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Abstract—It is well-established that the magnetic field integral
equation (MFIE) cannot be used to model scattering by open
surfaces. In the context of multi-trace spaces it becomes apparent
that the reason for this is that the MFIE does not uniquely
determine the radiating component of the induced current.
However, when the MFIE is combined with the electric field
integral equation, a combined field integral equation results that
can be uniquely solved for the currents on both sides of the open
surface. This removes the necessity to compute these two currents
in post-processing. It also renders the treatment of closed and
open surfaces more consistent in codes for application to general
geometries.

I. INTRODUCTION

The electric field integral equation (EFIE) is a versatile tool
in the modelling of scattering of time-harmonic electromag-
netic fields by perfect electrical conductors (PECs). It is often
preferred over the magnetic field integral equation because it
can be applied to closed and open surfaces, and because it is
fairly straightforward to account for the effects of non-perfect
conductivity through the inclusion of a surface impedance
condition. The quadratic increase of the condition number of
linear systems resulting from the discretisation of the EFIE
can be mitigated by Calderón preconditioners.

The magnetic field integral equation (MFIE) is used in the
construction of combined field integral equations (CFIEs) for
the modelling of scattering by closed surfaces that are injective
at all frequencies. The MFIE states that the total tangential
magnetic field vanishes at points in the interior of the scatterer
near its surface. From this it is clear why the MFIE does not
make sense for open surfaces, which do not partition the space
into an exterior and an interior region.

The advent of multi-trace techniques changes this state-of-
affairs: the open surface is interpreted as an inflated double-
sided screen of infinitesimal thickness. For both sides of this
double-sides screen, it is now clear in which direction the
interior and exterior region can be found. In [1], it is shown
that the representation theorem usually applied to closed
surfaces holds here as well: the total field can be represented
as the sum of the incident field and the fields radiated by the
currents on the front and back of the open surface.

Here we will investigate what the magnetic field integral
equation looks like on double-sided open surfaces and what
information this provides about the induced current. We will
combine this with the electric field integral equation to arrive
at a combined field integral equation that can be uniquely
solved for the currents on the front and back of the inflated
surface. Correctness of the equation is verified by comparing
the results with those of the classic EFIE, and by computing
the tangential traces of the magnetic field.

A. Equations and Discretisation

A rectangular planar PEC illuminated by an electromagnetic
field (einc, hinc) with time variation e−ιωt is modelled as
an double-sided screen with top and bottom (Γ1,Γ2) and
outward pointing normals (n1, n2). The medium surrounding
Γ is characterised by permittivity ϵ and permeability µ, or
equivalently by wavenumber κ = ω

√
ϵµ and impedance

η =
√
µ/ϵ. The EFIE and MFIE operators are

Tij(uj)(x) =− ικni ×
∫
Γj

e−ικ|x−y|

4π|x− y|
uj(y)dy

+
1

ικ
ni × grad

∫
Γj

e−ικ|x−y|

4π|x− y|
divΓj uj(y)dy,

Kij(uj)(x) =ni ×
∫
Γj

gradx
e−ικ|x−y|

4π|x− y|
× uj(y)dy

If Γi and Γj are co-planar, Kij = 0. This significantly simpli-
fies the MFIE. What remains are the geometric identities, with
signs that depend on the relative positioning and orientation
of the top and bottom surface (see [2]):(
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(1)
Its solutions are all pairs of top-bottom currents for which

u1 − u2 = 2n1 × hinc. (2)

The electric field integral equation for this geometry reads
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Because top and bottom surface coincide and are oppositely
oriented, this is consistent with the single layer EFIE, which
is solved for the total induced current:

ηT11(u1 + u2) = −n1 × einc (4)

Neither equation gives access to the currents induced in the top
and bottom layers, but provide complementary information!
This leads us to propose the following multi-trace CFIE:[(
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where K̃ is the double layer boundary operator at imaginary
wavenumber ικ. This CFIE is designed to be free from dense
grid breakdown [3], coercive for closed surfaces [4], and is cast
in a form that makes it amenable to low-frequency stabilisation
using quasi-Helmholtz projectors, even in the presence of
holes and handles [5].

The equation is discretised by (i) building a triangular
meshes (Γ1,h,Γ2,h) that agree on both sides of the open
surface, (ii) restricting the search for (u1, u2) to the space
of Rao-Wilton-Glisson functions RWG(Γ1,h) × RWG(Γ2,h),
(iii) testing the equation by functions in the Buffa-Christiansen
space BC(Γ1,h) × BC(Γ2,h). Operator products are dealt
with by introducing the appropriate inverse Gram matrices
observing conformity and stability [5].

II. NUMERICAL RESULTS

An incident wave with signature einc(x) =
(1, 0, 0)T exp(−ικx3), with κ = 4.0m−1 illuminated a
planar square in the xy-plane with side 1.0m−1, The surface
is modelled by a double-sided mesh (Γ1,h,Γ2,h) with
h = 0.05m−1. The current is computed by the classic,
single-trace EFIE and the multi-trace CFIE introduced
here. Fig. 1 shows agreement for the total current. The
tangential magnetic field along a vertical line is computed
in post-processing. Single-trace EFIE and multi-trace CFIE
completely agree (Fig. 2). At the point of intersection of
this vertical line and Γ, the norm of the induced current is
computed directly from the solution of the multi-trace CFIE:
ηu1 ≈ 0.48 and ηu2 ≈ 2.47. These values agree with the
limits of the tangential magnetic field, but only the multi-trace
CFIE provides them without post-processing!
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Fig. 1. Norm of the induced currents times η in the top layer computed
by the multi-trace CFIE (top), in both layers computed by the multi-trace
CFIE (center), and in both layers computed by the classic single-trace EFIE
(bottom), showing complete agreement.

Fig. 2. Norm of the tangential magnetic field along a vertical line through
the center of Γ. Even though EFIE and CFIE solutions differ, their radiated
fields and their traces agree.


