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Samenvatting

Als gevolg van klimaatverandering en de dringende noodzaak om alle sec-
toren van de samenleving koolstofvrij te maken, staat de residentiële sec-
tor voor een kritieke transformatie in een tijdsbestek van minder dan drie
decennia. Deze transformatie vereist snelle en substantiële veranderingen,
waaronder het wijdverspreid integreren van fotovoltaïsche systemen op da-
ken, een snelle overgang van verwarmingssystemen op gas en olie naar
energie-efficiëntere elektrische warmtepompen in goed geïsoleerde huizen,
en een versnelde overstap naar elektrische voertuigen in combinatie met een
verschuiving naar alternatieve vervoersmodi.

De uitrol van slimme meters in elk huishouden dient als hoeksteen voor
deze energietransitie. Ten eerste faciliteren meters met bidirectionele com-
municatie tussen consumenten, energieleveranciers, en netbeheerders de
automatisering van verschillende energiegerelateerde diensten, waardoor de
last voor individuele consumentenwordt verlicht en een efficiënter netbeheer
mogelijk wordt. Tegelijkertijd bieden slimme meters ongeëvenaarde inzich-
ten in gewoontes van consumenten op granulaire tijdresoluties, waardoor
bedrijven de toegevoegde waarde van hun oplossingen nauwkeurig kunnen
kwantificeren ten gunste van elke individuele consument. Het is dan ook
weinig verrassend dat datagestuurde digitale bedrijfsmodellen in de energie-
sector snel zijn uitgegroeid tot een miljardenmarkt.

Granulaire gegevens van slimme meters kunnen echter onbedoeld persoon-
lijke informatie over individuele consumenten vrijgeven aan bedrijven, over-
heidsinstanties en onderzoeksinstellingen. Daarom hebben regelgevers en
wetgevers gereageerd door beperkingen op te leggen aan de publieke toegang
tot gegevens van slimme meters, ondanks het aanzienlijke potentieel ervan.
In de Europese Unie zijn gegevens van slimme meters bestempeld als per-
soonsgegevens en het delen en verwerken ervan moet in overeenstemming
zijn met de Algemene Verordening Gegevensbescherming van de EU.

xiii



Synthetische belastingsprofielen worden ontwikkeld als een oplossing om
een balans te vinden tussen het publiek nut van deze gegevens en het be-
houd van privacy, waarbij privacygevoelige metergegevens worden gebruikt
om data te genereren die wel geschikt zijn om onbeperkt te delen. Deze
thesis levert een bijdrage in het modelleren van hoogfrequente synthetische
datasets op jaarbasis met realistische piekbelasting.

Traditiegetrouw dient Hoofdstuk 1 van dit proefschrift als inleiding op
het onderzoek, waarin de probleemstelling wordt verwoord. De primaire
onderzoeksvraag wordt ontleed in enkele secundaire doelstellingen die als
tussentijdse mijlpalen zullen fungeren. Elke secundaire onderzoeksvraag
wordt behandeld in een apart hoofdstuk.

Om het onderzoek in dit proefschrift in de juiste context te plaatsen en de
lezer de nodige achtergrond te geven, worden in Hoofdstuk 2 verschillende
relevante onderwerpen behandeld. Startend van de positionering van de
residentiële sector binnen de bredere energiesector worden de inspanningen
om deze sector koolstofvrij te maken besproken. Vervolgens worden slimme
meters en datagestuurde toepassingen geïntroduceerd, waarbij het huidige
marktpotentieel wordt belicht enmogelijke toepassingen vanmetergegevens
op individueel en geaggregeerd niveau worden toegelicht. Tot slot wordt
het wetgevend kader voor het delen van gegevens van slimme meters in de
Europese Unie besproken, waarbij wordt afgesloten met een overzicht van de
soorten persoonsgegevens die kunnen worden afgeleid.

Om tegemoet te komen aan de vraag naar trainingsgegevens voor datage-
stuurde toepassingen, biedt synthetische modellering van residentiële belas-
tingsprofielen een veelbelovend alternatief voor privacygevoelige metergege-
vens. Daaromworden inHoofdstuk 3 verschillendemodelleringstechnieken
besproken, van verouderde methoden voor data-anonimisering tot geavan-
ceerde generatieve AI-modellen. De bijdragen van dit onderzoek zijn gericht
op top-down modellering, waarbij historische datasets worden gebruikt om
gelijkaardige consumenten te groeperen en synthetische belastingsprofielen
te genereren. Het meeste onderzoek richt zich echter op energiegegevens
voor de korte termijn, voornamelijk dagelijkse of wekelijkse profielen, waar-
door er aanzienlijke hiaten zijn voor langetermijntoepassingen.

Het verschil tussen conventionele dagelijkse en wekelijkse belastingsmodel-
len en de gegevens die in dit onderzoek worden gebruikt, wordt duidelijk in
Hoofdstuk 4, waar de trainings- en validatiedataset wordt gepresenteerd.
De dataset die in dit proefschrift wordt gebruikt, bevat een heel jaar aan
verbruiksgegevens die zijn opgenomen met intervallen van 15 minuten, wat
neerkomt op 35.040 datapunten per verbruiker, meerdere grootteordes groter
dan het aantal observaties in traditionele, korte termijn, belastingsmodellen.



Gezien het complexe samenspel van factoren die samen de output van
slimme meters van residentiële consumenten bepalen en de afwezigheid
van langetermijnbelastingsmodellen, beargumenteren we dat nauwkeurige
synthetische belastingsmodellen op jaarschaal met een resolutie van 15
minuten niet kunnen worden bereikt met één enkele modelleermethode.
Deze complexiteit in gedachte stellen we een ontkoppeling van het probleem
voor, waarbij voor verschillende tijdschalen geschikte modelleringstechnie-
ken worden gebruikt, elk op maat om de unieke dynamiek vast te leggen die
inherent is aan de beschouwde tijdschaal. In Hoofdstuk 7 en Hoofdstuk
8 worden de voorgestelde belastingsmodellen op respectievelijk dagelijks en
jaarlijks niveau besproken.

Alvorens in te gaan op het modelleren van de belastingsprofielen zelf, wordt
in Hoofdstuk 5 eerst het wiskundige kader voor het definiëren van piekbe-
lastingen geïntroduceerd, gezien het toenemende belang ervan voormoderne
toepassingen gericht op vraagrespons en piekscheren. Hoewel de term "piek-
vraag” alom gebruikt wordt door netbeheerders en energiebedrijven, kon er
geen rigoureuze definitie gevonden worden die geschikt is voor individuele
consumenten. Daaromwordt de lastduurcurve geïntroduceerd om een drem-
pelwaarde te bepalen die uniek is voor elke consument.

Deze definitie wordt gebruikt in een clusteringalgoritme om consumenten
met gelijkaardige eigenschappen te groeperen inHoofdstuk 6. Daarin wordt
een nieuwe functieset gebouwd op basis van de tijdsgebonden eigenschap-
pen van verbruik en piekvraag. Deze set wordt vervolgens gebruikt in een
hiërarchisch clusteringproces om de dataset in 10 clusters te verdelen. Het
clusteralgoritme leidt tot compacte clusters met duidelijke verbanden met
werkelijke toepassingen waarbij piekvraag in woningen een rol speelt, zoals
vraagresponsinitiatieven en de toepasbaarheid van batterijopslagsystemen
voor piekscheren. Bovendien laten deze clusters een duidelijk verband zien
met de voorspelbaarheid en variabiliteit van consumptie en piekgedrag,
waardoor de onevenredige aanwezigheid van pieken in bepaalde tijdsperi-
oden voor elk cluster kan worden gekwantificeerd. Deze geconstrueerde
metagegevens op basis van de clusters zullen van grote waarde blijken te
zijn tijdens de volgende stappen.

Op dagniveau onderzoektHoofdstuk 7 het gebruik van tijd-frequentie ana-
lyse om dagelijkse belastingsprofielen te genereren. De stochastische piekbe-
lastingen worden beschouwd als hoogfrequente componenten die gesuper-
poneerd worden op een trager variërende, laagfrequente basisbelasting. Een
opwavelets gebaseerdemultiresolutieanalyse wordt gebruikt om slimmeme-
terdata te ontbinden in hun laagfrequente en hoogfrequente componenten.
Vervolgens wordt een stochastische belastingsprofielgenerator op dagniveau
geconstrueerd.



Door de hoogfrequente component van een huishouden te herschalen en te
verschuiven en deze bovenop de laagfrequente component van een ander
huishouden te plaatsen, kan een realistisch synthetisch belastingsprofiel
worden verkregen. Er wordt aangetoond dat deze methodologie een nauw-
keurige regeling van de verdelingen van en de relatie tussen de dagelijkse
piekvraag en het dagelijkse verbruik mogelijk maakt.

Een andere techniek is nodig om jaarprofielen van dagelijkse consumpties
te modelleren, aangezien deze meer correlatie vertonen over langere tijd-
schalen. Hoofdstuk 8 illustreert dat Generatieve AntagonistenNetwerken
(GANs) zeer geschikt zijn voor deze taak. De DoppelGANger-architectuur
wordt gebruikt vanwege het vermogen om langetermijncorrelaties te cap-
teren en de mogelijkheid om in batch kortetermijnvariaties op weekniveau
te genereren. Op basis van een sensitiviteitsanalyse van de inputs die het
generatieproces beïnvloeden, wordt een set parameters geïdentificeerd die de
consistente generatie van synthetische data faciliteert die nauw aansluiten
bij reële jaarlijkse belastingsprofielen, zowel in het frequentie- als amplitu-
dedomein.

Tot slot bespreekt Hoofdstuk 9 de validatie van de samengestelde syn-
thetische dataset op een reeks toepassingen van residentiële slimme me-
tergegevens. De dagelijkse belastingsprofielen uit Hoofdstuk 7 worden
geïntegreerd in de jaarprofielen van dagelijkse verbruiken uit Hoofdstuk 8
om jaarprofielen te verkrijgen met een hoge variabiliteit en een realistische
dynamiek op korte en lange termijn. Deze validaties bewijzen de uitstekende
overeenkomst tussen de verdeling van echte en synthetische gegevens voor
de opgenomen benchmarks, zowel op individueel als op geaggregeerd niveau.
Zowel kwalitatieve metadata als een voldoende grote trainingsdataset zijn
echter cruciaal om een dataset te verkrijgen met realistische en voldoende
diverse belastingsprofielen.

Concluderend kan worden gesteld dat in dit proefschrift een nieuwe twee-
stapsmethode is voorgesteld om synthetische gegevens te genereren uit
privacygevoelige slimme metergegevens. De resultaten bevestigen de bruik-
baarheid van deze techniek voor het produceren van hoogfrequente gegevens
gedurende een heel jaar, waardoor het een geschikt alternatief is voor slimme
metergegevens voor een breed scala aan praktische toepassingen. Omdat
de geconstateerde tekortkomingen kunnen worden toegeschreven aan de
proof-of-conceptfase die werd uitgevoerd op een beperkte dataset, bieden
de voorgestelde methoden potentieel op vlak van zowel schaalbaarheid als
toepassing in niet-academische contexten.



Summary

Driven by the urgency of climate change and the pressing need to decar-
bonize all sectors of society, the residential sector faces a critical transfor-
mation in a time frame of less than three decades. This transformation
necessitates swift and substantial changes, including the widespread deploy-
ment of rooftop photovoltaic systems, a rapid transition from gas and oil-
based heating systems to more energy-efficient electric heat pumps in well-
insulated homes, and an accelerated adoption of electric vehicles coupled
with a shift towards alternative modes of transportation.

The deployment of smart meters at every household serves as a cornerstone
for this energy transition. First, meters with bi-directional communication
between consumers, energy providers, and grid operators facilitate the au-
tomation of various enery-related services, easing the burden on individual
consumers while enabling more efficient grid management. At the same
time, smart meters provide unprecedented insights into consumer habits
at granular time resolutions, allowing organizations to precisely quantify
the value proposition of their solutions to benefit each individual consumer.
Unsurprisingly, the data-driven digital business models in the energy sector
have rapidly evolved into a billion-dollar market.

However, granular smartmeter data can unintentionally disclose personal in-
formation about individual consumers to companies, public agencies, and re-
search institutions. Consequently, regulators and legislators have responded
by imposing restrictions on public access to smart meter data, despite its
significant potential for data-driven applications. In the European Union,
smart meter data has been labeled as personal data, and its sharing and
handling needs to be compliant with the EU’s General Data Protection
Regulation (GDPR).

Synthetic load modeling has emerged as a solution to balance data utility
with privacy preservation, leveraging privacy-sensitive smart meter data to
generate synthetic datasets suitable for unrestricted sharing. This PhD dis-
sertation builds upon these techniques, offering advancements in the mod-
eling of annual, high-frequency synthetic datasets that incorporate realistic
peak demands.
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Following tradition, Chapter 1 of this dissertation serves as an introduction
to our research, articulating our problem statement. Our primary research
question is broken down into several secondary objectives that will act as
interim milestones. Each secondary research question will be addressed in a
separate chapter.

To contextualize the research presented in this dissertation and give the
reader the necessary background, Chapter 2 covers several relevant topics.
It begins by situating the residential sector within the larger energy sector
and discussing the necessary decarbonization efforts as part of the energy
transition. Smart meters and their data-driven applications are subsequently
introduced, highlighting the current market potential and exploring possible
uses of smart meter data at the individual and aggregated level. Last, the
legislative framework governing the sharing of smart meter data in the
European Union is reviewed, concluding with an overview of the types of
personal data that can be extracted from residential smart meter data.

To meet the demand for accurate training data in data-driven applica-
tions, residential load modeling presents a promising alternative to privacy-
sensitive smart meter data. As such, Chapter 3 explores different modeling
techniques, starting from legacy data anonymization methods to state-of-
the-art generative AI models. This dissertation’s contributions are focused
on top-down modeling, which employs historical datasets to group similar
consumers and generate synthetic load profiles. However, most existing re-
search focuses on short-term energy data, primarily daily or weekly profiles,
leaving a significant gap for long-term data applications.

The disparity between conventional daily and weekly load models and the
data used in this PhD is made clear in Chapter 4, where the training and
validation dataset is presented. The dataset used throughout this disserta-
tion features a full year of consumption data recorded at 15-minute intervals,
equating to 35,040 data points per consumer, several orders of magnitude
larger than the number of data points involved in traditional, short-term,
load models.

As such, given the complex interplay of factors that collectively shape the
smart meter output of residential consumers and the absence of long-term
load models, we argue that accurate synthetic load models at the annual
timescale at a 15 minute resolution cannot be achieved with a single mod-
eling method. Recognizing this complexity, a decoupling of the problem
is proposed, adopting scale-appropriate modeling techniques for different
timescales, each tailored to capture the unique dynamics inherent to the
timescale under consideration. Chapter 7 and Chapter 8 respectively dis-
cuss the proposed load models at the daily and annual level.



However, before tackling the issue of load modeling itself, Chapter 5 first
introduces the mathematical framework to define peak demands, given their
increasing importance for modern applications focused on demand response
and peak shaving. While the term “peak demands" is ubiquitously used by
grid operators and utilities, no rigorous definition suitable for individual
consumers could be found. As such, the load duration curve is proposed to
determine a threshold unique to each consumer.

This definition is used in Chapter 6 to develop a clustering algorithm to
group consumers with similar properties together. A novel feature set is
constructed based on the temporal properties of consumption and peak
demands, which is subsequently used in an hierarchical clustering process
to partition the dataset under consideration into 10 clusters. The cluster-
ing algorithm produces compact clusters with clear connections to real-life
applications involving residential peak demands, such as demand response
initiatives and the applicability of battery storage systems for peak shav-
ing. Furthermore, these clusters demonstrate a clear connection to the
predictability and variability of consumption and peak behavior, allowing
for the quantification of the disproportionate presence of peak demands in
certain time periods for each cluster. This constructed metadata based on
the clusters will prove to be invaluable during the following steps.

At the daily level, Chapter 7 explores the use of time-frequency analysis to
construct daily load profiles. The stochastic peak demands are treated as
high-frequency components superimposed on a more slowly varying, low-
frequency base load. A wavelet-based multi-resolution analysis is used to de-
compose daily smart meter data in their low-frequency and high-frequency
components. Subsequently, a stochastic load profile generator at the daily
level is constructed. By rescaling and shifting the high-frequency component
of one household and superimposing it on the low-frequent component of a
different household, a realistic synthetic load profile can be obtained. This
methodology is shown to allow for fine-grained control on the distributions
of and relation between the daily peak demand and daily consumption.

A different technique is necessary to model annual profiles of daily con-
sumptions, as they exhibit more correlated behaviors over longer timescales.
Chapter 8 illustrates that Generative Adversarial Networks (GANs) are well-
suited for this task. The DoppelGANger architecture is used due to its ability
to capture long-term time correlations and its capability to batch-generate
short-term intraday variations at the weekly level. Based on a sensitivity
analysis of inputs influencing the generation process, a set of parameters is
identified that eliminatesmode collapse in both the frequency and amplitude
domains, facilitating the consistent generation of datasets of load profiles
that closely resemble real annual load profiles.



Finally, Chapter 9 presents the validation of the constructed synthetic
dataset on a series of downstream applications of residential smart meter
data. The daily load profiles of Chapter 7 are inserted in the annual
profiles of daily consumptions from Chapter 8 to obtain annual profiles
with high-frequency variability and realistic temporal short-term and long-
term dynamics. These validations prove the excellent distributional similar-
ity between real and synthetic data for the included benchmarks, at both
the individual and aggregated level. However, qualitative metadata and a
sufficiently large training dataset are both crucial to obtain a dataset with
realistic and sufficiently diverse load profiles.

In conclusion, this PhD dissertation proposed a novel two-step methodology
to generate synthetic data from privacy-sensitive smart meter data. The
results confirm the viability of this technique for producing high-frequency
data over the course of a full year, making it a feasible alternative to smart
meter data for a wide range of practical applications. Because the observed
shortcomings can be attributed to the proof-of-concept phase conducted on
a limited dataset, the presented techniques demonstrate potential for scaling
up and applications in non-academic contexts.



Part I

Constructing realistic
synthetic load profiles based

on privacy-sensitive
residential smart meter data
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1
Introduction

What is the use of a house if you haven’t
got a tolerable planet to put it on?

Henry David Thoreau

At its core, this PhD thesis is about households; about individuals, appliances,
and the day-to-day activities inside their own homes. For centuries, this
information has remained veiled in privacy, shielded from governments,
companies, utilities, as well as grid operators. However, the advent of
smart meters and advanced metering infrastructure over this past decade
has inadvertently breached this long-standing privacy barrier. Through the
widespread recording of energy consumption habits at unprecedented levels
of detail, these technological advancements offer unparalleled insights into
both the daily routines as well as the habits of households.

Given the heightened awareness surrounding privacy and data security,
regulators and legislators have responded by imposing restrictions on access
to smart meter data. Nevertheless, the wealth of granular consumption data
obtained from smart meters continues to hold immense value in expediting
the advancement of new products and services pivotal to facilitating the
clean energy transition at the level of individual consumers on the low-
voltage grid. This data can not only be used by public research institutions
but also by private enterprises, aiding them in refining their digital business
models through innovative research and development.
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4 Problem statement

This dissertation focuses on load modeling, a discipline that leverages
privacy-sensitive smart meter data to produce synthetic datasets suitable for
unrestricted sharing. Grid operators, who collect large volumes of this data
but are limited in sharing it, are the primary target audience. Researchers in
this field aim to unlock the potential of smart meter data while protecting
individuals’ privacy. This work contributes to advancing load modeling
methodologies that balance data utility with privacy preservation, offering
solutions to these challenges.

1.1 Problem statement

Traditional loadmodeling techniques typically rely on unsupervisedmachine
learning to group consumers with comparable characteristics, followed by
the averaging and smoothing of their smart meter data to produce synthetic
load profiles. However, contemporary applications of smart meter data em-
phasize the need for flexibility and accuracy, particularly in capturing both
the timing and amplitude of individual peak demands, rendering traditional
smoothed curves inadequate. Granular synthetic data, characterized by real-
istic representations of peak demand behavior, are imperative for addressing
these shortcomings and advancing two critical objectives, at the individual
and the collective level, in the context of an evolving energy landscape.

First, at the individual level, the transition to a clean energy future necessi-
tates the development of digital business models customized to the diverse
needs of consumers. This approach transcends the conventional one-size-
fits-all paradigm, ensuring personalized and profitable energy management
strategies. To achieve this, accurate load models are crucial for promot-
ing and automating demand response systems tailored to each consumer’s
unique circumstances. Data with realistic peak behavior serves as the corner-
stone to enable private enterprises to accelerate the development, validation,
and deployment of energy-efficient systems and services that address the
evolving needs of consumers.

Second, at the aggregated level, the remarkable growth of photovoltaic in-
stallations, electric vehicles, and heat pumps poses significant challenges to
distribution grids, necessitating accurate hosting capacity studies to ensure
grid reliability and resilience. Granular smart meter data with accurate
representations of peak demand behavior is essential for performing these
hosting capacity studies. By leveraging realistic data, stakeholders can
identify potential grid constraints, optimize grid operations, and suggest
targeted infrastructure upgrades to ensure the reliable and efficient operation
of distribution grids in the face of evolving energy trends.
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1.2 Objectives and contributions

Building upon the problem statement presented in the preceding section,
further explained in Chapter 2, the main objective can be defined as follows:

Primary research objective
➢ Develop and validate a novel methodology for synthetic load

modeling capable of reproducing the peak demand behavior in
residential energy consumption patterns.

Given the complex interplay of factors that collectively shape the smart
meter output of residential consumers, we argue that accurate synthetic
load models at this timescale and resolution cannot be achieved with a
single modeling method. Recognizing this complexity, we advocate for the
decoupling of the problem and the adoption of scale-appropriate modeling
techniques for different timescales, each tailored to capture the unique dy-
namics inherent to the considered timescale.

At the daily level, synthetic data will be generated through a decomposition-
recombination procedure rooted in time-frequency analysis and supported
by wavelets. At the annual level, recent advances in generative AI are lever-
aged to generate annual profiles that accurately capture seasonal, weekly,
and interday correlations.

To systematically address these methodological challenges and refine the
primary research objective, we formulate several additional secondary re-
search questions. These secondary objectives serve as critical milestones,
collectively contributing to achieving the primary research question.

Secondary research objectives
➢ Identify the use cases for granular smart meter data, both at the

individual and aggregated level. These downstream applications
will serve as benchmarks of the synthetic data throughout this
dissertation.

➢ Define a rigorous mathematical framework to classify which
values can be considered ‘peak demands’.

➢ Construct a feature set capable of incorporating the peak de-
mand behavior, and to use this feature set in a clustering algo-
rithm to investigate and quantify the difference in peak demand
behavior for different consumer categories.

➢ Use time-frequency analysis to construct daily load profiles with
sufficiently stochastic peak demands.

➢ Train generative adversarial networks to generate annual pro-
files with realistic multiscale time correlations.
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1.3 Thesis outline

With both the research scope as well as the primary and secondary research
objectives defined in the previous sections, the methodology and thesis
outline form the subject of this section. Figure 1.1 gives a graphical overview
of this outline.

Chapter 2 starts by providing the necessary background information and
helps explain the context and relevance of this PhD dissertation. Beginning
with an examination of the residential sector within the broader energy
landscape, we discuss the challenges this sector faces in decarbonizing its
emissions. Specifically, we focus on the growing significance of photovoltaic
installations, electric vehicles, and heat pumps in shaping the transition
towards cleaner energy sources. Subsequently, we explore the role of smart
meter data in accelerating this transition, both at the individual and aggre-
gated levels, with particular emphasis on their impact on the distribution
grid. This chapter concludes with a summary of the legislative framework
around smart meter data, and the personal data that can be extracted from
them.

Figure 1.1: Outline of the dissertation, where arrows and connected tiles
represent links from one chapter to another.
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Chapter 3 subsequently analyzes the state-of-the-art literature on residential
load modeling, ranging from bottom-up models to top-down models that use
smart meter data to generate synthetic data. This literature review helped
refine the secondary objectives of this thesis, while simultaneously resulting
in the multifaceted approach towards the modeling of different timescales as
discussed in Section 1.2.

The smart meter data used throughout this dissertation are described in
Chapter 4. Furthermore, the production data of photovoltaic installations,
the electric vehicle charging profiles, as well as the heat pump load profiles
are discussed in the remainder of that chapter. Given the data-drive nature
of this dissertation, this data will be used throughout all following chapters.

Chapter 5 proceeds by introducing the mathematical framework necessary
to unambiguously define peak demands, which will be used for the re-
mainder of this work. Drawing from the concept of load duration curves,
frequently employed by electric utility engineers, we establish consumer-
specific thresholds to define peak loads.

This framework serves as the cornerstone for Chapter 6, wherein we con-
struct a feature set characterizing both consumption patterns and peak
demands across time. This feature set serves as the basis for a clustering
algorithm aimed at categorizing consumers and quantifying the stochastic
nature of peak demands across a diverse spectrum of residential households.

In Chapters 7 and 8, the synthetic data generation process for daily and an-
nual profiles is established. Chapter 7 starts with a brief exploration of time-
frequency analysis and discrete wavelet transformation, laying the ground-
work for the subsequent decomposition-recombination process. Smart me-
ter data undergoes decomposition into low-frequency and high-frequency
components, where the latter drives stochastic peak demands. By rescaling,
shifting and combining these components across a diverse consumer dataset,
we construct a robust stochastic daily load profile generator.

Finally, Chapter 8 introduces generative adversarial networks (GANs). As
state-of-the-art in synthetic data modeling, generative AI is used to pro-
duce annual profiles of daily consumptions. A set of application-specific
microbenchmarks is introduced to evaluate the fidelity of the generated
data against the input dataset. Additionally, various combinations of neural
networks are trained and benchmarked to consistently yield annual profiles
exhibiting realistic seasonal, weekly, and interday temporal correlations.
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While benchmarks comparing the synthetic data to the original dataset are
provided in the preceding chapters, the primary validation of our method-
ology is presented in Chapter 9. Herein, the performance of the synthetic
data is benchmarked against the original dataset across various downstream
applications. Building upon the insights obtained in Chapter 2, a comprehen-
sive array of applications at both individual and aggregate levels are analyzed
and discussed.

To conclude this dissertation, Chapter 10 provides a summary of themethod-
ology and main conclusions, as well as an outlook on future research direc-
tions. The limitations of the proposed methodology are discussed, as well as
perspectives for improvements and continuation of this work.



2
Background information

The energy system is collecting more data than ever, but too
much of it remains idle, or stuck in siloed storage, with

significant untapped potential.

Pauline Henriot

This chapter aims to provide the necessary background to contextualize
the research presented in this dissertation. First, Section 2.1 situates the
residential sector within the broader energy landscape, emphasizing its sig-
nificant contribution to total emissions. Section 2.2 subsequently explores
the anticipated impact of the energy transition at the level of the individual
households, as well as on the low-voltage distribution network.

For the second part of this chapter, our focus shifts towards smartmeter data.
Section 2.3 highlights the economic opportunities presented by data-driven
digital business models, paving the way for subsequent discussions on the
diverse applications of smart meter data.

