significantly aid and
simplify hive management, so long the technology is readily available
and affordable.

Digital agriculture is defined as the collection and use of detailed
digital information to guide decisions along the agricultural value chain,
including technological advances, such as, improved sensor capability,
data connectivity, and computer-based artificial intelligence decision
support and self-learning systems (Shepherd et al., 2020). Key technol-
ogies and methods involved in digital agriculture are the Internet of
Things (IoT), sensors, data analytics, image processing, and communi-
cation technologies. Agricultural digitalisation has been recognised to
have great potential, not only economically by, e.g., increasing pro-
ductivity and lowering costs, but also by playing an important role in
preserving the environment and improving farmers’ working conditions

(Maffezzoli et al., 2022).
Like many economic sectors and contemporary production systems,

beekeeping is also moving towards digitalisation. In 2022, Hadjur et al.
(2022) provided a comprehensive overview of the advances in precision
beekeeping and connected and smart beehives. Their survey covered the
available architecture of connected beehives, types of sensors, data
transmission systems, power supply, costs, as well as methods and levels
of data collection and data analytics that emerged during the last
decade. They noted that more affordable commercial solutions should
be developed to meet beekeepers’ interests, e.g., to improve hive man-
agement information for more efficient beekeeping. They expressed
their hope that more and more beehives would become connected to
provide new apiary knowledge. Since the publication of this survey,
several additional studies on this topic emerged. For example, Aydin and
Aydin (2022) focused on the software architecture for open data
resulting from wireless sensory network (WSN-) based beehive moni-
toring, and they discussed the potential of microservice architecture in
this respect. Arribas and Hortelano (2023) presented a system using
spatial thermal data to monitor the behaviour of honey bees during the
winter when hives cannot be opened. Real-time heat maps produced
based on temperature sensor data and IoT technologies allow providing
insights into the health and strength of honey bee colonies. Zaman and
Dorin (2023) provided another review of available technologies and ICT
resources for beehive monitoring, including diverse sensor technologies
(e.g. weight, temperature, humidity, gas), accelerometers, vibration
detectors, and thermal imaging. They also provided a framework that
may assist in the adaptation and innovation of these technologies, and
distinguished between operational monitoring, investigative moni-
toring, and predictive monitoring – the latter being referred to as
becoming the new frontier in sensor-assisted beehive monitoring.
Degenfellner and Templ (2024) used and deployed machine learning to
translate beehive weight and weight level shift data into predictive in-
sights for hive monitoring. Their data were collected on a continuous
basis by means of a load cell-equipped weighing platform and trans-
mitted via an antenna through a mobile device. Bilik et al. (2024) pro-
vided an overview of more than 50 research projects that combine
machine learning and computer vision techniques for automated
beehive monitoring, mostly used for bee traffic, pollen and varroa
detection with potential for assessing the health status of honey bee
colonies. Despite the growing interest in this topic as exemplified by the
aforementioned papers, none of these recent studies addressed the
likelihood and determinants of adoption by the ultimate target user
groups of beekeepers.

Technological developments driving the digital agriculture revolu-
tion (Shepherd et al., 2020) allow for more continuous measurements in
beehives through the use of sensors, data transfer and storage, novel
analytical techniques, and improved connectivity. Such technological
developments provide an opportunity to find indicators of changes in
the status of a biological system (Scheffer et al., 2018). Indeed, mea-
surements from in-hive sensors allow gathering high resolution infor-
mation on honey bee colony dynamics (Meikle and Holst, 2015), while
at the same time providing a more non- or low-disturbing monitoring
method for the bees (Meikle and Holst, 2015; Ulgezen et al., 2021; van
Dooremalen and van Langevelde, 2021). Several studies emphasise the
value of using weight, temperature, humidity, sound and vibrations to
measure colony resources, activity and growth (Meikle and Holst, 2015;
Zacepins et al., 2015). An important step to indirectly assess colony
performance is the interpretation of the raw data (Braga et al., 2020a,
2020b; Cecchi et al., 2020; Meikle et al., 2017), which benefits from a
machine learning or artificial intelligence approach (Braga et al., 2020b;
Meikle and Holst, 2015; Metlek and Kayaalp, 2021). For example, Braga
et al. (2020b) developed a high precision classification model based on a
supervised machine learning approach to estimate the health status of
honey bee colonies and to indicate an imminent colony collapsing state
to beekeepers. In a similar vein, Bencsik et al., (2023) demonstrated that
it is possible to estimate the number of foraging bees, colony size and
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strength and eventual risk of colony loss from the change measured in-
hive carbon dioxide using CO2 gas sensors.

Ongoing developments in the beekeeping sector include software
such as websites and mobile apps to register and store hive observations,
interventions and managerial actions (beekeeping administration),
hardware such as measurement sensors and printed circuit boards to
control the measurements and transmit data wirelessly, databases to
store data, algorithms to process the data, and applications to feed in-
formation back to the beekeeper. All these digital elements together
form a platform with a data pipeline. Hence, in this paper we refer to
Apiculture 4.0 as the transition towards digital beekeeping, a parallel to
the concept of Agriculture 4.0. In this context, Apiculture 4.0 boils down
to a set of remote, non-invasive, wireless or IoT-based beehive or honey
bee colony monitoring tools and data analytics. In this paper we will
refer to this set of tools as ‘Digital Beehive Monitoring Technology’
(DBMT) and study its current and future adoption among beekeepers in
Europe.

1.2. Scope, objectives and framework

Both beekeepers and honey bee colonies can benefit from DBMT
applications as indicated previously. By measuring the hive continu-
ously, beekeepers can be informed and even warned about the status of
their bee colonies. Sensor data from beehives combined with environ-
mental data, e.g., landscape and weather information, can be transferred
to an application allowing beekeepers to remotely monitor the health
status of their bee colonies. DBMT is a non-invasive means to know if a
colony needs the beekeepers’ assistance because of health issues (e.g.,
the expression of a disease or lack of food resources) and helps bee-
keepers with managerial and production decisions (e.g., deciding about
the optimal time for honey harvesting or disease treatment). However,
DBMT is not a matured field yet. As more sensors, knowledge on honey
bee colonies and their health factors, and application of data science
such as machine learning become available, new applications to support
the beekeepers are still being developed. Open source code and designs
allow for swift developments in the public space and permit researchers,
beekeepers, and others to collaborate in the development of new
applications.

