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SUMMARY
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pe-
diatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuro-
blastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual
studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To over-
come this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas
covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neu-
roblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical out-
comes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and
uncover considerable heterogeneity among tumor-associatedmacrophages. Finally, we showcase the utility
of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-
type annotation.
INTRODUCTION

Neuroblastoma is the most common extracranial solid tumor in

children.1 The tumor cells arise from undifferentiated migratory

neural crest cells during early fetal development.2 Most tumors

that emerge before the age of 18months show genomesmarked

by recurrent patterns of whole-chromosome gains and losses.

These low-risk tumors have an excellent prognosis. However,

the prognosis in older children is less favorable. Here, three ma-

jor genetic subtypes are discerned: tumors with (1)MYCN ampli-

fication, (2) hTERT activation, or (3) alternative lengthening of

telomeres.3,4 These three classes of high-risk tumors aremarked

by recurrent patterns of copy-number alterations (CNAs)

including 17q gains and 1p losses. Contrary to CNAs, gene mu-
Cell Reports 43, 114804, Octo
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tations are not as common except for activating ALK mutations,

which occur as somatic events across all tumor subtypes and as

germline events that cause familial neuroblastoma in rare

cases.5,6 Of note, ALK mutations and RAS/MAPK-pathway mu-

tations are enriched in relapsed neuroblastoma.7–9

Despite very intensive multimodal therapy including chemo-

therapy, radiation, stem cell transplantation, and immuno-

therapy, nearly half of all high-risk patients relapse and succumb

to the disease, while survivors often suffer from long-term

therapy-related toxicity.1,10 Moreover, the implementation of

immunotherapy has been challenging, since neuroblastomas,

especially in high-risk patients, are considered immunologically

‘‘cold’’ tumors, presenting with only limited lymphocyte

infiltration.11 Despite this, progress has been made, as the
ber 22, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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tumor-specific surface molecule GD2 can be targeted with

monoclonal antibodies, an immunotherapy now included in the

standard of care for high-risk patients.12,13 In addition, anti-

GD2 chimeric antigen receptor T cell therapy shows promising

results in clinical trials,14 thus demonstrating the potential impact

of targeting the immune system in neuroblastoma.

Recent advances in single-cell transcriptomics have greatly

improved our understanding of the cellular composition of

different healthy and diseased tissues. Over the past few years,

several transcriptomic datasets of neuroblastoma patient sam-

ples at single-cell level have been published.15–23 These founda-

tional studies have provided deeper insights into the enigmatic

cellular heterogeneity, tumor microenvironment (TME), and ori-

gins of neuroblastoma tumors. All studies find adrenergic (also

termed noradrenergic) tumor cells, while only some provide

potential clues of plasticity toward malignant mesenchymal

cells.21,23 Also, by comparison to normal development, these

studies collectively identify neuroblasts (also termed sympatho-

blasts) as the cell of origin for neuroblastoma.24–27 Finally, the im-

munemicroenvironment of neuroblastoma tumors has also been

explored, indicating (sub)populations linked to survival20 and

demonstrating an immunocompromised microenvironment.18

However, due to the rare occurrence of neuroblastoma, chal-

lenging pediatric surgeries, and the high cost of single-cell

sequencing experiments, most of these studies only included

limited patient numbers (under 20 patients per study). Integration

of data from different single-cell datasets allows the generation

of comprehensive cell atlases, which further expand our knowl-

edge by assimilating information not captured in individual

studies. Moreover, aligning different studies for a specific tissue

has several advantages. Among others, it allows for comprehen-

sive charting of the different cell types and subpopulations pre-

sent in that tissue, facilitates the discovery of novel cell subsets

and/or activation states, enables the identification of robust

marker genes across studies, and supports the annotation of

new datasets by guided cell-type prediction.28–33 For example,

some of the single-cell studies published to date have examined

myeloid immune-cell heterogeneity as a potential key player in

neuroblastoma pathology.18,20 However, there is limited overlap

in the subsets/states of these cells described, highlighting the

need for a more integrated analysis of these cells.

Here, we present a meta-analysis of published neuroblastoma

single-cell and single-nucleus RNA datasets that are integrated

into a harmonized single-cell transcriptomic atlas we term

‘‘NBAtlas’’ (neuroblastoma atlas). Using this atlas, we compre-

hensively investigate the transcriptomic heterogeneity of neuro-

blastoma. From the integrated dataset, we infer CNAs and

explore different transcriptomic signatures to discern malignant

cells. We link transcriptomic profiles of the tumor compartment

to clinical outcomes. Furthermore, we characterize the different

immune-cell types within the tumor and the TME, revealing sig-
Figure 1. NBAtlas: A harmonized single-cell transcriptomic reference

(A) Overview of the included datasets.15–20

(B) UMAP colored according to dataset (top), assay (middle), and sample (bottom

(C) Annotated integrated UMAP of the single cells/nuclei (the rings represent diff

(D) Expression of key markers used for annotation in (C). NE, neuroendocrine; R

See also Figure S1.
nificant heterogeneity within the tumor-associated macrophage

compartment. We also reveal key technical differences in single-

cell and single-nucleus transcriptomic datasets. Finally, we

demonstrate the utility of the atlas for integration and annotation

of additional data.

RESULTS

The NBAtlas is a harmonized single-cell transcriptomic
atlas of neuroblastoma tumors
To generate an integrated single-cell atlas of human neuroblas-

toma tumors, we collected data from seven different single-cell

or single-nucleus RNA sequencing (RNA-seq) datasets (origi-

nating from six publications).15–20 This amounted to 68 samples

from 61 neuroblastoma patients with different clinical character-

istics (Figures 1A and S1A; Table S1). Overall, the integrated da-

taset includes 42 primary pre-treatment, 10 post-treatment, and

12 relapsed samples (and 4 unknown), with 45 samples origi-

nating from high-risk patients and 23 from low- to intermedi-

ate-risk patients. Following quality control (see STAR Methods),

a total number of 362,991 cells were included in the NBAtlas.

After merging the different datasets, the initial cell clustering

was mostly driven by the originating dataset and the specific

assay (single-cell vs. single-nucleus) used, pointing to the need

for an integration strategy that corrects these expected batch ef-

fects (Figure S1B). Therefore, integration was performed using

scVI, a deep-learning algorithm tailored to the complex integra-

tion task at an atlas scale.34,35 Application of this integration

strategy resulted in an scVI latent space where the cells are

harmonized across the different datasets, assays, samples,

and platforms as visualized in the UMAPs (Figures 1B, S1C,

and S1D). Within this harmonized dataset, cells/nuclei specif-

ically cluster per cell type, identified on the basis of their marker

and differentially expressed (DE) genes (Figures 1C, 1D, and

S1E; Table S2). The largest cluster comprises neuroendocrine

cells (67.4%; Figure S1F), marked by high expression of

PHOX2B, NXPH1, and SYT1 and representing the presumed

cancer cells (further discussed below). Next to this, different

stromal cell types were identified including endothelial cells

(EGFL7+, EMCN+, PLVAP+), Schwann cells (CDH19+, PLP1+,

PTPRZ1+), and fibroblasts (COL1A1+, COL1A2+, COL3A1+). In

addition, various immune-cell populations formed separate clus-

ters, including T cells (CD3D+, CD3E+, CD2+), natural killer (NK)

cells (KLRF1+, KLRC1+, XCL2+), B cells (MS4A1+, CD79A+,

VPREB3+), plasma cells (IGHG1+, IGHG2+, IGHG3+), myeloid

cells (LYZ+, IL1B+, C1QC+), and plasmacytoid dendritic cells

(pDCs; LILRA4+, SCT+, PTCRA+). Finally, we identified two small

clusters, one of red blood cells expressing hemoglobin genes

(HBA1+, HBA2+, HBB+) and the other expressing adrenal cortex

markers (denoted as ‘‘stromal other’’; CYP11B1+, CYP21A2+,

FAM166B+). With the exception of the latter cluster, which was
atlas of human neuroblastoma tumors

).

erent metadata values per cell type).

BCs, red blood cells.
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restricted to a few samples, each cell type or group of cell types

was represented by cells/nuclei originating from different

patients across the various datasets (Figures 1C and S1C). Inte-

gration with Harmony36 showed highly similar results in terms of

batch correction and cell-type clustering (Figure S1G).

Neuroendocrine cells present with molecular hallmarks
of malignant neuroblastoma cells
In addition to annotation of the cells/nuclei in the NBAtlas based

on cell-type markers or DE genes (Figure 1D), we also applied in-

ferCNV37 to the single-cell and single-nucleus RNA-seq datasets

to infer tumor-specific DNA CNAs in order to distinguish malig-

nant cells from normal stromal and immune-cell types (Figures

2A and S2A). As expected, CNAs were found in neuroendocrine

cells while absent in TME cells, including normal fibroblasts and

Schwann cells. These included common neuroblastoma-associ-

ated CNAs such as 1p-loss and 17q-gain (Figures 2B and S2B).

Consistent with this, only neuroendocrine cells were systemati-

cally classified as being tumor cells using CopyKAT17 and

SCEVAN,38 which are tools for CNA inference that distinguish

malignant from TME cells (Figure S2C).