However, the use of smart meter data is constrained by privacy consider-
ations and regulatory frameworks. Section 2.4 covers the privacy-related
challenges associated with smart meter data handling. In Section 2.4.1,
the legislative framework for EU countries is described, highlighting the
classification of smart meter data as personal data under the General Data
Protection Regulation (GDPR). Finally, Section 2.4.2 provides insights into the
types of information that have previously been extracted from smart meter
data, clarifying why such data needs to be classified as personal.

9
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2.1 Residential consumers & their emissions

This thesis primarily centers on the residential sector situated on the low-
voltage distribution grid. It is therefore important to contextualize the resi-
dential sector within the broader energy landscape, a task undertaken in this
section.

In the European Union (EU), households accounted for 27% of the final
energy consumption in 2021, according to themost recent data available from
Eurostat [1]. Residential energy usage is predominantly allocated to space
heating (SH) or cooling, domestic hot water (DHW) production, cooking,
lighting, and appliance usage. As depicted in Figure 2.1, natural gas and
electricity currently dominate the EU’s final energy consumption in the
residential sector, while renewables and biofuels contribute to covering 21.2%
of the consumption.

Due to both direct emissions from fossil fuel consumption and indirect emis-
sions from electricity generation, the residential sector in the EU contributes
to approximately 20% of the total emissions, with fossil-based heating being
a significant driver of energy demand in many member states.

Figure 2.1: Final energy consumption in the residential sector by fuel type
in the EU [1].
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Examining the situation within our own home country, Belgium, Figure 2.2
illustrates the sector-wise distribution of national greenhouse gas (GHG)
emissions, as reported in the most recent National Inventory Report [2]. The
residential sector is directly responsible for nearly 15% of emissions, while
the transport sector is responsible for more than 20%.

These aggregated numbers obfuscate the size of challenges ahead for residen-
tial consumers in Belgium. Over 80% of the residential buildings in Belgium
was built before 1981. In 2019, oil and petroleum products still constituted
a 29% share of all fuels in the final energy consumption in the residential
sector [3]. The annual EU average per capita GHG emissions from residential
heating was 696.4 kg. In Belgium, 1210.5 kg was emitted per capita. This
highlights the urgent need for a drastic increase in renovation rate of the
building stock together with a shift towards more environmentally friendly
technologies for residential heating.

Challenges of a similar size lie ahead in the transportation sector. Since 1990,
the number of passenger cars has increased by 53%. The evolution of the
number of passengers cars is visualized in Figure 2.3 on the following page.
With an increase of GHG emissions by 26% between 1990 and 2019, road
transport is one of the few sectors that has actually increased its emissions
since 1990.

Figure 2.2: Contribution of the main sectors to Belgian greenhouse gas
emissions [2].



12 Residential consumers & the energy transition

Figure 2.3: Fleet numbers of passenger cars in Belgium [2].

In recent years, a notable shift has begun to manifest, as highlighted by
a gradual increase in the ‘Others’ category in Figure 2.3, comprising non-
conventional engines such as LPG, CNG, petrol conventional hybrid, petrol
plug-in-hybrid, as well as battery electric vehicles. This rise signals a growing
adoption of electric vehicles (EVs) in Belgium, propelled by a diverse range of
fiscal incentives and policy measures implemented by governmental bodies.

While this marks a positive development, the challenges that lie ahead
demand urgent attention, necessitating an acceleration of current trends to
drive further progress. We look ahead towards the energy transition and its
impact on residential consumers and the low-voltage grid in the next section.

2.2 Residential consumers & the energy transition

The term ‘energy transition’ refers to the ongoing shift away from traditional,
fossil fuel-based energy systems to cleaner, renewable energy sources. This
transition involves a transformation of the energy sector, encompassing
changes in energy production, transmission, distribution, as well as con-
sumption.

The energy transition is driven by the urgent need to decarbonize the global
energy system in response to the looming threat of climate change. Indeed,
the consequences of climate change are already being felt around the globe,
affecting biological systems and human populations. The Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC) is crystal
clear in its findings [4], as listed on the following page.
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– Human activities, principally through emissions of greenhouse gases, have un-
equivocally caused global warming, with global surface temperature reaching
1.1°C above 1850-1900 in 2011-2020.

– Continued greenhouse gas emissions will lead to increasing global warming,
with the best estimate of reaching 1.5°C in the near term in considered scenar-
ios and modelled pathways. Every increment of global warming will intensify
multiple and concurrent hazards.

– Continued emissions will further affect all major climate system components,
and many changes will be irreversible on centennial to millennial time scales
and become larger with increasing global warming. Without urgent, effective,
and equitable mitigation and adaptation actions, climate change increasingly
threatens ecosystems, biodiversity, and the livelihoods, health and well-being
of current and future generations.

– Rapid and far-reaching transitions across all sectors and systems are necessary
to achieve deep and sustained emissions reductions and secure a liveable
and sustainable future for all. These system transitions involve a significant
upscaling of a wide portfolio of mitigation and adaptation options. Feasible,
effective, and low-cost options for mitigation and adaptation are already
available, with differences across systems and regions.

Given the increasingly urgent need for decarbonization across all segments
of society, the residential sector faces a critical transformation within a
relatively short time frame of less than three decades. This transformation
necessitates swift and substantial changes, including the widespread deploy-
ment of rooftop photovoltaic (PV) systems, a rapid transition from gas and
oil-based heating systems to more energy-efficient electric heat pumps in
well-insulated homes, and an accelerated adoption of EVs coupled with a
shift towards alternative modes of transportation.

As responsibility formatters pertaining to rooftop PV installations, household
renovations, as well EV charging infrastructure has been decentralized to the
regional governments, we narrow our focus to Flanders, the Dutch-speaking
region of Belgium. By focusing on Flanders, we aim to provide a scope of the
challenges ahead in these key areas for residential consumers.

Consider, for instance, the growth in installed rooftop PV capacity. As of
the beginning of 2024, the installed rooftop PV capacity stood at 6,071 MW,
marking a significant increase of over 50% compared to the capacity installed
in 2020 [5]. Despite the Flemish government’s ambition for an annual growth
of 450 MW [6], Flemish grid operators are already preparing for a projected
installed capacity of 10 GWp by 2030, reflecting the sustained higher growth
trajectory [7]. With Flanders boasting a potential rooftop PV capacity of 65
GWp, this accelerated growth appears achievable [8].
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EVs are expected to follow a similarly significant growth trajectory. In
2023, Flanders recorded nearly 3.7 million passenger cars, of which 104,000
were fully electric and 366,000 were plug-in hybrid vehicles [9]. By 2030,
the Flemish Government anticipates 1.2 million EVs on the road [6], while
Flemish grid operators, in collaboration with various sector federations, to
proactively prepare their distribution grids for the anticipated surge, aiming
to accommodate up to 1.5 million EVs by 2030 [7].

Additionally, beyond passenger cars, both freight transport and public trans-
portation sectors are swiftly electrifying their fleets, accelerating the transi-
tion away from fossil-based engines and further reducing emissions in the
transport sector.

Long-term policy goals regarding heat pumps are ambitious, yet intermedi-
ate targets are comparatively modest. The Flemish Government aims for a
climate-neutral residential building stock by 2050 [6]. To achieve this target,
the renovation rate of the residential building stock would need to reach 3%
annually, implying that 3% of all residential buildings undergo renovation
each year. However, the current renovation rate for residential buildings falls
below 1%. The Flemish Government has set a goal of installing 42,750 air-to-
water and soil-to-water heat pumps each year by 2030 [6]. To contextualize
this figure, it is important to note that the Flemish region comprises over 3.3
million residential dwellings [10]. Consequently, grid operators anticipate
that only 10-15% of residential dwellings will be heated by heat pumps by
2030 [7], with expectations for the renovation rate to accelerate after 2030.

While all these changes and transitions are driven by the societal need to ur-
gently decarbonize the energy production and consumption, the low-voltage
(LV) distribution grids need to be able to accommodate these changes.
The inclusion of PV installations at the level of the end user is changing
consumers to prosumers, a portmanteau of ‘producer’ and ‘consumer’, in-
jecting in the grid when production is too high. Similarly, the widespread
penetration of EVs and HPs with simultaneous peak consumption can lead
to grid congestion. Consequently, the energy transition is fundamentally
transforming the operation of the distribution network.

Hence, as the energy transition gains momentum, grid operators are re-
inforcing their infrastructure to prevent them from becoming bottlenecks.
Concurrently, stakeholders are implementing economic incentives to en-
courage consumers to spread their consumption. These measures include
the introduction of peak-based tariffs and the establishment of flexibility
markets.
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In Flanders, grid operators have assessed the distribution network’s status
in 2024. Considering the anticipated growth of PV panels and the increasing
electrification of transportation and heating, driven by the adoption of EVs
and HPs, they have simulated the projected state of the distribution grid
infrastructure by 2035. This simulation is depicted in Figure 2.4.

To mitigate the risk of grid congestion, the Flemish grid operators are cur-
rently planning to invest 12 billion euros over the course of the next decade
[7]. Given that any investments made by the grid operators are financed
through grid tariffs paid by all consumers, it is imperative to optimize the
efficiency of grid reinforcement efforts in the interest of society at large.

Smart meters and digitalization represent possible avenues towards improv-
ing the efficiency of grid infrastructure utilization, through demand side
response and flexibility initiatives. The potential of these digital business
models and different use cases for smart meter data will be discussed in the
next section.

Figure 2.4: Share of current distribution grid potentially in congestion
(%/municipality) in (a) 2024 and (b) 2035 [7].
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2.3 Uses of smart meter data

The energy sector has undergone rapid digitalization over the past decade,
precipitating a shift towards innovative digital business models as alterna-
tives to legacy business models. Unlike their hardware-centric predecessors,
these new business models are predominantly software-driven, marking a
departure from the dominance of large industrial companies and utilities.

This disruptive market effect is highlighted in Figure 2.5, which displays the
trajectory of venture capital inflows into digital energy start-ups since 2015,
as analyzed by the International Energy Agency (IEA) [11].

Several noteworthy insights emerge from the data. First, despite the COVID-
19 pandemic disrupting global supply chains in 2020, early-stage investments
in clean energy start-ups actually increased that year. Secondly, the scale
of venture capital financing has experienced a remarkable growth, tripling
from its 2016 levels by 2020. Thirdly, the growing importance of “charging as
a service" underscores the challenges and opportunities accompanying the
anticipated exponential growth of EVs.

Figure 2.5: Global early-stage venture capital investments in digital energy-
efficiency and demand-side flexibility start-ups, by type of new
business model, 2015-2021 [11].
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At the heart of this digital transformation lie smart meters and the granular
data they provide, offering unprecedented insights into consumer habits to
empower companies. This metering infrastructure not only enables organi-
zations to precisely quantify the value proposition of their solutions to the
benefit of each individual customer, but also expedites the development of
new products and services. Furthermore, the establishment of bi-directional
communication between consumers, energy providers, and grid operators
facilitates the automation of demand response services, unburdening indi-
vidual consumers.

From the perspective of the individual consumer, smart meters can transmit
detailed data related to electricity consumption at intervals typically ranging
from 15 minutes to an hour. This granular data collection enables more
accurate billing, improved demand forecasting, and effective load manage-
ment. Additionally, smart meters can transmit information on voltage levels,
which allows utilities to detect potential issues such as voltage sags or swells
and take timely corrective actions. Furthermore, this improves the utilities’
ability to respond to outages to efficiently respond to outages, minimizing
downtime and improving overall service reliability.

Beyond data transmission, smart meters can receive information from var-
ious market participants. Consumers can be updated on dynamic energy
prices, time-of-use rates, and peak pricing schedules, encouraging them
to shift their energy usage to off-peak periods. This not only optimizes
energy consumption but also reduces costs. Moreover, smart meters can send
notifications or alerts regarding demand response events or planned outages,
providing consumers with timely and actionable information.

Leveraging digital solutions to their fullest potential thus holds the promise
of both streamlining and accelerating the energy transition by facilitating
energy efficiency improvements and demand-side flexibility. The integration
of smart meters with advanced analytics platforms, machine learning algo-
rithms, and Internet of Things (IoT) devices enables real-time monitoring,
analysis, and control of energy systems. This enables grid operators to
respond swiftly to changes in energy demand and generation, optimize the
use of renewable energy resources, and enhance the resilience and reliability
of the grid.

From an investment point of view, the growing interest from venture in-
vestors and large corporations in digital energy innovators signals how high
the expectations are for growth in this sector. The growth of venture capital
directed towards digital energy start-ups therefore not only highlights the
democratization occurring within business models, but also underscores the
expanding role of digitalization in shaping the modern energy landscape.
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Despite ongoing efforts, the IEA has identified several hurdles that must be
addressed to scale up current efforts related to digital business models and
achieve net-zero emissions by 2050. One such hurdle is the availability of
smart meter data for developing and validating customized services within
strict regulatory frameworks. Consequently, making datasets of synthetic
data publicly available, with properties similar to privacy-sensitive smart
meter data, can encourage innovative digital business models.

The synthetic data generated in this dissertation will be benchmarked com-
pared to the original privacy-sensitive dataset under a non-disclosure agree-
ment (NDA). Furthermore, the performance of the synthetic data will be
benchmarked based on several downstream applications to evaluate its fi-
delity. Consequently, we provide an overview of several of these downstream
applications where smart meter data is used. Section 2.3.1 examines use
cases at the individual consumer level, while Section 2.3.2 considers the
aggregated level. For each application, special attention is given to discussing
the necessary minimum length and resolution of the required input data.

2.3.1 Uses at the individual level

At the individual household level, smart meter data frequently serves to
assess the benefits and economic feasibility of innovative technologies such
as PV installations, potentially coupled with battery energy storage sys-
tems (BESS). Analyses conducted on larger, representative datasets enable
the development of sizing guidelines, facilitating the dissemination of best
practices to engineering firms and stakeholders responsible for the sales and
installation of these systems. By leveraging smart meter data in this manner,
stakeholders can make informed decisions regarding the implementation of
sustainable energy solutions, promoting widespread adoption and maximiz-
ing the benefits for investing consumers. These applications can be grouped
under the broader application category of asset sizing.

For example, [12] examined the benefit of a PV installation for individ-
ual consumers based on their smart meter data. The impact on the self-
consumption ratio (SCR) and self-sufficiency ratio (SSR) was considered for
different consumers under a wide range of PV sizes with various tilt and
azimuth angles. Similarly, [13] proposed an optimization of PV sizing and
orientation for 13 customer classes, obtained from a large-scale smart meter
dataset of hourly consumption data. Sizing schemes for PV-BESS systems
based on smart meter data of residential consumers were considered in [14],
[15], as well as [16].



Background information 19

As expected, both the temporal resolution and the considered time scale
significantly impact the calculated self-consumption and, consequently, the
economic viability of these systems. Two recent review papers discussed the
effects of the resolution of both the PV production profile and the load profile
[17, 18]. They concluded that having a full year of data to capture seasonality
is essential. Specifically, (i) accurate results for PV system sizing can be
obtained using 15-minute data, although the resolution of the residential
load was found to be of greater importance than the PV resolution, (ii)
temporal resolutions between 5 minutes and 60 minutes yield reliable results
for sizing PV-BESS systems, and (iii) a finer temporal resolution of at least
5 minutes is necessary for the optimal sizing of the battery inverter [19–
21]. Coarser resolutions were found to overestimate PV self-consumption,
particularly under scattered cloud conditions, thereby misrepresenting the
return on investment.

In addition to asset sizing, smart meter data can be used to make informed
decisions in load scheduling and loadmanagement through data-driven fore-
casting at the level of the individual household. In the context of residential
consumers, historic smart meter data is often used to forecast the load profile
and/or PV production. Predicted values subsequently serve as input for the
scheduling of BESS or individual appliances to minimize the electricity cost.
According to a review study, themost common optimization horizon for these
Home Energy Management Systems (HEMS) is 24 hours ahead, using short-
term load forecasts (STLF) at a resolution of at most 1 hour [22]. There
is an obvious trade-off between the optimal scheduling and an increased
computational burden when moving towards finer resolutions.

Illustratively, [23] considered residential consumers with a PV-BESS system.
Forecasts of generation and demand were applied, and optimal schedule of
the battery was determined. Their results showed an improvement of lifetime
value by an average of 160% relative to basic set-point control representative
of many systems in operation at the time. Similar challenges were considered
in [24–26].

Finally, smart meter data is often used as input to test various Reinforce-
ment Learning (RL) algorithms for the optimal scheduling of residential PV-
BESS installations, which allows researchers to quantify the added value of
more complex scheduling algorithms compared to more naive benchmarks.
This was done in [27], where a relative electricity bill reduction of 14%
was achieved when comparing the proposed algorithm with the benchmark
approach. An analogous problem was tackled in [28], where the proposed RL
algorithm reduced the accumulated electricity cost by 11.38% compared to
the benchmark case.
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Two other applications at the individual household level can be distinguished:
load profiling and consumer characterization, as well as appliance identifica-
tion. Given sufficiently high resolution of smart meter data, the presence of
appliances and renewable energy sources can be detectedwith high accuracy.
However, this capability raises privacy concerns for households, which is one
reason access to smart meter data is restricted. Section 2.4.2 provides an in-
depth overview of the appliances that can be detected based on smart meter
data with resolutions ranging from seconds to hours.

Load profiling and consumer characterization involve grouping individual
consumers with similar properties and constructing representative load pro-
files [29–31]. Given the relevance of this application for this dissertation,
Chapter 3 is fully dedicated to the state-of-the-art of residential load profil-
ing. Therefore, the discussion in this section is restricted to the resolution
and time scale under consideration for load profiling. Two review papers
conclude that smart meter data at the daily or weekly level are typically
used for profiling and characterization purposes, with a resolution of at least
15 minutes [18, 32]. Indeed, [33] investigated the performance of three
clustering algorithms for smart meter data with resolutions varying from
1 minute to 2 hours, showing that a resolution of at least 30 minutes is
sufficiently reliable for load profiling purposes.

2.3.2 Uses at the aggregated level

Analogous to forecasting at the individual level, forecasting based on me-
tering data is a common application at the aggregated level. However, both
the end goals of the forecasting and the considered timescales differ. Very
short-term load forecasting (VSTLF) focuses on subhourly time horizons,
ranging from a few minutes to an hour, with very fine temporal resolutions
[34, 35]. VSTLF is necessary for various balancing services, aiding in the real-
time scheduling of generation, load frequency control, and resource dispatch
[36, 37]. Accurate VSTLF ensures stability in power systems by quickly
responding to fluctuations in demand and supply, thereby improving grid
reliability and efficiency.

At longer timescales, medium or mid-term load forecasting (MTLF) covers
forecasting periods from a few days to several months [34, 38]. This type of
forecasting typically uses data at hourly or coarser resolutions, and provides
necessary input for the planning and scheduling of preventive maintenance
of units [39]. Additionally, MTLF assists in identifying trends and patterns
in energy consumption, which can be valuable for strategic planning and
decision-making within utility companies.
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The aforementioned applications are based on data with very fine or very
coarse time resolutions. However, two uses cases for smart meter data at
fine resolutions at the aggregated level are highlighted for this dissertation:
hosting capacity studies and the case for energy communities and Virtual
Power Plants (VPPs).

Hosting Capacity studies

The energy transition fundamentally changes how grid operators need to
manage and size the assets of their distribution networks, challenging the
traditional perspective on the LV grid. Historically, (LV) distribution systems
were designed to distribute power from centralized power plants to end-
users connected to the LV grid, often dimensioned to withstand a worst-case
concurrent peak demand. However, the expected exponential growth of EVs,
HPs, as well as PV installations was introduced in Section 2.2.

Grid operators are aware that the large-scale integration of PV installations,
EVs and HPs can lead to LV grids performing unsatisfactory. Research
related to the integration of these new appliances are grouped under the term
“Hosting Capacity" (HC) studies. A frequently used definition of the HC is
the amount of new production or consumption that can be connected to the
grid, while not requiring infrastructure modifications, without impairing the
reliability or voltage quality for other consumers [40, 41].

A myriad of issues can arise at higher penetration of PV installations, HPs,
EVs, or any combination of these appliances. Overvoltage due to PV installa-
tions [42, 43], undervoltage due to EV charging [44, 45], thermal overloading
due to HP integration and/or EV charging [46, 47], as well as voltage unbal-
ance between phases [48, 49] have all been predicted through various HC
studies on different types of LV grids.

Multiple approaches exist to calculate the HC, depending on the available
data and the desired accuracy of the analysis. A common denominator in
the different approaches is the use of power flow calculations to determine
the voltages and currents in the considered network [50, 51].

One of the prerequisites of many HC studies is the data availability of the
pre-existing demands on the network [50]. Hosting capacity studies that
use time series data were found to be accurate and realistic, although the
main drawback is that few scenarios can be tested. However, time series
analysis allows to take the intermittent nature of distributed generation into
account, while also including all correlations as they occur in reality, such
as solar power production and electric heating or cooling [51]. Analogously,
HC studies that use a probabilistic approach for the maximum load or gen-
eration need to define distributions based on available data, not only for the
generation, but also for the pre-existing demand.
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In [47] the introduction of EVs and HPs were considered in UK-based net-
works, and theHCwas found to be strongly dependent on the initial demand,
highlighting the need for accurate modeling of the a priori loads. Con-
sequently, the availability of residential smart meter data is of paramount
importance for accurate HC studies on the LV grid. However, its availability
is severely hindered due to privacy concerns, which is discussed in-depth in
Section 2.4.

Energy Communities, DC backbones & Virtual Power Plants

The advent of smart meters with bi-directional communication capabilities
has opened up new possibilities for aggregating individual end-users and
renewable energy systems (RES), thereby facilitating the optimization of
consumption or production at a higher aggregation level. These collabora-
tive arrangements, known as energy communities or VPPs, depending on
the context, enable more efficient utilization of energy resources and grid
infrastructure.

Concurrently, research into alternative grid architectures is gaining traction,
with investigations into the advantages of low-voltageDC (LVDC) backbones
compared to traditional LVAC grids, particularly in contexts such as the
integration of PV systems and EV chargers.

It is evident that research in these areas centers around the concept of
aggregation and aims to quantify potential benefits for various stakeholders,
including consumers, producers, grid operators, and society at large. By
exploring the advantages and challenges associated with these emerging
technologies and grid configurations, researchers aim to inform decision-
making processes and contribute to the development of more sustainable
and resilient energy systems.

Research on the impact of aggregation using smart meter data has shown
improved accuracy for forecasting [52, 53], increased PV self-consumption
when only considering PV installations [54–56], as well as higher PV self-
consumption and a lifetime improvement when a community BESS is inte-
grated in the grid instead of individual BESS together with PV installations
[57, 58]. However, saturation effects for these advantages tend to start to
occur at aggregation levels higher than 20 individual residential consumers
[55, 59].

Similar topics using smart meter data of individual consumers have been in-
vestigated for alternative grid configurations such as LVDC systems. In [54],
the conversion and cable losses were compared for residential consumers
with a PV installation connected to an LVAC and LVDC configuration. Sim-
ilarly, [60] and [61] compared and quantified the benefits and limitations of
a LVDC microgrid versus an LVAC microgrid for EV charging.
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Figure 2.6 provides an overview of the findings related to the input data
requirements of various data-driven applications that rely on smart meter
data. The x-axis represents the required length of the input data of each
application, plotted on a logarithmic scale to accommodate the wide range
of timescales involved, from seconds to years. The y-axis displays the res-
olution of the data, indicating the necessary granularity of the data for the
considered application.

In the context of this dissertation, particular emphasis will be placed on
applications related to asset sizing, specifically for PV systems, PV-BESS
systems, as well as HC studies for the sizing of grid assets. As previously
discussed and illustrated in Figure 2.6, a time scale of at least a single year
is necessary to capture the seasonal nature of the load, while insight in the
fine resolution is necessary for the short-term dynamics.

Given the absence of well-established synthetic data models that can gener-
ate accurate data over longer timescales with a 15-minute resolution, as will
be elaborated in Chapter 3, these applications provide a robust framework
for validating the synthetic data generation methodology developed in this
work.

Figure 2.6: Positioning of data-driven applications using smart meter data
based on input data requirements, showing the relationship be-
tween time scale (x-axis) and time resolution (y-axis) of the input
data.
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2.4 Smart meter data & privacy

2.4.1 Legislative framework

In the European Union, the right to privacy is attributed the highest possible
protection. Both Article 8 of the European Convention on Human Rights by
the Council of Europe [62], as well as Article 7 of the Charter of Fundamental
Rights of the European Union [63] explicitly mention the right to respect for
the private and family life, as well as their home, of every individual.

Given the sensitive nature of smart meter data, legislators have classified
them as personal data in Article 23 of the EU Directive concerning common
rules for the internal market for electricity [64]:

Article 23: Data management
1. When laying down the rules regarding the management and exchange

of data, Member States or, where a Member State has so provided,
the designated competent authorities shall specify the rules on the
access to data of the final customer by eligible parties in accordance
with this Article and the applicable Union legal framework. For the
purpose of this Directive, data shall be understood to include metering
and consumption data as well as data required for customer switching,
demand response and other services.

2. Member States shall organise the management of data in order to
ensure efficient and secure data access and exchange, as well as data
protection and data security. Independently of the data management
model applied in each Member State, the parties responsible for data
management shall provide access to the data of the final customer to
any eligible party, in accordance with paragraph 1. Eligible parties
shall have the requested data at their disposal in a non-discriminatory
manner and simultaneously. Access to data shall be easy and the
relevant procedures for obtaining access to data shall be made publicly
available.

3. The rules on access to data and data storage for the purpose of this
Directive shall comply with the relevant Union law. The processing of
personal data within the framework of this Directive shall be carried
out in accordance with Regulation (EU) 2016/679.

Therefore, the data management of smart meter data needs to adhere to the
EU’s General Data Protection Regulation (GDPR), which applies to any use of
personal data or any aggregated data through which it is possible to identify
a living person [65].
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GDPR imposes strict rules on every step of the data management strategy of
smart meter data, limiting its possible uses and sharing of data. Companies
working on smart meter data face several legislative hurdles, including but
not limited to:

– Purpose limitation: GDPR requires that personal data must be col-
lected for specified, explicit, and legitimate purposes. Companies can-
not collect or acquire data through a Data Transfer Agreement (DTA)
for one purpose and then use it for another without obtaining addi-
tional consent, which restricts their ability to repurpose data freely.

– Data minimization: Companies are required to collect only the data
that is necessary for the intended purpose. This means they cannot
collect excessive amounts of personal data beyond what is needed
for their services, nor can they require additional data in a DTA.
Consequently, DTAs of smart meter data are often tailored to specific
purposes to exclude personal data that is deemed non-essential to the
purpose of the request.

– Data security obligations: Data handlers are required to implement
appropriate technical and organizational measures to ensure the se-
curity of personal data they process. Data protection methods can
include encryption and secure storage systems.

– Accountability and Compliance: GDPR requires companies to
demonstrate compliance with the regulation by maintaining detailed
records of their data processing activities, often through a data man-
agement plan of individuals working with the data. Furthermore,
companies may be required to appoint a Data Protection Officer re-
sponsible for overseeing GDPR compliance within the organization.