Apart from the challenges imposed by the emerging technologies
themselves, Shepherd et al. (2020: 5087) mentioned that “there is plenty
of evidence to suggest that the main barriers to uptake will be socio-
ethical [rather than merely technological]”. This refers amongst others
to equitable sharing of the benefits the technology can offer and iden-
tifying those who will embrace the technology and potentially benefit
from it, versus those who will not. In their search for priority research
questions pertaining to the digitalisation of agriculture, Ingram et al.
(2022) identified and prioritised seven key themes that would benefit
from a stronger evidence base, to help steer policy formulation including
‘understanding benefits and uptake of data and technologies’. Within
each theme, priority research questions were categorised into ‘gold’,
‘silver’ and ‘bronze’. The present research fits specifically within the
theme on understanding benefits and uptake, which basically refers to
factors that determine and support adoption and benefit or hamper
farmers’ (i.e., beekeepers’ in our case) capacity to adopt digital tech-
nologies. One of the priority research questions within this theme –
classified as ‘silver’ by Ingram et al. (2022: 7) – asks: “What factors in-
fluence the uptake of digital technologies on farms (i.e., apiaries in our
case)?” This is one of the research questions explicitly addressed in the
present study. Related priority research questions refer to benefits and
their distribution as well as identifying users who might be (dis)
advantaged with respect to the adoption of digital technologies.

With the overall aim to bridge a part of the aforementioned
knowledge gaps, the objectives of the present study are threefold: (1) to
characterise European beekeepers who are implementing (at least some
kind of) digital monitoring in their beekeeping operation versus those
who are not; (2) to assess the benefits beekeepers seek or expect from the

adoption of DBMT; and (3) to identify key determinants of beekeepers’
intention and adoption behaviour related to DBMT. Specifically with
respect to third objective, this study embraces the Theory of Planned
Behaviour (TPB) as the conceptual framework to identify and assess the
determinants of beekeepers’ intentions to adopt DBMT.1

According to the TPB, behavioural intention (INT), which refers to an
individual’s readiness to perform the concerned behaviour (i.e., adopt-
ing DBMT), is assumed to be a direct antecedent of behaviour, which is
the individual’s observable response (i.e., implementing DBMT at least
to some degree, in this present study). Behavioural intention is in turn
influenced by three possible determinants: personal attitude toward the
behaviour; social (or subjective) norm; and, perceived behavioural
control (Ajzen, 2002, 1991). Attitude toward the behaviour (ATT) refers
to how positively or negatively a person evaluates the target behaviour
(i.e., in this case, to how positively or negatively a beekeeper evaluates
the adoption of DBMT). Social Norms (SN) refer to perceived social in-
fluence or pressure to perform or not perform the behaviour (Ajzen,
1991). In the context of beekeeping, social norms may refer to the
eventual influence of other beekeepers, beekeepers’ associations or
other people or organisations that matter to the beekeeper.2 Perceived
behavioural control (PBC) refers to the perceived ease or difficulty with
which the individual believes they can perform the behaviour. PBC thus
encompasses perceptions of resource and technology facilitation con-
ditions (i.e., perceptions of how easy or difficult the beekeeper perceives
the adoption of DBMT to be). This component accounts for eventual
incomplete voluntary control over the intended behaviour, e.g., because
of a lack of financial resources, technical skills or accessibility of the
technology. These three antecedents to behavioural intention are argued
to develop from three sets of beliefs, namely behavioural beliefs in the
case of personal attitude, normative beliefs referring to social norms,
and control beliefs related to PBC (Ajzen, 1991).

Finally, PBC is expected to moderate the effect of behavioural
intention on behaviour, in the sense that a favourable intention may
drive the behaviour only in case PBC is strong enough, which means that
facilitating conditions are present to a satisfactory degree at least. Using
quantitative pan-European beekeeper survey data, this paper will test
the validity of the TPB model for assessing determinants of beekeepers’
adoption of DBMT. For a visualisation of the TPB model, we refer to the
results section where the model and analytical findings concerning the
hypothesised paths in the TPB model are presented.

2. Materials and methods

2.1. Survey, questionnaire and measurement scales

Primary data were collected through a cross-sectional quantitative
survey with European beekeepers (n = 844). Part of an online ques-
tionnaire was developed to assess beekeepers’ current use, interest and
future intention to adopt DBMT. The overall survey was introduced to
the participants as a study on healthy and sustainable beekeeping in
general and it was conducted within the frame of the EU Horizon 2020
project B-GOOD (de Graaf et al., 2022; van Dooremalen et al., 2014).

1 We refer to the corresponding Results section (3.5) for a graphical repre-
sentation of the TPB model.

2 The possible presence of social influences justifies the choice of the TPB
model rather than the Technology Acceptance Model (TAM) as the conceptual
framework for this study. The TAM focuses on personal attitudes and percep-
tions, notably the perceived usefulness and the perceived ease of use of a
technology. This model has proven to be useful also in the context of
beekeeping when technology adoption is determined by individual perceptions
(e.g., Hassler et al., 2021). These are implicitly contained in the Attitude and
Perceived Behavioural Control components of our study’s TPB model, next to
Social Norms. It has been suggested that the TPB may be more powerful than
the TAM in technology adoption decisions where social influences play a role
(e.g., Cheng, 2019).
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The survey addressed characteristics of the beekeepers, their beekeeping
operation, personal attitudes and management practices in relation to
beekeeping, honey bee colony health and its monitoring, environmental
quality and climate change, and interest in digital technologies for
beekeeping. This paper focuses on analysing the data collected in the
latter part of the survey, notably beekeepers’ interest in adopting DBMT.
Key characteristics of the study sample are summarised in Table 1 (first
column) and have also been described in Van Espen et al. (2023).

Within the survey section on DBMT, participants were first asked to
indicate to what extent they are currently digitally monitoring different
hive parameters including weight, temperature, humidity, sound, and
number of bees in (at least some of) their beehives. Each parameter was
accompanied by a binary (“no”/“yes”) measurement scale and they were
presented in a randomised order to avoid order bias. The question
formulation specified that ‘to monitor’ does not simply mean ‘to mea-
sure’ but rather ‘to check, observe and interpret over a period of time’.
Responses to this question were included in the TPB model as measures
of observed behaviour (see section 3.5). Participants were also asked to
indicate what percentage of their beehives are currently digitally
monitored as reported in the preceding question. Next, beekeepers were
asked about the benefits they seek from (present or future) adoption of
DBMT. Five potential benefits were assessed, including ‘to save time’, ‘to
save costs’, ‘for easier beehive management’, ‘to decrease colony loss’,
and ‘to enhance colony health’, each on a five-point Likert scale ranging
from 1=”totally disagree” to 5=”totally agree”. The list of possible
benefits was informed by the promises of current and near-future DBMT
as reviewed from literature.

