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Abstract—Deep subspace clustering methods are now promi-
nent in clustering, typically using fully connected networks and
a self-representation loss function. However, these methods often
struggle with overfitting and lack interpretability. In this paper,
we explore a clustering approach based on deep unfolding. By
unfolding iterative optimization methods into neural networks,
this approach offers enhanced interpretability and reliability
compared to data-driven deep learning methods, and greater
adaptability and generalization than model-based approaches.
Unfolding techniques has become widely used in inverse imaging
problems, such as image restoration, reconstruction, and super-
resolution, but has not been sufficiently explored yet in the context
of clustering. In this work, we introduce an innovative clustering
architecture for hyperspectral images (HSI) by unfolding an iter-
ative solver based on the Alternating Direction Method of Multi-
pliers (ADMM) for sparse subspace clustering. To our knowledge,
this is the first attempt to apply unfolding ADMM for computing
the self-representation matrix in subspace clustering. Moreover,
our approach captures well the structural characteristics of HSI
data by employing the K nearest neighbors algorithm as part
of a structure preservation module. Experimental evaluation of
three established HSI datasets shows clearly the potential of the
unfolding approach in HSI clustering and even demonstrates
superior performance compared to state-of-the-art techniques.

Index Terms—HSI clustering, ADMM unfolding network, self-
representation, structure preservation

I. INTRODUCTION

Hyperspectral images (HSI), captured by sensors that mea-
sure reflectance across numerous spectral bands, provide de-
tailed material information of the landcover. HSI have been
widely applied in fields like agriculture [1], defense [2],
and environmental monitoring [3], where clustering of image
pixels plays an important role. Various clustering techniques
such as K-means [4], C-means [5], spectral clustering [6], and
Finch [7] have been developed for HSI data. However, due
to the high dimensionality and variability within HSI data,
traditional methods often struggle [8].

Subspace clustering resolves these challenges by partition-
ing high-dimensional data into lower-dimensional subspaces,
each subspace corresponds to a distinct class. Within each
subspace, data points are represented as linear combinations of
each other, forming a self-representation matrix. Then a sym-
metric non-negative similarity matrix is obtained from the self-
representation matrix. At last, spectral clustering is applied to
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get the cluster assignment. In subspace clustering, traditional
optimizing methods such as the Alternating Direction Method
of Multipliers (ADMM) [9] are applied to solve the optimiza-
tion problem that yields the self-representation matrices. Tra-
ditional subspace clustering employs matrix representation to
obtain shallow features for clustering, which have difficulties
in handling non linearly separable data. Thus, deep clustering
methods like Deep Embedded Clustering (DEC) [10] and
Joint Unsupervised Learning (JULE) [11] have been proposed.
Nevertheless, they encounter difficulties with extensive data
requirements and limited interoperability.

Recently, deep subspace clustering methods that combine
subspace clustering and deep learning have set the state of
the art in the HSI clustering area [12]–[14]. However, these
methods also have limitations, including a tendency to overfit
and a lack of interpretability.

The unfolding approach, which transforms traditional opti-
mization iterative steps into neural network layers for more
effective and adaptive problem-solving strategies, offers a
novel approach compared to pure gradient descent methods. It
has achieved impressive performance in various fields such as
image denoising [15], compressed sensing [16], hyperspectral
image unmixing [17], etc. It has also been applied on dictio-
nary learning to cluster data [18].

In this paper, we introduce a novel unfolding approach
for clustering HSI. This approach is built upon a deep auto-
encoder for extracting spatial features and adaptive nonlinear
map data into a latent space. Specifically, We unfold an
ADMM-based sparse subspace clustering algorithm into a
neural network architecture to obtain the self-representation
matrix. To maintain the intrinsic structure of the data, we
employ nearest neighbors adjacency matrices to initialize
the ADMM optimization process and promote uniformity in
representation parameters among neighboring data points, thus
preserving the data structure. The main contributions of this
work are summarized as follows:

• We develop an unfolding network for calculating the self-
representation matrix for subspace clustering.

• We incorporate structural priors into the optimization
process and encourage similar representation parameters
of neighboring data points to preserve the data structure.

• We evaluate our model on three HSI datasets, evidencing
superior performance in comparison to current state-of-
the-art methods.
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This paper is organized as follows. In section II, we explore
related research. We introduce our proposed approach in
section III. Afterward, we evaluate the effectiveness of our
method through experiments in section IV, and section V
concludes this article.