It should be evident that GDPR imposes compliance requirements and
limitations on companies, which may impact their operations and growth
prospects, particularly those engaged in data-driven digital applications.
Compliance with GDPR is often complex and may require companies to in-
vest time and resources in understanding and implementing its requirements.

Given the strict requirements on data handling and processing for smart
meter data, the following section gives an overview of different types of
personal data which have been extracted from smart meter data in academic
literature. This summary aims to underscore the importance of data protec-
tion measures in safeguarding individual privacy and upholding regulatory
compliance within the context of smart metering technologies, given the
detailed and often surprising information that can be extracted.
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2.4.2 Personal data extracted from smart meter data

Given the different types of personal data that can be extracted from high
resolution smart meter data, this section is organized as follows. First, we ex-
amine how appliance ownership and usage can be determined for individual
consumers. Second, we discuss how information about household occupancy
and active hours can be detected and the implications of this automatic de-
tection. To conclude this overview, several works are presented that combine
survey information with smart meter data to determine correlations between
socioeconomic properties of the consumers and their consumption habits.

Appliance usage

The focus of this paragraph lies on the detection of appliances relevant
for the energy transition, i.e., heat pumps, electric vehicles, as well as air
conditioning. While smaller household appliances such as TVs, dryers, dish
washers, ovens, freezers, laptops and gaming consoles, have consistently
been identified based on the characteristics of the aggregated household
smart meter data, they are of secondary importance in the context of this
dissertation [66–70].

– Heat pumps
In [71], daily consumption information was used to determine the
presence of heat pumps, both for space heating and space cooling
depending on the season.

Moving to higher resolution data, the authors of [72] used smart meter
data with a resolution of 15 minutes to identify households and au-
tomatically differentiate between those with fixed speed and variable
speed heat pumps. Analogously, [73] used data with similar resolution
to identify both the households with a heat pump, as well as which
heat pump reservoir is present.

Building upon these works, [74] used 15 minute smart meter data to
identify households which exhibit atypical cycling behavior of their
heat pump. This atypicality was found to be an indicator with respect
to energy efficiency and appropriate sizing of their heat pump.

– Electric vehicles
In [75], households with an EV were identified based on their hourly
smart meter data, while [76] proposed a detection scheme based on 30
minute data. Analogously, the additional load caused by EV charging
at home were determined based on smart meter data with a resolution
of 1 minute in [77].
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Going one step further, the authors of [78] developed a methodology
to determine the model of the EV being charged at the level of the
individual household, using estimated values of the battery capacity,
charging rates and energy charged per session.

– Air conditioning
In [79], a machine learning-based algorithm was proposed to identify
households with air conditioning. Similarly, [80] investigated the accu-
racy of the detection technique for different data resolutions for Texan
households. While the accuracy on 5-minute data was comparable
to 1-min data, according to the authors, 15-min data did not yield
accurate results. Additionally, the authors of [81] used smart meter
data with a resolution of 1 minute to detect when air conditioning
switches on and off through the identification of the operation cycle.

Household occupancy

A common application of smart meter data is occupancy detection. While
this offers advantages for home automation as well as more efficient energy
management of HVAC systems based on occupancy, it comes with several
privacy-based dangers. For example, insurance companies could use this
data to profile individuals based on their occupancy patterns, charging higher
premiums for individuals with perceived higher risk from their occupancy
patterns. Similarly, should this data become available to criminals, they could
use it to identify periods of low or no occupancy in homes or businesses,
making them vulnerable to burglaries. Similarly, stalkers could get access to
the routines and habits of their targets.

In [82], the concept of Non-Intrusive Occupancy Monitoring (NIOM) was
introduced, where household occupancy is inferred based on electricity smart
meter data. In [83], a combination of 1-minute resolution electricity and
water consumption smart meters was used to detect occupancy with an
accuracy of over 80%.

The authors of [84] investigated whether half-hourly meter data are suffi-
cient to predict the home-occupancy status of households, not only in the
present but also in the future. Their study revealed a high predictive power to
also establish the future occupancy status of households. Furthermore, they
included an analysis of the demographic data, suggesting that households
known to be least concerned with privacy are the ones who are more vul-
nerable to smart meter privacy implications. The household segments that
are most vulnerable to the privacy implications of smart meters (i.e., young,
educated professional individuals and couples) are those with least privacy
sensitivity and protective behavior.
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The addition of on-site renewable energy production distorts the aggregated
net loads as measured by the smart meter, as renewable energy production
can cause false negative detection of occupancy status. However, [85] pro-
posed a method to filter out which fluctuations are caused by the energy
production installation. However, the authors concluded that a data resolu-
tion on the level of seconds is necessary to reliably detect the occupancy in
buildings with prosumer status. In case studies without energy generation,
data with averaging time steps up to one hour were sufficient to detect the
occupancy.

Socioeconomic properties

The ability to infer socioeconomic properties from smart meter data has
been studied in-depth based on a combination of smart meter data and
survey information. An illustrative selection of these works is included in
this paragraph.

The authors of [86] investigated whether household characteristics could
be inferred from 30-minute resolution smart meter data. They were able to
predict the employment status of the inhabitant(s), the number of persons in
the household, as well as the appliance stock with an accuracy of over 70%.

Similarly, [87] and [88] found significant correlations between the shape of
the demand profiles and whether or not someone worked from home, the
hours of television watched per week, as well as the highest education level of
the occupants. Comparable findings were reported in [89], where education
was highly correlated with the household’s social class. In [90], in addition
to the previously mentioned parameters, the age of the head of household
was found to also significantly impact the load behavior. However, these
aforementioned studies found inferring information about the household
income from the smart meter data particularly challenging.

The influence of household income on its load profile was examined more in-
depth in [91] and [92]. The authors of [91] found that, on average, households
with large incomes have consumption profiles with a relatively large share
of consumption in cheap hours, while households with low incomes have
consumption profiles with a relatively large share of consumption in expen-
sive peak hours. Analogously, [92] investigated the impact of both wealth
and number of occupants of the household. Unsurprisingly, they found that
wealthier and larger households displayed increased peak demands. More
surprising was that the experimentally derived distributions of the peak
demands for households withmore than three inhabitants did not agree with
the planning guidelines in UK at the time of publication, meaning there was
a real risk of asset undersizing in some neighborhoods.
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2.5 Drawbacks of smart meters

While individual consumers are understandably most concerned with the
privacy-related drawbacks of smart meters, it is important to acknowledge
and touch upon other significant disadvantages associated with these de-
vices and the data they generate.

First, smart meters are technologically more complex than their traditional
counterparts, which can lead to issues with data logging and communication.
For instance, the United Kingdom’s Department for Energy Security and Net
Zero reported that by the end of 2023, 3.98 million smart meters were faulty
[93]. This resulted in consumers either overpaying for their energy, with
difficulties in obtaining refunds from their suppliers, or underpaying, leading
to debt accumulation during the peak of the energy crisis in 2022 and 2023.

Second, the vast amounts of data generated by smart meters place consid-
erable strain on data centers, carrying both environmental and economic
costs [94]. For example, a network of 10 million smart meters collecting
data every 15 minutes generates nearly 300 TB of data annually, assuming
each record is 5 kB in size. This immense data volume has driven significant
research into data compression techniques within the context of smart grids,
highlighting the ongoing challenges of managing electric power big data
effectively [95, 96].

Third, smart meters, their communication possibilities, as well as controllers
for various smart home appliances are vulnerable to cyber-attacks [97].
Furthermore, smart meters can become the point of entry for larger-scale
attacks on the energy grid, potentially leading to wider disruptions [98].
Consequently, the widespread roll-out of smart meters has necessitated the
development of advanced cybersecurity systems and encryption methods to
mitigate these risks [99]. However, the ongoing need for maintenance and
software upgrades can lead to additional costs over time, potentially making
the overall system more expensive than initially anticipated.

Finally, concerns have been raised by some consumers and advocacy groups
about the potential health effects of the electromagnetic fields (EMFs) emit-
ted by smart meters, particularly given their continuous operation and prox-
imity to living spaces. Although these concerns are understandable, studies
have not conclusively demonstrated harmful effects at the levels emitted by
smart meters. The scientific consensus generally considers the EMF levels
produced by smart meters to be safe [100–102].
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2.6 Conclusion

This chapter has provided an overview of the broader context in which this
work is situated, addressing the challenges posed by climate change and the
efforts to decarbonize the residential and transport sector. Heat pumps, elec-
tric vehicles, and photovoltaic installations have a prominent position in the
residential sector’s energy transition, making the electricity production more
sustainable, while electrifying the mobility and heat demands of individual
consumers.

However, their widespread deployment may lead to technical challenges,
particularly concerning their integration into the LV distribution grid, po-
tentially causing grid congestion. Consequently, as the energy transition
gains momentum, grid operators are reinforcing their infrastructure to pre-
vent them from becoming bottlenecks. Simultaneously, stakeholders are
implementing economic incentives to encourage consumers to spread their
consumption.

Smart meters with bi-directional communication capabilities, coupled with
the rise of digital business models, are a cornerstone in the residential en-
ergy policies of numerous EU member states, facilitating more effective grid
infrastructure utilization. Our discussion has explored the economic oppor-
tunities presented by digital business models and the diverse applications of
smart meter data, both at the individual and aggregated levels.

However, we have subsequently demonstrated the possibility of extracting
personal details from smart meter data, ranging from appliance ownership
and occupancy detection to socioeconomic insights such as education level
and number of persons living in the dwelling.

It is therefore unsurprising that smart meter data has been labeled as per-
sonal data under the General Data Protection Regulation of the European
Union. Summarizing the GDPR’s key stipulations for data sharing and pro-
cessing, we found that unrestricted access to smart meter data is unfeasible,
given the substantial legislative safeguards in place to uphold consumer
privacy.

Considering the benefits offered by smart meter data for digital business
models, our aim is to harness the vast potential of this data while respecting
the privacy of individual consumers. The next chapter therefore introduces
the research field of residential load modeling, with the objective of generat-
ing synthetic data mirroring real smart meter data characteristics but devoid
of any privacy-sensitive information.
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Residential load modeling

By democratizing access to data at scale, it will help level the playing
field, enabling smaller upstarts to compete with more established

players that they otherwise might have had no chance of challenging.

Forbes

This chapter provides an in-depth introduction to the context of this disser-
tation. We conduct a comprehensive literature review on both the generation
methods used to create synthetic energy time series and the various genera-
tion approaches with which these methods are applied.

Section 3.1 gives an overview of various generation methods. The four most
common generation techniques are identified, and their advantages and
disadvantages are discussed.

Section 3.2 is subsequently divided in three subsections, introducing bottom-
up, top-down, and hybrid models respectively [30, 103, 104]. Bottom-up load
models construct synthetic models by modeling the individual behavior of
appliances and aggregating them into a synthetic load profile for a single
household. In contrast, top-downmodels start from an input dataset of smart
meter data. The purpose of this technique is to identify different consumer
segments, and reconstruct their consumption behavior.

To conclude this chapter, Section 3.3 uses the introduced knowledge of
available techniques and approaches to position the methodology followed
in this dissertation.

31
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However, before moving the discussion to techniques geared towards the
modeling of smart meter data, it is necessary to contextualize why synthetic
data is the state-of-the-art of data anonymization techniques, and justify
why synthetic data is the only considered avenue in this dissertation.

Table 3.1 summarizes the performance of different legacy anonymization
techniques and how eachmethod affects the value of its output dataset [105].
The properties of interest that describe the value of the data are:

– Protection from re-identification risk: This risk of re-identification
is wider than merely re-identification based on the raw dataset un-
der consideration. Rather, this re-identification risk includes the risk
of matching anonymous data with publicly available information, or
other auxiliary data, to discover the person the data belongs to.

– Feature statistics: This measures describes how well techniques are
able to capture and reconstruct the quantitative characteristics of in-
dividual data attributes

– Feature correlations: Feature correlations pertains to the relation-
ship between pairs of features within the dataset, and they indicate the
extent to which changes in one feature are accompanied by changes in
another feature in the anonymized data.

In order to be useful for machine learning (ML) tasks, anonymized data needs
to preserve both the feature statistics, as well as the feature correlations.
As seen in Table 3.1, legacy data anonymization techniques fail to produce
datasets that simultaneously protect sensitive information and privacy, while
retaining the patterns and relationships of the features necessary for ML
algorithms to function effectively.

The five techniques included in the comparison of Table 3.1 are summarized
on the following page.

Table 3.1: Properties of data anonymization techniques [105].

Protection from Feature Feature
Method re-identification risk statistics correlations

Synthetic data High High High
Randomization Low Medium Low
Permutation Low High Very low
Generalization Medium Low Low

Pseudonymization Very low High High
Data masking Very low Very low Very low
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– Randomization: The features are modified according to predefined
randomized patterns. One example of randomization is perturbation,
which works by adding systematic noise to data.

– Permutation: This involves changing features, either swapping data
points between consumers at a certain time, or permute data of the
same consumer at different times. The main disadvantage here is the
loss of all correlations.

– Generalization: In a generalization anonymization scheme, the gran-
ularity of the data is reduced in order to preserve privacy. For example,
the age of participants can be binned into broader categories, which
lessens the risk of re-identification. However, in the generalization in
the context of smart meter data implies losing information about the
granular peak demands, the property of interest.

– Pseudonymization: Pseudonymization removes all personally iden-
tifiable information from a dataset, while replacing those personal
identifiers with placeholder values. The link between the placeholder
values and the personal identifiers is kept separately in the encryption
key. The EU defines data as pseudonymized “if it cannot be attributed
to a specific data subject without the use of separately kept additional
information." Consequently, it is a reversible process that allows the
re-identification later on if necessary.

– Data masking: This is a method of creating a structurally similar
but inauthentic version of the considered data that can be used for
purposes such as software testing and user training. Perhaps the best-
known instance of data masking is related to credit card numbers.
Instead of the full credit card number, a string of X’s is returned, except
for the final four numbers.

Pseudonymization scores high on the three non-privacy properties, and
therefore necessitates a more in-depth discussion on its limitations. As the
process is reversible (using the encryption key to translate the placeholder
values to the original personal identifiers), a pseudonymized dataset is still
considered to be personal data according to the GDPR.

GDPR Article 4, Recital 26 states: “Personal data which have undergone
pseudonymization, which could be attributed to a natural person by the use of
additional information should be considered to be information on an identifiable
natural person." [65]

Thus, pseudonymized data must fulfill all of the same GDPR requirements
that personal data has to, and the same regulatory barriers for the sharing
of this data exist.
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However, a degree of ambiguity exists within the regulatory framework on
which data can be considered anonymized versus pseudonymized, sparking
debates. The same Recital 26 continues its discussion on pseudonymized data
and identifiable natural persons as follows: "to determine whether a natural
person is identifiable, account should be taken of all the means reasonably likely
to be used, such as singling out, either by the controller or by another person to
identify the natural person directly or indirectly."

It is clear that the term “reasonable" in the regulation can be interpreted in
different ways, particularly for smart meter data where only raw metering
data is available without location or consumer information. This ambiguity
raises concerns about the potential for re-identification through advanced
data analytics or the integration of external data sources. Should it be im-
possible to identify the natural person corresponding to the data with all the
means reasonably likely to be used, the data can be considered anonymized,
and GDPR would not apply.

In addition to this regulatory ambiguity arising from the term “reasonable",
Article 4.1.8/2 of the Flemish Energy Decree obliges the distribution system
operator (DSO) to make anonymized energy-related data available for scien-
tific purposes [106]. In order to accommodate requests for smart meter data
from various market parties and fulfill their legal requirements, the DSO has
made a limited dataset of several hundred anonymized consumption profiles
available on its open data platform [107]. However, the challenge remains in
balancing transparency and data utility against the risks of re-identification.

The Flemish Regulator overseeing the DSO is aware of this ambiguity in the
regulation and the impact of publishing anonymized datasets can have, as
seen in its 2023 report on the data management activities of the DSO [108].
The regulator states that “making a new dataset publicly available requires a
trade-off between different aspects: feasibility, data quality, ethical aspects (e.g.
privacy, intellectual property, protection against threats), direct added value (for
citizens, local governments or other public authorities), societal impact as well
as legal requirements."

It is our expectation that the public availability of granular smart meter data
will be a temporary phenomenon and remain limited in size. Once synthetic
data establishes itself as equivalently useful for relevant market parties, the
direct added value of privacy-sensitive metering data will be significantly
lower, no longer justifying the privacy cost of its public availability. More-
over, the evolution of data protection regulations and public awareness may
further restrict the accessibility of such data, emphasizing the need for robust
synthetic alternatives.
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3.1 Modeling methods

This section is based on [109], a 2024 review study on the generation of
synthetic energy time series. The authors identified and characterized 169
articles focusing on the generation of synthetic time series, both consump-
tion and production data. The key findings relevant to our literature overview
are presented here.

Figure 3.1 displays the share of eachmethod identified in the aforementioned
literature review. Four generation methods taken together are used in more
than 60% of the considered articles: Monte Carlo, Generative Adversarial
Networks (GANs), Markov models, and weighted Random Number Gener-
ators (wRNG). Other techniques such as neural networks (NN), Gaussian
mixture models (GMM), variational auto-encoders (VAE), Bayesian networks
(BN), regression models, aggregations methods as well as data variation and
clustering models cover the remaining share of the identified articles.

Figure 3.1: Share of the identified methods for generating synthetic energy
time series, as included in the review study [109].
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The remainder of this section focuses on the principles and strengths of
the four most common methods, while individual studies using them for
synthetic residential data generation will be discussed in Section 3.2.

Monte Carlo

Monte Carlo simulations leverage random sampling techniques to model
the uncertainty and variability inherent in measured time series. In this
approach, a model is built based on statistical properties of the original
data. By repeatedly running the simulation with random inputs, the method
generates numerous possible future scenarios or sequences, each of which
represents a plausible realization of the time series. These synthetic series can
subsequently be analyzed to assess patterns, trends, and risks under different
conditions.

Monte Carlo simulations have several disadvantages [110]. One drawback is
that the quality of the synthetic time series heavily depends on the accuracy
of the underlying statistical model. Additionally, Monte Carlo methods can
be computationally expensive, as they require many iterations to produce
a wide range of scenarios, particularly for high-dimensional time series.
Moreover, because the approach relies on random sampling, it may struggle
to replicate complex temporal dependencies or long-term patterns accurately.

Markov

Markov models model the transition probabilities between different states
of a system. The model is built by estimating the transition probabilities
from historical data, capturing the likelihood of moving from one state to
another. Once the transition matrix is established, synthetic time series can
be generated by simulating a sequence of states based on these probabilities.
In the context of loadmodeling, Markovmodels are particularly useful to cap-
ture ON - OFF dynamics of individual appliances in bottom-up approaches,
model occupancy of households on a single day, or to model the vacancy of
households during holiday seasons.

The disadvantage of Markov models are similar to those of Monte Carlo
simulations. Markov models typically require discretizing the system into
a finite number of states, which may result in a loss of granularity or over-
simplification of continuous processes. Furthermore, the transition matrix is
sometimes overly simplistic for time series with long-term dependencies as
well as non-stationary behavior. Finally, they struggle with capturing rare
events as the transition matrix depends on frequent historical patterns.
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wRNG

A weighted random number generator uses random numbers to linearly
combine elementary time series. Each elementary time series can represent
a specific pattern or characteristic of the data. In bottom-up load models, the
time series of an individual appliance can be considered an elementary time
series. For top-down models, patterns of the time series such as the trend,
seasonal component, or random fluctuation can be considered elementary
time series. By increasing its weight, the relative importance of the corre-
sponding time series can be customized.

A first disadvantage is that the quality of the synthetic time series relies
heavily on the choice of the elementary series and their corresponding
weights. Additionally, this approach assumes linearity in the combination of
components, which is not always appropriate for complex, non-linear time
series dynamics.

GAN

The rise of generative AI has significantly influenced the field of synthetic
data modeling, with GANs quickly becoming a state-of-the-art technique
for generating high-fidelity synthetic time series. Their ability to implicitly
learn complex, arbitrary data distributions makes them particularly effective
in this domain.

GANs consist of two neural networks working in tandem: a generator and a
discriminator. The generator aims to produce data that mimics the training
set, while the discriminator’s role is to distinguish between generated data
and real samples. During training, GANs can also be conditioned on addi-
tional information, such as weather or calendrical information, to improve
the quality and relevance of the generated outputs [111].

Despite the impressive results from well-trained GAN models, they present
several challenges. First, GANs function as black-boxmodels, offering limited
interpretability, which makes it difficult to understand how specific outputs
are generated. As a result, extensive hyperparameter tuning is often required
to achieve desirable outcomes, increasing the computational cost of training.
Moreover, this challenge is compounded by the inherent instability of GAN
training, as the adversarial dynamics between the generator and discrimina-
tor can result in mode collapse or failure to converge. Finally, similar to the
previous modeling methods, capturing both long and short-term dynamics
remains challenging even for GANs, especially for larger time series.
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3.2 Modeling approaches
3.2.1 Bottom-up load modeling

While the main focus of this dissertation is on top-down models, we would
be remiss not to discuss bottom-up techniques for residential load modeling.

In bottom-up approaches, the total power consumption of an individual
consumer is reconstructed by modeling the daily usage patterns of individ-
ual devices, encompassing common lighting systems, standard household
appliances, and larger equipment like an electric boiler, heat pump, or EV
charging station. Time series data representing the power consumption of
each electric device are synthesized individually, accounting for factors such
as user behavior, weather conditions, and the number of occupants.

State-of-the-art bottom-up load modeling methods typically rely on a com-
bination of extensive measurement campaigns and time-use surveys [104].
These measurements are essential for capturing detailed load profiles of
a wide array of household appliances [112–114]. Additionally, time-use
surveys serve to connect these load profiles with metadata from diverse
consumer demographics, as well as external factors such as weather con-
ditions and calendar information. In instances where measurement data is
lacking, methods such as Markov chains and probability density functions
are employed to construct density functions for power demands at different
times, based on the metadata [115–118].

Two examples of bottom-up load models are the CREST model for describing
individual households [113] and the IDEAS and StROBe model for both
individual and district-level simulations [119, 120]. Both models utilize time-
use surveys as a basis for household occupancy and appliance usage.

Bottom-up modeling approaches are particularly suitable for the so-called
“behind the meter" applications, e.g., to evaluate the effectiveness of demand
response initiatives, where the demand of individual appliances can be cur-
tailed or shifted based on external signals [121, 122]. In contrast, synthetic
data obtained through top-down modeling, do not yield any information
about the appliances of that individual consumer.

However, bottom-up models do not leverage the abundant data currently
collected through the widespread installation of smart meters, opting instead
for time-use surveys that are only conducted by a few instances. These
are only launched once every 5-10 years in the EU, and annually in the US
[123, 124]. Moreover, they encounter scalability challenges due to the re-
liance on survey data and the complexity involved in integrating the various
degrees of freedom related to household appliances, dwelling properties, and
occupancy constraints based on demographic factors [125].
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3.2.2 Top-down modeling

In contrast to bottom-up models, top-down models treat the residential
sector as an energy sink and are not concerned with specific end-uses at the
level of the individual household [103]. Hence, studies employing datasets
from smart meters fall under the category of top-down models, as they lack
information regarding the load behavior of individual appliances behind the
meter.

For top-down models, historical consumption datasets supplemented with
information on the residents of different dwellings are often used as data
source if the corresponding metadata is available and can be used. Such
metadata can include (i) the number of residents in the dwelling, (ii) their
age, (iii) which major appliances are present, (iv) the size of the dwelling
and its isolation level, (v) income, etc. It is therefore unsurprising that such
metadata is not often available with the raw consumption data, which can
directly be attributed to privacy concerns, as discussed in Chapter 2 [30].

Load profiling for top-downmodels that use historical datasets in the absence
of such metadata generally includes three stages [31]:

1. Dataset segmentation: Initially, an unsupervised machine learning
clustering method is used to group consumers with similar consump-
tion habits. This can be done on the chronological load profiles them-
selves, or new application-specific features can be constructed from the
measured data.

2. SLP construction: Typical or synthetic load profiles are generated for
each cluster, often through statistical measures such as the mean or
median.

3. Inferring characteristics: Consumers’ characteristics are inferred
from the synthetic load data for each individual cluster, using available
or constructed metadata.

Building upon the discussion in Section 3.2.1 and this definition of top-
down models, it becomes evident that the terminology of the modeling
technique reflects the hierarchical positioning of data inputs in relation to
the residential sector. Top-downmodels use estimates of the total residential
sector energy consumption and other relevant variables to attribute energy
usage to various characteristics of subsets within the residential sector. In
contrast, bottom-up models calculate energy consumption for individual
houses (or groups of houses) and extrapolate these findings to represent
larger geographic regions.



40 Modeling approaches

The literature review on different techniques for dataset segmentation
through unsupervised machine learning is part of Chapter 6, while the
methods for daily and annual SLP construction are discussed in Chapters
7 and 8 respectively. Instead, the review of this section will only focus on the
timescales and resolution of the data used in various modeling studies.

Relatively few evidence-based studies have been conducted that aim to
produce synthetic data over a full year, despite its many downstream ap-
plications. Rather, the focus of traditional studies has been on short-term
generation at the daily or weekly level.

For example, [126] examined the relation between dwelling characteristics
and daily consumption behavior. Seasonality was included by considering
the daily profiles for different seasons. Similarly, [127] considered the differ-
ence between urban and rural dwellings, as well as the impact of the number
of bedrooms and inhabitants, by quantifying differences in their averaged
daily load profiles.

In the same vein, [128] analyzed and clustered the daily load profiles for a
full year to identify the potential for demand response programs for different
consumer categories, a similar problem as was tackled in [129, 130].

In [131], three years of smart meter data was used to construct synthetic
data. However, daily load profiles were constructed for each of the consid-
ered days. The seasonality in the occurrence of each type of daily profile
was analyzed, and variations due to both temperature and the COVID-19
pandemic were quantified.

An open-access tool based on Generative Adversarial Networks (GANs) was
presented for the random generation of synthetic daily load profiles in [132].
In order to generate synthetic data for successive days, the authors proposed
using a Markov chain mechanism to mimic the interday behavior of the real
data. Analogously, [133–135] all used GANs to generate synthetic data at the
daily level.

However, as a study from 2024 concludes [136]: “Most existing generative
research focuses on short-term energy data, primarily daily profiles, leaving
a significant gap in long-term data applications. Privacy concerns and data
scarcity further exacerbate these challenges, often limiting the availability of
energy data from individual buildings and community power grids."

However, while the authors of [136] proceeded to propose a methodology
able to handle long-term annual consumption profiles, their research focus
was not on the residential sector.
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3.2.3 Hybrid modeling

In recent years, models that share characteristics with both the bottom-
up and the top-down subcategories have been built to support the bottom-
up advantage of incorporating demand side management while using the
available data for top-down models. As these models cannot be placed in
either category, these have since been called hybrid models [30].

For instance, [137] started from a set of five Irish reference buildings, repre-
sentative for 82% of the Irish building stock, which is a contribution based on
a top-down approach. However, they introduced occupancy-based models
and an appliance stock based on number of residents per households for
these representative buildings, which is a bottom-up approach. Similarly,
[138] combined bottom-up occupancy-behavior modeling with top-down
building stock characteristics such as insulation values, square footage, as
well as building dimensions.