Finally, participants were exposed to a list of 13 statements referring
to personal attitude (three behavioural belief statements), social norms
(three normative belief statements), perceived behavioural control
(three control belief statements), and behavioural intention (four
statements). As reported previously in section 1.2, according to the TPB,
intentions towards adopting a new technology are hypothesised to be
predicted by the perception that the adoption of the technology is
personally desirable (personal attitude toward the behaviour), sup-
ported by social norms (subjective or social norms), and practically
feasible (perceived behavioural control). Each statement was scored on
a five-point Likert scale ranging from 1=”totally disagree” to 5=”totally
agree”. The precise formulation of the statements is provided in the

results section (we refer to Table 2). Before exposing participants to the
TPB-statements, they were informed that “digital hive monitoring
means checking, observing and interpreting data collected by means of
electronic devices for beekeeping that are connected to other devices or
networks over time; examples of digital hive monitoring technologies in
beekeeping include hive monitoring and colony surveillance tools,
swarm detection systems, or bee counting devices, and using a digital
logbook”. It was further specified that these questions pertain to “at least
some, but not necessarily all of your hives”. The anticipated timeframe
for adoption was specified in the question formulation as “in the next
two years”. The 13 TPB-statements were presented in one set with a
randomised order to avoid order bias. The use of multiple items to
measure each construct allows to obtain observed measurements which
constitute an unobserved latent construct in the TPB model that will be
estimated by means of Structural Equations Modelling (SEM).

The questionnaire also included questions probing for socio-
demographic characteristics of the beekeeper (e.g., age, gender, edu-
cation, country) and characteristics of their beekeeping operation, of
which the following were relevant to the present study: number of
beehives, number of years active as a beekeeper, beekeepers association
membership and eventual role in the management of the association,
urban–rural location (five-point scale ranging from 1=”purely urban” to
5=”purely rural”), total and average (i.e., per productive hive) honey
production (kg) in 2021, average colony winter loss over the last five
years (percentage, categorical), and whether the beekeeper self-qualifies
as a hobbyist versus professional (five-point scale ranging from
1=”purely hobbyist” to 5=”fully professional”).

2.2. Data collection procedure

The master version of the questionnaire was developed and pre-
tested in English with the collaboration of those members of the
research project consortium who are also beekeepers. The questionnaire
and all related informed consent literature were translated into 11
additional European languages, pre-tested, checked for linguistic
equivalence, and web-programmed in Qualtrics for online administra-
tion. Data collection was completed during October 2021-January 2022.
The survey was accessed through a dedicated website where study
participants could select their native (or preferred) language version for

Table 1
Sample characteristics (n, %) and logistic regression model results explaining determinants of using digital beehive monitoring technology (binary variable, 20.9 %
yes): coefficient estimates (β), standard errors (S.E.), z- and p-values, odds ratios (OR) and 95 % confidence intervals (95 % CI) (n = 844).

Variables n (%) β S.E. z p OR [95 % CI]

European region      
Northern Europe (reference) 78 (9.2)     
Western Europe 455 (53.9) 0.81 0.40 2.05 0.041 2.27 [1.04–4.96]
Eastern Europe 156 (18.5) 0.93 0.41 2.28 0.023 2.53 [1.14–5.61]
Southern Europe 155 (18.4) 0.65 0.42 1.56 0.118 1.92 [0.85–4.32]

Type of beekeeper      
Purely hobbyist (reference) 396 (46.9)     
Neither purely hobbyist nor professional 288 (34.1) 0.89 0.24 3.76 <0.001 2.43 [1.53–3.85]
Rather or fully professional 160 (19.0) 1.60 0.28 5.7 <0.001 4.97 [2.86–8.62]

Years active as a beekeeper      
Up to 3 years or less (reference) 144 (17.1)     
From 4 to 15 years 435 (51.5) 0.61 0.32 1.88 0.060 1.84 [0.97–3.46]
16 or more years 265 (31.4) 0.76 0.34 2.23 0.026 2.14 [1.10–4.19]

Managerial role in beekeepers association as chairperson, secretary or board member      
No (reference) 629 (74.5)     
Yes 215 (25.5) 0.47 0.20 2.39 0.017 1.60 [1.09–2.37]

Constant 844 (100.0) − 3.53 0.48 − 7.39 0.000 0.03 [0.01–0.07]

Goodness of fit statistics: Wald chi2(8) = 72.50, p < 0.001; pseudo R2 = 0.095.
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completion. Participants were recruited primarily through distributing
the survey’s web link via national beekeepers’ associations who posted
the survey invitation on their websites, newsletters, and/or social media
posts addressed to their members. In addition, beekeepers were con-
tacted and invited to take part in the study by the involved partner
research institutes. The target population of the survey were active
beekeepers in the European countries where the survey link was
distributed. In line with van der Zee et al. (2013), the study qualifies as a
self-administered internet survey using a non-random participant self-
selection sampling method. Ethics approval for the beekeeper survey
was granted by the UZ Gent / UGent Medical Ethics Committee (ref. nr.
BC-10610 – August 2021). The full questionnaire (master English
version in pdf format) and the data (SPSS format) of this study are
available on the B-GOOD Bee Health Data Portal.3

2.3. Statistical analysis

Participant’s socio-demographic and their beekeeping operation’s
characteristics were summarised using descriptive statistics. Differences
between groups (based on, e.g., age, gender, degree of professionalism)
in current usage and benefits sought from using DBMT were assessed
using cross-tabulation and chi-square statistics in case of two categorical
variables, and independent samples t-tests or one-way ANOVA F-tests in
case of categorical and metric variables. A new binary variable was
created indicating whether a beekeeper was already implementing some
digital monitoring of beehives (see section 3.4 for more detail). Bivariate
associations between this new binary variable and beekeeper and

beekeeping characteristics were tested through cross-tabulation and chi-
square statistics. Next, a logistic regression model was estimated with
this binary variable as the dependent variable and selected explanatory
variables to identify a set of determinants of adoption of DBMT among
European beekeepers. Finally, Confirmatory Factor Analysis (CFA) and
Structural Equation Modelling (SEM) were implemented to test the
contribution of personal attitudes (ATT), social norms (SN) and
perceived behavioural control (PBC) in shaping beekeepers’ intention to
adopt (INT) – and adoption of – DBMT as stipulated in the conceptual
TPB-model. To assess the goodness-of-fit of the CFA and SEMmodel, the
following statistics were used: the Comparative Fit Index (CFI), the
Tucker-Lewis Index (TLI), the Root Mean Square Error of Approximation
(RMSEA), pclose, and the Standardised Root Mean Square Residual
(SRMR). Generally, the SEMmodel is considered to fit well if the CFI and
TLI are greater than 0.9 (Bagozzi and Yi, 2012; Hair et al., 2013), the
RMSEA is less than 0.05, pclose is greater than 0.05, and the SRMR is less
than 0.08 (Thakkar, 2020). Statistical analyses were performed using
SPSS 25 and Stata 17.