II. RELATED WORK

A. Subspace clustering

Subspace clustering methods typically consist of two main
steps, (1) calculating the similarity matrix and (2) applying
spectral clustering on the similarity matrix to get the clustering
result. To obtain the similarity matrix, most state-of-the-
art methods apply a self-representation model with a sparse
regularization as follows:

min ||X−XC||2F + λ||C||1 s.t. diag(C) = 0, (1)

where X ∈ Rd×n is the data matrix, and C ∈ Rn×n is
the self-representation matrix. The constraint diag(C) = 0
prevents a trivial solution where each data point is represented
by itself. To solve this optimization problem, algorithms
such as ADMM are often applied. Once we have the self-
representation matrix, we can compute a symmetric and non-
negative similarity matrix as follows:

S =
1

2
(|C|+ |C|T ). (2)

The similarity matrix contains the pairwise affinity between
data points, and finally, spectral clustering is applied to get the
cluster label of every data point.

B. Data-driven deep clustering

In data-driven deep clustering, deep neural networks are
employed to directly learn representations of data. These
approaches can be divided into two types: the first type
applies traditional clustering algorithms on features extracted
by the neural network [19], [20]; the second involves a joint
optimization of the clustering network and feature extraction
process [10], [11].

C. Deep subspace clustering

Traditional subspace clustering assumes that high-
dimensional data points are sampled from a union of
low-dimensional subspaces. Deep subspace clustering [12],
[14] embed this assumption in deep learning. Unlike
traditional subspace clustering methods that apply an iterative
optimization method for calculating the self-representation
matrix, some deep subspace clustering methods employ
fully connected networks, where the parameters of the
neural network serve as self-representation variables. In
this approach, a self-representation loss function is applied,
enabling the derivation of self-representation matrices through
gradient descent [12], [21]. Some recent methods learn the
subspace basis [14] to enable more efficient clustering in
large datasets.

D. Deep unfolding

Deep unfolding [22] merges traditional optimization with
deep learning, transforming iterative optimization steps into
neural network layers, where each layer mirrors a step in the
optimization algorithm, this enables effective variable updates
and enhances the interpretability of the neural network.

Unfolding techniques have been applied in various inverse
problems in imaging like image denoising [15], compressive
sensing [16], and hyperspectral image unmixing [17]. These
problems focus on recovering data from degraded or incom-
plete inputs. In the clustering task, the goal is to uncover
the underlying data structure. In [18], the authors apply deep
dictionary learning to clustering by unfolding an iterative soft
thresholding algorithm (ISTA). This approach is quite different
from self-representation learning, likely to cause overfitting
and loss of data structure. In traditional sparse subspace
clustering, the self-representation matrix can capture the data
structure well. However, obtaining this matrix effectively with
unfolding techniques remains a challenge.

III. PROPOSED METHOD

Here, we present our proposed methodology, which en-
compasses three distinct parts: (1) the design of the ADMM
unfolding network of self-representation model for subspace
clustering; (2) feature learning with ADMM unfolding for
enhanced self-representation; (3) structure preservation in self-
representation. The architecture of our model is depicted in
Figure 1.

A. Unfolding ADMM optimization for self-representation

In this section, we detail the process of unfolding the
ADMM algorithm for solving a self-representation model in
subspace clustering. As far as we are aware, this marks the first
instance of applying the unfolding approach to obtain a self-
representation matrix for clustering purposes. To effectively
leverage the learning capabilities of neural networks, we have
restructured the original optimization problem of the self-
representation model as follows:

min ||X−YC||2F + λ||C||1 s.t. diag(C) = 0, (3)

Here, Y is a learnable auxiliary variable, initially set to X
and highly correlated with it. Setting diag(C) = 0 prevents
data points from representing themselves, which is a common
constraint in self-representation models. Similarly, according
to the principle of the ADMM algorithm, we can create an
augmented Lagrangian function:

L = ||X−YC||2F +λ||Z||1+ ⟨µ,C−Z⟩+ ρ

2
||C−Z||2F , (4)

where Z ∈ Rn×n is the auxiliary variable, introduced to
decompose the optimization of C into separate optimizations
for C and Z. µ and ρ are used for enforcing constraints
and controlling the convergence of the optimization problem.
Then we will optimize the variables one by one as follows:



Fig. 1: The structure of the proposed method. As shown in the figure, initially, the HSI patches x1, x2, ...xn are fed into a deep
auto-encoder to extract latent representations H, with a reconstruction loss. This latent representation is then transposed and
normalized, resulting in H̃, which is fed into an ADMM unfolding network to produce the self-representation matrix C. To
improve the quality of C, the loss of self-representation, the loss of structure-preservation, and the sparsity loss are applied.