At present, while themajority of neuroblastoma tumor cells are

assumed to carry an adrenergic identity, work on in vitro cultured

cells proposes the existence of a second cell state marked by a

mesenchymal transcriptional signature, a distinct transcriptional

regulatory network, and chemotherapeutic resistance.39,40

Moreover, under therapeutic pressure, an epigenetic shift of

the adrenergic phenotype toward adrenergic cells with immature

mesenchymal-like features has been uncovered in vitro.41 Iden-

tification of these mesenchymal-like neuroblastoma cells in vivo,

however, has been challenging and is an area of intensive

research.23,24,42 Given the translational importance, we next

investigated signatures for both cell states of neuroblas-

toma18–21 in our NBAtlas. For the neuroendocrine cells, the

adrenergic signature score is significantly higher compared to

the mesenchymal signature score (while the opposite is true

for other cells in the TME).Moreover, themesenchymal signature

score is significantly lower in the neuroendocrine cells compared

to other cells of the TMEwithout CNAs, with higher expression in

mainly endothelial cells, fibroblasts, and Schwann cells (Figures

2C, S2D, and S2E). Taken together, we did not detect a signifi-

cant contribution of mesenchymal cell identity to the transcrip-

tional heterogeneity in CNA-bearing tumor cells (see also further

below).

A major driver of variability in the transcriptomic profiles of

neuroendocrine cells appeared to be cell-cycle-phase related

(Figure 2D). Proliferating neuroblastoma cells were clearly distin-

guishable from non-proliferating cells, clustering separately. For

these proliferating tumor cells, specific enrichment of replica-

tion-stress-associated signatures43,44 was observed (Fig-

ure S2F). Taking this one step further, the expression of a signa-

ture associated with prexasertib sensitivity,44 a drug targeting

the replication-stress pathway, was also highly enriched in these

proliferating tumor cells, while resistance-associated expression

was enriched in other cells (Figure S2G).

Further, to analyze the developmental origin of the neuroendo-

crine cells, we correlated the expression profiles of these cells to

a reference dataset of fetal adrenal medullas16 using a reference-
4 Cell Reports 43, 114804, October 22, 2024
based cell annotation (with SingleR and Seurat). Nearly all pa-

tient neuroendocrine cells were found to resemble neuroblast

populations most closely (Figures 2E, S2H, and S2I). The same

analysis of a recently published dataset of a human stem cell

model of sympathoadrenal development45 also resulted in a

similar conclusion (Figure S2J).

Thus, overall, neuroendocrine cells show typical charact-

eristics of malignant neuroblastoma tumor cells including

CNAs, adrenergic signature expression, and neuroblast-like

resemblance.

Zooming in on malignant cell heterogeneity of
neuroblastoma reveals distinct clusters linked to risk
groups
To further decipher the heterogeneity of neuroblastoma tumoral

cells in patient tumor samples, CNA-bearing neuroendocrine

cells (as identified by CopyKAT, Figure S2C) were selected, rein-

tegrated with scVI, and reclustered. This identified seven clus-

ters (denoted as ‘‘c’’) across the different patients, which were

then annotated based on their DE genes and a gene set enrich-

ment analysis (Figures 3A, S3A, and S3B; Table S3). Additional

integration with Seurat and ComBat both generated sufficiently

batch-corrected embeddings (Figures S3C and S3D). In these

embeddings, overall the scVI clusters remained segregated,

indicating consistency in biological results (Figures S3C

and S3D).

In agreement with the cell-cycle-phase-related heterogeneity

described above (Figure 2D), two clusters expressed genes

linked to specific cell-cycle phases. Cells of c2 showed a high

expression of genes active in the S phase, including E2F1,

TYMS, and RRM2, while cells of c4 showed a high expression

of genes active in G2/M, including MKI67, TOP2A, and UBE2C

(Figure 3B). Cell-cycle-phase scoring of the cells and enrichment

analysis of the DE genes confirmed the S- and G2/M-associated

states (Figures S3A and S3E). In agreement with aggressive tu-

mors having increased proliferative activity, c2 and c4 consist

predominantly of cells from high-risk patients (Figures 3C and

S3F). Close to c2 and c4 resides a small cluster (c7) with a partic-

ularly elevated MYCN expression (Figures 3A and S3G). Also

here, theMYCN targetsNEUROD149 andEZH250 were highly ex-

pressed. Intriguingly, c7 also displayed enrichment for the

recently described aggressive MYCN-high transitional state21

(Figure S3H).

Cells from c0 mainly reside in the G1 phase and expressed

genes associated with sympathetic nervous system differentia-

tion (and with favorable outcome), including NTRK1 (encoding

TRKA),51,52 CD9,53 and STMN422 (Figures 3B and S3E). Simi-

larly, c3 showed a relatively high expression of genes that have

also been associated with differentiation or favorable neuroblas-

toma, such as GRID2,54 DGKB,52 and SST.55 Enrichment anal-

ysis of the DE genes for both clusters compared with all other

clusters further supports a differentiated state (Figure S3A).

Overall, cells from low- to intermediate-risk patients and patients

without MYCN amplification are enriched in these two clusters

displaying relatively low expression of MYCN (Figures 3B, 3C,

and S3I).

Further, different clusters pointing to technical variation

were identified. For c1, increased expression of ribosome
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Figure 2. Neuroendocrine cells present with molecular hallmarks of malignant neuroblastoma cells

(A and B) Inferred copy-number alteration scores: (A) genome-wide, (B) 1p loss (top) and 17q gain (bottom). CNA, copy-number alteration; q2, second quantile;

q98, 98th quantile.

(C) Adrenergic and mesenchymal signature scores (from van Groningen et al.39). Both signatures are set at the same scale to allow fair comparison of both

signatures.

(D) Cell-cycle phase assignment of cells.

(E) Distribution of SingleR assigned labels after mapping neuroendocrine cells to normal sympathoadrenal development populations (from Jansky et al.16).

See also Figure S2.
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biogenesis-associated genes (such as NPM1, RPS15A, and

RPS7) was observed, which could suggest both elevated trans-

lation and technical artifacts in single-cell/nucleus data due to
sample-handling protocols56 (Figures 3B and S3A). Likewise, a

small cluster (c5) with elevated mitochondrial genes and a low

number of counts/genes was identified, likely resulting from
Cell Reports 43, 114804, October 22, 2024 5
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Figure 3. Zooming in on malignant cell heterogeneity of neuroblastoma reveals distinct clusters linked to risk groups

(A) Annotated UMAP of malignant tumor cells (n = 126,872).

(B) Dotplot of top markers used for the annotation of (A).

(C) Density plot for cells from high-risk (top) vs. low-risk (bottom) patients.

(D) Heatmap of Jaccard similarity of robust NMF programs in tumor cells and clustering thereof into metaprograms.

(E) Functional enrichment of genes in the metaprograms. Metaprogram-defining gene sets (from Fischer et al.,46 van Groningen et al.,39 Jansky et al.,16 and

Gavish et al.47) and clinical subgroup-associated gene sets (from Rajbhandari et al.48) are shown. Only statistically significant results are shown. MP, meta-

program; UP, upregulated; DN, downregulated; MNA, MYCN amplified; LOH, loss of heterozygosity.

See also Figure S3.
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technical variation (Table S3). Furthermore, c6 was enriched for

stress-associated genes such as hypoxic markers NDUFA4L2

andCOX4I2 and stress-induced DDIT4 (Figure 3B). Accordingly,

the expression of a signature for stress in tumor cells47 is specif-

ically high in this cluster (Figure S3J).

To scrutinize the tumor heterogeneity related to the adrenergic

vs. mesenchymal cell identity, we investigated signatures39 and

established markers57 for both identities. While some overlap of

the DE genes of most tumor clusters with mesenchymal gene

lists21,39,40 can be found (Table S3), no tumor cluster expressed

different keymesenchymalmarkers (Figure S3K). Moreover, only

a limited number of tumor cells exhibited a vanGroningen et al.39

mesenchymal signature score using UCell58 exceeding a back-

ground level (as determined using immune cells; Figures S3L

and S3M). To further validate our findings, we used AUCell59

with the same mesenchymal signature (by van Groningen

et al.39) as well as with other mesenchymal signatures recently

studied in human neuroblastoma tumors by Chapple et al.60

This analysis consistently revealed that only a minute fraction

of tumor cells (0%–0.07%) had an active mesenchymal expres-

sion program, while nearly all cells (99.86%) showed an active

adrenergic expression program (Figure S3N). Consequently,

we do not find conclusive evidence for an unequivocal cluster

of mesenchymal tumor cells, and further validation of potential

rare mesenchymal-like tumor cells is warranted (see discussion).