3. Results

3.1. Beekeeper and beekeeping characteristics

A total of 844 beekeepers completed the survey representing 18
European countries. Participants were classified based on their country
of residence into four European regions (Northern, Western, Eastern,
Southern Europe) based on the United Nations Geoscheme for Europe
classification. Beekeepers’ age ranged from 18 to 91 years (mean age =

53 years), 80.7 % identified as male, and almost half of the participants
(44.8 %) had been active as a beekeeper for more than 10 years. The size
of their beekeeping operations ranged from 1 to 6,100 beehives, with an

Table 2
Theory of Planned Behaviour (TPB) measurement items and constructs, final confirmatory factor analysis (CFA) properties and factor loadings (all factor loading p-
values < 0.001), and Cronbach’s alpha reliability coefficients (n = 844).

Measurement items and constructs Factor loading

Attitude (ATT) (Cronbach’s alpha ¼ 0.914) 
I feel that using digital hive monitoring would be a good idea for my beehives within the next two years (ATT1) 0.881
I would enjoy using digital hive monitoring would be a good idea for my beehives within the next two years (ATT2) 0.864
I feel that using digital hive monitoring would be important for me and my beehives within the next two years (ATT3) 0.906

Social Norms (SN) (Cronbach’s alpha ¼ 0.891) 
Most people whose opinions I value think I should use digital hive monitoring within the next two years (SN1) 0.880
Most people who are important to me think I should use digital hive monitoring within the next two years (SN2) 0.875
Many beekeepers who are like me think I should use digital hive monitoring within the next two years (SN3) 0.816

Perceived Behavioural Control (PBC) (Cronbach’s alpha ¼ 0.714) 
I have the financial resources to implement digital hive monitoring in my beehives in the next two years (PBC1) 0.606
I have the technical know-how to implement digital hive monitoring in my beehives in the next two years (PBC2) 0.615
I can easily obtain digital hive monitoring equipment for my beehives in the next two years (PBC3) 0.829

Behavioural Intention (INT) (Cronbach’s alpha ¼ 0.958) 
I intend to use digital hive monitoring in my beehives within the next two years (INT1) 0.936
I plan to use digital hive monitoring in my beehives within the next two years (INT2) 0.930
I will try to use digital hive monitoring in my beehives within the next two years (INT3) 0.915
I am determined to use digital hive monitoring in my beehives within the next two years (INT4) 0.912

Behaviour (Cronbach’s alpha ¼ 0.782) 
Do you digitally monitor the weight of at least some your hives?(WEIGHT) 0.634
Do you digitally monitor the temperature inside at least some of your hives? (TEMP) 0.887
Do you digitally monitor the humidity inside at least some of your hives? (HUMID) 0.767
Do you digitally monitor the sound of at least some of your hives? (SOUND)* (0.543)*
Do you use a digital bee counter for at least some of your hives? (COUNT)* (0.378)*

Goodness of fit statistics: Root Mean Square Error of Approximation (RMSEA) = 0.041; pclose > 0.05; Comparative Fit Index (CFI) = 0.987; Tucker-Lewis Index (TLI)
= 0.983; Standardized Root Mean Square Residual (SRMR) = 0.043; * Factor loadings from initial CFA including all measurement items – based on these factor
loadings being< 0.6, the final CFA was run without these two items. All observed variables (measurement items) were accompanied by the statement “Please indicate
to what extent you agree or disagree with the following statement?” and assessed on a five-point Likert scale ranging from 1=”Strongly agree”, 2=”Disagree”,
3=”Neither agree nor disagree”, 4=”Agree” to 5=”Strongly agree”.

3 Link for access to the survey questionnaire and data: https://beehealthdata.
org/datasets/ba6a57b1-78f4-4f59-874f-84575d3acce9.
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average of 72.4 beehives (S.D.= 265.0). Almost one fifth (19.0 %) of the
participants self-classified as being ‘rather professional’ or ‘fully pro-
fessional’ based on the size of their beekeeping operation; the large
majority (81.0 %) self-classified as ‘purely hobbyist’, ‘rather hobbyist’ or
‘neither hobbyist nor professional’. Most beekeepers indicated keeping
bees in a (mainly) rural area (89.0 %). Average honey production
amounted to 17.2 kg/hive (S.D.= 13.9 kg/hive) among beekeepers who
reported to have produced honey in 2021 (93.0 % of the total sample).
Almost half of the beekeepers (48.2 %) reported honey bee colony
winter loss rates of less than 10 % on average during the previous five
years (up to 2021); the other half reported to have lost more than 10 %
of their colonies on average, with more than one fifth of the total sample
(21.1 %) reporting to have incurred more than 20 % winter losses on
average.

3.2. Current use of DBMT

Fig. 1 illustrates that the large majority (n = 668; 79.1 %) of the
participating beekeepers did not yet digitally monitor any potentially
relevant hive parameter, namely weight, temperature, humidity, sound,
or number of bees. Digital monitoring – if already implemented – was
mostly limited to one parameter while only a few beekeepers (n = 24;
2.8 %) monitored four or all five parameters included in the survey.
Among those who used some kind of digital monitoring (n = 176; 20.9
%), most were monitoring weight (81.8 %) followed by temperature
(47.7 %), humidity (34.7 %), sound (29.5 %), and number of bees (5.7
%). Beekeepers who were already digitally monitoring at least one hive
parameter indicated doing so for 6.3 % (S.D. = 19.6) of their hives on
average. The share of beehives being digitally monitored was signifi-
cantly higher among beekeepers with less than 15 hives (who indicated
to monitor on average 13.5 % of their hives) versus beekeepers with
15–50 hives (5.1 %) and beekeepers with more than 50 hives (2.3 %)
(ANOVA F = 5.12; p = 0.007). These numbers indicate that most bee-
keepers (independent of the size of their beekeeping operation) imple-
ment DBMT on one or two hives only, which can thus be considered
‘indicator’ hives, e.g. one per apiary or location. Only six beekeepers
indicated monitoring all of their hives; their total number of beehives
ranged from 1 to 30 and half of them were purely hobbyists and/or less
than five years active as a beekeeper.