Furthermore, many hosting capacity studies, including this dissertation for a
benchmark validation included in Chapter 9, use a hybrid methodology. The
load behavior of EVs and/or HPs is often modeled separately from the smart
meter data of the individual households under consideration as this allows
for the evaluation of different EV charging strategies or flexible heating be-
havior. For instance, EV charging profiles are often generated based on mea-
sured datasets of arrival and departure times, energy charged per session,
as well as assumptions on charging speeds [61, 139]. These additional loads
are subsequently overlaid onto the synthetic data of residential consumers
to model the impact on the LV distribution grid of higher penetration levels
of these technologies.

3.3 Proposed approach

The primary objective of this research is the construction of synthetic load
profiles at the annual levels, with a time resolution of 15 minutes. As
mentioned in Section 1.2, we advocate for the decoupling of the problem
and the adoption of scale-appropriate modeling techniques for different
timescales, each tailored to capture the dynamics shaping the load profile
in the timescale under consideration.

The high-level methodology is visualized in Figure 3.2 on the following page,
decoupling the problem into generating (i) an annual load profile of daily
consumptions through GANs, and (ii) daily profiles with a given daily con-
sumption through a wRNG method, using low-frequency trends and high-
frequency fluctuations as elementary time series.
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Figure 3.2: Two-step methodology followed in this dissertation for generat-
ing an annual load profile at high resolution.

At the daily level, the decomposition-recombination scheme involves break-
ing down daily load profiles into low-frequency (LF) and high-frequency
(HF) components, which are then used as the elementary time series in the
wRNG method. This step is detailed in Chapter 7. By confining the wRNG
generation process to the daily level, we avoid the method’s disadvantages
when modeling longer-term dynamics, while still leveraging its flexibility
to capture realistic daily peak demands through customizable elementary
series.

The HF component captures the stochastic behavior of the individual con-
sumer, while the LF component is a less granular form of the original data.
Intelligently recombining the LF component of consumer i with a rescaled
and time-shifted version of consumer j subsequently yields synthetic load
profiles with realistic variability, as well as consumption and peak behavior.
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The properties of several legacy data anonymization techniques were already
given in Table 3.1. It is clear that the proposed decomposition-recombination
scheme at the daily level finds its origin in a combination of the generalization
and superposition scheme, preserving their strengths while circumventing
their disadvantages.

– Low-frequency signal: A LF approximation of the smart meter read-
ing of consumer i can be considered a generalization of its original data
by reducing its granularity.

– High-frequency signal: The superposition of a rescaled and time-
shifted HF signal of consumer j on the LF component of consumer
i can be considered a permutation. Instead of permuting individual
measurements, we permute the rescaled and shifted stochastic HF
components, again minimizing the risk of re-identification.

At the annual level, GANs are used to capture the complex dynamics and time
correlations at the seasonal, monthly, biweekly, weekly and interday level.
As discussed in Section 3.1, GANs have demonstrated strong performance
in modeling intricate long-term patterns in time series, where traditional
methods often fall short. Privacy is conserved as no memorization occurs
during the training process. Chapter 8 will explore the GAN generation
process in more detail. As Section 3.1 highlighted the instability of GAN
training as a major disadvantage, particular emphasis will be placed on
careful hyperparameter tuning to mitigate this challenge.

Our methodology therefore follows the top-down modeling approach, start-
ing from a dataset of historic smart meter data. Clusters of consumers with
similar properties will need be determined in Chapter 6, and we will show it
is necessary to take the constructed metadata into account in the process of
linking the generated daily load profiles together in order to obtain synthetic
data with sufficiently high fidelity.

However, before moving the discussion towards the construction of peak-
based properties and the subsequent clustering approach in Chapters 5 and
6, the datasets used throughout this dissertation still need to be introduced.
This is done in the next chapter.





4
Data description

If you torture the data long enough, it will confess.

Ronald H. Coase

In this chapter, an exploration of the various data sources used throughout
this PhD dissertation is provided. We aim to provide a transparent overview
of the sources accessed and the rationale behind their selection.

First, Section 4.1 is devoted to a discussion on the smart meter data that
will be used for the feature construction, clustering, as well as synthetic
data generation. As the data itself is subject to a non-disclosure agreement
(NDA), this section aims to give an overview of the kinds of consumers and
households within the dataset. Special attention is directed towards the
extraction of metadata to facilitate the discussion in later chapters.

Section 4.2 subsequently introduces the production data of PV installations,
while the generation of EV charging profiles forms the subject of Section 4.3.
In each instance, a succinct overview is provided, with references to primary
literature for further elaboration. Finally, Section 4.4 wraps up this chapter
with a discussion on how the additional loads due to the integration of heat
pumps are modeled.

The constructed PV, EV, and HP profiles will be used in Chapter 9 for the
validation of the synthetic data in a series of downstream applications linked
to the energy transition.

45
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4.1 Smart meter data

The used dataset used in this work comprises 1,422 consumers on the low-
voltage distribution grid in two Flemish towns in a suburban area, measured
at a 15-minute resolution during one year, leading to 35,040 time points per
consumer. The data were provided by Fluvius cvba, the Flemish distribution
network operator. The metering infrastructure was installed during a proof-
of-concept study on digital meters in Flanders during the period 2010–2014.
As more than 3,000 consumers spanning different generations and building
types participated in this study, the dataset can be considered sufficiently
diverse for consumers on the low-voltage distribution grid.

Several preprocessing steps were undertaken to obtain the final dataset,
leading to a reduction from over 3,152 load profiles to 1,422 data entries.
These preprocessing steps are as follows:

– A first preprocessing step involving possible missing data was per-
formed by the distribution network operator before providing the
dataset for this research;

– Only meters that had measurements for the full year 2013 were in-
cluded, given the purpose of this dissertation. This excluded 198
entries that ended before 01/01/2014, and 47 entries that started after
01/01/2013.

– We excluded 1,105 meters that logged injected energy in 2013, as it is
known that the presence of a PV installation can induce behavioral
changes to increase PV self-consumption [140]. Furthermore, the
metering data for households with PV installations merely included
information on the net consumption and injection, not the gross con-
sumption which is necessary for the proposed methodology.

– Following the Eurostat classification [141], 98 meters exhibiting an
annual consumption lower than 1,000 kWh and 125 consumers with
annual consumption higher than 15,000 kWh were excluded, as these
were assumed to not be representative for typical household habits,
or could include small and medium-sized enterprises (SMEs), meaning
commercial meters, on the low-voltage distribution grid.

– Finally, data from 157 meters were excluded for either being faulty,
or for corresponding to non-residential consumers, but rather to, e.g.,
communal areas in apartment buildings.

As the raw smart meter data contains no metadata to evaluate and interpret
models in the later chapters of this dissertation, we manually construct
metadata based on the consumption habits.
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In order to construct our own metadata, the 1,422 individual profiles were
manually and visually categorized based on the thermal images obtained via
heatmaps of their demand profile. This heatmap is the visualization of the
matrix obtained by reshaping the 35040× 1 vector of the chronological data
to a 96× 365 matrix. The entries belonging to the days of the start and end
of daylight saving time are removed before reshaping the matrix, resulting
in a 96× 363 matrix. These days contain 92 and 100 data points, and would
therefore distort the heatmap.

Based on the obtained heatmaps, five categories are introduced that are able
to describe the typical low-voltage consumers in Flanders: four habit-specific
categories and one so-called regular residential consumer for all consumers
that do not fit one of the four special categories.

The introduced categories are inspired by three available Synthetic Load
Profiles (SLPs) for Flanders: one for households with electric heating, one for
households without electric heating, and one for non-residential consumers
withmajority of their consumption during the day [142]. Based on the obser-
vations in the heatmaps, two types of electric heating were determined, and
a category for households equipped with air-conditioning was introduced.

– SME profile: consistent load profile with 9–18h habits on weekdays
and absent on weekends, as shown on Figure 4.1a.

– Electric heating: consumption late in the evening and at night, su-
perimposed upon a regular consumption profile. Two substructures
are observed:

– Ripple control heating: These profiles exhibit the same mo-
ment during weekdays when the heating is turned on, and differ-
ent behavior is observed for weekdays and weekends, as shown
on Fig 4.1b;

– Continuous heating: Unlike the ripple control heating, the mo-
ment of switching on the heating is stochastic and no difference
in heating behavior between weekdays and weekends can be
observed, as shown on Fig 4.1c.

– Air conditioning: profiles with a significant electric load during sum-
mer months, superimposed upon a regular consumption profile. This
heatmap is not shown for brevity.

– Regular residential consumer: the remaining load profiles not be-
longing to one of the above categories. There are typically (but not nec-
essarily) characterized by a morning and evening peak, with demands
concentrated during the evening as shown on Figure 4.1d.
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Figure 4.1: Heatmaps of four different types of consumers: (a) an SME, (b) a
consumer with ripple control heating, (c) a consumer with con-
tinuous electric heating, and (d) a regular residential consumer.

As Table 4.1 shows, the majority of the considered consumers does not fall
within a category with specific features such as the SME or the electric
heating profiles, but can be considered a regular household. Table 4.1 gives
an overview of the number of profiles in each category, split for different
consumption ranges. The density of the regular demand profiles is highest in
the range of 2–4 MWh per year, consistent with typical consumption ranges
for Flemish consumers without a form of electric heating [143]. Similarly, the
other categories are mostly situated at higher average yearly consumption.

As the focus of this dissertation is on residential consumers, the 20 identified
SMEs are removed, leading to a final dataset of 1,402 consumers.

Table 4.1: Dataset composition by the considered profile categories.

Regular Ripple e-heating Cont. e-heating SME Airco
1 – 2 MWh 143 3 1 0 0
2 – 3 MWh 260 19 6 2 0
3 – 4 MWh 254 25 4 2 0
4 – 5 MWh 223 17 15 0 0
5 – 6 MWh 126 14 13 5 0
6 – 7 MWh 86 10 14 1 3
> 7 MWh 114 19 18 10 15
Total 1,206 107 71 20 18
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4.2 Solar yield data

The PV yield profile for an installation of a given size, orientation and azimuth
is obtained through the methodology presented in [12], starting from the
diffuse horizontal irradiance and the direct normal irradiance. The data
required for this methodology were provided by the Belgian Royal Mete-
orological Institute (RMI). The measurements were performed during one
complete year, and originate from aweather station situated inWest Flanders
(latitude 50.90° N - 3.12° E, 25 m above sea level).

In order to obtain the AC power output of the PV system under consideration,
a two-step approach is followed:

1. First, the solar irradiance on a tilted plane is calculated. The Hay &
Davies transposition model is used to estimate this irradiance, starting
from the horizontal irradiance components provided by the RMI [144].

2. Second, the AC power output corresponding with this irradiance is
calculated by using PVLib, an open source Python library containing
models for simulating the performance of PV energy systems [145].

The properties of the PV model Sunpower SPR-230-WHT-U, Mono-Si and
230 W peak power are used for the simulation. Furthermore, the normalized
efficiency curve of the considered inverter is shown in Figure 4.2. It is worth
mentioning that the inverter sizing ratio is assumed to be 1.

Figure 4.2: Inverter efficiency curve.
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4.3 Electric vehicle data

The profiles for EV charging are stochastically generated based on real-
world arrival and departure times obtained from ELaadNL [146]. ELaadNL
is a knowledge and innovation center for smart and sustainable charging of
electric vehicles, an initiative of the joint Dutch grid operators.

We refer to [61] for an elaboration on the EV charging profile generator used
for this dissertation, and limit this section to a concise summary of several
probabilities involved in the stochastic “dumb" charging profile generator, as
smart charging will not be considered for the discussed used cases.

The probability densities used to determine arrival times and the initial SoC
of the EVs are depicted in Figure 4.3(a) and (b) respectively [61]. Furthermore,
a dynamic charging process is applied to avoid overcharging degradation.
The charging process consists of the typical constant current (CC) stage
followed by a constant voltage (CV) stage based on the approach presented
in [147]. The obtained dynamic voltage and current charging curves, as well
as the SoC curve, are presented in Figure 4.3(c) and (d) respectively. Once
the voltage reaches a predefined maximum voltage level, the charging stage
switches from CC to CV.

Figure 4.3: Probability densities and dynamic charging curves, with: (a)
the distribution of arrival times for weekdays and weekends;
(b) the SoC upon arrival at destination. Both right panels are
representative of a randomly selected day with: (c) the charging
voltage and current; (d) the SoC curve, reproduced from [61].
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4.4 Heat pump data

Two separate data sources are used in this dissertation to construct the
load profiles corresponding to the integration of heat pumps in residential
dwellings. The first data source will provide the normalized load data, while
the second source gives insight in the scaling this normalized load.

In the interest of reproducibility, we opt to use the open source ‘When2Heat’
dataset for the normalized heating profiles, as published in Scientific Data
[148]. This dataset comprises synthetic national time series of both the heat
demand and the coefficient of performance (COP) of heat pumps with an
hourly resolution. It covers 16 different countries (including Belgium), and
spans a total of 10 years, ranging from 2008 to 2018. Furthermore, the variable
COP time series are included for different heat sources (air, water, ground),
as well as different heat sinks (floor heating, radiators, and water heating).

These estimated COP curves from [148] are given in Figure 4.4. These
estimations are obtained based on manufacturer data, as well as adjusted
for real-world inefficiencies.

The normalized time series data fromWhen2Heat are subsequently rescaled
based on the heating demand of individual dwellings under consideration.
Hence, information about the building stock of the region is needed. For
this, we make use of two studies conducted by the Building Physics research
group of Ghent University for the Flemish Energy and Climate Agency.

Figure 4.4: Estimation of COP curves, distinguishing between air-source
heat pumps (ASHP), ground-source heat pumps (GSHP), and
groundwater-source heat pumps (WSHP) [148].
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To estimate the heat demand of homes, we use the E-level as used by the
Flemish administration. This is a score that indicates how energy efficiency a
dwelling is: the lower the E-level, the more energy efficient the building. The
E-level depends, among other things, on thermal insulation, air-tightness,
compactness, orientation, conscious ventilation losses, as well as the fixed
installations (for heating, domestic hot water, ventilation, and cooling). Since
2006, building permits for newly built houses require these houses to reach a
certain E-level, with the mandatory level becoming increasingly strict.

In the first relevant study [149], the authors analyzed the total measured
energy consumption of over 250.000 individual dwellings and compared it to
the E-level. Table 4.2 displays the mean value of the gas usage for households
grouped in binned E-levels, depending on whether space heating (SH) with
and without domestic hot water (DHW) production is provided through
gas. As heat pumps can provide both SH and DHW, this information is of
particular interest for case studies investigating the impact of HP integration.

These normalized energy demands can be combined with the results of [150],
which allows us to determine the heating demand for different types of
dwellings. For this study, the raw data was supplemented with survey data,
such as the building topology. We combine the average size of each type of
house for different E-levels with the average normalized real annual gas usage
to obtain Table 4.3. This table lists the annual gas consumption for a typical
detached and terraced house when gas is used to provide space heating and
produce domestic hot water.

These annual gas usages can now be transformed to annual electricity de-
mands, in case a heat pump were to provide similar demands. For this,
we use the seasonal coefficients of performance (SCOP) of each individual
installation. This SCOP averages out the instantaneous COP over a full year.

Table 4.2: Considered average normalized real annual gas usage for space
heating (SH) and/or domestic hot water (DHW) production.

Normalized annual gas usage
E-level SH & DHW Only SH
0 – 20 42 kWh/m2 31 kWh/m2
21 – 40 47 kWh/m2 42 kWh/m2
41 – 60 54 kWh/m2 48 kWh/m2
61 – 80 62 kWh/m2 62 kWh/m2
81 – 100 74 kWh/m2 74 kWh/m2
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Table 4.3: Assumed average annual gas consumption (kWh/year) for SH and
DHW production for a detached house and a terraced house.

Annual gas usage
E-level Detached house Terraced house
0 – 20 10,080 9,240
21 – 40 11,280 10,340
41 – 60 12,960 11,880
61 – 80 14,880 13,640
81 – 100 17,760 16,280

We assume an SCOP of 2.60 for the air-to-air heat pump, while air-to-water
heat pumps with floor heating reach an SCOP of 3.70. This illustratively
leads to the additional annual electricity demands as given in Table 4.4, for
a detached dwelling of 240 m2. These total annual demands can now be
combined with the normalized load profiles from the When2Heat dataset to
obtain electric load profiles, depending on both the dwelling type and heat
pump installation under consideration.

It is important to recognize that using the SCOP is a coarse approximation
to obtain average values. First, heat pump efficiency decreases in colder
weather. Converting gas consumption to electricity consumption using a
constant SCOP may not account for performance variations due to temper-
ature fluctuations, potentially underestimating electricity use during peak
cold periods. Second, some heat pump systems rely on auxiliary electric
heaters during extreme cold, when the heat pump alone cannot meet de-
mand. This extra electricity consumption is not captured by the SCOP,
leading to further underestimation if based solely on gas-to-heat conversions.
While using the instantaneous COP for different years would provide more
accurate estimates, this level of detail is not necessary for the heat pump use
cases presented in Chapter 9.

Table 4.4: Average increase in electrical consumption for detached dwellings
of 240 m2 if SH and DHW are provided by a heat pump.

E-level Air-to-air heat pump Air-to-water heat pump
0 – 20 3,848 kWh/year 2,926 kWh/year
21 – 40 4,306 kWh/year 3,274 kWh/year
41 – 60 4,948 kWh/year 3,762 kWh/year
61 – 80 5,681 kWh/year 4,320 kWh/year
81 – 100 6,780 kWh/year 5,156 kWh/year
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Definition of peak demands

The definition of a good mathematical problem is the
mathematics it generates rather than the problem itself.

Andrew Wiles

As established in Chapter 2, contemporary use of smart meter data often
involves knowledge of the timing and amplitude of peak demands at the level
of the individual household. Due to this interest, we wish to include features
related to them in the clustering scheme.

The question now arises: how can we rigorously define what exactly a ‘peak
demand ’ entails? Despite being ubiquitous in academic literature and studies
by grid operators, a rigorous definition is rarely given. The response to this
question as proposed over the course of this chapter is derived from following
works:

• R. Claeys, T. Delerue, and J. Desmet, "Assessing the influence of
the aggregation level of residential consumers through load duration
curves," 2019 IEEE PES Innovative Smart Grid Technologies Europe
(ISGT-Europe), Bucharest, Romania, pp. 1-5, 2019. [151]

• R. Claeys, H. Azaioud, R. Cleenwerck, J. Knockaert, and J. Desmet, "A
novel feature set for low-voltage consumers, based on the temporal
dependence of consumption and peak demands." Energies, vol. 14.1, p.
139, 2020. [152]
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5.1 Properties of peak demands

Intuitively, it is clear that peak demand occurrence at the level of the indi-
vidual household is the result of a stochastic process at the sub-meter level
which depends both on appliance ownership as well as consumer behavior. A
local maximum in the load profile arises due to the stochastic simultaneous
usage of individual appliances when the household is occupied.

However, this intuitive explanation lacks a mathematical background and
leaves a lot of room for interpretation, and as such is not suitable for further
analysis. Therefore, we first characterize peaks from five intuitive properties
that one would expect from such a definition, before moving on to introduce
a more rigorous mathematical framework:

1. Amplitude-wise, all demands above a certain predetermined threshold
can be considered peak demands.

2. This threshold has to be established at the level of the individual house-
hold. A one-size-fits-all approach is not appropriate for determining
which values can be considered peaks.

3. Compared to the total time period under consideration, peak demands
only arise a very small fraction of the time.

4. Longer periods of elevated consumption should not count as peak
demands at the level of the individual consumers. For example, several
uninterrupted hours of elevated consumption due to the operation of
an electric heater should not be labeled as peak demand behavior.

5. The timing of a demand peak at the level of the individual consumer is
irrelevant for this first definition, asmany applications at the individual
level are time-agnostic. For example, capacity-based tariffs often do
not take the timing of a demand peak into account, only its amplitude.

Based on these properties, we propose to use the Load Duration Curve
(LDC) of each individual consumer to define which of its measurements
constitute a peak demand on an annual basis. Throughout the analysis in
the remainder of this section, we will benchmark the results with these five
proposed properties.

The LDC of an individual consumer is obtained by ordering the smart meter
measurements in descending instead of chronological order.
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5.2 Load duration curve (LDC)

At the macrogrid level, the LDC has traditionally been used by electric utility
engineers for network planning purposes, to analyze the utilization of power
plants, as well as characterizing the cyclic behavior of electricity demand over
a longer time period [153–155].

While the LDC has not traditionally been used to model individual con-
sumers, it was successfully used by Poulin et al. to investigate the value of
peak shaving for commercial, institutional, and industrial consumers [156].

Encouraged by these findings for non-residential consumers, the analytical
form of the load duration curve is used in this work to construct the peak-
based features. Based on the shape of the LDC, a threshold unique to each
consumer can be proposed, and every demand higher than this threshold can
be considered as a peak.

The analytic expression introduced by Poulin et al. is taken as the starting
point for our analysis [156]. Traditionally, P i(t) denotes the chronological
demand data of a specific consumer i. The LDC Pi(τ) corresponding with
this demand profile can subsequently be described by following equation:

Pi(τ) = 1− aτ − bτ c +
d

1 + ef(τ−g)
− d

1 + e−fg
(5.1)

The variables Pi and τ in the expression of the LDC respectively denote the
normalized demand and “time", or ordered rank of the consumption value,
i.e., both scaled such that their range spans the interval [0, 1]. This allows for
a scale-independent comparison of consumers, merely comparing the shape
of their LDCs, as visualized in Figure 5.1.

Figure 5.1: Shape of the 6-parameter LDC for commercial, institutional and
industrial consumers as proposed by Poulin et al. [156]
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The six parameters included in Equation (5.1) show a clear connection to
customer operations, and thus are relevant for consumer clustering purposes.
The peak height and duration are correlated with b and c respectively, while
parameters d, f and g are linked to respectively the height, slope and location
of the step. Finally, a yields information about the slope of the linear segment
of the LDC. These six parameters and their qualitative relation to the shape
of the LDC are displayed in Figure 5.1.

A constrained least-squares fit is used to determine these six parameters
for each individual consumer in the considered dataset. To the best of our
knowledge, prior to our initial reporting, the proposed relation was not yet
validated for residential consumers, as [156] considered a dataset comprised
of commercial, institutional and industrial consumers.

Therefore, an initial validation of the model for individual residential con-
sumers has been done via the coefficient of determination R2 of the per-
formed fit. To perform the curve fitting, the Python packagelmfitwas used.
The constraints used during the curve fitting algorithm for each individual
parameter are given in Table 5.1. These boundaries were chosen nearly
identical to those used for the LDC fitting procedure in [156].

The only deviation from the constraints is the lower bound of the g parameter.
Therein, a lower bound of 0.1 for g was assumed. However, residential
consumers are more peak-intensive and their peaks are more stochastic. It
is expected that this behavior is reflected in the shape of the LDC with a
shorter duration of the peak and step. Therefore, the lower bound for g, the
parameter linked to the location of the step, can be taken smaller than the
aforementioned 0.1. A value of 0.025 was chosen for this lower bound.

The median coefficient of determination R2 of the curve fittings is 0.987,
highlighting an excellent fit between the proposed mathematical expression
and the empirical LDC. Similar results for the coefficient of determination
were reported in [156], allowing us to extend the application range of the
proposed relation to include residential consumers in addition to the previ-
ously validated commercial, institutional and industrial consumers.

Table 5.1: Constraints considered for the LDC curve fitting procedure.

Parameter Minimum Maximum
a, b, c 0 1
d 0.005 1
f 25 + ∞
g 0.025 1
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Figure 5.2: 2D kernel density estimation (KDE) of the parameters included
in Equation (5.1), plotted versus the yearly consumption.

The distributions of the six parameters obtained from the curve fitting pro-
cedure are given in Figure 5.2.

It is noteworthy that negligibly low values of the parameter a are obtained,
corresponding to a nearly non-existent slope for the residential LDC. Intu-
itively, one would indeed expect residential consumers to spend the majority
of their year on a certain base load, i.e., the aggregated standby demand of
the appliances in the household. As such, this would correspond to a satu-
ration effect towards this standby demand being present in the household
LDC for limτ→1 P

i(τ), in contrast to the decreasing slope in Equation (5.1).

Consequently we can simplify this six-parameter expression, and propose a
five-parameter LDCmodel for residential consumers in Equation (5.2), which
is visualized in Figure 5.3.

Pi(τ) = 1− bτ c +
d

1 + ef(τ−g)
− d

1 + e−fg
(5.2)

A second possible improvement entails incorporating possible correlations
between the values of the parameters in Equation (5.1) and properties of the
consumer, such as the annual consumption.
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Figure 5.3: Shape of the proposed 5-parameter LDC.

Despite a large spread being present in the scatterplot, the parameter c
describing the power law in Equation (5.1) is noticeably correlated with the
yearly consumption. Consequently, Equation (5.3) fixes the parameter c at
the value c0+c1Y , and reduces the number of parameters to be fitted to four.
The values of c0 and c1 are determined by an ordinary least-squares fitting
procedure on the relation between Y , the yearly consumption in kWh, and
c, as shown in Figure 5.2.

Pi(τ) = 1− bτ c0+c1Y +
d

1 + ef(τ−g)
− d

1 + e−fg
(5.3)

The evaluation of all three LDC models, based on the coefficient of deter-
mination R2, is listed in Table 5.2. As expected given the observed values of
a, the 6-parameter and 5-parameter models exhibit identical performance.
Furthermore, while a decrease in median R2 value can be observed for the
4-parameter model, this value is still acceptable. However, the observed
mean value is significantly lower and exhibits an increasing difference with
the median value, highlighting that the 4-parameter model of Equation (5.3)
leads to a worse fit for a non-negligible amount of consumers.

Table 5.2: Comparison of the fitting result of the three considered LDC
models.

Model Median R2 value Mean R2 value
6-parameter model, Equation (5.1) 0.987 0.977
5-parameter model, Equation (5.2) 0.987 0.977
4-parameter model, Equation (5.3) 0.968 0.937
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As expected, given the high spread in the linear relation between c and the
yearly consumption, the reduction in accuracy of modeling the LDC is a
trade-off that has to be made in order to incorporate the dependency on the
consumer’s yearly consumption and reduce the complexity of the considered
model.

It is worth noticing that an evaluation solely based on R2 leads to an in-
complete picture. Indeed, a very high R2 value can be an indication of
overfitting. Furthermore, more complexmodels will always be able to capture
more variability in the data. Hence, researchers typically strive for a trade-off
between the goodness of fit and simplicity of the model. To this end, both
the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) are considered. Both of these criteria measure the relative quality of
statistical models, balancing the performance of the model with the number
of parameters it contains. The criteria are defined as follows:

AIC = 2k − 2 ln(L̂) (5.4)

BIC = k ln(n)− 2 ln(L̂) (5.5)

Where k denotes the number of parameters, ln(L̂) is the log-likelihood of the
model on the data to incorporate the goodness of fit, and n is the number
of data points. It is clear that these criteria reward the goodness of fit by
the second term, the log-likelihood function, while penalizing increasing
complexity of a model by the first term, the number of parameters.