Further in line with this, upon comparison to normal sympa-

thoadrenal populations, all clusters most closely resembled

developing neuroblasts (Figure S3O). While for the DE genes of

the cycling tumor cells (c2 and c4) there is a considerable overlap

with those of both cycling neuroblasts and cycling Schwann cell

precursors (SCPs),16 only a resemblance to (cycling) neuroblasts

can be noted. This suggests that this overlap with genes overex-

pressed in cycling SCPs may be attributed solely to their shared

proliferative characteristics. In addition, among all clusters, clus-

ter c7 displayed the highest proportion of cells resembling

bridging cells (20.8%) and late SCPs (11.0%), further indicating

a transitional state. Finally, next to the neuroblast-like identity,

there are noticeable resemblances to other populations, partic-

ularly bridging cells and, to a lesser extent, connecting/late chro-

maffin cells and late SCPs (Figure S3O).

Metaprograms independently validate the annotated
tumor-cell clusters and associate with survival
To support the functional annotation of the identified tumor cells

across different neuroblastomas, we included a different

approach that does not rely on batch correction of the data

from the different tumors. To this end,malignant gene-expression

patterns were identified using non-negative matrix (NMF) factor-

ization for each sample individually, as described by Gavish

et al.47 Application of this approach across different tumor sam-

ples led to the identification of NMF programs that clustered

into 11 recurring gene-expression programs, termed metapro-

grams (MPs) (Figure 3D). These MPs were functionally character-

ized based on their top defining genes (Figure 3E and Table S4).

The two largest MPs were cell-cycle-phase related: G2/M and

S phase for MPs 1 and 2, respectively (Figures 3D and 3E;

Table S4). Interestingly, both programs were enriched in gene

sets associated with clinical subgroups with poor outcome48
(Figure 3E and Table S4). Also, enrichment of FOXM1-target

gene sets that are associated with aggressive neuroblas-

tomas46,61,62 was observed, most strongly for MP 1 (Table S4).

Of note, MPs 1 and 2 contain several genes with therapeutic po-

tential for neuroblastoma drugging, such as RRM2,63 AURKA,64

TPX2,65 and BIRC5.52 Additionally, several MPs showed enrich-

ment for gene sets associated with clinically favorable sub-

groups,48 including, MPs 4, 5, 8, and 10 (Figure 3E). These

MPs typically showed enrichment of adrenergic genes.39

Furthermore, differentMPs (MPs 4, 5, 8, 9, and 10) were enriched

for multiple cell types of sympathoadrenal development,

including mainly neuroblast populations but also chromaffin,

bridge cells and SCP populations (Table S4).

Finally, three MPs were more related to technical bias and

stress. MP 3 contained almost exclusively ribosomal protein

genes, indicative of technical artifacts,47 andwas thus not further

investigated. Similarly, MPs 6 and 11 were stress- and hypoxia-

related programs, respectively. MP 6 could further be attributed

to experimentally induced (technical) stress, as this MP was also

enriched for enzymatic-dissociation-associated signatures47,66

and, consistent with this, was specifically observed in single-

cell and not in single-nucleus data, where only single-cell data

require enzymatic tissue dissociation (Table S4).

To relate the MP results with the previously identified tumor

clusters, a signature for each MP was investigated in the inte-

grated dataset (Figures S3P and S3Q). Overall, MP 4 was highly

active across all transcriptional clusters, suggesting a pan-neu-

roblastoma program. As expected, the cell-cycle-driven and

aggressive MPs 1 and 2 were most highly expressed in the

G2/M and S clusters, respectively. Conversely, other MP signa-

tures weremore active in the low- to intermediate-risk and differ-

entiation-associated clusters (i.e., MP 5 in both, MP 8 in c0, and

MPs 9 and 10 in c3; Figures S3P and S3Q). Finally, the expres-

sion of the stress-associated MPs, 6 and 11, further corrobo-

rated the stress-related identity of c6.

Since the previous results suggest that some MPs are poten-

tially linked to patient outcomes, we investigated the MP signa-

tures in bulk RNA data of two large cohorts of neuroblastoma

patients, i.e., the SEQC67 (n = 498 patients) and NRC48

(n = 276 patients) cohorts (Figure S3R). High expression of

MPs 1, 2, and 3 was associated with decreased overall survival

in both cohorts. A similar but less significant association was

observed for MP 11. Opposingly, high expression of MPs 5, 8,

9, or 10 was associated with better overall survival in both

cohorts.

Overall, assessment of gene-expression patterns in the tumor

cells of different patients yields results highly similar to an inte-

grated clustering of these cells. Together, these complementary

analyses point to an association of distinct transcriptional pro-

files with patient outcomes, highlighting the clinical relevance

of the observed transcriptional heterogeneity in neuroblastoma.

Distinct populations of lymphoid and myeloid cells
characterize the neuroblastoma tumor immune
microenvironment
High-risk neuroblastomas are typically considered to be

immunologically ‘‘cold’’ tumors,11 which possess significant

challenges for the development of possible immunotherapy
Cell Reports 43, 114804, October 22, 2024 7
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strategies. Nevertheless, in our NBAtlas, we were able to detect

and annotate several immune-cell types (Figure 1C), which we

next examined in more detail. To this end, we isolated the im-

mune-cell clusters (T cells, NK cells, B cells, plasma cells,

pDCs, and myeloid cells) from the different patients and reclus-

tered them using scVI to generate a uniform manifold approxi-

mation and projection (UMAP) consisting of 91,750 cells/nuclei

(Figures 4A and S4A). The increased resolution allowed a more

in-depth characterization of the initially broadly classified cells.

Examination of the DE genes (Table S5) revealed the presence

of numerous lymphoid populations, including CD4+ T cells, reg-

ulatory T cells (Tregs), CD8+ T cells, NK T cells, circulating NK

cells, resident NK cells, a small population of TOX2- and KIT-ex-

pressing NK cells, B cells, and pDCs, each with their own unique

gene-expression profiles (Figures 4A and 4B; Table S5). Notably,

lymphoid cells were found to be themost abundant immune cells

(80.1%; Figure S4B), a finding that is quite striking, especially

given the proposed limited lymphocyte infiltration in neuroblas-

toma.11,68 This raises the possibility of artifacts resulting from

the tissue digestion required for single-cell RNA-seq analyses

whereby circulating cells (largely lymphoid) are considerably

easier to liberate as compared with tissue-resident cells (largely

myeloid), potentially leading to an over-representation of

lymphoid cells in the single-cell RNA-seq data (discussed further

below).

Despite their low abundance, given the proposed importance

of myeloid cells in neuroblastoma in terms of antigen presenta-

tion (e.g., dendritic cells [DCs]) and modulation of the TME

(e.g., macrophages, neutrophils),18,20,70,71 we further assessed

the heterogeneity within these cells. Here, we identified cDC1s

based on the expression of XCR1, CLEC9A, and CADM1

(Figures 4A and 4B), three marker genes previously shown to

identify these cells across tissues and species.72 Likewise, a

population of cDC2s was identified based on the expression of

CD1C, CD1E, and CLEC10A (Figures 4A and 4B). Recently, a

newly identified population of DCs, termed DC3s, has been

described in inflamed and injured tissue, showing considerable

transcriptomic overlap with cDC2s.73–77 As accurately distin-

guishing between these populations was not possible, given

the low number of cells (n = 1,988), here, we have annotated

these cells as cDC2/DC3 (Figures 4A and 4B). Further investiga-

tion is thus needed to explore heterogeneity within this popula-

tion and its implications for T cell responses. In addition to

cDC1s and cDC2s/DC3s, a third population of DCs, namely

migratory cDCs, i.e., cDCs poised to migrate to the draining

lymph nodes where they will induce naive T cell differentiation

and expressing CCR7, LAMP3, and CCL19, was also identified

(Figures 4A and 4B). In addition to the cDCs, a small population

of neutrophils (FCGR3B+,CMTM2+, andCXCR2+) was also iden-

tified within the myeloid cells alongside a larger population

of monocytes and macrophages expressing CD14, MAFB,

CSF1R, and CD68 (Figures 4A and 4B). Previously, so-called

myeloid-derived suppressor cells (MDSCs) were also identified

in neuroblastoma.18 However, as MDSCs can include mono-

cytes, neutrophils, and potentially also some macrophages,

this has sparked debate over the usefulness of this term, espe-

cially in this era of single-cell analyses.78 Based on this ongoing

discussion, we have not annotated any cells as MDSCs. Never-
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theless, as this term is widely used, including in previous neuro-

blastoma studies,18,71,79–81 for comparative purposes we map-

ped the MDSC annotation (from Costa et al.18) onto our

immune-cell UMAP, revealing these cells to be neutrophils

(Figure S4C).

Multiple subsets of macrophages with distinct
activation profiles exist in neuroblastoma
Given their hypothesized importance in the neuroblastoma

TME,70,71,82 we next aimed to increase the resolution for the

monocytes andmacrophages identified in the immune-cell atlas.