3.3. Benefits sought from using DBMT

Beekeepers expect DBMT to predominantly facilitate their hive
management and related beekeeping management decisions, followed
by enhancing honey bee colony health, decreasing colony winter loss
and overall time-saving, which can all contribute to easier and more
effective hive management. Only about one quarter of the beekeepers
expect that DBMT would provide a benefit in terms of lowering their
operational costs, which indicates they are accounting for the additional
investment required for the adoption of this technology. Interestingly,
for each of the possible benefits about one fifth to one quarter of the
beekeepers are undecided, thus neither expecting nor not expecting hive
monitoring technology to provide the respective benefit. This suggests
beekeepers’ doubts or limited awareness about possible benefits that
hive monitoring technology may provide to beekeeping (Fig. 2). Bee-
keepers who were already monitoring at least one hive parameter in
some of their hives systematically reported stronger expected benefits
from adopting DBMT than beekeepers who were not yet implementing
any kind of digital hive monitoring, with p < 0.001 for ‘easier man-
agement’, ‘saving time’ and ‘saving costs’ and p < 0.05 for ‘enhancing
colony health’ and ‘decreasing colony winter loss’ based on independent
samples t-tests.

3.4. Determinants of using DBMT

A new binary variable (further referred to as ‘using DBMT’; with ‘yes’
for 20.9 % (n = 176) of the total sample) has been created indicating
whether the beekeeper reported already using DBMT, of some kind.
Based on bivariate analyses, using DBMT was significantly more com-
mon among beekeepers who qualified as ‘rather or fully professional’
based on the size of their beekeeping operation (40.6 % of these bee-
keepers classified as ‘using DBMT’) (chi-square = 63.19; p < 0.001);
who are located in Eastern Europe (32.1 %) (chi-square = 18.38; p <

0.001); who migrate their bees for honey production (i.e., implement so-
called ‘transhumance’) (31.5 %) (chi-square = 27.17; p < 0.001); who
assume a role as chair, secretary or board member in a beekeepers as-
sociation (29.8 %) (chi-square = 13.89; p < 0.001); by beekeepers with
secondary or lower education (27.3 %) (chi-square = 11.29; p = 0.004);
and who are active with beekeeping for 16 or more years (25.6 %) (chi-
square = 7.29; p = 0.026). Using DBMT was not significantly associated
with gender, age, and urban versus rural location. Beekeepers who were

Fig. 1. Frequency distribution (n and %) of beekeepers who are digitally monitoring none (red bar) vs. up to five hive parameters including weight, temperature,
humidity, sound and number of bees (n = 844). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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classified as ‘using DBMT’ did not differ significantly from other bee-
keepers with respect to honey yield per hive and colony winter loss rate.

It should be noted that several of the above-mentioned variables that
associate significantly with DBMT in bivariate analyses are interlinked,
e.g. there are relatively more professional beekeepers from Eastern
Europe (than from other European regions) in the study sample, and
professional beekeepers are more likely to implement transhumance
compared to hobbyist beekeepers. Therefore, to identify the variables
that truly distinguish between already using versus not using DBMT, a
multivariable logistic regression model was estimated with ‘using
DBMT’ as the dependent binary variable. The results of the logistic
regression model are presented in Table 1. The odds of using DBMT are
respectively 2.3 and 2.5 times higher among beekeepers from Western
and Eastern Europe compared to beekeepers from Northern Europe. The
odds of using DBMT are almost 5 times higher among professional
beekeepers compared to hobbyist beekeepers (OR= 4.97). Furthermore,
the odds of using DBMT are more than two times higher among bee-
keepers who have been active for more than 16 years compared to those
active less than three years (OR= 2.14). Finally, the odds of using DBMT
increase by 60 % as a beekeeper assumes a managerial role in a bee-
keepers association such as being chairperson, secretary or board
member.

3.5. Future adoption of DBMT: Theory of Planned Behaviour (TPB)

Data were further analysed using Stata version 17 to test the TPB
model using a two-step modelling approach whereby the measurement
model (step 1) and the structural model (step 2) were constructed
separately (Acock, 2013).

3.5.1. Confirmatory factor analysis (CFA)
First, a CFA was conducted to test the adequacy of the measurement

model and to examine evidence of the factorial structure and reliability
of the latent constructs generated by the observed measures (i.e., the
questionnaire items as listed in Table 2). Specifically, a five-factor model
was fitted to the data that capture the latent constructs of Attitude
(ATT), Social Norms (SN), Perceived Behavioural Control (PBC), inten-
tion (INT) and behaviour. According to the fit indices (RMSEA, CFI, TLI
and SRMR) employed, the CFA (Table 2) indicates that the proposed
five-factor model provides a good fit (RMSEA = 0.038, pclose > 0.05,
CFI = 0.986, TLI = 0.983, SMRM = 0.040). Cronbach’s alpha was used
to evaluate the construct reliability. All Cronbach’s alpha values ranged
from 0.779 to 0.958, and were higher than the minimum cut-off value of

0.7 indicating that construct reliability was supported (Taber, 2018).
Convergent validity was assessed by inspection of the factor loadings.
The initial factor loadings of all measurement items were significant and
higher than the suggested cut-off value of 0.6 except for the items
’Sound’ and ’Count’ (number of bees) within the latent construct
Behaviour. Therefore, the CFA was run again without these two mea-
surement items in the analysis. All factor loadings of the final CFA
(Table 2) were significant and higher than 0.7, indicating good
convergent validity of the model (Vellis, 2003). The overall CFA results
suggest that the observed variables are indeed indicators of the latent
constructs, and that the measurement model is valid and reliable. The
resulting measurement model can therefore be used as a foundation for
testing structural relationships between the latent constructs using
Structural Equation Modelling (SEM) in the next analysis step.

