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Abstract—This contribution deals with the transient scattering
of electromagnetic fields by conductors whose surface dynamics
are captured by a strongly non-linear boundary condition. The
scattering process is modeled by coupling the electric field
integral equation with the non-linear current-field characteristic.
The marching-on-in-time method is combined with a Newton-
Raphson non-linear solver to produce an approximate solution.
The method is demonstrated on an example exhibiting a negative
differential resistance.

I. INTRODUCTION

In many cases, the interaction of systems with the elec-
tromagnetic field is accurately described by including ap-
propriate scalar values for the permittivity, permeability, and
conductivity, resulting in a linear problem. With the advent
of two-dimensional materials and their applications in com-
munications this is often no longer the case [1] [2]. Coupling
the linear integral equations of electromagnetics to non-linear
characteristics for the field traces leads to a non-linear model
that needs to be solved in the time-domain and requires non-
linear solution methods such as Newton-Raphson.

In [3], Newton’s method is applied to the time-domain finite
element method incorporating non-linear material to model
dielectric breakdown and achieve second-order convergence.
The differential equation solver, however, suffers from numer-
ical dispersion errors and the Courant-Friedrich-Lewy (CFL)
limitation on the time step size. To overcome these limitations,
we seek the solution to Maxwell’s equation via an integral
equation method.

In this contribution, we extend the work in [1] to build a
solver robust to the inclusion of divergence and curl conform-
ing basis functions for the induced current and electric field
respectively. We formulate and solve the time domain Electric
Field Integral Equation (EFIE) and the auxiliary equation
mathematically described by Resistive Boundary Condition
(RBC) for thin surfaces. This is achieved by applying the
Newton-Raphson non-linear solver for the RBC. The paper
is organized as follows. Section II details the formulation of
the equations and the Newton-Raphson solver, followed by
the discretization scheme and the solution procedure. Section
III presents a numerical example and a discussion on the
outcome of the simulation results. Section IV summarises the
conclusions and some directions for future work.

II. FORMULATION

The electromagnetic scattering problem for an imperfect
conductor can be solved by equating the trace of the total

electric field to the sum of the traces of incident and scattered
electric field as follows,
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The auxiliary equation in our case is the RBC. It describes

the inhomogeneous, non-linear relationship between the cur-
rent density and the electric field and is given by,

j = −σ · n̂× (n̂× e). (3)

In this work, we model an inhomogeneous but isotropic
material resulting in the following equation to be solved:

j = f(e) = σ(|e|)e. (4)

Here, e is the tangential component of the total electric field.
We aim to solve (4) using Newton-Rapshon solver. To do this,
we need the Taylor expansion of (4) up to the first-order terms:

jn = ∇ef(en−1)(en − en−1) (5)

where

∇ef(en−1) = σ(|en−1|)
en−1 ⊗ en−1

|en−1|
+ σ′(|en−1|)I, (6)

and n is the iteration index of the solver.

A. Discretization

Equations (1) and (5) must be discretized before they can
be solved numerically. This is achieved by first expanding the
unknown variables j and e into spatial and temporal basis
functions. The current density j is required to be discretized
using divergence conforming basis functions [4]. The electric
field is a 1-form and so e is expanded using curl-conforming
basis functions [5].

Thus, the current density j and the electric field e are
expanded as follows:
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where fms are divergence-conforming Rao-Wilton-Glisson
(RWG) functions and gms are curl-conforming order 1
Nédélec functions of the first-kind. T ls are shifted Lagrange
bases.

After substituting (7) and (8) in (1) and (5), (1) is tested
using n̂ × fms, time delta functions and (5) is tested using
gms, time delta functions to obtain

Z(0)J(i) + Ġ(0)E(i) = Ėinc(i) −Eres(i) (9)
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Here, n and i are the nth Newton-Raphson iteration and the
time step index respectively.

Here, en−1 is the electric field obtained from the expansion
coefficients Ei−1

n i.e. in the previous time index if it is the first
iteration of the non-linear solver for the current time index
i, else from the coefficients Ei

n−1 obtained in the previous
iteration of the non-linear solver. The solution to (9) and (10)
is obtained as follows:
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end while
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end for

III. NUMERICAL EXAMPLE

Scattering of a Gaussian pulse of width cT = 2.95 light
meter by a sphere of radius 1.0 m with σ(e) = (1.2|e|2 −
1.65|e|+0.681)c Ω−1· m−1 was solved. Here, c is the speed
of light.

Experiments with various mesh size confirms that the non-
linearity can be modeled in an error controlled manner by
choosing a fine enough mesh as shown in Fig. 1. In this work,
the spatial variation of induced current is described by a 3rd-
degree polynomial due to the choice of σ and an approximate
linear variation of the incident electric field. The error can be
attributed to the fact that the spatial non-linear relation is only
imposed in a tested sense, and pointwise discrepancies remain.
This error can be mitigated by reduction of the mesh size.

Fig. 1. The solved RBC at a fixed point on the sphere as the incident
Gaussian pulse sweeps over it. The solution using 804 mesh elements shows
greater deviation than with 5482 mesh elements owing to the non-linear spatial
variation of induced current supported by piecewise linear basis functions.

IV. CONCLUSION

We have demonstrated that the time domain electric field
integral equation can be coupled to a strongly non-linear
impedance boundary condition and that the resulting system
can be solved by combining the marching-on-in-time method
with a Newton-Raphson solver. The currents and fields approx-
imately obey the non-linear relation with an error that can be
controlled by an appropriate choice of mesh size. Future work
is devoted towards an implementation of this method towards
solving scattering problem for thin open sheets and usage of
ports as the excitation source.
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