Reintegration and clustering analysis identified 11 subsets and/

or activation states across different patients, including a cluster

of proliferating cells (Figures 4C, 4D, and S4D; Table S6). First,

classical (VCAN+, S100A12+, THBS1+, EREG+) and patrolling

(or non-classical) monocytes (SPN+, FCGR3A+, FCGR3B+,

CX3CR1+) could be distinguished from the macrophages (which

were identified based on expression of generic markers

includingC1QA,C1QB,C1QC,CSF1R,MAFB, andCD68). Anal-

ysis of these genes also revealed the presence of a population of

monocytes likely in the process of transitioning to macrophages

(termed ‘‘CLEC10A+ trans mono’’) expressing lower levels of

both macrophage and monocyte-defining genes alongside spe-

cific genes for this cluster such asCLEC10A, IDO1, and LGALS2

(Figures 4C and 4D). This suggests that in neuroblastoma,mono-

cytes are recruited to the tumor and/or TME and subsequently

differentiate into macrophages. Among the macrophages, we

identified seven non-proliferating clusters, of which one con-

sisted of lower-quality cells with limited DE genes and enrich-

ment for ribosomal genes (termed high ribosomal macs), which

were not analyzed further (Figure 4C and Table S6). Among the

remaining six clusters, we identified a population of macro-

phages expressing genes associated with lipid-associated

macrophages (LAMs) previously described in the liver and adi-

pose tissue,69,83,84 including TREM2, SPP1, FABP5, CD9, and

GPNMB (Figures 4C and 4D). Indeed, mapping our recently

defined conserved human-mouse LAM signature69 onto this da-

taset corroborated the assignment of this population as LAMs

(Figure 4E). Alongside identifying the cluster of LAMs, the LAM

signature expression also revealed two smaller populations of

cells with an LAM-like phenotype expressing some but not all

of the LAM-associated genes. Notably, these clusters also ex-

pressed some unique genes, with one cluster expressing

BEST1 and ALDOA (BEST1+ LAM-like) and the other expressing

RBP4 and GPD1 (RBP4+ LAM-like). However, as both of these

clusters were unique to one or two patients (Figure S4D), this

makes it difficult to draw any conclusions about these cells,

and we did not examine them further. Aside from the LAM and

LAM-like macrophages we also identified two clusters express-

ing FOLR2, which could be further distinguished by their expres-

sion of CD163 and CETP, respectively (Figures 4C and 4D).

FOLR2+CETP+ macrophages also expressed the highest levels

of HLA genes. Lastly, this analysis also revealed the presence

of a population of macrophages co-expressing MMP9 and

PLA2G2D (Figures 4C and 4D).

To gain some insight into the potential functional relevance of

this macrophage heterogeneity, we next examined whether any

of the subsets could be correlated with patient risk or
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Figure 4. Distinct populations of lymphoid and myeloid cells characterize the neuroblastoma tumor immune microenvironment

(A) Annotated UMAP of immune cells (n = 91,750 cells; doublets excluded).

(B) Dotplot of markers used for annotation in (A).

(C) Annotated UMAP of monocytes and macrophages (n = 14,860).

(D) Dotplot of markers used for annotation in (C).

(E) LAM signature (from Guilliams et al.69) expression in monocytes and macrophages.

(F) Activation marker expression in monocytes and macrophages. mac, macrophage; mono, monocyte; LAM, lipid-associated macrophage; rel., relative; inflam,

inflammatory; MMe, metabolically activated macrophages.

See also Figure S4.

Cell Reports 43, 114804, October 22, 2024 9

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
treatment. Since 79% (or 11,669/14,860) of cells are from high-

risk patients, a similar fraction is expected for each monocyte/

macrophage population, which was the case for most popula-

tions (Figure S4E). However, LAMs, identified in 53 of the 67

patients profiled appeared to show a trend to be more preva-

lent in high-risk neuroblastoma samples (although not statisti-

cally significant here; Figure S4E). To further investigate the po-

tential immunosuppressive role of LAMs, as described across

different cancer types,85–88 we next examined the expression

of several genes associated with macrophage-activation states

across the different macrophage populations83 (Figure 4F).

Contrary to what has previously been suggested using a limited

number of patients,20 this did not reveal a prototypical immuno-

suppressive phenotype (Figure 4F). Indeed, considering all

macrophage populations, the expression of activation-associ-

ated genes did not align with clear pro-inflammatory or immu-

nosuppressive/repair phenotypes in the distinct populations/

stages, consistent with the idea that these macrophage-activa-

tion states (commonly referred to as M1 and M2, respectively)

represent in vitro phenomena that are not replicated in vivo,

likely as a result of the plethora of signals these cells receive

simultaneously in vivo compared with in vitro.89 We also could

not find enrichment of previously published gene-expression

modules associated with human in vitro M1 and M2 macro-

phage states90 in the identified macrophage populations (Fig-

ure S4F), further highlighting the need to carefully consider

the relevance of these M1/M2 signatures when analyzing mac-

rophages ex vivo.

Taken together, this analysis demonstrates considerable het-

erogeneity within the macrophage compartment in neuroblas-

toma and highlights that further research is required to assess

the functional relevance of this heterogeneity.

Technical differences between single-cell and single-
nucleus RNA-seq-based transcriptomics
In addition to delineating distinct compartments within the NBAt-

las, it is crucial to consider the data composition of the atlas it-

self, which is a collection of both single-cell and single-nucleus

RNA-seq data. For different cell types, we noted a general agree-

ment between the expression profiles generated using both ap-

proaches (Figure S5A), consistent with previous studies.91,92

While each technique has its advantages, single-cell- and sin-

gle-nucleus-specific genes are also observed, so here we

sought to better understand how the assay influences the data

generated. First, we noted an elevation of tissue-dissociation-

associated stress signatures66 in single-cell data (Figure S5B).

Consistent with this, the stress-associated tumor cluster (c6)

and MP 6 we described above were enriched specifically in sin-

gle-cell samples. Moreover, we found that the fraction of neuro-

endocrine cells recovered in single-cell RNA-seq experiments

was smaller than that recovered from single-nucleus RNA-seq

(Figure 5A, p < 0.0001, one-sided Wilcoxon rank-sum test). To

confirm this technical discrepancy independent of the atlas,

we performed both single-cell and single-nucleus RNA-seq on

tissue pieces from the same neuroblastoma tumor (Figure 5B

and Table S1). Consistent with the NBAtlas, this revealed that

a large population of neuroendocrine cells was captured with

single-nucleus RNA-seq, while this population was almost ab-
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sent in the corresponding single-cell RNA-seq data (Figure 5C;

46.4% vs. 0.2%, or 26,928/58,083 vs. 119/63,703).

Apart from the relative tumor fraction, we also noticed a differ-

ence in the immune-cell composition captured with single-cell

vs. single-nucleus RNA-seq (Figures 5D, S5C, and S5D).

Compared with single-nucleus RNA-seq, single-cell RNA-seq

data were enriched for cells primarily found in circulation,

including T cells, NK cells, and neutrophils. In contrast, single-

nucleus datasets were enriched for what are typically considered

tissue-resident cells, including cDCs and macrophages/mono-

cytes. This suggests that tissue dissociation associated with sin-

gle-cell RNA-seq protocols may preferentially isolate circulating

cells over tissue-resident cells, leading to a bias in cell propor-

tions as in previously described other tissues.19,29,69,91,93 Since

the NBAtlas data are primarily composed of samples analyzed

by single-cell RNA-seq, this likely explains the unexpected ma-

jority of lymphoid vs. myeloid cells described above. We also

investigated this in our in-house case for which we have match-

ing single-cell and single-nucleus samples, as well as for a pub-

lished matching single-cell and single-nucleus case,19 which

corroborated the trend toward lymphoid cell enrichment and

myeloid cell absence in single-cell vs. single-nucleus datasets

(Figures S5E and S5F).

The NBAtlas allows reference-based mapping of
additional single-cell/single-nucleus data
An important challenge in single-cell/single-nucleus analyses re-

mains cell-type annotation, requiring expert knowledge for

manual annotation or a robust reference atlas for data-driven

annotation. Therefore, we lastly evaluated the performance of

the NBAtlas as a reference for cell annotation of future neuro-

blastoma single-cell or single-nucleus RNA-seq data. To this

end, we generated additional single-cell and single-nucleus

data for three and five neuroblastoma tumor samples, respec-

tively (across six different patients, Table S1). As expected

from the NBAtlas dataset, these samples displayed obvious

batch effects (as discussed above, Figure S6A). This additional

dataset was then used as a query for reference-based mapping

with the NBAtlas (Figure 6A). We took advantage of guided inte-

gration using scArches30 to simultaneously integrate our in-

house data and expand the NBAtlas, which is not possible with

conventional mapping methods such as SingleR. Following

this data processing, the cell-type segregation and dataset

harmonization of the NBAtlas were maintained (Figures S6B

and S6C).

Since integration was performed using the scANVI-scArches

pipeline, a cell-type prediction of the additional data was also

provided. To set a baseline for comparison of cell-type predic-

tion, cells from the additional dataset were also annotatedmanu-

ally before integration (Figure 6B). When comparing with the

scANVI-scArches cell-type prediction based on the NBAtlas as

a reference atlas, agreement with manual annotation reached

92.6% (or 50,559/54,574 and 4/54,574 undefined; Figure 6C).