3.5.2. Structural equations model (SEM)
Second, for determining the direction as well as the strength of the

interrelationships between latent constructs as hypothesised in the TPB,
SEM was employed. The SEM with the total sample of beekeepers
(Fig. 3) showed a good fit to the data (chi-square = 231.270; p < 0.001;
RMSEA= 0.041; pclose= 0.987; CFI= 0.987; TLI= 0.984; and SRMR=

0.043). Standardised weights (β) of all the explanatory variables were
statistically significant at p < 0.01 levels (Table 3a). Among the con-
structs, Attitude showed the strongest positive and significant effect on
intention to use DBMT (β = 0.666; t = 20.720; p < 0.001), indicating
that personal attitude explains 44.4 % (square root of 0.666) of the
variance in intention. Personal attitude – which is a rather stable
construct that is based on an individual’s personal beliefs, values, con-
victions and/or experiences over time – is herewith the most important
predictor of behavioural intention as compared to other factors that may
be more variable or context-dependent. Social Norms (SN) and
Perceived Behavioural Control (PBC) were also positively contributing
to intention ((β = 0.206; t= 5.570; p< 0.001) and (β = 0.145, t= 5.860,
p < 0.001), respectively), albeit both showing a much lower effect on
intention. In line with the theory of reasoned action, Behavioural
Intention showed a positive and significant – albeit relatively weak ef-
fect on Behaviour (β = 0.273; t = 6.440; p < 0.001). Moreover, PBC had
a significant direct and positive effect on Behaviour (β = 0.126; t =

2.650; p < 0.01). The Sobel-test was applied to test the mediation effect
of Behavioural Intention on the relationship between PBC and Behav-
iour using bootstrap methods. The results show that Behavioural
Intention effectively mediates the effect of PBC on Behaviour (β = 0.040;
p < 0.01) (see Table 3b), thus confirming that facilitating conditions

Fig. 2. Beekeepers’ benefits sought from using digital beehive monitoring technology (%, n = 844).
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must be satisfied for the behaviour to take place.

3.5.3. SEM by beekeeper type
As suggested by the results of the logistic regression, the relative

importance of Attitude, Subjective Norm, and Perceived Behavioural
Control in predicting Behavioural Intention and the use of DBMT may
vary depending on the type of beekeeper (notably hobbyists vs. pro-
fessionals) and the beekeeper’s social embeddedness in the beekeeping
community. Therefore, we tried to understand eventual differences in
the interest in adopting DBMT among purely hobbyist beekeepers versus

professional beekeepers, and among beekeepers who assume a mana-
gerial role in a beekeepers association versus those who do not. The
latter analysis did not reveal major meaningful differences in the
strength of effects in the TPB-model (Table 4). Attitude had consistently
the strongest effect on Behavioural Intention to use DBMT. The only
meaningful – albeit rather minor difference is observed for the role of
PBC in the model for purely hobbyists versus professionals, indicating
that PBC has a lower effect in shaping the intention and adoption of
DBMT among hobbyist beekeepers, versus a much stronger effect among
professionals. Possible explanations and implications are discussed in
the discussion section.

4. Discussion and conclusion

The evolution during the past decade of digital farming (Agriculture
4.0), as with digital beekeeping (Apiculture 4.0) as presented in this
study has been remarkable. Apiculture 4.0 is enabled through the
automated collection, integration and analysis of data from beehives
and external monitoring (e.g., sensors or landscape and weather data).
This new paradigm requires a shift from traditional (beekeeping) prac-
tices to management that is enhanced by digital systems, with benefits
that enable cost reductions, enhance profitability and foster the
environmental-social-economic sustainability of agriculture (Maffezzoli
et al., 2022). Most research contributions have focused on the enabling
technologies, the main application domains and/or on the actual ben-
efits from the adoption of Agriculture 4.0. The same technologies are
increasingly available for implementation in the beekeeping sector as
well. The adoption of digital beehive monitoring technologies offers

Fig. 3. Theory of Planned Behaviour structural equations model result: determinants of the adoption of digital beehive monitoring technology in European
beekeeping, total sample (n = 844) (ATT = Attitude; SN = Social Norms; PBC = Perceived Behavioural Control; INT = Behavioural Intention; TEMP = temperature;
HUMID = humidity).

Table 3
Theory of Planned Behaviour (TPB): structural equation model (SEM) results
(Table 3a), and Perceived Behavioural Control (PBC) – Behavioural Intention –
Behaviour path mediation test using bootstrapping (Table 3b) (n = 844).

(a) Structural equation model (SEM) β S.E. t p

Attitude (ATT) → Intention (INT) 0.666 0.032 20.720 <0.001
Social norms (SN) → Intention (INT) 0.206 0.037 5.570 <0.001
Perceived Behavioural Control (PBC) →
Intention (INT)

0.145 0.025 5.870 <0.001

Intention (INT) → Behaviour 0.273 0.042 6.440 <0.001
Perceived Behavioural Control (PBC) →
Behaviour

0.126 0.048 2.650 0.008

(b) Path mediation test Bootstrapping 95% bias-corrected
CI

p

Indirect
effect (β)

Boot
S.E

Boot
LLCI

Boot
ULCI

PBC → INT → Behaviour 0.040 0.009 0.022 0.058 <0.001
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considerable potential to assist the apicultural sector to cope with the
substantial challenges facing beekeeping in Europe and beyond (Willcox
et al., 2023). Whereas digital innovations have been flagged as having
the potential to contribute to more sustainable and resilient agriculture
in general, the potential unequal distribution of their benefits imposes
particular challenges (Finger, 2023). This underscores the relevance of
investigating the interest, uptake and expected benefits amongst a di-
versity of target groups for technology adoption. The present study has
focused on European beekeepers’ behaviour towards and interest in
digitalisation. This study addresses one of the key areas of agricultural
economics’ and innovations’ research need, notably on “farmer’s
behaviour towards digitalisation” as identified by Finger (2023: 1300),
and one of the priority research questions within the theme “under-
standing benefits and uptake of data and technologies” as identified by
Ingram et al. (2022: 7).