Therefore, we use the AIC and BIC to select the most appropriate model
among the set of three, balancing goodness of fit with model complexity.
When comparing multiple models, the model with minimal value of each
criterion is considered the best model when considering the trade-off. For
91% of the consumers in the considered dataset, both criteria are minimal
for the 5-parameter model. The reduction in complexity for the 4-parameter
model does not offset the lower performance in the fitting procedure, leading
to the 5-parameter being preferred.

Given the importance of the fitted parameters of the LDC for the remainder
of this work, the complexity of the model is of lesser importance. However,
given that the 5-parameter model is preferred for the vast majority of the
dataset whilst exhibiting superior performance in the evaluation based on
the coefficient of determination, further analyses are performed on Equation
(5.2), the model that exhibited superior performance in the fitting procedure.
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5.3 From LDC to peak demands

The validated analytic expression of the load duration curve can now be used
to introduce a binary classification for peak demands, i.e., all values Pi(τ)
for τ smaller than a certain threshold τ∗ can be considered peaks for the
individual consumer while all other values cannot. The challenge now lies in
determining τ∗, the value of this threshold.

The only condition a proposed expression or value for τ∗ has to fulfill for
the purposes intended in this work is that it has to be sufficiently small in
order to yield usable results. Although the term ‘usable’ implies a certain level
of arbitrariness, it should be clear that a threshold value that labels 50% of
all demands on yearly basis as peaks is not practical for e.g. peak shaving
algorithms. Therefore, given the continuous nature of the load duration
curve, it is inevitable that any proposed threshold value will have its own
advantages and disadvantages.

We propose using the point of maximum curvature as this threshold, for τ
sufficiently small. This guarantees the presence of the point of maximum
curvature in the exponential decay present in the LDC. Intuitively, the cur-
vature of a function is the amount by which this function deviates from a
straight line in a certain point. Therefore, the maximum of this curvature
function denotes the point where the curve has the sharpest bend.

For τ sufficiently small, the LDC as defined in Equation (5.2) can be approx-
imated by Equation (5.6), which is dominated by the power law responsible
for the peak demand features and the steep decay of the LDC:

Pi(τ) ≈ 1− bτ c. (5.6)

Using the point of maximum curvature of Equation (5.6) as the threshold
value to define the area of peak demands has two major advantages. First,
this threshold is different for each individual as it depends on the shape of
the individual load duration curve, allowing for a differentiation among low-
voltage consumers. Second, the point of maximum curvature for an analytic
function can be unambiguously described analytically. The curvature func-
tion κ(τ) of Equation (5.6) is given by [157]:

κ(τ) =

∣∣(Pi)′′(τ)
∣∣[

1 + [(Pi)′(τ)]2
] 3

2

(5.7)
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Maximizing κ(τ) with respect to τ yields following value for the point of
maximum curvature:

τ∗ =

(
c− 2

b2c2(2c− 1)

) 1
2(c−1)

(5.8)

This expression can now be used to determine the point of maximum
curvature for every LDC in the consumer dataset. Figure 5.4 illustratively
displays the exponential decay of an LDC together with its point of
maximum curvature. Before τ∗, the LDC is decaying rapidly, but the rate of
decay is slowing down as τ increases. After the point of maximum curvature,
the LDC continues to decay, but the rate of decay becomes progressively
slower.

Figure 5.4: Example of the point of maximum curvature for the LDC de-
scribed by Pi(τ) ≈ 1 − bτ c at small values of τ , with b = 0.5
and c = 0.1.
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Figure 5.5: Density histogram of the calculated values of τ∗ and Pi(τ∗), as
defined by Equation (5.8).

The histogram of the calculated values of τ∗ and the corresponding value
Pi(τ∗) for the considered dataset are given in Figure 5.5. A beta probability
density function is successfully fitted and shown to be able to describe the
density functions, as shown overlaid in Figure 5.5. The distribution of τ∗ has
a 10− 90 percentile range of [0.017, 0.041], with a mean value of 0.028.

Translating this mean value of the normalized time τ to a yearly basis means
that, on average across the distribution, 2.8% of the values on a yearly basis
can be labeled as peaks, corresponding with 981 values of the 35.040 data
points. Furthermore, the distribution of Pi(τ∗) shows the large potential of
peak shaving initiatives for residential consumers: the mean value of Pi(τ∗)
is 0.35, i.e. 35% of the original maximum demand.

5.4 Conclusion

In this chapter, we have proposed a methodology to unambiguously define
what exactly a ‘peak demand ’ of an individual consumer encompasses. De-
spite being a common term in academic literature and studies by regulators
and grid operators, no rigorous definition that suits the purpose of this
dissertation could be found in literature.
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Inspired by its use by electric utility engineers for network planning purposes,
we introduced the load duration curve (LDC) to describe the demand behav-
ior of individual consumers. After validating several analytic expressions for
the LDC, a 5-parameter model was retained, which is used for the remainder
of this work.

Determining the point of maximum curvature in the exponentially decaying
part of the LDC allows us to define a unique threshold for each individual
consumers. Values above this threshold will be considered peak demands.
Moving forward, the findings from this chapter will serve as the foundation
for the feature construction and clustering scheme used in Chapter 6 to group
similar consumers together, and to shed light on the stochastic nature of
these peak demands.
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Consumer categorization

The world is now awash in data, and we can
see consumers in a lot clearer ways.

Max Levchin

In this chapter, we shift our focus from the theoretical approach of defining
the peak demands to its practical application in consumer categorization.
Specifically, our objectives in this chapter are twofold: first, to cluster similar
consumers together in an unsupervised machine learning algorithm taking
into account several peak-based properties, and second, to investigate the
stochastic nature of peak demands.

This chapter is organized as follows: Section 6.1 provides the necessary
background on the unsupervised machine learning algorithms used in this
chapter. Section 6.2 introduces the features that will be used for the clus-
tering. The clustering results are presented and discussed in Section 6.4,
while the distributional analysis on the constructed features in Section 6.5
sheds light on the predictability of peak demands and its implications for
the applicability of demand response and peak shaving initiatives.

Sections 6.2 to 6.5 of this chapter are derived from:

• R. Claeys, H. Azaioud, R. Cleenwerck, J. Knockaert, and J. Desmet, "A
novel feature set for low-voltage consumers, based on the temporal
dependence of consumption and peak demands." Energies, vol. 14.1, p.
139, 2020. [152]
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6.1 Unsupervised machine learning

Machine learning (ML) is a discipline of computer science that gives ma-
chines the ability to implicitly learn without being explicitly programmed in
a rule-basedmanner. In unsupervised learning, the data does not contain any
labels or metadata, meaning the input data is not paired with the desired
outcome data. Instead, unsupervised learning is most often used for tasks
such as clustering, dimensionality reduction, or anomaly detection.

For this chapter, we will mainly focus on clustering. During a clustering
process, the machine organizes unsorted data according to parallels and
patterns, classifying similar inputs together in categories. Consequently, we
can use unsupervisedML to partition a dataset of smartmeter data belonging
to different consumers, in order to group those consumers with comparable
properties together to get insight in their consumption behavior.

We first discuss two traditional techniques used to cluster smart meter data
in literature. Section 6.1.1 first explores the popular k-means algorithm,
while Section 6.1.2 reviews the hierarchical clustering scheme. In subsequent
sections, we examine the applications for smart meter data, starting with the
construction of custom features in Section 6.2.

6.1.1 K-means clustering

The primary problem that k-means clustering tries to solve is the task of
partitioning a given dataset into k distinct, non-overlapping clusters. Hence,
it is important to note that the number of clusters is the input of the k-means
algorithm.

Mathematically, given a set of vectors (x1, x2, ..., xn), where each vector is
an observation in a d-dimensional space, k-means partitions these n obser-
vations into k(≤ n) sets S = {S1, S2, ..., Sk}, to minimize the within-cluster
sum of squares (WCSS). This is expressed in Equation (6.1).

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥2 = argmin
S

k∑
i=1

|Si|Var Si (6.1)

With µi the mean, or centroid, of points in the set, or cluster, Si:

µi =
1

|Si|
∑
x∈Si

x (6.2)
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Equation (6.1) is typically solved iteratively. First, k points are randomly
initialized. These are called the means, or cluster centroids. Second, each
observation xn is categorized to its closest mean. Afterwards, the mean’s
coordinates are updated, their new values being equal to the averages of the
observations that have been categorized in that cluster. Finally, this process
is repeated for a given number of iterations.

Despite being widely used, the k-means algorithm has some major draw-
backs. First, its output is heavily influenced by the initial selection of cluster
means. Different initializations can lead to different final clustering results,
and in some cases, it may converge to suboptimal solutions. From a mathe-
matical point of view, the k-means algorithm can get stuck in a local optimum
instead of searching for the global optimum.

Second, k-means tends to produce clusters of roughly equal size. That makes
it unsuitable for datasets with clusters of varying densities. Furthermore,
this makes it highly sensitive to outliers. As the sum of squared distances
between data points and the cluster centroids is minimized, these outliers
disproportionally influence the position of the centroid.

The final drawback is that the dependence on the number of clusters k as
input value. As the optimal k is often not known in advance, this has to be
determined. However, determining this is often somewhat subjective, with
many evaluation metrics being used to determine the optimal number of
clusters, given the results for a sweep of k.

Some common evaluation methods are the silhouette score [158], the
Calinski-Harabasz index [159], the Dunn index [160], the Davies-Bouldin
index [161], as well as the gap statistic [162]. These indices are commonly
used together with the k-means algorithm in academic literature for smart
meter data clustering.

For example, [163] used a k-means clustering algorithm to construct 19
clusters for Spanish electricity consumers based on their smart meter data.
The optimal number of clusters was determined based on the Davies-Bouldin
index, as well as the average within cluster variance. Analogously, [164]
used both the silhouette score and Davies-Bouldin index to k-means cluster
London-based consumers into three distinct categories. In [165], k-means
was used together with the Davies-Bouldin index to obtain between 8 and 10
clusters for a dataset of smart meter data of Irish consumers.

The authors of [166] used a combination of the Dunn, Davies-Bouldin and
silhouette index to cluster daily load profiles of Korean consumers into 21, 27,
or 16 different clusters, depending on which residential site was considered.
The same three indices were used in [167] to cluster Irish consumers into four
distinct consumer groups.
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6.1.2 Hierarchical clustering

Hierarchical clustering is the common alternative to k-means clustering.
While k-means aims to partition a dataset in a fixed number of clusters,
hierarchical clustering (as the name suggests) seeks to build a hierarchy of
clusters. As such, in contrast to k-means, it does not require the number of
clusters to be determined in advance, which is a major advantage.

A second advantage is that hierarchical clustering allows for a graphical
representation of the results in a so-called dendrogram. A dendrogram is
a tree-like structure that displays the relationship between clusters, and it
visually depicts the sequence of cluster fusions or splits that occur during
the hierarchical clustering process.

The vertical y-axis of a dendrogram represents the distance between clus-
ters or data points. The height of each fusion or split in the dendrogram
corresponds to the distance at which the clusters were merged or split. Con-
sequently, a dendrogram is a visual aid that helps to interpret what occurs
when moving from k to k+1 clusters. Furthermore, cutting the dendrogram
at a certain distance divides the dendrogram into distinct clusters. The choice
of y-value determines the granularity of the clustering, with lower y-values
resulting in more clusters and higher y-values leading to fewer clusters.

There are two main categories of hierarchical clustering:

1. Agglomerative clustering: This is a so-called “bottom-up" approach.
It starts with each observation as a separate cluster, and subsequently
iteratively merges the closest pairs of clusters until only one cluster
remains.

2. Divisive clustering: In this “top-down" approach, all data points start
in a single cluster, and the algorithm recursively divides the dataset
into smaller clusters until each data point is in its own cluster.

Divisive hierarchical clustering is less common and computationally more
intensive than agglomerative clustering. As such, we will only consider
agglomerative clustering.

While agglomerative clustering offers its advantages over k-means, it comes
with its own set of challenges. It is computationally intensive and often
requires storing distance or linkage matrices, which can consume a signif-
icant amount of memory for large datasets. This can limit the scalability of
hierarchical clustering approaches compared to k-means clustering.
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Agglomerative clustering has a large degree of freedom onwhichmeasure for
(dis)similarity is used to determine which clusters should be combined. This
measure for dissimilarity is a combination of (i) a distance d between single
observations of the considered dataset, such as the traditional Euclidian
distance, and (ii) a linkage criterion, which specifies the dissimilarity of sets
as a function of the pairwise distances of one or multiple elements in those
sets.

To illustrate the impact of different linkage criteria, consider several common
criteria:

– Complete-linkage clustering, also called furthest neighbor cluster-
ing, is based on maximum distance. The similarity D of any two
clusters A and B is the similarity of their most dissimilar pair:

D(A,B) = max
a∈A,b∈B

d(a, b) (6.3)

– Single-linkage clustering, also called nearest neighbor clustering, is
based on a minimum distance. The similarity of any two clusters is the
similarity of their most similar pair.

D(A,B) = min
a∈A,b∈B

d(a, b) (6.4)

It is clear that the complete-linkage criterion will tend to lead towards
spherical clusters, whereas the single-linkage criterionwill lead to elon-
gated clusters. Indeed, the nearest neighbor clustering will produce
clusters where nearby elements in the cluster have similar properties,
but there is no guarantee that the observations at opposite ends of the
cluster will exhibit similar behavior.

Consequently, we will not use either of these linkage criteria. Instead,
we will consider the more popular Ward’s linkage for the hierarchical
clustering algorithm in Section 6.4.

– Ward’s linkage aims to minimize the variance when merging two
clusters, effectively seeking to minimize the increase in total within-
cluster variance after merging [168]. It selects the merge that will lead
to the smallest increase in variance, and therefore assumes that this
merge will result in the most compact and homogeneous clusters.

Ward’s linkage scheme is of interest when expecting clusters of varying
sizes, as this criterion tends to produce more balanced and cohesive
clusters compared to other linkage criteria [168].
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Similar to k-means clustering, hierarchical clustering with different linkage
criteria has successfully been used to group smart meter data. In [169],
Japanese consumers were hierarchically clustered in 5 distinct groups based
on their smart meter data, using both the complete and Ward’s linkage
criteria. Greek consumers were categorized into ten clusters in [170] using
Ward’s linkage, as well as other clustering schemes. Smart meter data of
Portuguese consumers were clustered in 10 groups using Ward’s linkage
criterion in [171].

6.2 Feature construction

As discussed in the previous section, clustering algorithms are performed on
a set of vectors (x1, x2, ..., xn), where each vector is an observation in a d-
dimensional space. Intuitively for smart meter data, this clustering occurs
on the raw smart meter data over a certain period, often one day or a single
week.

An alternative method to clustering via chronological measurements is
grouping consumers based on similar properties, also called features. This
dissertation follows the feature construction and evaluation approach. The
advantages of using a limited set of features during a clustering process are
multifold. First, artificial overfitting due to high dimensional data can be
avoided [172]. Furthermore, computational time is saved and allows easier
interpretation if the features are chosen to be application-dependent [173].

Features can be constructed by performing operations on the default chrono-
logical features, e.g., combining all daytime consumption in one single fea-
ture. However, more advanced features can also be constructed, ranging from
features generated in the frequency domain [174, 175], to features related to
the shape of the distribution of the load, such as the load factor [176].

Features constructed in literature are often application-dependent, i.e., de-
pend on the goal of the work. One goal of this chapter is to investigate the
temporal connection between consumption and peak demand behavior, to
gain insight in the stochasticity of residential peak demands. Therefore, the
features in this work are linked to either the consumption or the occurrence
of peak demands.

Previous studies incorporating temporal properties of these peaks in the
clustering process either take the timing and the amplitude of the daily peak
demand into account [177, 178], or use statistical measures of the distribution
of the measurement data [179].
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Two different temporal levels relevant for consumers on the low-voltage dis-
tribution grid are considered for these time-dependent features: the daily and
the weekly level. At the daily level, the time periods are defined based on the
time of day. Similarly, at the weekly level the distinction between weekday
and weekend is maintained. In order to distinguish between intervals I

defined on either the daily level and the weekly level, two notations are
introduced: Id and Iw. The superscript d stands for daily, w for weekly.

While the definition of the intervals Iw is unambiguous, i.e., weekdays versus
weekends, distinct intervals at the daily level Id for residential consumers are
not universally agreed upon. In [177], Haben et al. identified four key time
periods for residential consumers: overnight, breakfast, daytime and evening
period.

Inspired by their findings, the distinction as listed in Table 6.1 is introduced
for the daily level. In this work, the daytime period is further subdivided in
a morning and afternoon range. Furthermore, while the daytime period in
[177] ended at 15:30, it is extended to 18:00 for this work.

Other temporal levels can easily be incorporated in the feature set, e.g., the
seasonal influence by including four time periods at the annual level corre-
sponding with the seasons. However, this seasonal variation is omitted, as
these features were found to not significantly impact the clustering result
and rather obfuscated the results, limiting the ease of interpretation.

Based on these time periods at two different temporal levels, a two-pronged
approach is introduced. The first class of features considers the relation
between the temporal property and the consumption: which fraction of
the demand occurs during a certain predefined time interval? In contrast,
the second class of features considers the temporal properties of the peak
demands: when do these peak demands occur? In order to unambiguously
define which values constitute a peak, we analyze the analytic fitted form of
the load duration curve as defined in Chapter 5.

Table 6.1: Definition of the considered time periods Id at the daily level,
based on the hour of the day, h.

Id Definition
Early morning h ∈ [ 06:00 – 08:30 [

Morning h ∈ [ 08:30 – 12:00 [
Afternoon h ∈ [ 12:00 – 18:00 [
Evening h ∈ [ 18:00 – 22:30 [
Night h ∈ [ 22:30 – 06:00 [
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The individual features are suitable to characterize consumers, e.g., for as-
sessing household compatibility with renewable energy sources (households
with high daytime consumption are more favorable for rooftop-integrated
PV installations without a battery), or for the timing of the individual peak
demands, which is beneficial information for distribution network operators.

However, it is the knowledge on the fraction of the demand combined with
the simultaneous occurrence or absence of peak demands in that time period
that can elucidate the stochastic nature of these peak demands. Consumers
that consistently exhibit a disproportionate amount of peak demands in a
certain time period can be targeted for peak shaving initiatives, either via
demand response programs or by utilizing an energy storage system.

Temporal dependence of consumption

LetBi
Ix be the subset of all measured valuesP i(t) of consumer i that occur in

one of the previously defined time periods Ix, with the superscript x denoting
the considered temporal level. This yields following definition of this subset:

Bi
Ix =

{
P i(t) | t ∈ Ix

}
, x ∈ {d,w} (6.5)

The fraction f i,cIx of the demand of consumer i in time period Ix is given by:

f i,cIx =

∑
y∈Bi

Ix
y∑

t P
i(t)

(6.6)

This definition yields a total of seven features: five for the daily level, two for
the weekly level. However, as the subsets Bi

Ix for a given temporal level x
are disjoint by construction, the sum of f i,cIx over all Ix for a fixed x is equal
to 1. Therefore, this reduces down to five linearly independent features: four
for the daily level, one for the weekly level.

Temporal dependence of peak demands

The features related to the peak demands are treated in a different way
than those linked to the consumption. While the amplitude of the demand
P i(t) at a certain point in time is important to determine the fraction of
consumption that happens in a time interval, only the presence of peak
demands is of importance for the second set of features, not the size of the
peaks.
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Let Di be the subset of all measured demand values P i(t) of consumer i
that are classified as peak demands, as defined in Chapter 5. As the LDC is
normalized with respect to the annual peak demand P i

max, the value P
i(τ∗)

has to be rescaled:

Di =
{
P i(t)| P i(t) ≥ Pi(τ∗) ·P i

max
}

(6.7)

Analogous to the previous section, letDi
Ix now be the subset ofDi that occurs

in time period Ix:

Di
Ix =

{
P i(t) | P i(t) ≥ Pi(τ∗) ·P i

max ∧ t ∈ Ix
}
, x ∈ {d,w} (6.8)

The number of peak demands per time interval is given by via the cardinality
of the set Di

Ix , i.e.
∣∣Di

Ix

∣∣. Hence, the fraction of peak demands for consumer
i in a certain time period, f i,pIx , is given by:

f i,pIx =

∣∣Di
Ix

∣∣
|Di|

(6.9)

Analogous to the features related to the temporal aspect of the consumption
behavior, this leads to another five linearly independent features. Conse-
quently, this brings the number of considered linearly independent features
for the clustering algorithm up to ten parameters.

The constructed features can now describe the temporal behavior and dis-
tribution of the consumption and peak demands, as illustrated for one
randomly chosen regular household, household 802, in Figure 6.1 on the
following page.

Both the fraction of the consumption and the fraction of peaks are shown for
each time period at the daily and the weekly level. Major differences between
the distribution describing the consumption and peaks can be observed. At
the weekly level, 65% of the household’s peaks are observed in the weekend,
while only 35% of the consumption occurs during weekends. Similarly, more
than 25% of consumption for this consumer happens at night, as defined by
Table 6.1, while 10% of the peak demands lie in this time period.

It is this difference between distributions of consumption and peak behavior
at the same temporal level that forms the subject of the following sections,
as the presence or absence of differences can clarify whether or not peak
demands tend to be more stochastic or more deterministic.
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Figure 6.1: Example of the 14 features describing the temporal behavior of
the consumption and peak demands at the daily andweekly level
of household 802, f802,cIx and f802,pIx respectively.

6.3 Feature set transformation

One additional step is performed on the proposed set of features before pro-
ceeding to either the clustering algorithm or the distributional analysis: the
feature transformation. Depending on the proposed methodology for each
analysis, a different feature transformation is more appropriate. Therefore,
this section discusses both the proposed methodology for each performed
analysis, as well as the corresponding most suitable feature transformation.

6.3.1 Clustering algorithm

No additional information or metadata is included in the dataset of load pro-
files. As such, the true underlying structure or the optimal amount of clusters
to segment the dataset into is unknown. Therefore, unsupervised machine
learning is used to cluster those profiles that exhibit similar behavior.

The majority of the rich body of literature available on the unsupervised
clustering of load profiles, whether chronologically ordered profiles or based
on a constructed feature set, is based on one of two techniques: either a vari-
ant of the k-means clustering algorithm or via agglomerative clustering. In
the structured literature review on the classification of consumption profiles
performed by Tureczek and Nielsen, 65% of the considered papers included
a k-means-based method, while another 29% performed analyses based on
agglomerative clustering [180].
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There are several differences between k-means and agglomerative clustering,
both from a conceptual viewpoint, as well as the computational aspect.
Agglomerative clustering offers a visualization in a so-called dendrogram of
the clustering results, intuitively showing how substructures in the dataset
emerge when dividing or merging clusters. Furthermore, when a feature
set is used as input for the agglomerative clustering, further analysis on the
merging of clusters offers the possibility of tracking which features are the
driving force that distinguish clusters. However, agglomerative clustering
is a so-called greedy algorithm: at each step, the two closest clusters as
defined by a linkage method are merged together. Therefore, agglomerative
clustering techniques are prone to yield a sub-optimal solution instead of a
global optimum.

In contrast, given an input k, the number of desired clusters, a k-means
algorithm partitions the dataset into k clusters. However, k-means tends
to get stuck in a local minimum instead of the global minimum. The main
challenge for a k-means approach lies in finding the optimal amount of
clusters. From a computational point of view, k-means is preferable for larger
datasets as the time complexity for k-means algorithms typically is linear
in the input data size, O(n), while the time complexity for agglomerative
clustering is quadratic, O(n2).

In this work, an agglomerative clustering algorithm with Ward’s linkage
method is used, as implemented in Python’s SciPy package [181, 182].
The main contribution of this work is introducing and validating a novel
feature set. Therefore, the visualization and emergence of substructures
in the dataset in the clustering process is of major importance, justifying
the choice for an agglomerative clustering algorithm. The proposed linkage
method minimizes the total within-cluster variance for each merging step.

Following the arguments presented by Kang and Lee in [183], it is a necessary
condition for clusters to have a usable, non-trivial size in order to be useful in
real life applications according to expert opinions. Therefore, Ward’s linkage
method can be deemed appropriate, as the tendency of clustering algorithms
to propose singular clusters that contain outliers is avoided.

For the proposed feature set, Ward’s linkage method for agglomerative clus-
tering relies on the Euclidean distance between the 10 linearly independent
features in the 10-dimensional feature space. Therefore, obtained results will
depend on the scale of the input features. However, when looking at both
Table 6.1 and Figure 6.1 it is clear that the proposed features are not yet at
the same scale.
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By construction, the proposed time periods are not of the same scale, e.g., the
weekend period is not the same length as the weekday period, nor is the early
morning of similar length as the night interval. Therefore, even a uniform
distributionwould not lead to similarly scaled features, leading to a distortion
of importance of several features.

Therefore, an initial transformation is performed that rescales the features
based on the length of their time period such that in the case of a uniform
distribution, the value of all features f iIx would be equal to 1. Any deviation
of a uniform distribution will then lead to a deviation of this unity value for
each parameter, while avoiding an artificial inflation of the importance of an
individual feature or one set of features.

However, of the ten proposed linearly independent features, eight are defined
on daily basis, while only two are defined on weekly basis. While this
initially proposed transformation aims to give each individual feature the
same weight, the two sets of features defined on different temporal levels
are not a priori equally represented in the feature set. Consequently, instead
of transforming the features on weekly basis to be equal to 1 in the case of a
uniform distribution, they are assigned an additional weighting factor equal
to 2 to partially offset the numerical advantage of daily features.

In summary, the two sets of features proposed in Section 6.2 are transformed
in a two-step transformation before being used as input for the hierarchical
clustering, using Ward’s linkage method. First, the features are rescaled
based on the length of the time interval in which they are defined, which
leads to individual features of the same scale.

In the second step, an additional weighting factor is assigned based on
the amount of features for each temporal level. A weighting factor of 2 is
proposed for the weekly-level features, which partially offsets the numerical
advantage daily-level features have in the proposed feature set. Further in-
creasing this weighting factor would put a higher emphasis on the difference
between weekdays and weekends in the clustering algorithm.

6.3.2 Distributional analysis

The distribution of features f iIx at the daily or weekly level x can yield
interesting information. As mentioned before, households with high daytime
consumption are ideal candidates for PV installations, whereas households
that exhibit a large amount of peak demands in a certain time interval, could
be targeted via demand response initiatives.
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However, it is the difference between the distributions describing the con-
sumption and peak behavior at the daily or weekly level that yields infor-
mation about the disproportionate presence of peak demands at a certain
time interval, and thus about how stochastic the presence of peak demands
are for an individual household. Therefore, two measures are proposed to
investigate these distributions.

At the level of the individual distributions, we propose using the concept of
entropy at the daily or weekly level to characterize the variability of house-
hold behavior. Similar to the goal of this work, [184] introduced entropy to
study the variability of households, not with respect to features based on
consumption of peak behavior, but based on the variability of consumption
behavior described by the frequency of different representative daily load
shapes during the year. Shannon entropy as introduced in information
theory is defined in Equation (6.10), with xi being a possible outcome and
p(xi) the probability of this outcome [185].