However, Schwann cells (CDH19+) and plasma cells (IGHG1+)

were incorrectly annotated as fibroblasts and B cells, respec-

tively (Figures 6C and S6D). Of note however, both cell types

closely resemble their erroneously predicted counterpart and

are also both present at low numbers in the reference atlas
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Figure 5. Technical differences between single-cell and single-nucleus RNA-seq-based transcriptomics

(A) Comparison of the fraction of neuroendocrine cells for single-cell (n = 48) vs. single-nucleus (n = 19) RNA-seq samples in the NBAtlas. Statistical significance

was assessed with a one-sided Wilcoxon rank-sum test. ****p < 0.0001.

(B) UMAPs highlighting cells derived from single-cell (left, n = 58,083 cells) and single-nucleus (right, n = 63,703 nuclei) RNA-seq of matching in-house samples

from one neuroblastoma patient tumor.

(C) Cell-type proportions of (B).

(D) Comparison of the NBAtlas immune-cell-type proportions for single-cell vs. single-nucleus data (n = 88,743 and n = 3,007, respectively). RBCs, red blood

cells; mac, macrophage; mono, monocyte.

See also Figure S5.
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(0.2% or 655/362,991 for plasma cells, and 0.5% or 2,060/

362,991 for Schwann cells) and thus cannot be considered as

substantial errors.
In addition, we tested cell-type prediction using SingleR,

which overall displayed less agreement with our manual

annotation when with scANVI-scArches, reaching 78.0%
Cell Reports 43, 114804, October 22, 2024 11
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Figure 6. The NBAtlas allows reference-based mapping of additional single-cell/nucleus data

(A) Schematic representation of reference-based mapping of in-house-generated data (n = 3 single-cell samples, n = 17,096 cells and n = 5 single-nucleus

samples, n = 50,080 nuclei).

(B) Manual annotation of in-house data (performed per sample) plotted on the scArches output integrated UMAP.

(C) scANVI-scArches cell-type prediction of in-house data plotted on the scArches integrated UMAP (left) and compared to manual annotation (right). Freq,

relative frequency.

(D) SingleR cell-type prediction of in-house data plotted on the scArches integrated UMAP (left) and compared to manual annotation (right). Freq, relative fre-

quency.

See also Figure S6.
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(42,591/54,574 and 1.2% or 661/54,574 undefined) (Figure 6D).

Of note, contrary to the scANVI-scArches prediction, SingleR

was able to differentiate between plasma and B cells as well

as Schwann cells and fibroblasts. However, many cells were

erroneously assigned to ‘‘stromal other’’ (i.e., adrenal cortex).

Indeed, different stromal cell types (including endothelial, fibro-

blast, Schwann, or ‘‘stromal other’’ cells) show similarity to one

another, so these errors can be attributed to commonly shared

markers between these populations (Figure S6E).

In summary, we illustrated the suitability of using the NBAtlas

as a reference for integration and cell-type annotation of addi-

tional neuroblastoma single-cell transcriptome datasets.

DISCUSSION

This study presents a harmonized comprehensive transcrip-

tomic atlas of neuroblastoma tumors at single-cell resolution.

The NBAtlas integrates seven different datasets, including both
12 Cell Reports 43, 114804, October 22, 2024
single-cell and single-nucleus RNA-seq data, spanning over

360,000 cells from 68 different samples. We demonstrate that

our atlas is harmonized over the different technical factors while

preserving biological heterogeneity within both the tumoral and

the immune-cell compartments and show that it is a useful tool

to integrate and annotate neuroblastoma single-cell/nucleus da-

tasets. Our NBAtlas enables the exploration of the intratumoral

heterogeneity at the transcriptional level in a large collection of

neuroblastoma tumors and supports investigating hypotheses

regarding pathobiology. To facilitate further exploration of our

atlas, we have made the NBAtlas interactively available on

https://single-cell.be/nbatlas and on the R2: Genomics Analysis

and Visualization platform (https://hgserver2.amc.nl/cgi-bin/r2/

main.cgi?dscope=NBSCA&option=about_dscope), and it is

also available for download (see deposited data in the key re-

sources table in STAR Methods).

Our NBAtlas is focused on transcriptomic data for tumor sam-

ples from neuroblastoma patients. Future studies could expand

https://single-cell.be/nbatlas
https://hgserver2.amc.nl/cgi-bin/r2/main.cgi?dscope=NBSCA&amp;option=about_dscope
https://hgserver2.amc.nl/cgi-bin/r2/main.cgi?dscope=NBSCA&amp;option=about_dscope
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the current atlas to also include single-cell data from cell lines,

xenograft models, allograft models, and developmental models

relevant to neuroblastoma. Also, recently a single-cell ATAC-

seq dataset has been published for neuroblastoma bone-

marrow metastases.94 By adding other modalities such as chro-

matin accessibility or DNA methylation, an even more complete

picture of the tumoral heterogeneity will be acquired, ultimately

improving our understanding of the complex disease that is

neuroblastoma.

In the current NBAtlas, a notable observation was the pres-

ence of significant tumoral heterogeneity at the cell-cycle level,

consistent with many molecular mechanisms related to cell-cy-

cle-driving neuroblastoma. A prime example of this is the replica-

tion-stress pathway to which neuroblastoma cells are ad-

dicted.63 We found high activity of signatures related to this

pathway in cycling neuroblastoma cells which were almost ab-

sent in TME cells. This included a signature for sensitivity to pre-

xasertib, an effective drug in vitro and in vivo in combination with

triapine for targeting the replication-stress pathway in neuroblas-

toma.63 As a public resource (see deposited data in the key re-

sources table in STAR Methods), further signatures including

those predicting additional drug sensitivities can now also be

explored at a single-cell level.

The two proposed cell states for neuroblastoma tumor cells

are the adrenergic (or noradrenergic)-like and the mesenchymal

(or neural crest)-like fates, with the latter being linked to chemo-

resistance.39,40While the presence of adrenergic-like tumor cells

is well established, the observation of mesenchymal-like cells in

human tumor samples remains a topic of debate. Most studies

identifying mesenchymal cells typically rely on in vitro cell

lines23,39 or bulk transcriptomic/epigenetic sequencing methods

in patients,41 which fail to discriminate between mesenchymal-

like tumor cells and stromal cells. Most single-cell studies do

not identifymalignant mesenchymal cells.15–18,22 However, there

are a few single-cell studies hinting at the presence of these

cells: (1) using Smart-seq2, a malignant mesenchymal cluster

was proposed but only in post-treatment neuroblastoma, which

limits generalizability21; (2) a separate study for samples at diag-

nosis and relapse proposed a population of ‘‘noradrenergic with

mesenchymal features’’23; and (3) a study by Chapple et al.60

identified a rare weak mesenchymal-like expression program

in otherwise adrenergic tumor cells (‘‘Mes-weak’’) that transi-

tioned into mesenchymal cells under chemotherapy in a murine

neuroblastoma model (‘‘Mes-EMT-like’’). In the NBAtlas, we

identified mesenchymal signatures primarily in Schwann cells

and fibroblasts, which did not present with CNAs. Among the tu-

mor cells, we only found a few cells with a notable mesenchymal

signature expression; however, these cells did not form a sepa-

rate cluster. Consequently, further research will be necessary to

provide convincing evidence for a bona fide mesenchymal sub-

population, as these cells could also be attributed to the tech-

nical limitations of the CNV inference algorithm due to the nois-

iness of the input data. Nonetheless, we cannot rule out the

existence of malignant mesenchymal cells in minute fractions,

possibly due to their transient nature and selection pressure to-

ward adrenergic fate in vivo, especially during chemo-

therapy.23,42,60 Nevertheless, as demonstrated in other tumor

entities,95 unambiguous detection of mesenchymal-like tumor
cells requires evidence beyond single-cell RNA-seq data alone,

such as spatial omics.

Next to adrenergic-mesenchymal heterogeneity, we also

investigated additional transcriptional heterogeneity within the

neuroblastoma tumor cells. To this end, we performed and anno-

tated an unsupervised cell clustering of the tumor-cell popula-

tions identified in the integrated dataset. To orthogonally and

independently validate these integration results, we identified in-

tratumoral heterogeneity programs (‘‘MPs’’) in individual tumors

without integration. A number of these programs were found to

be reoccurring across different patients and were highly similar

to the integrated tumor clusters, demonstrating that biological

heterogeneity was preserved during integration. Cell states

with high expression of genes involved in cell-cycle progression

were primarily identified in cells from high-risk patients and were

linked to poor overall survival. We also identified cells mostly

originating from low- to intermediate-risk patients expressing

more differentiation-related markers and signatures linked to a

better outcome. In addition, we identified ribosomal protein

gene enrichment in some tumor-cell clusters (c1 and c6) and

one MP (MP3) which could indicate either a technical artifact of

sample handling or a biological signal related to ribosome

biogenesis that was correlated to poor survival, consistent with

previous reports.96 A more in-depth understanding of the func-

tions of these diverse neuroblastic cell states therefore warrants

further investigation.