This study revealed that the proportion of European beekeepers
currently using some kind of digital monitoring in their apiaries is still
relatively low (20.9 %). For beekeepers using this technology it is in
most cases limited to the monitoring of a single parameter (mostly hive
weight) and only implemented on a limited number of hives. Our
analysis revealed a decreasing share of the number of hives being digi-
tally monitored with increasing size of the beekeeping operation. This
suggests that beekeepers with larger numbers of beehives select ‘model’
or ‘indicator’ hives for monitoring, e.g., one or a few hives per apiary or
location rather than equipping every single hive with the technology,
which is a logical choice from a cost efficiency point of view. Among the
‘rather or fully professional’ beekeepers in our study sample, the
adoption rate amounted more than 40 %. This number corresponds with
a study by Vardakas et al. (2023) who reported a 45 % adoption rate of
some form of ‘precision apiculture system’ among beekeepers in France,
Germany and Greece, while confirming that weighing scales were the
most commonly used. According to Centola et al. (2018) as cited in
Shepherd et al. (2020), the critical mass of technology adoption needed
to create a ‘social tipping point’ is about 25% of the relevant population.
The concept of a social tipping point refers to a point in a dynamic socio-
environmental system where a small change in actors’ behaviour trig-
gers an abrupt irreversible change in the system (Juhola et al., 2022). In
the context of technology adoption, it refers to a situation where a mi-
nority group of innovators and early adopters of a technology initiate a
cascading change of social behaviour, which speeds up further adoption
of the technology. The data of our survey suggest that such a social
tipping point is not yet reached for the European beekeeping sector as a
whole (ranging from hobbyists to professionals). Nevertheless, we sug-
gest this ‘social tipping point’ is possibly within sight, with around one
fifth of the beekeepers in the total study sample having implemented

some kind of digital hive monitoring. Among professional beekeepers,
this cascading point is already reached with an adoption rate of more
than 40 %. However, it should be noted that the proportions of adoption
as measured in this study (and others alike using similar online data
collection methods) may be somewhat inflated as compared to the
overall population of beekeepers because of the use of an online data
collection method in our survey. This may have induced some bias to-
wards more ICT-literate beekeepers in the study sample, which even-
tually associates with more openness to and a higher likelihood of using
digital innovations. The absolute share of beekeepers adopting or
intending to adopt DBMT described above can reasonably be debated as
merely being a snapshot, time-dependent and not apt for extrapolation
beyond the characteristics of the study sample. Notwithstanding this,
the finding that the social tipping point is in sight or already surpassed in
specific groups (e.g. professional beekeepers) underscores the relevance,
timeliness and topicality of the present research.

Perhaps more importantly, for enabling and promoting the adoption
of beneficial technology and transitioning to Apiculture 4.0, are our
analyses revealing diversity among beekeepers and determinants of
intention and adoption behaviour. Logistic regression analysis indicated
that the adoption of digital hive monitoring differs significantly between
EU regions, type of beekeeper (professional vs. hobbyist, and associated
size of the beekeeping operation), number of years of experience as a
beekeeper, and social embeddedness through an active involvement in
the board of beekeepers’ associations. The findings of this study here-
with coincide with several previous studies in other domains of agri-
culture where it was shown that technology adoption is more likely
among larger commercial farms (Shepherd et al., 2020). Also in the
participatory workshops organised by Ingram et al. (2022), there was
general agreement that larger commercial farms would benefit most
from digitalisation, and that this would characterise future trends as
production systems become more specialised. The five-times higher
likelihood of adopting DBMT among professional (i.e., larger and more
commercially oriented) beekeepers as compared to hobbyists also aligns
with previous studies.

The challenges associated with technology adoption may be expe-
rienced differently by different beekeepers operating in different con-
texts e.g., environmental or working conditions. For example, with
respect to sensors, the challenges concern their ability to function in
rugged conditions and meeting power requirements in situations where
battery changes cannot easily be performed (Shepherd et al., 2020).
These challenges also apply to beekeeping since beehives are often
located in remote or rural areas with limited power supply and where
they may be exposed to harsh weather conditions. This may explain why
the adoption of DBMT is lower in Northern European countries where

Table 4
Theory of Planned Behaviour (TPB): structural equation model (SEM) results for purely hobbyist vs. professional beekeepers and for beekeepers who assume vs. not
assume a management role in a beekeepers association.

Type of beekeeper* Purely hobbyist beekeepers (n ¼ 396) Professional beekeepers (n ¼ 160)

β S.E. t p-value β S.E. t p-value

Attitude (ATT) → Intention (INT) 0.727 0.052 13.900 <0.001 0.721 0.065 11.180 <0.001
Social norms (SN) → Intention (INT) 0.141 0.059 2.410 0.016 0.131 0.083 1.580 0.114
Perceived Behavioural Control (PBC) → Intention (INT) 0.084 0.039 2.130 0.033 0.223 0.054 4.160 <0.001
Intention (INT) → Behaviour 0.315 0.061 5.170 <0.001 0.161 0.113 1.420 0.155
Perceived Behavioural Control (PBC) → Behaviour 0.063 0.071 0.890 0.372 0.225 0.119 1.900 0.057

Assuming a management role in a beekeepers association Yes (n ¼ 215) No (n ¼ 629)

β S.E. t p-value β S.E. t p-value

Attitude (ATT) → Intention (INT) 0.655 0.077 8.460 <0.001 0.668 0.035 19.080 <0.001
Social norms (SN) → Intention (INT) 0.214 0.082 2.620 0.009 0.206 0.042 4.890 <0.001
Perceived Behavioural Control (PBC) → Intention (INT) 0.132 0.047 2.780 0.005 0.150 0.029 5.070 <0.001
Intention (INT) → Behaviour 0.261 0.079 3.300 0.001 0.297 0.050 5.890 <0.001
Perceived Behavioural Control (PBC) → Behaviour 0.152 0.087 1.750 0.080 0.096 0.057 1.680 0.094

* Beekeepers who self-classified as neither ‘purely hobbyist’ nor ‘professional’ were left out of this analysis.
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cold weather conditions may impact battery life. Furthermore, battery
changes may be difficult to implement if a beehive (which can weigh up
to 100 kg and requires minimal disturbance in certain periods of the
year) must be removed from the scale or platform that carries the main
electronic components. Developers and providers of DBMT solutions
will need take into account these realities for widespread adoption.
Furthermore, rural areas have been flagged as among the most excluded
from fast and reliable broadband developments, such as the Internet of
Things. For this reason, Shepherd et al. (2020: 5085) noted connectivity
issues as “perhaps the single largest technical challenge that will limit
the uptake of digital agriculture”. Similarly, with beehives mostly
located in rural areas, connectivity is a considerable challenge that
DBMT solutions will need to contend with. Furthermore, Vardakas et al.
(2023) reported a positive correlation between the use of digital moni-
toring technology and distance of the apiary from the beekeeper’s place
of residence; a factor our study did not explicitly account for. Our
analysis revealed a higher likelihood of adopting DBMT among bee-
keepers who migrate their bees for honey production, which is a man-
agement practice implying longer distances between the beekeeper’s
place of residence and apiary location. This underscores the significance
of the ‘connectivity challenge’ for the implementation and adoption of
DBMT ‘remote monitoring’ solutions, where power and internet
network connectivity are essential. In line with Geels and Ayoub (2023)
who studied the dynamics of social tipping points in the context of
climate change mitigation, further techno-economic improvements,
actor reorientations, and policy support will be essential, together with
extension services, communication and targeted marketing efforts by
involved stakeholders.