H(x) = −
k∑

i=1

p(xi) ln p(xi) (6.10)

This definition of entropy has several interesting properties for this disser-
tation. First, in the case of a uniform distribution, the entropy reaches its
maximum and thus yields maximum uncertainty. Second, any deviation
from a uniform distribution results in a decreasing entropy, and thus less
uncertainty. If there is no uncertainty, then the entropy becomes 0. In order
for these properties to hold in the analysis of the introduced features, it is
important that these features are consistent with the assumptions in the
Shannon entropy. First, in the case of a uniform distribution, the entropy
becomes maximal. A uniform distribution for the consumption behavior
would entail having the same consumption at each time period.

However, as mentioned in Section 6.3.1, the periods as defined in Section 6.2
are not of equal length, which leads to inequal features in the case of a
uniform consumption distribution. Therefore, the features are rescaled based
on the length of the interval for which they are defined such that a uniform
consumption distribution leads to identical consumption-related features.
Furthermore, Equation (6.10) is defined for probabilities p(x). As such, the
features defined on the five periods at the daily level are rescaled to 0.2, while
those defined at the two periods at the weekly level are rescaled to 0.5.

The second part of the distributional analysis entails a comparison between
the distributions of the consumption behavior and the occurrence of peak
demands at the daily and weekly level. As such, a measure for the distance
between these two distributions has to be introduced.
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The Wasserstein-1 distance is used to characterize the distance metric be-
tween two probability distributions [186]. The definition of this distance as
integrated in Python’s SciPy package is used [182]:

l1(p, q) = inf
π∈Γ(p,q)

∫
R×R

|x− y| dπ(x, y) (6.11)

Here, p and q are two distribution functions, and Γ(p, q) is the set of prob-
ability functions on R × R whose marginals are p and q on the first and
second marginals respectively. This Wasserstein distance is also commonly
called the earth-mover’s distance. Intuitively, it can be seen as the minimum
amount of “work" that has to be done to transform one distribution into
the other, if each distribution could be considered as a pile of earth. The
"work" takes into account both the distance it has to move, as well as the
amount of earth it has to move. As such, distributions P and Q that are
different over “long" (horizontal) regions will be far away from each other in
the Wasserstein distance sense [187].

It is this property that makes it suitable for this work. As the time periods
at the daily level were arbitrarily introduced, a distance metric that takes
the horizontal difference into account instead of performing a point-wise
comparison partly compensates the arbitrary nature of the definition. For
a given consumption behavior, this allows us to identify distributions of the
peak demands that are closer in time.

This property is illustrated in Figure 6.2, where an artifical distribution of the
consumption is compared with two peak demand distributions. As the first
distribution of the peak demands has a maximum chronologically closer to
that of the normalized consumption, its Wasserstein distance is lower.

Figure 6.2: Illustration of how the Wasserstein distance is able to capture
chronological differences between the feature distributions.
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6.4 Clustering results

First, the results for the agglomerative clustering algorithm are illustrated
based on the calculated dendrogram. The results for a low number of features
are benchmarked to the available synthetic load profiles in Flanders, subse-
quently highlight how differences in feature behavior lead to the emergence
of distinct and compact clusters, and argue how this knowledge can be
leveraged from the viewpoint of demand response programs or peak shaving
initiatives.

The dendrogram visualizing the hierarchical clustering process using Ward’s
linkage method on the proposed feature set is shown in Figure 6.3. Two
horizontal cuts are included in the figure. The black line at y = 30 denotes
the height where three clusters are obtained. This can serve as an initial
benchmark, as there are three synthetic load profiles available for low-voltage
consumers in Flanders: residential with and without electric heating, and
non-residential.

The red line was chosen such that 10 disjoint clusters emerge, leading to the
color threshold of the highlighted clusters in the dendrogram. This threshold
of 10 clusters was chosen based on two independent studies stating that
for practical considerations, the total number of clusters should not exceed
10 [173, 183]. This argument is based on the opinions of industrial experts,
as these clusters are often used for tariffing or marketing purposes.

Figure 6.3: Dendrogram obtained via hierarchical clustering, with a color
threshold highlighting 10 clusters. Individual profiles are given
on the x-axis, while the y-axis denotes the distance.
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First, it is necessary to benchmark the clustering result to the available
residential SLPs in Flanders. As the color threshold and further discussion
in this section is based on 10 clusters, the analysis is performed based
on the highlighted 10 clusters. By tracking the merging clusters into the
three branches of the dendrogram at the cut y = 30, a benchmark can be
performed.

Figures 6.4 and 6.5, displaying respectively the distributions of the 14
untransformed features for the individual clusters, and the distributions of
the yearly consumption of the consumers assigned to each clusters, allow
for an interpretation of the obtained clusters based on consumer properties.

Figure 6.4: Boxplots visualizing the distribution of the 14 untransformed
features for 10 clusters, with the 10 features at the daily level
displayed on the left and the 4 features at the weekly level on
the right. The whiskers of the boxplots describe the [10, 90]
percentiles.
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The first branch separates into clusters 1 – 3, the second into clusters 4 –
5, while the final branch leads to clusters 6 – 10. The clusters originating
from these three branches are partitioned by dashed lines in Figure 6.4 for
an easier comparison.

The following discussion on the benchmarking of the results is based on
the observed feature distributions in Figure 6.4. The first branch groups
consumers with a high fraction of consumption and peaks in the evening,
which is typical for regular households.

The second branch, containing clusters 4–5, groups consumers with a high
fraction of the consumption and peaks at night. This is encouraging, as
this could indicate the presence of electric heating, either space heating or
domestic hot water production, one of two major categories of residential
consumers.

Figure 6.5: Density histograms with shared y-axes, displaying the distri-
bution of the yearly consumption of the individual consumers
assigned to each of the 10 considered clusters. The black plot
denotes the density for the individual cluster, while the plot in
yellow indicates the density of the full dataset.
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The interpretation of the third branch is less straightforward, as the prop-
erties of the clusters composing this branch are more diffuse: (i) clusters
6–7 group consumers with a disproportionate amount of peaks during the
weekend, (ii) cluster 8 collects the consumers with a significant amount of
peaks during the early morning, whereas (iii) clusters 9–10 exhibit a large
number of peaks during the morning and afternoon.

It is clear that for each time period and in the same branch of the dendrogram,
the differences between the fractions of total consumption for that period are
limited. Rather, the peak-based features are the driving force tomerge similar
clusters together before the consumption-based features emerge as driving
force to form three clusters reminiscent of the Flemish SLPs. Furthermore,
the clustering process yields compact clusters with comprehensive results.

This illustrates the usefulness of a feature set that includes the temporal
properties of peak demands, especially with the advent of capacity-based
tariff schemes for low-voltage consumers. With the introduction of capacity-
based tariffs, it is no longer sufficient to know when consumption occurs.
Additional knowledge about when peak demands tend to happen is vital to
offer consumers the most suitable techno-economic solution.

As a post-hoc validation of the performance of the proposed feature set
in determining customer categories, the clusters of the different consumer
types in the dataset as introduced in Section 4 are determined and given in
Table 6.2. Furthermore, the mean values of τ∗ and P(τ∗) within each cluster
are given in Table 6.3.

Clusters 4 and 5 are predominantly populated by households with electric
heating, while cluster 10 groups households with high daytime consumption.
However, not all profiles with electric heating are categorized inside clusters
4–5. This is further investigated in Figure 6.5, which displays the density plots
of the yearly consumption for each individual cluster compared to the density
plot of the full dataset. Matched against the density plot of the complete
dataset, clusters 4, 6, 8 and 10 are skewed towards households with lower to
average yearly consumption in the Eurostat classification.

Table 6.2: Relative frequency of consumer categories over the 10 clusters.

1 2 3 4 5 6 7 8 9 10
Ripple e-heat 2% 6% 6% 18% 36% 9% 20% 2% 2% 0%
Cont. e-heat 14% 8% 15% 11% 31% 1% 10% 4% 4% 0%
Airco 17% 17% 6% 0% 6% 0% 33% 6% 17% 0%
Regular 17% 25% 5% 0.1% 1% 7% 17% 8% 16% 5%
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Table 6.3: Mean value of τ∗ and P(τ∗) in each of the 10 clusters.

1 2 3 4 5 6 7 8 9 10
τ∗ 2.8% 2.8% 2.8% 2.9% 3.0% 2.5% 3.1% 2.4% 2.7% 2.6%

P(τ∗) 36% 36% 34% 35% 38% 48% 37% 35% 34% 34%

This distribution for cluster 4 is expected and can clarify the diffusion of
households with electric heating over different clusters. As the demand
profiles of these households can be considered an aggregation of the profile
of a regular household with a load profile of an electric heating appliance,
the features connected to the peak demands are intrinsically linked to the
behavior of that load profile and the timing of the peak demands without
the electric heating. The heating load profile for households with otherwise
relatively low yearly consumption dominates the aggregated load profile,
and consequently encounter the majority of their consumption peaks during
the night, consistent with the behavior of cluster 4. For households with
electric heating in e.g. cluster 3, the consumption and peak demands during
the evening outweigh those occurring during the night.

Table 6.3 shows that there is little difference between clusters in the average
behavior of τ∗ and P(τ∗), except for two notable clusters. Clusters 6 and 8
exhibit a significantly lower mean value of τ∗. For cluster 6, this reduction in
τ∗ is accompanied by a significant increase of P(τ∗). Hence, the exponential
decay in the LDC is not as steep or long as in other clusters, and the LDC
moves from its exponential decay into the step function faster than average.
In contrast, cluster 8 exhibits a smaller mean τ∗ with a similar P(τ∗) as other
clusters, meaning the exponential decay of the LDC is steeper than average.

It can be concluded that the proposed feature set is able to capture the known
consumer categories from existing SLPs, and thus passes our self-imposed
benchmark test. Three clusters can be attributed to known differences in be-
havior for low-voltage consumers: the presence of electric heating is captured
in clusters 4–5, while the high daytime consumption is present in cluster
10. Deviations from these two clusters for electric heating can be traced
back to differing contributions of the electric heating load to the total yearly
consumption of the households.
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6.5 Distributional analysis

In this section, we investigate the stochasticity of residential peak demands.
The common scientific consensus is that peak demands at the residential
level are stochastic and hard to forecast. However, we aim to quantify the
stochastic nature arising from the intuitive relation between consumption
and peak demands in a certain time period.

To investigate this relation, the distributions of the features at the same
time levels are analyzed. On the one hand, the Shannon entropy is used
to characterize the variability of each type of feature. On the other hand,
the Wasserstein-1 distance is used for an in-depth analysis of the stochastic
nature of the peak demands, by comparing the distributions of the household
consumption and peak demand behavior respectively.

The variability of the daily and weekly consumption and peak patterns are
described by the entropy of their probability distribution, where the indi-
vidual fractions are normalized with respect to the length of the considered
time period. A uniform distribution with maximum uncertainty leads to a
maximal value of the entropy, while the absence of uncertainty leads to an
entropy value of 0. For example, a situation where all peak demands occur
during the night due to an electric heating would lead to 0 entropy at the
daily level for the consumption probability distribution.

The obtained distributions for the entropy at the daily and weekly level for
the consumption and peak probability distributions of the full dataset are
given in Figure 6.6. At the daily level, the peak demands exhibit a much
larger variability than the consumption. This is unsurprising, given the
continuous nature of the consumption. At the weekly level, this difference is
less pronounced.

A beta distribution was successfully fitted to each individual density his-
togram. The 2-parameter beta probability distribution, defined on the in-
terval [0,1], is defined as follows, with a > 0 and b > 0:

f(x, a, b) =
Γ(a, b)xa−1(1− x)b−1

Γ(a)Γ(b)
(6.12)

The beta function offers several properties that make it suitable to describe
the obtained distributions. First, it has a finite support: the regular 2-
parameter beta function in Equation (6.12) has a [0,1] support. As the entropy
can vary from 0 to a maximum of − ln(0.2) for the daily level and − ln(0.5)
for the weekly level, the finite support of a rescaled and shifted beta function
is appropriate.
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Figure 6.6: Density histograms of the entropy of the consumption and peak
demands at the daily and weekly level, with a fitted beta proba-
bility density function overlaid in black.

Second, as can be observed in Figure 6.6, the shapes of the daily and weekly
behaviors differ significantly. The two shape parameters a and b in the defini-
tion of the beta probability function allow us to describe the four distributions
with the same formula. For the distributions shown in Figure 6.6, it merely
means that b > 1 for the distributions at the daily level, while b < 1 for those
at the weekly level.

The relation between the entropy and the clusters obtained in Section 6.4 is
investigated in Figure 6.7, which displays the mean values of the entropy for
each individual cluster.

The significantly lower entropy of the probability distribution describing the
peak demands can be traced back to the clustering results. The overwhelming
presence of peak demands during the night period results in low entropy for
cluster 4, while cluster 10 exhibited a majority of its peaks during daytime.
Similarly, half of the peak demands for cluster 1 occurred during the evening.
On a weekly basis, clusters 6 – 7 showed a significant amount of peak
demands during the weekend, leading to a lower entropy for this period.

A low entropy of the probability function describing the peak demands can be
taken as an indicator for the presence of a large amount of peaks in a certain
time period, which can be leveraged to target demand response programs
or peak shaving initiatives. Furthermore, a clear relation can be observed
between the obtained clusters on the introduced feature set and the entropy
values of the peak demands. The lower values in certain clusters can be traced
back to differing intercluster consumer operations at the daily orweekly level.
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Figure 6.7: Mean values of the entropy of the distributions of the normalized
consumption and peak demands for each cluster.

However, the stochastic nature of these peak demands remains an open
question. The probability distributions of the peak demands tend to be sig-
nificantly more variable than those of the consumption behavior, according
to the entropy. Even so, this entropy as a single variable does not reveal
anything about whether or not the amount of peaks in a certain time period
is disproportional relative to the consumption in that time period.

Therefore, the Wasserstein-1 distance is used to quantify the difference
between the probability distributions of the consumption and peak demands
at the daily and weekly level for each individual consumer. A larger distance
corresponds to a stronger deviation of the peak distribution from the distri-
bution of the consumption, and thus peaks are more deterministic.

Figure 6.8 and Figure 6.9 display the distributions for the Wasserstein-1 dis-
tances at the daily and weekly level respectively, for each cluster. Analogous
to Figure 6.5, the distribution of the Wasserstein-1 distance calculated for
each profile in the full dataset is included for comparison to cluster-specific
behavior. The distributions of the Wasserstein-1 distances further confirm
the findings concerning the behavior of consumers constituting each cluster.

At the weekly level, clusters 6 and 7 show a major deviation from the dataset
behavior, due to the presence of a disproportionate amount of peak demands
in the weekend. Similarly for the daily level, cluster 4 displays a large
Wasserstein-1 distance, pointing to the electric heating which pushes nearly
all peak demands to nighttime.

Clusters 1 and 2 exhibited similar behavior for their consumption at the daily
level in Figure 6.4. However, households in cluster 1 are characterized by an
even higher amount of peak demands in the evening than those in cluster 2,
translating to a higher than average Wasserstein-1 distance for cluster 1 at
the daily level.
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Figure 6.8: Histograms of the Wasserstein-1 distance between the distribu-
tions of the consumption and peak demands probability func-
tions at the daily level. The black plot denotes the density for the
individual cluster, while the plot in yellow indicates the density
of the full dataset.

Figure 6.9: Histograms of the Wasserstein-1 distance between the distribu-
tions of the consumption and peak demands probability func-
tions at the weekly level. The black plot denotes the density
for the individual cluster, while the plot in yellow indicates the
density of the full dataset.
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This variability and disproportionate amount of peaks in a certain time
interval offers insight in possibilities for targeted demand response initiatives
or peak shaving via a residential energy storage system.

While cluster 6–7 and 8–9 have a similar consumption pattern, the time of
occurrence of peak demands is significantly different, which leads to distinct
solutions. As peak demands are typically generated by the simultaneous
use of individual appliances, targeted demand response initiatives can be
effective for cluster 6 and 7, where the majority of peaks occurs in the
weekend.

Spreading the use of individual appliances over different days or being mind-
ful of the simultaneous use in the weekend by inducing behavioral changes
can reduce the number of peak demands. However, this requires a trigger for
the behavioral changes and for these appliances to be available in different
time periods. If this is not an option, investing in an energy storage system
applying a peak shaving algorithm during weekends, while e.g,. maximiz-
ing the PV self-consumption during weekdays could offer an alternative,
although the economic viability depends on the local tariff structure and the
investment cost.

In contrast, cluster 8 is characterized by peak demands in the early morning
and during the daytime, while households in cluster 9 exhibit peaks dur-
ing the whole day. Consequently, for these households, a PV installation
combined with a storage system can already offer a solution to reduce the
demand from the grid, while maintaining a high self-consumption.

As a final check on the stochastic nature of peak demands, the relation-
ship between the consumption in a time period and the presence of peak
demands is investigated. Figure 6.10 displays the relations between the
(untransformed) fractions of the consumption and peak demands at the daily
level, with an ordinary least-squares (OLS) regression fit overlaid given the
observed linear relation.

The coefficients obtained in the OLS regression for fp = a × f c + b, with
fp and f c the fraction of respectively the peak demands and consumption in
that time period, are given in Table 6.4. As the presence of electric heating
heavily skewed previous results for the consumption and peak demands at
night, consumers with and without electric heating are treated separately for
this analysis.

A correlation between the fraction of the consumption and that of the peak
demands is present in Figure 6.10 and 6.11. As the presence of consumption
in a certain time period is a prerequisite for a peak demand, some relation
between the two types of parameters was expected.
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Figure 6.10: Relation between the fraction of consumption and peak de-
mands in the time periods at the daily level, with an OLS
regression estimate overlaid.

At first sight, the linear relation could be interpreted as an indication of
predictability of peak demands in a certain time period. However, it is the
spread on this relation that is the indicator of the stochasticity of the peak
demands. For example, if 30% of a household’s total consumption is observed
occurring during the evenings, the results shown in Figure 6.10 suggests that
30–60% of the peak demands can occur in this same time period. This large
uncertainty, which is present for each of the considered time periods, severely
limits the usability of this linear relation, observed for the full dataset.

However, the knowledge of the introduced clusters can partly alleviate this
uncertainty. This is illustrated in Figure 6.12 for clusters 1–3, which group
households with a large fraction of their consumption during the evening,
with a high number of peak demands simultaneously occurring in this time
period. While we should be cautious drawing conclusions based on clusters
that only include a limited amount of households, it appears that the spread
on the fraction of peak demands for the individual clusters is smaller than
those in Figure 6.10 for the full dataset, while the linear correlation that was
observed before is nearly non-existent in some relations.

Figure 6.11: Relation between the fraction of consumption and peak de-
mands in the time periods at the weekly level, with an OLS
regression estimate overlaid.



92 Distributional analysis

Table 6.4: Coefficients of the OLS regressions shown in Figure 6.10 and 6.11
at the daily and weekly level.

Time period a b
Early morning 1.88 -0.11

Morning 2.58 -0.22
Afternoon 2.34 -0.31
Evening 2.53 -0.33

Night (regular consumer) 1.41 -0.21
Night (electric heating) 1.99 -0.33

Weekday 3.06 -1.50
Weekend 3.06 -0.56

Figure 6.12: Relation between the fraction of consumption and peak de-
mands in three time periods at the daily level for clusters 1–3.
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6.6 Conclusion

In this chapter, we set out to cluster households with similar properties
together. However, in contrast to traditional studies, a feature set was
constructed that would be able to capture the behavior of both consumption
and peak demands of individual households.

The primary methodological contribution of this chapter to consumer cat-
egorization through clustering is the introduction of a novel feature set
designed to better capture temporal dependencies in energy consumption
and peak demand patterns using annual data with 15-minute resolution. The
analytic expression of the LDC, validated in Chapter 5, was used to identify
peak demand values for each consumer. Two types of features were then
constructed: (i) the fraction of consumption occurring during specific time
periods at daily or weekly intervals, and (ii) the fraction of peak demands
within those same periods. This feature set and clusters resulting from a
clustering algorithm demonstrate clear relevance to demand response initia-
tives tailored to residential consumers. Additionally, to our knowledge, this
is the first use of the Wasserstein-1 distance as a metric for temporal-based
features in this context.

The proposed feature set was used in a hierarchical clustering process to
build 10 clusters from the considered dataset of 1,402 consumers from a
suburban region in Flanders. The clustering algorithm yielded compact
clusters that showed a clear connection to real-life applications concerning
the peak demands such as demand response initiatives, or the applicability
of, e.g., battery storage systems for peak shaving purposes. Furthermore,
differences in the behavior of the peak demands were found to be the main
drivers of the clustering procedure. The presence of electric heating could be
identified for several clusters, while others exhibited high daytime consump-
tion during weekdays.

In the final analysis of this chapter, the stochastic nature of the peak de-
mands was investigated by considering the relation between the consump-
tion and the presence of peak demands in the same time period. The dispro-
portionate presence of peak demands in a certain time period was quantified,
and a linear relation was observed between the fraction of the consumption
and peak demands in each time period. The spread on the results quantified
the stochasticity of the peak demands, which limited the general applica-
bility of the found relations. However, the obtained clusters showed a clear
relation to the predictability and variability of the consumption and peak
behavior, reducing the stochasticity of these peak demands and when they
tend to occur.
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The next two chapters focus on the generation of synthetic profiles. Given
the limited number of consumers in some clusters, the 10 clusters themselves
will not be used for the generation process from the very start in the following
chapters. Rather, the metadata extracted in this chapter and the constructed
clusters will be used throughout for additional illustrative validations, as well
as to ease computational burdens.



7
Construction of daily load profiles
via decomposition-recombination

If you want to find the secrets of the universe,
think in terms of energy, frequency and vibration.

Nikola Tesla

In this chapter, we present a methodology for the generation of daily load
profiles rooted in time-frequency analysis. Time-frequency analysis allows
for the decomposition of smart meter data into a generalized low-frequency
component as well as a high-frequency stochastic component.

This chapter is structured as follows. First, a generic description of these
times series is given in Section 7.1. We subsequently give some background
information on time-frequency analysis, wavelets and the discrete wavelet
transform in Sections 7.2 and 7.3.

Finally, we introduce a wavelet-based decomposition and recombination step
for the synthetic data generation starting from Section 7.4 to Section 7.7.
To wrap up this chapter, the limitations of the proposed methodology are
discussed in Section 7.8.

Sections 7.4 to 7.8 of this chapter are derived from:

• R. Claeys, R. Cleenwerck, J. Knockaert, and J. Desmet, "Stochastic
generation of residential load profiles with realistic variability based
on wavelet-decomposed smart meter data", Applied Energy, vol. 350, p.
121750, 2023. [188]
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7.1 Descriptions of daily load profiles

The daily load profiles under consideration are time series consisting of 96
measurements, one every 15 minutes. As mentioned in Section 3.3, we aim to
deconstruct the privacy-sensitive daily load profiles into a generalized low-
frequency (LF) approximation, and a high-frequency (HF) component that
contains the stochastic consumption behavior.

Considering smart meter data on a daily level as a slowly changing base load,
often linked to the occupancy of the dwelling, combined with a random per-
turbation is certainly not novel. For example, outside of the frequency-based
decomposition studies that serve as the basis for this work, [189] described
the daily load profile of a single household as a sum of two components:

xn(t) = pn(t) + en(t) (7.1)

The authors considered pn(t) a daily routine specific to each energy con-
sumer, while en(t) was suggested to be a deviation from the underlying
energy pattern. Drawing parallels to our approach, pn(t) is the LF approxi-
mation, while en(t) contains the HF details.

Several techniques exist to decompose a signal into frequency components,
of which the Fourier transform is the best known. The orthonormal basis of
this Fourier decomposition is comprised of periodic sine and cosine functions
with infinite support. Fourier established that any 2π-periodic function can
be written as:

f(t) = a0 +

+∞∑
k=1

(ak cos(kt) + bk sin(kt)) (7.2)

These Fourier coefficients can be used to characterize households. For exam-
ple, [190] used the coefficients belonging to the 24h, 12h, and 8h cycles to
group households based on their base load behavior. Similarly, [169] inves-
tigated whether the 24-hour or 12-hour frequency component was strongest
to group households.

However, as residential daily load profiles are highly non-stationary due to
the occurrence of HF stochastic peaks, the Fourier transform is inefficient to
use. It would require a large number of harmonics to accurately describe the
volatile peaks [191]. In contrast, wavelet-based decompositions are suitable
to describe the considered load profiles. Wavelets are oscillatory functions
with zero mean that have good time localization properties as they decay in
a limited time window.
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Heisenberg’s uncertainty principle dictates that one cannot measure with
arbitrarily high resolution in both time and frequency. Chronological data in
a standard basis is completely localized in the time domain, but not at all in
the frequency domain. In the case of Fourier bases we get exact localization in
frequency, but none in time as the basis elements have infinite support. The
localization properties of several decompositions are illustrated in Figure 7.1.

Using awavelet basis, higher frequencies can bewell localized in time, but the
uncertainty in frequency localization increases as the frequency increases,
which is reflected as taller, thinner cells with increase in frequency. Con-
sequently, a wavelet basis and the discrete wavelet transformation (DWT)
can be used to efficiently decompose a signal into a limited number of
components, outperforming the Fourier transformation [191].

The following sections give some background about wavelets and how
they can help make a multi-resolution analysis, before we delve into the
decomposition-recombination scheme. We recommend readers familiar with
the theory behind wavelets and multi-resolution analysis to skip the two
following sections.

Figure 7.1: Schematic of time-frequency plane decomposition using differ-
ent bases: (a) standard basis, (b) Fourier basis, (c) windowed
Fourier basis, and (d) wavelet basis.
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7.2 Introduction to wavelets

Some mathematics is needed to rigorously define what a wavelet is. As the
name suggests, a wavelet is a ‘small wave’, which grows and decays in a
limited time period. If we consider the traditional wave functions, the sine
and cosine functions, it should be clear they are not wavelets. Indeed, these
traditional wave functions oscillate up and down for all values of t if we were
to plot sin(t) or cos(t) for t ∈ ]−∞,+∞[.

In order to define a wavelet in the time domain, a real-valued function ψ(t)
has to satisfy two essential properties:

1. The integral of ψ(t) is zero:∫ +∞

−∞
ψ(t)dt = 0 (7.3)

2. The square of ψ(t) integrates to unity:∫ +∞

−∞
ψ2(t)dt = 1 (7.4)

The first equation shows that any positive deviation from zero by ψ(t) must
be canceled out by negative deviations. Therefore,ψ(t)must resemble awave
function. Furthermore, Equation 7.4 guarantees that the non-zero activity of
our wave function ψ(t) is limited to an interval of finite length.

In addition to the duo of equations mentioned above, which define the shape
for a wavelet in the time domain, some research areas impose the so-called
‘admissibility condition’ to define wavelets. This condition guarantees the
existence of the inversion formula for the continuous wavelet transform, and
denotes any function ψ(t) ∈ L2(R) a wavelet if it satisfies the following
condition

∫ +∞

−∞

|ψ̂(ξ)|2

|ξ|
dξ <∞, (7.5)

with ψ̂(ξ) the Fourier transform of ψ(t).