Further, by compiling the tumor cells of over 50 patients

included in the NBAtlas, a comprehensive comparison was

possible with cells during normal development16 as well as

with an in vitro model simulating sympathoadrenal develop-

ment.45 The transcriptome profile of most patient cells aligns

with that of normal neuroblasts (also termed sympathoblasts),

which is generally agreed to be the cell of origin of neuroblas-

toma.16,17,97 Of note, features of other sympathoadrenal devel-

opment populations such as bridge cells, chromaffin cells, and

SCPs were also present in the tumor cells (as DE genes or in

the NMF programs), reminiscent of the complex features of sym-

pathoadrenal development. Therefore, more in-depth investiga-

tions are needed to pinpoint the exact events along the sympa-

thoadrenergic differentiation track that leads to neuroblastoma

development.98

Aside from examining the tumor cells, the integrated NBAtlas

also allowed us to characterize the immune cells present within

the TME across the different neuroblastoma samples. Over the

past decade, it has become clear that a better understanding

of the TME is key for the development of new (immuno)thera-

pies.99,100 Our analysis revealed the presence of multiple

lymphoid and myeloid subsets, suggesting that it may indeed

be possible to develop novel immunotherapy approaches tar-

geting these cells. For example, the presence of cDC1s, cDC2/

DC3s, and migratory cDCs, i.e., cDCs expressing CCR7 and

hence primed tomigrate toward the tumor-draining lymph nodes

where they can present any acquired tumor antigens to naive

T cells to induce appropriate T cell responses, suggests that tar-

geting these cells as proposed in other cancers101–104 may be a

viable therapeutic option. Moving forward, it is important to

determine (1) where these cells are in the context of the tumor

and surrounding tissue to assess their ability to acquire tumor
Cell Reports 43, 114804, October 22, 2024 13



Resource
ll

OPEN ACCESS
antigens, and (2) their ability to prime naive T cells. Similarly, the

identification of a neutrophil population that had previously been

associated with a suppressive phenotype18 suggests that these

cells may also be a potential therapeutic target. Of course, addi-

tional functional studies are required in this regard to formally

demonstrate their immunosuppressive roles.

Another interesting finding from the immune landscape inves-

tigation in the NBAtlas was the considerable heterogeneity

among tumor-associated macrophages (TAMs). Excluding

monocytes and proliferating cells, we identified seven different

subsets of TAMs in this study. One of the larger populations iden-

tified was a cluster we termed LAMs given their expression of

TREM2, CD9, GPNMB, SPP1, and FABP5, and, hence, their

overlap with LAMs previously identified across multiple tissues

and species.69,83,84,105 Notably, macrophages with a similar

signature have also been described in the injured brain, injured

heart, infected lung, and in the context of cancer,86,88,106–111

suggesting that this signature may be one generally associated

with injury, inflammation, and/or repair. Notably, while we called

these cells LAMs based on their initial description in obese adi-

pose tissue, the best annotation is currently being discussed,

with a number of other names also being proposed, including

FAB5 macrophages and scar-associated macrophages.105,112

In the context of neuroblastoma, it will therefore also be informa-

tive to assess lipid load and location of these cells within the

TME. Moreover, although TREM2-expressing macrophages

and LAMs have been receiving considerable attention lately,

their exact roles remain uncertain, with conflicting reports on

their potential immunosuppressive86,88,113 or beneficial func-

tions.69,83,84 Here, we noted a slight tendency for LAMs to be

more prevalent in high-risk neuroblastoma, potentially fitting

with an immunosuppressive role for these cells; however, such

a putative function was not corroborated when activation states

of these cells were assessed. In fact, there was no distinct immu-

nosuppressive or pro-inflammatory phenotype associated with

any of the macrophage populations identified, demonstrating

the necessity for in-depth functional studies to elucidate the

roles of the distinct macrophage populations.

Intriguingly and unexpectedly, lymphoid cells considerably

outnumber myeloid cells in the NBAtlas, a finding inconsistent

with previous immunohistochemical analysis of neuroblastoma

samples.68 However, by integrating single-cell and single-nu-

cleus RNA-seq data in the NBAtlas and following the generation

of matched data using both techniques, we were able to demon-

strate that this enrichment is specifically observed for the single-

cell RNA-seq samples, suggesting that this is an artifact of the

tissue digestion protocols required to generate single-cell sus-

pensions needed for single-cell but not for single-nucleus

RNA-seq. Importantly, we also report a lack of neuroendocrine

cells in single-cell vs. single-nucleus samples. Indeed, this is

not the first time that single-cell RNA-seq analysis has been

shown to report altered cell proportions compared with what is

observed in vivo as assessed by imaging or by single-nucleus

RNA-seq.19,29,69 Furthermore, we specifically found increased

tissue-dissociation-stress-associated gene expression in sin-

gle-cell datasets as compared with single-nucleus datasets,

likely due to the use of enzymes to generate single-cell suspen-

sions, consistent with previous studies.66,69,91,114 However, sin-
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gle-cell RNA-seq also has benefits compared to single-nucleus

RNA-seq due to profiling the transcriptome of the entire cell

and not only the nucleus, including an increased number of pro-

filed genes, which allows improved cell (sub)typing. Taken

together, these technical considerations highlight the impor-

tance of combining methods when analyzing samples to avoid

biased conclusions.

The NBAtlas represents a reference atlas for expansion with

additional single-cell or single-nucleus datasets and cell-type

annotation thereof. As a proof of principle, we integrated in-

house-generated single-cell and single-nucleus neuroblastoma

tumor data into the NBAtlas. We showed that a transfer-learning

approach allows the expansion of the current atlas, which in the

future might aid in the identification of rare new subpopulations

that remain undetected. Furthermore, we also tested cell-type

prediction using the NBAtlas as a reference in a data-driven

way, avoiding manual annotation that is challenging and less

reproducible. The scANVI-scArches pipeline showed excellent

agreement overall withmanual annotation. However, the pipeline

was not able to distinguish some less common cell types from

closely related cell types. The same cell-type prediction with Sin-

gleR showed overall less agreement with manual annotation

compared to scANVI-scArches; however, the algorithm was

able to distinguish between all cell types.We thus advise consid-

ering both reference-based cell-type annotation methods and

cross-checking annotation where both predictions disagree by

using the key markers we described in this study.

In conclusion, we formed a large, harmonized cell atlas of pub-

lished neuroblastoma single-cell and single-nucleus RNA-seq

data. The collective dataset has allowed us to identify adrenergic

neuroendocrine cells as the tumor population, and we did not

confidently detect a mesenchymal tumor-cell population. Tran-

scriptome profiles within distinct subsets of tumor cells did link

to patient outcomes, thus aiding in identifying the factors

contributing to the low survival rates observed in high-risk pa-

tients. In addition, our in-depth immune-cell characterization

identified a TREM2-macrophage population linked to high-risk

disease, which offers potential avenues for therapeutic interven-

tion. Furthermore, we revealed important differences in single-

cell vs. single-nucleus RNA-seq data, which were largely unex-

plored in the context of neuroblastoma. Finally, our NBAtlas is

a valuable resource for neuroblastoma tumor heterogeneity

and will additionally facilitate the integration and analysis of

future single-cell studies.

Limitations of the study
We acknowledge limitations of the current study. Only 103 Ge-

nomics datasets were included in this study. Adding plate-based

datasets (such as Smart-seq2) is unlikely to result in a significant

increase in the number of total cells due to limited throughput

and will make the integration task even more complex. However,

since the sequencing depth is usually much higher for these

data, these could add low-abundance transcripts, which could

help further delineate cell populations. We focused on intratu-

moral heterogeneity and acknowledge that more subtle pa-

tient-specific expression patterns can get lost due to the applied

integration for batch correction. Due to the different technical

variables of the used datasets, between-patient comparisons
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are more challenging with our atlas. Further, cell-type fraction

differences between patients (or patient groups) in our atlas

are limited in interpretability due to the influence of the technical

differences between single-cell and single-nucleus samples.

Finally, in terms of our analysis of the immune compartment in

neuroblastoma, this study is limited in that here we have only

described the subsets identified. The precise functional rele-

vance of the different populations remains to be determined,

as does the specific locations of these cells in the tumor and

TME. While several challenges lie ahead, we took an important

step forward in understanding the heterogeneity of neuroblas-

toma tumors across multiple patients with the development of

this comprehensive atlas.
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Lead contact

Further information should be requested from the lead contact, Katleen De

Preter (katleen.depreter@ugent.be).

Materials availability

No unique reagents were generated.

Data and code availability

d Raw data of in-house generated single-cell and single-nucleus RNA

sequencing is deposited in the European Genome-phenome Archive

(EGA: EGAD50000000328).

d Processed count data of in-house generated single-cell and single-nu-

cleus RNA sequencing is deposited in Gene Expression Omnibus (GEO:

GSE253865).

d A Seurat object of the NBAtlas can be found here: Mendeley Data:

https://doi.org/10.17632/yhcf6787yp.1.

d Our data can be visualized using https://single-cell.be/nbatlas and is

available in the R2 genomics tool: https://hgserver2.amc.nl/cgi-bin/r2/

main.cgi?dscope=NBSCA&option=about_dscope.

d No novel code was generated for this study. The main code can be

found at: https://github.com/VIBTOBIlab/NBAtlas_manuscript (Zen-

odo: https://zenodo.org/records/13741873).