Ingram et al. (2022) flagged the role of enabling conditions and re-
lationships between constituent actors as being missing thus far in
adopting digital technologies and transitioning to Agriculture 4.0. This
observation echoes studies showing the importance of agricultural
knowledge and advice networks, respectively, in increasing the utility of
digital agricultural technologies and the need to consider the role of so-
called meso-scale actors. The latter has also been referred as the
requirement for a more networked and collaborative understanding of
adoption. These research needs have been addressed in the present study
through studying the role of social norms (SN, as a proxy for the role of
networks and peers) and perceived behavioural control (PBC, as a proxy
for the role of knowledge, skills, and means). Although, personal atti-
tudes are the predominant driver of behavioural intention (for hobbyist
and professional beekeepers alike), the significant contribution of SN
confirms the importance of other people’s opinions in driving the
adoption of DBMT. This result stresses the role of the social environment
and beekeepers’ social embeddedness in driving technology adoption.
When distinguishing between hobbyist and professional beekeepers, it
was found that SN (i.e., other’s opinions) matters especially for DBMT
adoption among hobbyist beekeepers whose adoption rate is still below
the so-called social tipping point. The social tipping point for technology
adoption has been surpassed among professional beekeepers, whichmay
imply that social influences have eventually become less relevant among
this group. Meanwhile, PBC (i.e., self-efficacy) emerges as a stronger
driver among professional beekeepers for whom facilitating conditions
are clearly more important than social norms. The findings indicate that
different enabling factors are at stake for hobbyists versus professionals,
which has major implications for speeding up DBMT adoption.
Dissemination of favourable experiences, e.g. by innovators and early
adopters, may play a key role in speeding up DBMT adoption especially
among hobbyists. Those disseminators may indeed be professional
beekeepers who share their experiences with hobbyists. In addition,
beekeepers’ associations and networks can provide mechanisms for
influencing adoption with newsletter articles and use of social media
highlighting beneficial technological developments, ‘success stories’ as
experienced by fellow beekeepers. The role of social norms in the TPB-
model underscores the importance and potential of a cascading change
of social behaviour in the adoption of DBMT, which can be especially

important among hobbyist beekeepers who constitute the majority of
European beekeepers, both in terms of sheer number and managed
beehives. Professional beekeepers can eventually function as an
important reference group for hobbyists as far as their drivers and mo-
tives for beekeeping match.

With respect to the uptake of digital technologies, the Ingram et al.
(2022) workshop participants also agreed that, although demographic
and farm factors are influential determinants, there are many other
critical factors, such as trust, habits, skills and infrastructure, which
deserve urgent research attention. Some of these factors have been
addressed in the present study through their incorporation in the PBC
component of the TPB model. PBC refers to an individual’s perception of
their ability to perform a behaviour, which has also been referred as self-
efficacy. If the perceived behaviour in question is one that the individual
believes to have limited (volitional) control over, such as a behaviour
that requires significant resources, skills, expertise or external support,
then PBCmay even have a negative effect on intention to use DBMT. The
findings of this study indicate that PBC has a positive although relatively
weak contribution to intention and behaviour in our beekeeper sample,
which suggests that cost, technical know-how or availability are neither
seen as major barriers nor drivers to DBMT adoption. However, DBMT
adoption among professional beekeepers is more influenced by PBC
(compared to hobbyists), suggesting facilitating conditions such as low
cost, adequate technical know-how and technology availability are
important, which logically corresponds with professional beekeepers’
stronger business orientation towards beekeeping. Our study indicates
that adoption rates are already higher amongst professional beekeepers,
nevertheless the continued development of beneficial digital technolo-
gies must focus on the practical implications and realisable benefits that
can enhance beekeeping management practices also among pro-
fessionals. Ultimately, DBMT solutions will need to deliver by effectively
enabling beekeepers, particularly those who derive their livelihood from
beekeeping, to maintain healthy, productive and sustainable honey bee
colonies. Shepherd et al. (2020), noted that the mere availability of a
technology may not be a primary driver for the uptake itself, while
adoption is expected to depend mostly on evidence that digitalisation
can provide desired benefits. The latter is indeed reflected in the
dominant role of Attitude as a predictor of future adoption in our TPB
model, in that DBMT solutions are perceived to be beneficial based on
beekeepers’ convictions and/or experiences over time.

Finally, it should be acknowledged that this study faces some limi-
tations. A first limitation stems from the applied participant recruitment
and data collection procedure, which were online and implying that
participation was based on self-selection. As a result, the survey sample
might be biased towards beekeepers with some degree of ICT-literacy (as
already mentioned) and a strong involvement in the research topic. This
imposes limits on the generalisation of study findings beyond the
characteristics of the study sample. Second, the collected data are based
on self-reports and self-assessments, which may be prone to social
desirability bias. The latter warrants caution especially in the treatment
and interpretation of single variables. Efforts have been made to address
limitations resulting from the collection of self-reported data through
multistage questionnaire pilot-testing, the use of multiple-item rather
than singe-item measures (specifically in the case of the TPB-
statements), randomisation of question items within questions and of
questions within survey sections, and guaranteeing anonymous and
aggregated data analysis and reporting.

Building upon primary cross-sectional data collected from a pan-
European sample of beekeepers, this study provided insight in current
use, benefits sought and determinants of intention to adopt DBMT. The
analyses discerned differences between hobbyist and professional bee-
keepers, those engaged in beekeeping associations, and across European
regions. While beekeepers’ personal attitudes consistently emerged as
the primary driver of behavioural intention, social norms among hob-
byists and perceived behavioural control amongst professionals exhibi-
ted a more pronounced effects. These results offer valuable insights into
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the dynamics for enabling and influencing technology adoption within
distinct segments of the beekeeping community. A better understanding
of beekeeper characteristics, usage patterns, and determinants enhances
the discourse on healthy and sustainable beekeeping practices and the
potential role of Apiculture 4.0 therein. This study suggests a ‘social
tipping point’ for transitioning Apiculture 4.0 is possibly within sight,
however for this to be realised key social and practical enabling condi-
tions (e.g., dissemination of ‘success stories’, reliable connectivity, cost
efficiency, effectiveness in improved beehive management) still need to
be addressed.
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