Figure 7.2 on the next page displays three wavelets that satisfy the aforemen-
tioned conditions as illustration. It is clear that the wavelets are (i) localized
in time, and (ii) show oscillating behavior.
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Figure 7.2: Three functions which are classified as wavelets.

The Haar wavelet is the first known wavelet, reported in 1910 by Hungarian
mathematician Alfred Haar [192]. It is an odd discontinuous rectangular
pulse, and is defined as follows:

ψH(t) =


1, 0 ≤ t < 1/2

−1, 1/2 ≤ t < 1

0, otherwise

(7.6)

Due to its simplicity, the Haar wavelet is often used for educational and
testing purposes. For this dissertation, we will also initially only consider the
Haar wavelet, while extensions to other wavelets will be concisely discussed.

Individual wavelet functions have the intriguing property that, starting from
a single wavelet, a whole family of functions can be constructed which all
satisfy the wavelet requirements. Consider a generic wavelet functionψ(t) ∈
L2(R), which can subsequently be translated and dilated. This is illustrated
in Equation (7.7), with a as scaling parameter and b the translation parameter.

ψa,b(t) =
1√
|a|
ψ

(
t− b

a

)
(7.7)

In the context of wavelet families, the construction of wavelets from transla-
tions and dilations of a single function ψ(t), this initial wavelet is called the
mother wavelet.

The scaling parameter a is a measure for the degree of compression, whereas
the translation parameter b specifies the time location of the wavelet. If |a| <
1, the resulting wavelet is a compressed version of the mother wavelet as it
has a smaller support in the time domain. Consequently, these wavelets will
correspond more with high frequency components of the signal.
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Varying the scaling parameter therefore allows wavelets to describe both
high and low frequencies localized around the center t = b. Analogous to the
Fourier transform, the question now arises whether an orthonormal basis of
wavelets derived from a mother wavelet can be found to decompose an ar-
bitrary time signal into wavelet-based components with different frequency
ranges. This so-called multi-resolution analysis (MRA) is examined in-depth
in the following section.

7.3 Multi-resolution analysis through wavelets

The previous section showed that wavelets are suitable to describe func-
tions at different resolutions. By compressing or stretching a single mother
wavelet, high or low frequencies can respectively be captured. The matter
that now presents itself is how wavelets can be used to decompose an
arbitrary time signal into low-frequency and high-frequency components.

Intuitively and operationally, the decomposition of an arbitrary function
f(t) into high and low frequency components is illustrated in Figure 7.3.
The considered signal is passed through a high-pass and a low-pass filter
respectively.

Hence, the original signal is decomposed in a LF approximationA1 and a HF
detailD1. Each decomposition step downsamples the signal by a factor of 2.
A k-level decomposition of a signal f(t) therefore decomposes the signal as
follows:

f(t) = D1 + ...+Dk +Ak =

k∑
i=1

Di +Ak (7.8)

Figure 7.3: Illustration of a three-level multi-resolution analysis using the
discrete wavelet transformation.
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The link between both the low-pass and high-pass filters and the wavelets
introduced in the previous section is not immediately clear. However, the
mathematical framework presented by Mallat and Meyer sheds light on
this relationship [193]. We summarize their arguments in the following
paragraphs, while referring to the original work for a robust proof.

Firstly, an MRA is nothing more than a hierarchical framework which ap-
proximates the original function f(t) at multiple resolutions by orthogonal
projections onto a family of spaces {Vj}j∈Z. This is illustrated in Figure 7.4
where projections of a function f are shown for different subspaces {Vj}.
As seen, the resolution of subspace {Vj}j∈Z is taken to be 2−j . Therefore,
a common notation of the subspaces is {V2j}j∈Z or {V2−j}j∈Z, depending
on convention.

Let {V2j}j∈Z now be a multi-resolution analysis of L2(R). It can be proven
that a function ϕ(t) ∈ L2(R) exists such that ϕ(t) satisfies the dilation
equation ϕ2j (t) = 2jϕ(2jt). The set of dilated and translated functions in
Equation (7.9) then forms an orthonormal basis ofV2j :(√

2−j ϕ2j (t− 2−jn)
)
n,j∈Z2

(7.9)

This function ϕ(t) is called the scaling function, also known as the father
wavelet in the context of MRA.

Figure 7.4: Projections of a function f on different subspaces {Vj}, formed
by the Haar multiresolution analysis. [194]
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The approximation of the function f(t) at the resolution 2j , also denoted as
A2jf can now be computed by decomposing the signal on this orthonormal
basis, which can be shown to be equivalent to the presence of a low-pass
filter:

A2jf =
(
⟨f(t), ϕ2j (t− 2−jn)⟩

)
n∈N (7.10)

However, if a signal is approximated at the resolution 2j+1 and 2j , there
is a difference of information between these two scales, which restricts
the ability to reconstruct the original signal. This difference is called the
detail function. Consequently, it is necessary to also determine the detail
function to unambiguously reconstruct the original signal. This gives rise to
a description equivalent to the high-pass filter included in Figure 7.3.

The approximations at resolution 2j and 2j+1 are equal to the orthogonal
projections of the original signal on V2j and V2j+1 . The detail function at
resolution 2j is then given by the orthogonal projection of the original signal
on the orthogonal complement ofV2j inV2j+1 . This orthogonal complement
is denoted as O2j .

It is possible to now construct an orthonormal basis for O2j consisting of
dilated and translated wavelets as introduced in Equation (7.7). Similar to
the set defined in Equation (7.9), a binary scaling and dyadic translation is
chosen to obtain such an orthonormal basis:(√

2−j ψ2j (t− 2−jn)
)
n,j∈Z2

(7.11)

The detailD2jf of the function f(t) at resolution 2j is similarly determined
by the following set of inner products with the wavelet basis:

D2jf =
(
⟨f(t), ψ2j (t− 2−jn)⟩

)
n∈N (7.12)

Consequently, it is clear that applying a discrete wavelet transform (DWT)
is equivalent to passing the signal through a band-pass filter bank, either a
high-pass or low-pass filter. Passing the signal through a high-pass filter
yields the oscillating HF component, while the low-pass filter yields an
approximated signal at lower resolution.

In this work, the Haar wavelet as given in Equation (7.6) is initially used as
the mother wavelet ψ(t). It is crucial to bear in mind that for this case, the
sum of the high-frequency detail signal is equal to zero. Consequently, the
daily energy of the LF approximation is equal to that of the original smart
meter data. This property will be vital for the remainder of this chapter and
the proposed methodology.



Construction of daily load profiles 103

Following the reasoning introduced in [191], the discontinuous nature of
Haar’s wavelet is suitable to describe the load profile of individual consumers,
capturing the behavior of turning appliances on and off. Furthermore, the
consideredmetering infrastructure logs averaged power demand with a reso-
lution of 15 minutes, likewise leading to a discontinuous profile. Additionally,
the scaling function for the LF approximation is given in (7.13).

ϕ(t) =

{
1, 0 ≤ t ≤ 1

0, Otherwise
(7.13)

7.4 Wavelet-based decomposition

Using the framework from the previous section, we can now decompose
daily load profiles into a LF and HF component. Figure 7.5 illustrates how
a three-level MRA on a residential load profile is performed using the Haar
wavelet. The original load profile is measured at a 15-minute resolution. The
MRA introduces subspaces with a 30-minute, 1-hour, and 2-hour resolution
to approximate the signal A1, A2 and A3 respectively. The HF details are
subsequently captured in the signals D1, D2 and D3. The nested subspaces
of the MRA which translate to the downsampling by a factor 2 for each
decomposition step can be observed.

Figure 7.5: Application of a three-level DWT MRA decomposition.
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Figure 7.5 additionally illustrates themain difficulty of constructing synthetic
load profiles for residential consumers. The low-frequency approximations
fail to adequately capture the peak demands at increasing levels of decom-
positions. The low-frequency approximation A2 only captures 65% of the
original daily peak demand.

This observation for a single day for a single consumer can be extended
to the considered dataset of residential load profiles. Figure 7.6 visualizes
the distributions of the annual peak demand as well as the mean monthly
peak demand, compared to the original load profiles. Similar results can be
observed: a three-level approximation tends to underestimate the annual and
mean monthly peak demand by a factor 2.

This significant contribution of the HF detail to the peak demand of residen-
tial consumers limits the possibility of using previously reported methodolo-
gies for superimposing extracted HF variabilities onto a LF approximation or
modeled load without any modification. Previous works using DWT MRA
for load modeling either studied non-residential consumers [195, 196], or
aggregated load profiles at feeder-level [197].

Figure 7.6: Boxplot visualization of the distributions of the annual (top)
and mean monthly (bottom) peak demands of the k-level low-
frequency approximation compared to the original load profiles.
The whiskers of the boxplot denote the [10, 90] percentiles.
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7.5 Recombining with superimposed variability

Our aim is to construct synthetic load profiles with a given daily consump-
tion, corresponding peak demand and accompanying variability in the load
profile. The question now arises: given a daily consumption value and a
maximum value, how can a synthetic profile with realistic variability be
constructed? Inspired by [195] and [196], a component based on the HF
details will be added to a LF approximation to construct a synthetic profile.

However, in both [195] and [196] the extracted HF detail of the daily profile
was each time normalized with respect to the peak daily value of the LF
approximation. This normalized profile was subsequently rescaled before
superimposing it onto a modeled load profile. While this was valid for
non-residential consumers, this normalization scheme cannot be used for
residential consumers where the HF component significantly contributes to
the peak demand. Consequently, a different approach has to be considered
for the rescaling of the HF component.

As opposed to the aforementioned normalization scheme, this framework
starts from a daily peak demand P d

max, either measured or modeled. The
research question then reduces to determining whether a combination of
a LF approximation of consumer i and a rescaled detail of consumer j can
consistently lead to a load profile with the predetermined peak value.

By construction, the daily consumption of the LF approximation Aj of the
original daily profile is equal to the daily consumption of the original daily
load profile, as the sum of the oscillating detail functions is equal to 0. Hence,
it is possible to scale and translate a detail function before superimposing it
on an approximated load while, if desired, keeping the inherent correlation
between the daily consumption and the daily peak demand intact.

Let Ai,d
n now denote the LF approximated load of consumer i on day d at the

n-th 15-minute interval of the day while
∑
Dj,d

n is the sum of the HF detail
values of consumer j on the same day at that 15-minute interval. Keeping the
LF approximation of consumer i fixed allows the unambiguous determination
of the scaling factor β to rescale the HF detail of consumer j.

P d
max = max

1≤n≤96
Ai,d

n + β max
1≤n≤96

∑
Dj,d

n (7.14)

The daily HF detail of consumer j can now correctly be rescaled to yield
the desired peak demand in the combined load profile. However, there is
no guarantee that the maximum values of the approximation signal and the
rescaled detail function take place at the same time of the day.
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The time periodwith themaxima ofAi,d
n tends to contain the time of the daily

peak demand of consumer i. Adding a HF profile with its maximum during
this time block thus ensures consistent timing of the daily peak demand
between consumer i and the synthetic profile. Therefore, a circular shift is
performed on the HF profile of consumer j in order to align its maximum
value with the peak values of the approximation function. Analytically this
shift can be represented by the operator σ.

Given an obtained HF detail profile D as a function of time measured at T
timesteps, let Dk denote the load at timestep k. For the considered dataset,
the detail function is an array of 96 values: D = [D1, D2, . . . D96]. A circular
shift is now defined as follows, where the operator σκ denotes a shift of κ
steps.

σκ(k) = k − κ (mod 96),∀k ∈ {1, 2, . . . 96} (7.15)

For example, σ4Dk becomes [D93, D94, . . . D92]. The circularly shifted HF
signal can now be superimposed on the LF approximation of a different
consumer, once the maximum of both coincide in time. The choice for a
shifted HF detail is logical from the point of view of load modeling, as it does
not matter whether the variability from stochastic peaks occurs at e.g., 6 PM
or at 9 PM, as long as it is realistic.

This framework is illustrated for the construction of a single load profile in
Figure 7.7, where the stochastic peaks of household j during the evening
are rescaled and shifted to the morning to construct a profile with a daily
maximum demand equal to that of household i.

The choice of only considering HF profiles of the same day d by including
a circular shift is somewhat arbitrary. An alternative would be to create
a taxonomy of daily variability profiles and making abstraction of the day
d it corresponds with, and it is no longer required to superimpose a detail
function of the same day d on a LF approximation. Similar considerations
were made in [195] to model on the day-by-day or year-by-year approach.
Given the interest in generating daily load profiles in this work, the circular
shift approach was introduced to generate viable synthetic profiles for each
day d while only considering inputs from the same day.

Two additional aspects of this framework need to be discussed as they
have a computational impact. First, the HF detail has negative values as
an oscillating function. Consequently, it is possible that combinations of
rescaled HF and LF functions will have negative load values. In the absence
of local generation, this is a non-viable solution. Accordingly, only synthetic
profiles that have non-negative loads will be considered. Should this occur, a
different HF detail and/or LF approximation need to be selected. The impact
of this constraint is discussed in-depth in Section 7.8.
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Second, the LF approximations of the considered load profiles have a res-
olution of 2 hours, and as such they exhibit 8 identical maximum values.
Consequently, there are 8 possible solutions for the operator σ to align the
maximum values of the LF and the HF arrays. Therefore, the obtained
synthetic profile will not be a unique combination of the two arrays. If a
single profile needs to be obtained, we can randomly select one of the viable
solutions.

Figure 7.7: Illustration of the proposed framework. The LF component (grey
patch) of household i is combined with the rescaled and shifted
HF component (blue) of household j to obtain a synthetic profile
(black) with daily peak demand equal to household i.
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7.6 Stochastic load profile generator

This methodology for superimposing residential variability can now be used
to construct a larger dataset of synthetic profiles. As suggested in Sec-
tion 7.1, one of the main shortfalls of traditional load modeling of residential
consumers is related to the second step. This step entails the generation
of typical load curves for different types of consumers by using statistical
measures.

We instead propose a two-step method that avoids the usage of the mean or
median value, and subsequent smoothing process. We aim to approximate
the original dataset in a distributional sense. Thus, the intended output is
a dataset that approaches the real distribution of daily consumptions and
peak demands in the original dataset for each individual day. The input is a
dataset (or clustered subset) of daily load profiles for a given day d.

In the first step, the distribution is defined that will be approximated and
sampled. This distribution is estimated based on a dataset of daily load
profiles. A bivariate distribution is selected, as this offers a twofold advan-
tage. First, the inherent correlation between the consumption and the peak
demand can be included. Second, sampling a 2D-distribution yields two
parameters, allowing for the rescaling of both the HF and LF profile.

The first parameter is the daily consumption, as the LF approximation can
be rescaled to this value. While it is not strictly necessary to rescale the
approximation function, it does allow for the introduction of a continuous
spectrum of values for the daily consumption, instead of limiting the con-
structed profiles to the discrete values in the historical dataset. Furthermore,
by taking the approximation profile closest to the sampled value, the realism
of the obtained profile is assured. For example, a profile with 4 kWh daily
consumption will not be upscaled to an unrealistic 30 kWh profile.

Second, a metric needs to be chosen to rescale the HF component. Intuitively,
it seems logical to use the daily peak demand of the original data as metric
to rescale the HF detail. However, computational concerns have lead to the
choice of the daily load factor as second metric. The daily load factor of
consumer i on day d is denoted as Li,d

F , and is given by the ratio of its mean
daily load to its maximum load on day d. Let P i,d

k denote the measured load
of consumer i on day d at the k-th 15-minute interval of the day. The daily
load factor is then given by:

Li,d
F =

1
96

∑96
k=1 P

i,d
k

max
1≤k≤96

P i,d
k

(7.16)
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The load factor for residential consumers was introduced in [90] as a way
to describe the ‘peakyness’ of their consumption behavior. A high LF corre-
sponds to demand that is distributed evenly throughout the day, while a low
LF is indicative for intervals of high demand compared to its base load. From
Equation 7.16, the daily peak demand can be calculated if both the daily load
factor and the daily consumption are known.

Figure 7.8 illustratively displays the probability distributions of the daily load
factor and the peak demands for the full dataset for a single winter day.
Both parameters are non-normally distributed and display a long tail. A
continuous PDF can be estimated through kernel density estimation (KDE)
using a Gaussian kernel. However, the main drawback of this KDE approach
occurs for densities exhibiting long tails, as the KDE technique tends to
oversmooth the longer tails [198].

Consequently, the load factor is preferable over the peak demand for this
approach, as stochastic peak demands occur for lower LF in the bulk of the
distribution, whereas they are located in the long tail of the peak demand
distributions and their density will be underestimated if this parameter were
to be used.

Furthermore, the load factor was used in [199] as a metric for the comparison
between a bottom-up load model and a historical dataset. They concluded
that the synthetic data underestimated the seasonal effect in both the load
factor and peak demand behavior, and that ‘limited treatment of seasonal
variation in load modeling can lead to inaccurate predictions of its effects’.

Therefore, by limiting the construction of the daily load profiles to each sep-
arate day d based on its 2D KDE, the seasonality of the dataset is preserved.
As displayed in Figure 7.9, the KDE shows significant differences depending
on the season, despite showing similar values of maximum probability.

Figure 7.8: Distribution of the load factor (left) and the peak demand (right)
for the full dataset on a winter day (December 20).
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Figure 7.9: Example of the 2D kernel density estimations of the daily con-
sumption (x-axis) and the daily load factor (y-axis) for a summer
(left) and a winter day (right).

The left-hand side of Figure 7.9 displays a summer day, while the right-hand
side shows a winter day. The KDE of the summer day exhibits a long tail
towards high load factors at lower consumption that is absent during winter
days, which indicates the presence of vacant households where families are
on holiday.

The block diagram to construct a single stochastic daily load profile of day d
is given in Figure 7.10. This method can be repeated as many times as desired
to obtain a dataset of daily load profiles of a predetermined size. In summary,
based on the measured load profiles, a 2-dimensional probability density
function (PDF) is estimated between the daily load factor and the daily
consumption. The sampled consumption is used to rescale a LF profile of
consumer i, while the load factor determines how the HF profile of consumer
j has to be reshaped and shifted.

For the remainder of this work, the proposed decomposition - recombination
methodology is applied to the full dataset of consumers unless otherwise
stated. However, an identical approach can be used if only a subset of the
complete dataset is considered.
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Figure 7.10: Block diagram of the proposed framework to generate a single
daily load profile for day d.

For example, a possible refinement of the proposed decomposition - recom-
bination scheme is using a preprocessed dataset as input, with labels corre-
sponding to clusters obtained through unsupervised learning on features or
metadata, as was done in Chapter 6.

By limiting both the 2D KDE construction and sampling to the LF and
daily consumption to elements contained in the cluster, and constricting the
sampling of both the LF approximation and HF details from elements within
that cluster, more targeted output can be obtained.

When looking at the 2D KDE of individual clusters compared to the full
dataset, significant differences can be observed. We reconstruct Figure 7.9
for two individual clusters. Clusters 4 and 10 from Chapter 6 are compared
in Figure 7.11. As a reminder, cluster 4 contains households with a significant
amount of their consumption and peak demands at night, whereas cluster 10
shows a large number of peaks during mornings and afternoon.
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Figure 7.11: 2D KDE plots for a summer (left) and a winter day (right), for
two distinct clusters determined in Chapter 6: clusters 10 (top)
and 4 (bottom).

While cluster 4 is a very compact clusters in the 2D plane, cluster 10 shows a
large variation in the daily load factor. Consequently, the 2D KDE approach
when restricted to individual clusters can lead to more targeted output that
is similar to elements within the cluster, as long as relevant metadata was
used to construct coherent clusters.
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7.7 Results

The output of the stochastic load profile generator are as much individual
daily load profiles as desired for a given day d. Eight randomly generated
profiles are shown in Figure 7.12 for an initial visual inspection. The LF
approximations are once again shaded in gray, while the superposition of
the LF and HF profiles is displayed in blue.

The majority of the generated profiles qualitatively behave as expected,
with the HF component significantly contributing to the daily peak demand,
featuring the stochastic behavior that is often associated with residential
consumers, with morning, noon or evening peaks clearly visible in the HF
component of the consumption profiles. By construction, the HF component
is able to capture a large fraction of the daily peak demand for the highly
stochastic profiles.

Figure 7.12: Illustrative examples of eight daily load profiles generated by
the stochastic load generator.
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However, the introduced methodology exhibits drawbacks which can lead
to unrealistic profiles for two specific cases, more precisely cases (g) and (h)
included in Figure 7.12.

First, subplot (g) displays a vacant household with a low base load. However,
the inclusion of the HF details can subsequently lead to an unrealistic cyclic
behavior on top of the small base load for these households.

Second, profile (h) displays a profile where the LF approximation already
captures more than 95% of the daily peak demand. Therefore, the addition of
a HF detail has very little impact on the overall shape of the resulting profile,
and the synthetic profile displays a stable consumption for every block of
two hours. This is a result of the choice of wavelet and decomposition level.
A lower decomposition level or a more variable wavelet for the DWT-MRA
would lead to a less constant consumption profile for this case.

In order to investigate whether the implemented methodology behaves as
expected at the level of the population, 200 profiles were generated using
a subset of households with annual consumption between 2,750 and 3,750
kWh. This consumption range is centered around the mode of the distri-
bution of the yearly consumption and is representative for typical Flemish
households without electric heating [143].

The distributions of the daily peak demands throughout the year are visual-
ized in Figure 7.13 for the original dataset, as well as for the synthetic dataset.
Both the mean value of each day, as well as the 25-75 percentiles for the
original and the synthetic dataset are displayed.

In order to evaluate the performance of the synthetic dataset, the time series
of the mean daily peak demand is compared with that of the original dataset.
Table 7.1 displays three metrics. The mean absolute error (MAE) is 0.09 kW,
while the mean percentage error (MPE) is -2.9%. The proposed methodology
yields the expected results, with only a slight deviation from the original
dataset.

However, as visible in Figure 7.13 and the negative MPE, the synthetic model
leads to a slight underestimation of the mean daily peak demand. This
underestimation can be attributed to original profiles with high daily peak
demand. These profiles are harder to reconstruct, which is discussed in the
following section on limitations of the proposed methodology.
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Figure 7.13: Daily peak demands of the households with annual consump-
tion between 2,750 kWh and 3,750 kWh contained in (black)
the original dataset, and (blue) a constructed synthetic dataset.
The full line denotes the mean value of the distribution for each
day, while the shaded band displays the 25-75 percentiles.

Table 7.1: Performance evaluation of the synthetic data in Figure 7.13.

Mean Absolute Error MAE 0.09 kW
Mean Absolute Percentage Error MAPE 4.1%
Mean Percentage Error MPE -2.9%

7.8 Limitations

Two limitations of the daily load profile generator need to be addressed.

First, the generator hinges on combining LF and HF profiles of different
households. However, as discussed in Section 7.6, not all combinations under
the proposed methodology yield valid synthetic profiles. As the HF profile
has negative values, the rescaling of this component can lead to negative
values in the synthetic profile, which is a non-viable solution.

In order to quantify the number of viable combinations, the original daily
load profiles in the historical dataset are considered. For each household i,
the daily load profile on day d is decomposed in a LF approximation and HF
detail function for a given decomposition level k.
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The detail functions of each other household j are rescaled and shifted ac-
cording to Section 7.5, and subsequently superimposed on the approximation
of household i to obtain synthetic profiles with the same daily consumption
and peak demand. The percentage of other households j that lead to syn-
thetic profiles without negative values was determined for each household i
and day d.

The results are visualized on Figure 7.14. The mean of the distribution for
each day d is displayed together with the 25-75 percentile band.

On average, 25–30% of the households in the dataset can be used to recon-
struct a synthetic load profile according to the aforementioned boundary
conditions if the DWT decomposition level is 3, while this is nearly 45% for
decomposition level 1. A seasonal effect is visible, which can be attributed
to more households being vacant during the holiday period and thus less
stochastic.

While Figure 7.14 is informative on the general behavior of the number of
valid combinations, the variance on the displayed distributions is significant,
as seen from the large interquartile range. Consequently, it is necessary to
investigate which profiles have a lower number of valid combinations and
whether this has an impact on the proposed methodology.

Figure 7.14: Distribution of the proportion of households that lead to viable
synthetic combinations for each day d and different decom-
position levels. The full line denotes the mean value of the
distribution for each day, while the shaded band displays the
25-75 percentiles.
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Figure 7.15: Distribution of the proportion of households that lead to viable
synthetic combinations for each day d and different decompo-
sition levels as a function of the daily peak demand percentile.
The full line denotes the mean value of the distribution, while
the shaded band displays the 25-75 percentiles.

This is done in Figure 7.15. Therein, the percentage of profiles that lead to
a valid synthetic profile is displayed as a function of the percentile of the
daily peak demand of each individual consumer. The maximum daily peak
demand of each consumer corresponds to 100, while theminimum daily peak
demand corresponds to 0.

As the daily peak demand percentile increases, fewer profiles tend to lead
to valid combinations. This is consistent with the assumption that higher
peak demands are the result of more stochastic behavior, and thus need to
be captured by a larger HF detail. The daily load profile of each household
that exhibits the maximum peak demand can only be reconstructed by 15%
of the other profiles for a decomposition level 1, while this drops to 4% for a
decomposition level 3.

Figures 7.14 and 7.15 highlight the trade-off between anonymization and
retaining sufficient profiles to be able to form enough valid combinations.
The higher the decomposition level of the MRA-DWT, the more anonymized
the coarse LF approximations will be. However, the price for this increased
anonymization is a diminishing number of HF details of other households
that can be combined with this approximation to yield valid profiles.
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However, not only the decomposition level has an impact on this anonymiza-
tion process. Note that the displayed results up to now were obtained
based on the Haar wavelet. In [195], the choice of wavelet in the DWT-
MRA decomposition was investigated for 34 different wavelets. Therein it
was found that the Haar wavelet, there denoted as the Daubechies 1 (db1)
wavelet, tends to lead to a decomposition with the highest variability in the
HF profile.

To illustrate this trade-off, Figure 7.16 recapitulates the findings from Fig-
ure 7.6, but this time for three different types of wavelets: the Haar, sym5
and db5 wavelets. These wavelets have previously been visualized in Figure
7.2. According to [195], the sym5 wavelet contains less variability in the HF
detail than the Haar wavelet, while the db5 contains even less than the sym5
wavelet. This means that the LF approximation contains more variability for
the db5 than the sym5 wavelet.

The consequence of this is shown in Figure 7.16. Wavelets with less variability
contained in the HF detail, tend to capture the peak demands better in their
LF approximation.

Figure 7.16: Boxplot of the annual (top) and mean monthly (bottom) peak
demands of the k-level LF approximation compared to the orig-
inal load profiles for the Haar, sym5 and db5 wavelets. The
whiskers denote the [10, 90] percentiles.
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The limiting factor for the representativity of the output of the stochastic pro-
file generator is the number of valid combinations for the largest percentiles
of the daily peak demands. In the absence of obtaining a larger dataset, the
methodology initially points toward reducing the decomposition level in the
MRA-DWT.However, using amore variablewavelet than the traditional Haar
wavelet can also lead to more valid combinations.