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Chemicals, peptides, and recombinant proteins
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Collagenase A Sigma-Aldrich Cat# 11088793001

DAPI Invitrogen Cat# D1306; RIDD: AB_2629482
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RPMI 1640 Gibco Cat# 52400-025

RBC lysis buffer BioLegend Cat# 420302

Deposited data

Manuscript code This study https://github.com/VIBTOBIlab/NBAtlas_manuscript

In-house data This study GEO: GSE253865

In-house data This study EGA: EGAD50000000328

NBAtlas reference atlas data This study Mendeley Data: https://doi.org/10.17632/yhcf6787yp.1

NBAtlas reference atlas visualization This study R2 platform: https://hgserver2.amc.nl/cgi-bin/r2/
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NBAtlas reference atlas visualization This study https://single-cell.be/nbatlas/
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Dong et al. (2020) tumor dataset Dong et al.15 GEO: GSE137804

Kildisiute et al. (2021) tumor dataset Kildisiute et al.17 https://www.neuroblastomacellatlas.org/

Slyper et al. (2020) tumor dataset Slyper et al.19 GEO: GSE140819

Verhoeven et al. (2022) tumor dataset Verhoeven et al.20 GEO: GSE147766

Jansky et al. (2021) fetal adrenal medulla dataset Jansky et al.16 https://adrenal.kitz-heidelberg.de/

developmental_programs_NB_viz/

Van Haver et al. (2024) iPSC dataset Van Haver et al.45 GEO: GSE211661

SEQC cohort dataset SEQC consortium67 GEO: GSE62564

NRC cohort dataset NRC consortium48 GEO: GSE85047
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EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

All neuroblastoma patient samples were collected as residual material after both diagnostic workups and after acquiring informed

consent from the patient’s guardian, in accordance with the Ethical Committee of UZ Ghent (EC number 2019/1428). For further

details, see Table S1.

METHOD DETAILS

Processing of published data into the NBAtlas
Data collection

For the construction of the NBAtlas, only samples confirmed to be human neuroblastoma samples (based on the clinical metadata

provided) were included. Samples of ganglioneuroma, ganglioneuroblastoma, PDX, mouse, cell line, etc. were excluded. For one

dataset (Dong et al. 202015), raw sequencing files (FASTQs) were available and were processed into count tables using

CellRanger (v6.1.2) aligned to GRCh38.99. FastCAR117 (v0.1.0) was used to limit ambient RNA using the CellRanger web summary

to determine the ‘emptyDropletCutoff’ (other parameters were default), as described in.69 For the other datasets,16–20 count tables

were downloaded from data repositories (e.g., GEO) or sent by the corresponding author. If available, unfiltered count tables were

preferred over filtered count tables.

Patient metadata

Metadata was collected from the different publications or provided by the original authors and compiled. For most samples, INSS or

INRG stage, MYCN amplification status, CNA profile, etc. was available, as reported by the authors (see Table S1). For one sample

(Verhoeven2022_NB37), MYCN-amplification classification was based on an extremely high (>98th quantile) MYCN expression in a

large number of tumor cells (as also discussed with the authors, personal communication).

Risk classification

Since studies included in the NBAtlas used different risk-classification systems (COG, NB2004, INRG or not mentioned which one),

we uniformly revised the risk status for each sample. High-risk samples were distinguished from low/intermediate samples if they

originated from a patient with INSS 4/INRGSS M, MYCN amplification, or a segmental CNA profile. The remaining samples (i.e.,

with another INSS/INRGSS class, no MYCN amplification, and no segmental CNA profile) were classified as low/intermediate-risk.

Data quality control

To filter out remaining low-quality cells, a homogeneous filter of minimally 200 genes, minimally 500 counts, and maximally 10% or

25% mitochondrial reads, for single-nucleus or single-cell samples, respectively, was applied. To filter out remaining doublets, the

current best-performing method-scDblFinder (v1.10.0) was used56,119 (run per sample with default parameters and cluster = ‘seur-

at_clusters’). Gene names fromdifferent datasets were updated andmade unique using the R packageHGNChelper (v0.8.1).123 After

merging the different datasets, genes with nonzero counts in minimally 10 cells were retained.

Data integration

After merging the count data of all samples, standard pre-processing, and normalization using the scanpy118 (v1.8.1) pipeline was

performed (the top 5000 highly variable genes were retained for further analyses). To correct for batch effects, the scVI algorithm35

was used (scvi-tools python package v0.16.4, with ‘sample’ as the covariate, n_layers = 2, encode_covariates = True, use_layer_

norm = ’both’, use_batch_norm = ’none’). The scVI model was trained with ‘max_epochs = 500’ (and early_stopping = True). There-

after, the latent representation provided by scVI was used as input to generate a UMAP (using scanpy.pp.neighbors with n_pcs = 15

and n_neighbors = 20, followed by scanpy.tl.umap with min_dist = 0.6). Clustering was performed with scanpy.tl.leiden. Integration

with Harmony36 was also performed (with ‘sample’ as the covariate) and showed highly similar results in terms of cell clustering,

however, the immune cells were not as clearly separated from the neuroendocrine cells and we therefore proceeded with the

scVI integration results.
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Cell type annotation

Cell types were annotated using canonical markers and differentially expressed (DE) genes (as indicated in the dot plot in Figure 1D).

A cluster of cells coming from samples with adrenal cortex cells (and a few liver cells, based on ASGR1 and ALB expression), mainly

from samples Slyper2020_nucleus_HTAPP-244-SMP-451_TST and Jansky2021_NB02, respectively, was annotated as ‘stromal

other’. DE genes were calculated using the FindMarkers function (Seurat121 v4.1.1 package) per cluster or cell type (with min.

diff.pct = 0.3, logfc.threshold = 0.3). DE genes were ranked based on a specificity score, defined for each gene as the average

log2 fold-change multiplied by the percentage of cells in the cluster expressing this gene over the percentage expressed in other

cells.

Copy number inference

For inference of CNAs, all cell types except for potential CNA-bearing cells, i.e., neuroendocrine, fibroblast, and Schwann cells, were

included as reference cells. Infercnvpy (v0.4.2) was used to infer CNAs from the normalized counts (with window_size = 250 and

step = 1). Genomic positions of the genes were annotated with infercnvpy.io.genomic_position_from_gtf using the GENCODE v43

gene annotation. Cells were clustered according to CNA profiles (using infercnvpy.tl.pca, infercnvpy.pp.neighbors, and infercnv-

py.tl.leiden with default parameters) and CNA scores (genome-wide) were calculated with infercnvpy.tl.cnv_score (with default

parameters). To calculate CNA scores for chromosomes or chromosome arms, the infercnvpy.tl.cnv_score function was used after

infercnvpy was rerun per study and results were merged to minimize batch effects.

To confirm the infercnvpy results, we also used CopyKAT (v1.1.0)116 and SCEVAN (v1.0.1).38 Classification of aneuploid/tumor vs.

diploid/normal cells was performed on a per-sample basis to exclude potential batch effects at classification. As for infercnvpy, all

cell types except for neuroendocrine, fibroblast, and Schwann cells were used as reference cells. Providing a good baseline refer-

ence has been shown to drastically improve the confident classification performance.116 To ensure this, only samples with at least

100 reference cells were classified (other samples were labeled ‘not.run’).

Reference-based mapping to normal sympathoadrenal development

Reference mapping of neuroendocrine cells to a fetal adrenal medulla dataset (from Jansky et al. 202116) and human induced plurip-

otent stem cell (iPSC)model of sympathoadrenal development (fromVanHaver et al. 202445) was performedwith SingleR122 (v1.10.0,

default parameters) based on Spearman correlation or Seurat (using the FindTransferAnchors and TransferData functions with

default parameters). Log-normalized counts were used as input for both the reference and query data.

Gene signature scoring

To calculate gene signature scores and to be able to compare different signatures in the same cells, the UCell58 (v2.0.1) method was

used. To calculate multiple UCell signature scores at once, the enrichIt function (R escape package, v1.6.0) was used. Cell cycle

phase assignment was performed using the CellCycleScoring function (Seurat v4.1.1 package).

Tumor and immune zoom
Tumor zoom

Neuroendocrine cells classified as aneuploid cells by CopyKAT were selected for the malignant tumor zoom. Integration was per-

formed again after standard scanpy preprocessing as described above (nowwith updated top 5000 highly variable genes). scVI inte-

gration was performed with the same parameters as above. Leiden clustering was performed (with a resolution of 0.5). We also tried

Harmony for integration (with sample alone or sample and assay as the covariate) but this provided insufficient integration of single-

cells and single-nuclei (because of the assay-specific expression of the top genes used for integration). Furthermore, we tried cor-

recting for cell cycle but this removed most DE genes indicating a loss of biological heterogeneity and we thus abandoned this

approach. Seurat integration120 of the samples was run with the RPCA algorithm. ComBat integration124 was run with default param-

eters (using scanpy.pp.combat with ‘samples’ as batch key). DE genes were calculated as described above (with default cutoffs).

Gene set enrichment analysis (GSEA) was performed per cluster using the fgsea R package (v1.22.0) with a ranking based on the

specificity score for all genes (see above) with Reactome 2022 and ChEA2022 gene sets. Only GSEA results with an FDR below

0.1 were visualized.