Update C:

Ck+1 = (2YTY+ρ)−1(2YT )X−(2YTY+ρ)−1(µk−ρZk).
(5)

When integrating this into a fully connected neural network,
similar to [17] the following expressions emerge:

Ck+1 = WX−B(µk − ρZk)

W = (2YTY + ρ)−1(2YT )

B = (2YTY + ρ)−1,

(6)

where W and B are the learnable parameter of fully
connected layers, ρ is also a learnable parameter for better
updating.
Update Z:

Zk+1 = SoftThresholding
(
Ck+1 +

µk

ρ
,
λ

ρ

)
, (7)

where the SoftThresholding is defined as follows:

SoftThresholding(x, θ) =


x− θ if x > θ

0 if |x| ≤ θ

x+ θ if x < −θ

. (8)

In the unfolding network, we utilize a rectified linear unit
(ReLU) activation function. Instead of using λ

ρ , here we apply
a learnable threshold initialized with the value of 0.005. This
choice is motivated by the effectiveness of ReLU in facilitating
gradient propagation.

Zk+1 = ReLU(|Ck+1 +
µk

ρ
| − threshold) · sgn(Ck+1 +

µk

ρ
),

(9)
where sgn() is the sign function. To prevent trivial solution,
we set diagonal of Zk+1 to zero:

diag(Zk+1) = 0. (10)

Update µ:

µk+1 = µk + ρ · (Ck+1 − Zk+1). (11)

After completing the optimization iterations, we obtain the
self-representation matrix C from the ADMM network. To
ensure the high representation quality of the self-representation
matrix C obtained from the ADMM network, we aim to ensure
that C, derived from the auxiliary variables Y, can accurately
reconstruct X, as demonstrated in the following equation:

Lsr =
1

n

n∑
i=1

∥Xi −XCi∥2 , (12)

where Xi and XCi is the ith column of X and XC, corre-
spond to ith data point and its reconstruction. To encourage
sparsity by neural network optimization, an l1 regularization
was also applied shown as follows:

Lsp =
1

n
||C||1. (13)

In this way, we unfold the ADMM solver of the self-
representation model for subspace clustering into a neural
network.

B. Auto-encoder with unfolding ADMM

To leverage the spatial information in HSI data and enhance
the handling of nonlinear features, we apply a convolutional
auto-encoder to jointly optimize with the unfolding network.
First, to ensure the latent representation retains substantial
information from original data, the mean square error loss is
applied:

Lae =
1

n

n∑
i=1

||xi − x̂i||2F , (14)

where xi and x̂i are the ith HSI patch and its reconstruction
value. Then the unfolding ADMM is applied to this latent
code, and we redefine Lsr from (12) using the latent code:

Lsr =
1

n

n∑
i=1

∥∥∥H̃i − H̃Ci

∥∥∥
2
, (15)

where H̃ ∈ Rl×n is the normalized transpose of the latent
code matrix of original data, and l is the dimension of latent
code, Ci is the ith column of C.



C. Structure preservation module

In our approach, we exploit the K-nearest neighbors (KNN)
algorithm to capture the structural characteristics of HSI
data, resulting in two distinct adjacency matrices. The first
matrix, encompassing a larger set of neighbors, is utilized
for initializing the matrix Z. The second matrix, with a
smaller neighbor set, aims to ensure consistency in the self-
representation matrix, particularly by maintaining similar rep-
resentation characteristics among neighboring data points. This
is important for preserving the structural integrity of the
dataset. Formally, we express the structure preservation loss
as follows:

Lst =
∑
i,j

Aij ||Ci −Cj ||2 = Tr(CTLC). (16)

Here, A represents the adjacency matrix, where Aij = 1
indicates that the ith and jth data points are neighbors. L
is the Laplacian matrix derived from A, and Tr refers to the
trace calculation. Ci corresponds to the ith column of the
self-representation matrix.

D. Model Training

The training process of our model is structured into two
primary steps for effective learning and we will use all data
in both steps:

1) Pretraining of deep autoencoder: Initially, the deep au-
toencoder is pretrained. During this phase, the network is
trained in an unsupervised manner with clustering data,
which allows it to learn useful features and patterns.
This phase focuses on minimizing the reconstruction
loss, expressed as Lae.

2) Training the complete network: After pretraining, the
entire network start training. This stage involves the
integration of various loss components, formulated as:

Lall = Lae + αLsr + βLsp + γLst. (17)

Here, α, β and γ represent the weights assigned to
Lsr (self representation loss), Lsp (sparse loss) and Lst
(structure preservation loss), respectively.