NMF program detection

Non-negative matrix factorization (NMF) programs in malignant cells were determined as described by Gavish et al.47 To account for

batch effects, NMF was run for each sample separately using the NMF R library (v0.24.0). Only samples with 10 malignant cells were

considered, as recommended by Gavish et al.47 Metaprograms (MPs) were determined by clustering the reoccurring NMF programs

by Jaccard similarity. MP-defining genes (or signatures) were derived by selecting the top 50most recurring genes permetaprogram.

MPs were investigated to represent not just one study (dataset). This was not the case for any MP.

NMF overrepresentation analysis was performed using the enricher function (clusterProfiler115 R package v4.4.4) with the following

gene sets: Hallmark genesets, C6 genesets, Reactome downloaded fromMSigDB (https://www.gsea-msigdb.org/gsea/msigdb/) as

well as a collection of signatures from different studies.16,21,44,46,47,66

Metaprogram survival analysis

Survival analysis of MP signatures was performed using the SEQC cohort bulk RNA-seq data (n = 498 samples, GEO accession:

GSE49710) and NRC cohort microarray data (n = 276 samples, GEO accession: GSE85047). Kaplan-Meier curves were calculated

using overall survival for high vs. low (log2) expression of the MP signatures (highest quartile cutoff) using the survival R package

(v3.5-7) package. p values were calculated with a log-rank test.
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Gene signature scoring

The UCell (as described above) and AUCell (v1.20.2)59 signature scoring was performed with default parameters. For the UCell van

Groningen et al. mesenchymal gene signature, the threshold was determined manually based on the expression in immune cells

(used as background). For AUCell, the threshold was determined automatically (with inspection of the thresholds).

Immune zoom

Immune cell types (myeloid, B cell, plasma, pDC, T cell, and NK cell) were selected from the entire atlas and reintegrated using the

same scVI-pipeline as described above. Clustering was performed with the Leiden algorithm (with a resolution of 1). Low-quality cells

clustering separately and/or co-expressing markers of non-immune populations were removed. DE genes were calculated as

described above with FindMarkers (with default cutoffs).

Monocyte/macrophage zoom

Monocytes andmacrophages were selected from the immune zoom for realignment across the samples. Given the reduced number

of cells/nuclei (n = 14,860) the integration was performed using Harmony (v0.1.0) instead of the scVI-pipeline.36,56 Another round of

quality control was performed here to eliminate remaining doublets or low-quality cells/nuclei. DE gene calculation was performed in

the same way as for the immune zoom.

In-house generated single-cell and single-nucleus RNA-seq data
Patient samples

Samples were transported in RPMI and on ice where possible. Samples were either processed fresh or first viably frozen (in a solution

of 10% DMSO, 50% FCS, and 40% RPMI) or snap-frozen (no medium) before proceeding to the isolation of single cells or nuclei.

Isolation of single neuroblastoma cells

Single-cell isolation was performed as described in Guilliams et al. 2022.69 In short, tumor specimens were minced into small pieces

and digested into single-cell suspensions using 1 mg/mL Collagenase A (Sigma-Aldrich) and 10 U/mL DNAse I (Sigma-Aldrich) in

RPMI at 37�C for a maximum of 30 min with agitation until the tissue was digested. Next, cells were pelleted by centrifugation

(5 min at 400 g). Red blood cell lysis was performed when required by incubating the cells with RBC lysis buffer (BioLegend) for

3 min followed by a wash step. For CITE-seq, an Fc receptor block 2.4G2 (Bioceros) was added together with CITE-seq antibodies

(BioLegend; antibody details described in Guilliams et al. 202269). Following 20 min of incubation at 4�C, the cells were washed with

PBS with 2% FCS and 2mM EDTA. For regular single-cell RNA-seq, this step was omitted. Cells were then stained with a live-dead

discrimination dye (Live/Dead eFluor780, eBioscience) by incubating the cells for 15 min at 4�C followed by a wash step. Approxi-

mately 160,000 live cells were then FACS-purified per sample (using BD FACSAria III). After sorting, cells were pelleted by centrifu-

gation at (5 min at 400 g).

Isolation of single neuroblastoma nuclei

Nuclei were isolated from snap-frozen tumor tissue as described in Guilliams et al. 202269 and Habib et al. 2016.125 Briefly, snap or

viably frozen neuroblastoma tissues were dounce homogenized in a homogenization buffer. The homogenate was filtered over a

70 mm cell strainer. Next, the nuclei were pelleted using a sucrose density gradient ultracentrifugation (7,700 rpm for 30 min at

4�C). After resuspension, nuclei were stained with DAPI (Invitrogen) and incubated for 5 min, and 100,000 to 400,000 intact nuclei

were FACS-purified from remaining debris (using BD FACSAria III). Purified nuclei were pelleted by centrifugation, first for 3 min

at 400 g and subsequently for 5 min at 600 g.

Single-cell or single-nucleus RNA-sequencing

After centrifugation, cells or nuclei were resuspended in 18.5 mL in PBS with 0.04% BSA. 2 mL of this solution was used to calculate

the concentration of cells or nuclei after flow cytometric counting. 20,000 cells or nuclei were loaded onto a Chromium (10X Geno-

mics) controller. Single-cell or single-nucleus libraries were generated using the Chromium Single Cell 3 (V2 or V3) Reagent Kit

according to the manufacturer’s protocol. Libraries were sequenced using an Illumina NovaSeq 6000 sequencing platform.

Matching single-cell and single-nucleus RNA-sequencing data processing

Formatching single-cell and single-nucleus data generation, we used four parts from one tumor and split each part into two pieces for

matching CITE-seq and single-nucleus RNA-seqwith two technical replicates each (i.e., CITE-seq: Bonine2023_cell_CS202-209 and

single-nucleus RNA-seq: Bonine2023_nucleus_CS210-217). Data processing of the matching single-cell and single-nucleus RNA-

seq data was performed similarly to that described above, using CellRanger (for single-nucleus data processing, the option

include-introns = T was added) and FastCAR. Cells with at least 200 and less than 8,000 genes, less than 60,000 counts, and

less than 40% mitochondrial reads were kept. Additionally, when merging the data of different samples, only genes with counts

for at least three cells were retained. Preprocessing was done using the standard pre-processing and normalization scanpy pipeline.

Different single-nuclei samples and CITE-seq samples were integrated using the TotalVI model126 (v0.6.7, using the top 4000 most

highly variable genes, according to theworkflow described on scvi-tools.org). Subsequently, Louvain clustering was performed in the

TotalVI latent space. The antibody (ADT) counts from CITE-seq data were further not considered. Clusters with a decreased number

of genes, increased percentage of mitochondrial reads, and/or expressing markers of multiple cell types were removed. Cell-type

annotation was performed as described above.

In-house data for mapping to the NBAtlas

In-house single-cell and single-nucleus RNA-seq data from six patients, with one having matched data (see Table S1), was included

for mapping to the NBAtlas. All samples were individually pre-processed and quality control was performed with the same procedure
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as described above for the NBAtlas. Manual annotation was performed for each sample following log-normalization and UMAP gen-

eration (with a standard Seurat pipeline) using the top markers from the NBAtlas.

scArches data integration and cell type prediction

For the integration of in-house data with the NBAtlas, the scANVI-scArches pipeline was used. To exploit the biological knowledge

already embedded in the atlas as cell type annotation, the scVI model was first further trained on the cell type labels with scANVI127

(scvi-tools package v0.16.4, with n_layers = 4, max_epochs = 500, early_stopping = ’True’). This was then used as input for scArches

model training (v0.5.6, max_epochs = 500) of the query data. scANVI-scArches cell type prediction was performed with an uncer-

tainty of 0.5 (as recommended by the authors30). To obtain an integrated atlas of the query and reference atlas, a UMAP was

generated in the scArches latent space. After the scArches integration, another round of quality control was performed. A cluster

of doublets (co-expressing markers of different cell types), remaining in the in-house data was removed.

SingleR cell type prediction

SingleR122 (v1.10.0) cell type prediction of in-house data with the NBAtlas as a reference was run as described above (with default

parameters). Ribosomal and mitochondrial genes were removed from the reference to avoid these being selected as genes for map-

ping. For visualization of the results of the query together with the reference data, we used the scArches UMAP.

Visualization
UMAPs were plotted with the Seurat (v4.1.1) or plot1cell (v0.0.1) package. Feature plots were created using ordered normalized

expression using the FeaturePlot function (Seurat package) with a quantile cutoff of 0.02–0.98. Dot plots were generated with the

DotPlot function (Seurat package) or with ggplot2. Other figures were created with ggplot2. Some icons were generated with

Biorender.

QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical comparison of means between two non-normally distributed unpaired conditions, the Wilcoxon test was used. Differ-

ential abundance testing was performed with the edgeR package (glmQLFTest function).128 For correlation analysis, Kendall’s rank

correlation test was used. For survival analysis, the log rank test was used. For multiple testing, Benjamini-Hochberg correction

was used.
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