After training process, the self-representation matrix is ob-
tained, the spectal clustering is then applied to get the final
clustering result.

IV. EXPERIMENTS AND RESULTS

A. Dataset introduction

Our model is evaluated using three well-known datasets:
Pavia University, Salinas, and Indian Pines.

Dataset Data Size Train Samples Number Classes Patch Size

Salinas 83× 86 5348 6 7× 7
Indian pines 85× 70 4391 4 7× 7

PaviaU 100× 200 6445 8 13× 13

TABLE I: The training dataset setting

B. Experiment setting and training strategy

To ensure a good initial state for the optimization pro-
cess, we initialize Z using the 30 nearest neighbors, taking
advantage of the structural prior. For C, aiming for higher
accuracy, we incorporate stricter structural information by
selecting the 10 nearest neighbors. For the Salinas dataset, we
use 2 ADMM iterations and a small ρ. For the Indian Pines
and PaviaU dataset, due to more complex features, we use 3
ADMM iterations and larger ρ with larger update step size. We
employ three classical metrics in the HSI clustering domain:
Accuracy (ACC), Normalized Mutual Information (NMI), and
Kappa. Higher values in these metrics correspond to better
performance. We provide our code and test scripts in an online
repository1. The inner structures of different datasets vary,
leading to differences in the weights of various components
within the loss function. The specific weights and initial ρ
values for each dataset are presented in Table II.

Dataset ρ α β γ

Salinas 0.1 40 0.1 0.0001
Indian Pines 0.9 40 0.3 0.0003

PaviaU 0.5 40 1.3 0.01

TABLE II: The hyper-parameter setting

C. Clustering result

Our model was evaluated using the described datasets, and
compared with several mainstream methods. Comparative and
visual results are in table III and figure 2, respectively.

From the clustering results, we can see that our method
outperforms other mainstream approaches. Notably, Dscnet
and HyperAE show significantly better performance com-
pared to others. Meanwhile, graph-based methods like spectral
clustering and the hierarchical clustering approach like Finch
deliver much better results than centroid-based methods like
K-means and C-means. It’s also important to mention that
SpectralNet didn’t perform as expected, possibly due to the
challenges presented by smaller datasets.

V. CONCLUSION

We introduced a neural network built from the unfolding
of ADMM and combined with an auto-encoder to derive
a self-representation matrix. To the best of our knowledge,
this is the first attempt to utilize unfolding ADMM for
computing self-representation matrices in subspace clustering.
Additionally, to preserve the inherent data structure within
the self-representation matrix, we incorporate the K nearest
neighbors algorithm in the structure preservation module. This
regularization promotes capturing the manifold structure of
HSI in the feature domain. Our methodology is evaluated on
three widely used datasets, demonstrating its superior perfor-
mance compared to other mainstream methods. This reflects
that the unfolding technology has advantages over traditional

1https://github.com/lxlscut/Unfolding-ADMM-for-Enhanced-Subspace-
Clustering-of-Hyperspectral-Images



Datasets Metrics K-means [4] C-means [5] Finch [7] SC [6] SpectralNet [23] Dscnet [12] HyperAE [13] Ours

Salinas
ACC 0.7418 0.7693 0.7186 0.8037 0.7792 0.9302 1 1
NMI 0.8394 0.7418 0.8141 0.8899 0.7113 0.9081 1 1

KAPPA 0.6798 0.7029 0.6554 0.7560 0.7153 0.9134 1 1

Indian pines
ACC 0.5994 0.5083 0.6550 0.6894 0.5655 0.5867 0.6557 0.9132
NMI 0.4468 0.2144 0.5063 0.5754 0.4407 0.4473 0.5497 0.7951

KAPPA 0.4530 0.3425 0.5441 0.5101 0.4246 0.4161 0.4987 0.8742

PaviaU
ACC 0.6239 0.4852 0.7330 0.6448 0.6282 0.8083 0.9357 0.9561
NMI 0.7858 0.5028 0.8642 0.7713 0.6684 0.8313 0.9082 0.9552

KAPPA 0.5481 0.3168 0.6764 0.5678 0.5229 0.7616 0.9159 0.9421

TABLE III: Results of the experiments on the clustering of real-world hyperspectral images. The best results are shown in
bold.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2: Results on PaviaU: (a) Kmeans, (b) FCM, (c) Finch, (d) SC, (e) SpectralNET, (f) DscNet, (g) HyperAE, (h) Ours, (i) Ground truth

deep subspace clustering in solving self-representation-based
subspace clustering problems.
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