A second limitation of our current approach is that we only generate daily
load profiles. Simplistically combining these stochastic daily load profiles
to create annual load profiles can lead to inaccuracies, particularly in terms
of preserving autocorrelation. This issue is evident in Figure 7.17, which
presents the autocorrelation function (ACF) of the time series of daily con-
sumptions for both a household from the original dataset and a correspond-
ing synthetic profile.

The ACF plot for the measured profile shows significant autocorrelation
for lags up to 7-14 days, reflecting the typical weekly patterns observed in
residential electricity consumption. In contrast, the synthetic profile’s ACF
lacks significant autocorrelation at these lags, indicating that the random
combination of daily profiles fails to capture the temporal dependencies
inherent in real data.

To address this, Chapters 8 and 9 focus on developing methods to combine
stochastic daily profiles while preserving realistic autocorrelation. In the next
chapter, we explore the generation of synthetic annual profiles of daily con-
sumption values with realistic multiscale temporal dynamics. Subsequently,
Chapter 9 inserts the synthetic daily load profiles from the current chapter
into the annual profiles generated in Chapter 8.

Figure 7.17: ACF of the daily consumptions in (a) a measured profile in the
original dataset, and (b) a synthetic profile obtained by ran-
domly combining stochastically generated daily load profiles.
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7.9 Conclusion

The primary methodological contribution of this chapter to the state-of-
the-art lies in advancing the wavelet-based decomposition-recombination
method originally developed for daily load modeling of non-residential con-
sumers [195–197]. We adapted and expanded this framework to make it
usable for residential consumers, addressing the limitations of the original
normalization schemes, which are ineffective due to the significant influence
the high-frequency components have on residential peak demands.

This chapter presented a data-driven stochastic load profile generator for
residential consumers. First, privacy-sensitive load profiles can be decom-
posed into high-frequency details and a low-frequency approximation using
the discrete wavelet transformation and a multi-resolution analysis. Second,
the high-frequency component of the load profile corresponding with one
household can be rescaled and shifted, and subsequently combined with the
approximated profile of a different household. This yields a synthetic load
profile with a given daily peak demand and daily consumption.

By sampling the two-dimensional distribution of (i) the daily consumption
and (ii) the daily load factor of the original dataset, their relation is preserved
in the resulting stochastically generated profiles. The generated profiles were
subsequently benchmarked with respect to the original dataset for the daily
peak demand behavior. The seasonal behavior in the original data was found
to be preserved by limiting the generator to the daily level. Furthermore, the
distribution of the synthetic daily peak demands showed a MAE of 0.09 kW,
corresponding to a MAPE of 4.1%.

Two restrictions of the introduced methodology were discussed. The first
limitation concerns the reconstruction of daily load profiles with a high
peak demand. These profiles tend to have a significant contribution of
the high-frequency component to their peaks, which leads to fewer other
households which can be used for constructing a synthetic profile with a
similar peak demand. This highlights the trade-off between anonymization
of the privacy-sensitive data and the computational process involved in the
load profile generation. Second, daily load profiles as output cannot be used
for all hosting capacity studies. The autocorrelation of a random sequence
of synthetic daily profiles is inaccurate, as measured profiles contain a high
degree of autocorrelation between their daily consumptions. This second
limitation will be addressed in the next chapter.
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Construction of annual profiles via
Generative Adversarial Networks

(GANs)

Generative models are a key enabler of machine
creativity, allowing machines to go beyond what
they’ve seen before and create something new.

Ian Goodfellow

In this chapter, we present a novel methodology that uses the potential
of Generative Adversarial Networks (GANs) as state-of-the-art technique
in time series modeling to capture the long-term correlation inherent to
residential load profiles at the annual level.

We first discuss annual profiles and their temporal correlations in Section
8.1. We subsequently present GANs as state-of-the-art for synthetic data
generation in Section 8.2, after which we present DoppelGANger as the ar-
chitecture of choice. The remainder of this chapter is subsequently dedicated
to the training of the GAN models and evaluation of their outputs.

Sections 8.3 to 8.5 of this chapter are derived from:

• R. Claeys, R. Cleenwerck, J. Knockaert, and J. Desmet, "Capturing
multiscale temporal dynamics in synthetic residential load profiles
throughGenerative Adversarial Networks (GANs)",Applied Energy, vol.
360, p. 122831, 2024. [200]
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8.1 Descriptions of annual load profiles

For this chapter, annual load profiles represent the total electricity con-
sumption of a household or building over a year, broken down into daily
measurements. At this level, load profiles of daily consumptions form a time
series of 365 (or 366 for leap years) values. Both at the level of the individual
day and on a day-to-day basis, these time series exhibit high variability and
are challenging to predict due to stochastic behavior. However, these daily
consumptions become more consistent and correlated behaviors emerge at
longer time scales.

This consistency is expected, as the observed time correlations reflect the
inherent calendrical patterns of household activities. Figure 8.1 illustrates
the averaged ACF of all households in the dataset. The plot reveals a
clear seasonal dependence in the ACF, with significant lags corresponding
to weekly intervals, highlighting regular human activities aligned with the
societal seven-day calendar cycle.

Seasonal correlations are particularly influenced by the use of electric
heating for space or domestic hot water, which follows the heating and
cooling seasons. Additionally, intraday, weekly, and biweekly correlations
are evident, reflecting regular consumption patterns throughout different
timescales [201].

Figure 8.1: Autocorrelation function (ACF), averaged over all households in
the considered dataset.
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8.2 GANs as state of the art for time seriesmodeling

Introduced in 2014 by Goodfellow et al., GANs are a data-driven modeling
technique that takes real samples as input and, when trained until con-
vergence, outputs a model that can generate new samples from the same
distribution as the original data [202]. A general block diagram of GANs is
given in Figure 8.2.

At a basic level, a GAN consists of two neural networks: a generator (G)
and a discriminator (D) with learnable parameters θG and θD respectively.
The generator accepts random noise vectors z ∈ Z drawn from a pre-
defined distribution, commonly Gaussian or uniform distributions, andmaps
it to a learned distribution p̂. Concurrently, the discriminator is trained to
distinguish between real and generated data samples, respectively x and
G(z). It is a binary classifier trained by minimizing the classification error
by feeding samples from both the real and generated dataset as input.

Errors in the binary classification are subsequently used to train both G and
D through backpropagation as the networks are trained adversarially: D
aims to maximize its probability of assigning the correct labels to its input
samples, while G aims to minimize this probability. This is expressed in the
following loss function:

min
θG

max
θD

Ex∼p [logD(x)] + Ez∼p̂ [log (1−D(G(z)))] (8.1)

The basic GAN architecture is tailored and expanded upon depending on the
considered application. In the case of load profiling, they are adapted to
suit the temporal nature of the demand data. A single load profile measured
during T timesteps can generally be described as x1:T = (x1, . . . xT ).

Figure 8.2: High-level block diagram of the GAN framework.
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As the considered data are time series with their own temporal dynamics, the
neural networks are traditionally chosen to generate data recurrently, where
the output at t− 1 is taken as input for the generation of data at t.

Several illustrative examples from research using basic GAN architectures for
load profile generation are discussed in the following paragraphs.

In [203], load profiles for residential consumers were generated using a
convolution GAN architecture. The load profiles were generated for a period
of one week with a 30 minute resolution. The authors of [204] used recurrent
neural networks (RNNs) to generate load data with a time step of 10 minutes,
using a sliding window of 60 time steps to synthesize the data. In [205],
energy use profiles for retail and commercial office buildings were generated
at a 15-minute resolution, using daily data sequences. Their considered GAN
architecture used a Long Short-Term Memory (LSTM) for the generator to
capture the long-term dependencies in the data in addition to short-term
correlations.

Concurrently, efforts have been made to include metadata in the generation
process. For example, both [206] and [207] generated load profiles at a 30
minute resolution with corresponding sociodemographic information such
as the age of the chief income earner, the number of bedrooms or whether
the load profile corresponded to a single-person household. However, the
generation process remained limited to profiles describing the load behavior
for a single week. As such, no long-term monthly or seasonal correlations
were included in the aforementioned studies.

In addition to using neural networks such as RNNs, LSTMs, or temporal
convolutions that capture the sequential nature of time series, previous
models have tailored the architecture itself to explicitly incorporate the time
correlation. Considering this, the two most relevant architectures for our
work are TimeGAN and DoppelGANger.

TimeGAN, introduced in 2018 by Yoon et al. [208], is the current state-of-
the-art methodology for time series generation. Its diagram and training
scheme is shown in Figure 8.3. In addition to using an auto-encoding com-
ponent, TimeGAN introduces the temporal dynamics directly in the learning
process by including a supervised autoregressive loss that incorporates the
conditional time dependence, i.e., at each timestep t the architecture includes
learning the density p̂ (xt|x1:t−1) that best approximates the true density
p (xt|x1:t−1). Furthermore, the architecture explicitly enables the use of
metadata during the learning process, allowing the networks to discover links
between fixed attributes and their corresponding time series.
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TimeGANwas used in [209] to generate both residential and commercial load
profiles based on sparse datasets with 12 buildings each. In this study, the
generator and discriminator were additionally conditioned on mean outdoor
temperature, leading to significant performance gains in the generation
process. However, the authors concluded that TimeGAN was unable to
sufficiently capture theweekly dynamics of the commercial load profiles with
the observed significant differences between weekdays and weekends being
absent in the synthetic data.

In addition to the aforementioned study on load modeling, the authors
of [210] found that TimeGAN failed to adequately capture weekly and an-
nual correlations in longer time series and concluded TimeGAN is unable to
sufficiently capture long-term dependencies or complex temporal dynamics.
As previous GAN-based work on load modeling did not consider longer time
periods, instead often focusing on daily or weekly load profiles, this aspect
has been underexposed in academic literature on load modeling.

Regardless of the issues with respect to capturing the long-term temporal
dynamics, the applicability of TimeGAN for time-sensitive applications is
severely limited because it uses a sliding window to shift-sample a larger
dataset. The obtained sequences are subsequently randomly mixed to
make them independent and identically distributed. While this allows for
the creation of more sets of sequences to be used in the training process,
it comes at the cost of not knowing exactly to what times the sequences
correspond to [209].

Figure 8.3: TimeGAN block diagram and training scheme as reproduced
from [208].
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8.3 DoppelGANger

Because of the issues surrounding TimeGAN mentioned in Section 8.2, the
GAN architecture of choice for this work is DoppelGANger (DGAN). DGAN
is an emerging architecture specifically tailored to generate time series that
are influenced by metadata, first introduced in 2020 by Lin et al. [210]. The
architecture itself is shown in Figure 8.4.

DGANoffers fourmain advantages compared to TimeGAN for the generation
of residential load profiles:

1. A separate metadata generator is included, decoupling the generation
of metadata and time series.

2. It introduces a separate generator that outputs synthetic minima and
maxima of time series.

3. Instead of sequentially generating a single value at a time, S batched
samples are generated at the same time.

4. The metadata and min-max generator are used in an auxiliary discrim-
inator.

Figure 8.4: DoppelGANger block diagram.
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The introduction of the min-max generator combined with the auxiliary dis-
criminator is particularly relevant in the context of residential load modeling.
One of the major hurdles during the training of GANs is so-called mode
collapse. This occurs when the output does not reflect the diversity of the
input samples, instead producing repetitive or limited outputs. Datasets with
a highly variable range appear to be more prone to mode collapse [211].

The data under consideration in this dissertation exhibits variable ranges, as
they are residential consumers. Individual household annual consumption
can range from several hundreds to tens of thousands of kWh. Relevant
metadata that are closely linked to the consumption behavior is the presence
of, e.g., electric heating or an electric vehicle, as well as dwelling size and type,
number of inhabitants and total household income.

Previous GAN-based load modeling either focused on generating daily or
weekly time series, or used a single architecture to generate sequences for
a longer time period, leading to a loss in long-term correlation and fidelity.
In contrast, we maintain the proposed methodology for load modeling based
on a decoupled approach where the stochastic behavior at the daily level is
modeled separately from the dynamics at the annual level. Consequently,
DGAN is used to generate annual load profiles of daily consumptions.

By limiting the GAN generation to a time series of daily values, traditional is-
sues of longer time series modeling through GANs can be avoided. However,
the choice of modeling technique, either at the annual or daily level, is some-
what arbitrary. While we opt for a data-driven decomposition-recombination
method at the daily level, a GAN-based approach towards generating daily
load profiles would also be valid. However, the proposed method allows for
fine-grained control on both the daily consumption as well as peak demand
compared to a black-box GAN-based approach, which can prove useful, e.g.,
to model the impact of weather events absent in the original dataset.

The primary objective of this dissertation is to provide a proof of concept for
the efficacy of the proposed two-step methodology in generating residential
load profiles that are practical for various downstream applications. How-
ever, evaluating the fidelity of GAN outputs in a rigorous manner is difficult
with no separate objective function for the generator to evaluate the gener-
ated data sequences, nor standard agreed-upon evaluation criteria [212, 213].

Consequently, we refrain from asserting that the presented GAN model is
entirely optimized, as achieving full optimization would require a rigorous
investigation encompassing an exploration of all hyperparameters, i.e., the
set of parameters that are not learned during the training process but are set
prior to it in order to control and fine-tune both the GAN architecture and
training process.



128 DoppelGANger

Instead, a suitable GAN-model is selected based on three qualitative mi-
crobenchmarks intended to compare the fidelity of the synthetic data with
respect to the original data. Themicrobenchmarks are chosen to be indicative
of mode collapse, either in the amplitude or frequency domain, or be a
measure for how well the temporal dynamics are recreated.

Overlap coefficient: In the generation process, sequences can be generated
that, while exhibiting realistic relative day-to-day variations, show unrealis-
tic absolute values. Hence, the overlap between the distributions of the real
and synthetic annual consumptions is chosen as microbenchmark.

Variability coefficient: the overlap between the distribution of the standard
deviations of daily consumptions was selected asmicrobenchmark as it offers
a metric that can indicate mode collapse in the frequency domain.

Autocorrelation: The autocorrelation is included as a way to verify both the
expected short-term and long-term behavior of the generated samples.

These benchmarks were selected based on common failures observed during
the generation process of load profiles, where good results on one benchmark
tended to correspond with bad results on another. This trade-off is illustrated
on Figure 8.5 for two obtained models.

Figure 8.5: Example of failing microbenchmarks concerning the probability
density functions of the annual consumption and the standard
deviation for the real (black) and generated (gray) datasets.
Model A is unable to output realistic absolute values, while mode
collapse in the frequency domain materializes in Model B.
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To wrap up the discussion in this section, we focus on two additional
modeling-related design choices in theDGANarchitecture, while the remain-
ing configuration parameterswill be swept in search of a suitableGANmodel.
First, the min-max generator and auxiliary discriminator are both enabled
during the generation process. The output of the generator are normalized
time series between 0 and 1, which are subsequently rescaled back to realistic
ranges.

Second, as shown in Figure 8.4, DGAN allows for batch generation of se-
quences during each RNN pass. In the context of modeling daily con-
sumptions of residential consumers, a batch size of 7 is deemed to be most
suitable as this reflects the weekly calendrical cadence inherent to household
lifestyles.

In addition to this content-specific justification for the batch size, this choice
can be backed up by a computational argument. The authors of [210]
empirically examined the relation between batch size S, sequence length T
and their obtained results. They empirically found that setting S so that T/S
is around 50 yields good results.

Instead of considering a full year of 365 days, we opt for 364 as sequence
length T as this is dividable by the batch size S = 7. For the considered time
series of 364 daily values, the value of S = 7 days therefore yields a ratio of
52, which is consistent with their proposed value to obtain good results with
DGAN.

8.4 Results

Before moving to the results and analyses, the hardware and software set-up
is first presented in Section 8.4.1. Second, the generation of annual profiles
by means of the GAN methodology presented in Section 8.3 is investigated
through a sensitivity analysis of the various hyperparameters influencing
the generation process. The trained GAN models are evaluated based on
the performance of the generated profiles compared to the original dataset
through the three introduced qualitative microbenchmarks (variability, an-
nual consumption, and autocorrelation).

Based on the presented sensitivity analysis, a suitable model is selected to
investigate the fidelity of a synthetic dataset on downstream applications.
Section 8.4.3 presents this selected model that are used for the applications
in the following chapter.
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8.4.1 Hardware and software set-up

The training process was performed on a hardware environment comprising
an NVIDIA RTX 3080 Ti GPU, an Intel i7-12700H (2.3 GHz) processor, and
32 GB RAM. We use the Python-based DGAN algorithm as implemented
in Gretel Synthetics, version 0.20.0, combined with PyTorch 1.13.1,
Tensorflow 2.8.0 and the CUDA toolkit 11.7 [214].

8.4.2 GAN sensitivity analysis

The identification of a suitable GAN model is a twofold process. First,
multiple GAN models are trained a total of 500 epochs for different hyper-
parameter configurations. After training the individual models, 2,000 indi-
vidual profiles are generated per model. All trained models are subsequently
evaluated qualitatively, where we rely on their performance across the three
microbenchmarks to determine a suitable model.

Five hyperparameters are included for this sensitivity analysis. These pa-
rameters and their considered values are given in Table 8.1. The chosen
values of the hyperparameters lead to 1,350 different model configurations.
The nomenclature as used by Gretel Synthetics’s DGAN ismaintained
for consistency. The feature and attribute layers denote the number of
LSTM layers in the GAN generator network and the number of layers in the
discriminator network respectively. For the remainder of this dissertation,
the learning rate is abbreviated as LR.

For each combination of hyperparameters, multiple models are trained in
order to take the stochastic nature of GAN training into account. Bearing
in mind the computational load, we opted to train five different models for
each hyperparameter configuration set. This leads to 6,750 GANmodels that
were trained and evaluated.

Table 8.1: Hyperparameters considered for the sensitivity analysis with
their corresponding values.

Parameter Values
Batch size [6, 8, 10, 12, 14, 16] ×10
Feature layers [1, 2, 3]
Attribute layers [1, 2, 3]
Generator learning rate [1, 3, 5, 7, 9] ×10−5

Discriminator learning rate [1, 3, 5, 7, 9] ×10−5
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Figure 8.6: One-dimensional marginals of the multivariate probability den-
sity function of the microbenchmarks (rows). The five hyperpa-
rameters under consideration are displayed in the columns.

The first step of the sensitivity analysis is investigating how different hyper-
parameters influence the microbenchmarks. Consequently, the marginals
of the multivariate probability density functions are displayed in Figure 8.6,
which isolates the behavior of each parameter independently in a 1D KDE of
their probability density function.

Table 8.2 summarizes the correlations between hyperparameter and mi-
crobenchmark as seen in Figure 8.6.

Table 8.2: Summary of the correlations between a hyperparameter and the
considered microbenchmarks. + denotes a positive correlation
with increasing hyperparameter; − corresponds to a negative
correlation; "0" signals no impact of a change in hyperparameter;
"?" indicates an ambiguous relationship.

Overlap Variability Autocorrelation
Batch size − + −
Feature layers 0 0 −
Attribute layers + + 0
Generator LR ? ? ?
Discriminator LR 0 0 ?
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For example, when considering the batch size, both the overlap and vari-
ability coefficient exhibit a bimodal distribution. Increasing the batch size
negatively impacts the overlap coefficient (more mode collapse as indicated
by higher density at minimal values of the coefficient), while it positively
impact the variability coefficient. Similarly, the autocorrelation coefficient is
negatively impacted by higher batch size.

This isolated behavior with respect to the batch size is expected: larger
batch sizes hinder the model’s ability to capture granular temporal details in
the data, leading to worsening autocorrelation coefficients. However, larger
batch sizes lead to faster convergence and by averaging over more samples
yields less occurrences of mode collapse for the variability coefficient.

The impact of the LRs is ambiguous. While the discriminator LR has no
impact on the overlap or variability coefficient, all coefficients are highly
unpredictable under varying generator LR. However, instead of considering
the absolute values of the LRs, it is necessary to consider their relative dif-
ference. The networks are trained simultaneously in an adversarial manner,
so isolated results lead to an inadequate portrayal.

Therefore, we introduce ∆LR, the difference between the learning rates of
the generator and discriminator. Figure 8.7 now depicts the behavior of the
microbenchmarks under increasing∆LR.

In contrast to the individual learning rates, a coherent understanding
emerges by considering ∆LR: the data generation process heavily favors a
negative∆LR. A strongly negative∆LR tends to correspond to higher den-
sity at high overlap and variability coefficient, and minimal autocorrelation
coefficients.

Figure 8.7: One-dimensional marginals of the multivariate probability den-
sity function of the microbenchmarks as a function of ∆LR.
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The preliminary analysis based on the marginal distributions presents in-
triguing, albeit incomplete, insights. Bimodal distributions arise for the
relation between both the batch size and ∆LR on the one hand, and the
microbenchmarks on the other hand.

Nevertheless, the correspondence between zones exhibiting high overlap
coefficients and their relationship to either high or low variability coefficients
remains ambiguous. To elucidate this association, an exploration into the 2D
probability density functions, as displayed in Figure 8.8, is warranted.

The 2D KDE as observed in Figure 8.8 exhibit distinctly different behavior
depending on the value of∆LR. We focus on regions of positive and negative
∆LR respectively.

Figure 8.8: 2D KDE between the variability (x-axis) and overlap (y-axis)
coefficient, as a function of the batch size (columns) and ∆LR
(rows).
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For the 2D KDEs with ∆LR > 0, a significant and unwanted trade-off is
apparent. Regions exhibiting high overlap coefficients tend to align with a
high probability of observing low variability coefficients, and vice versa. This
relationship is visually depicted by the probability densities distributed along
the principal diagonal of the 2D graphical representations, where minimal
probability density is observed within the upper right quadrant. This quad-
rant signifies scenarios where both microbenchmarks exhibit satisfactory
scores. Consistent occurrences of mode collapse are observed, manifesting
either (i) in the amplitude of generated load profiles, resulting in a minimal
overlap coefficient, or (ii) in the frequency domain, leading to persistently
uniform profiles with a zero variability coefficient.

However, this unwanted trade-off disappears when∆LR becomes negative.
For ∆LR < 0, the converged model consistently produces datasets that
demonstrates satisfactory performance across both microbenchmark assess-
ments. Simultaneous reduction of the batch size for these learning rates
serves to diminish the likelihood of mode collapse during the generative
process, as visible in the columns of Figure 8.8. Consequently, a negative
∆LR emerges as the optimal configuration of hyperparameters facilitating
the consistent generation of datasets featuring load profiles that exhibit
satisfactory performance across all the three microbenchmarks.

In conclusion, the analysis conducted in this section has provided valuable
insight into the responsiveness of the proposed GAN model to variations
in several key hyperparameters. The following sections delve into
the performance of the proposed approach across several downstream
applications. Therefore, for the remainder of this dissertation, we exclusively
consider a single GAN model. The hyperparameters for this model, listed in
Table 8.3, represent an informed selection based on the insights garnered
from the sensitivity analysis.

Table 8.3: Hyperparameter configuration set considered for the remainder
of this dissertation.

Hyperparameter Value
Batch size 160
Feature layers 1
Attribute layers 3
Generator learning rate 1× 10−5

Discriminator learning rate 9× 10−5
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8.4.3 Selected GAN model

This section presents an examination of a single GAN model intended for
utilization in the following chapter’s downstream applications. The discus-
sion of the selected model is twofold. First, the microbenchmarks of the
considered GANmodel are discussed. Second, we investigate potential mem-
orization effects that may have transpired throughout the training process.

The benchmarks are displayed in Figure 8.9, while their performance is
evaluated in Table 8.4. TheMean Average Error (MAE) and RootMean Square
Error (RMSE) are the metrics considered for the performance evaluation.
From these comparisons, it is clear that DGAN is able to output a model
that generates annual load profiles which (i) display the same distribution in
their total annual consumption, and (ii) exhibit similar variability.

The batched generation ensures the weekly correlations, while the seasonal
correlation remains accurate due to the smaller number of individual RNN
generation steps. Furthermore, the hyperparameter configuration set all but
eliminated mode collapse in the amplitude or frequency domain occurring
during the training process, leading to consistent results.

Figure 8.9: Microbenchmarks of the considered GAN model compared to
the real dataset.
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Table 8.4: Evaluation of the generated dataset shown in Figure 8.9.

MAE RMSE
Annual consumption 0.0000143 0.0000197
Standard deviation 0.0000158 0.000438
Autocorrelation 0.0297 0.0419

The autocorrelation plot does reveal minor discrepancies within time lags
of two weeks. We will elaborate on the limitations of both the proposed
methodology and the three microbenchmarks used to evaluate the trained
GAN models in a separate section.

A major concern of GAN is overfitting during the training process, especially
if the training dataset is limited. This overfitting leads to memorization of
individual profiles, defeating the purpose of providing generated synthetic
data as a feasible alternative to privacy-sensitive metering data. To evaluate
the memorization effect, individual synthetic profiles are compared with
their nearest samples in the training data. This is illustrated in Figure 8.10
for three randomly selected profiles. Significant differences can be observed,
both quantitatively in the square error as well as qualitatively in the trends
of the load profiles, which suggests that no memorization occurred.

Figure 8.10: Three profiles randomly selected from the generated dataset
and their corresponding three nearest neighbors.
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In the interest of reproducibility, the complete configuration of the 29 DGAN
parameters, in addition to the five hyperparameters that were included
in the sensitivity analysis presented in Section 8.4.2, that resulted in the
discussed output is given in Table 8.5.

Table 8.5: DGAN configuration settings for Gretel synthetics that
yielded the presented GAN model.

Parameter value
max_sequence_len 364
sample_len 7
attribute_noise_dim 10
feature_noise_dim 10
attribute_num_layers 3
attribute_num_units 100
feature_num_layers 1
feature_num_units 100
use_attribute_discriminator True
normalization ZERO_ONE
apply_feature_scaling True
apply_example_scaling True
binary_encoder_cutoff True
forget_bias False
gradient_penalty_coef 10.0
attribute_gradient_penalty_coef 10.0
attribute_loss_coef 1.0
generator_learning_rate 1E-5
generator_beta1 0.5
discriminator_learning_rate 9E-5
discriminator_beta1 0.5
attribute_discriminator_learning_rate 0.001
attribute_discriminator_beta1 0.5
batch_size 160
epochs 500
discriminator_rounds 1
generator_rounds 1
cuda True
mixed_precision_training False
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8.5 Limitations

The autocorrelation plot in Figure 8.9 reveals minor discrepancies within
time lags of up to two weeks. These deviations between real and generated
data at the weekly and biweekly levels can be attributed to the challenges
of accurately capturing the general weekly calendrical cadence, the variable
behavior during holiday periods, and the presence of electric heating for a
subset of households in the dataset, which skews the autocorrelation during
heating seasons.

This calendrical dependence is a significant issue not only for the mi-
crobenchmarks but also for the generation process itself. For instance, when
using data from 2013, the generated profiles inherently reflect the calendrical
properties of that specific year, with holidays like Easter occurring at the
same time. This limits the profiles’ applicability for other years. Similarly, if
multiple datasets from different years (e.g., 2013 and 2014) are used as input,
it becomes necessary to label the days of the year for the generation process.
Without this labeling, the generator cannot produce realistic load behavior
for a single year due to non-synchronous holidays. One possible area of
improvement is therefore labeling the datetime series to include information
on holidays and periods with closed schools to enable theGAN to incorporate
this information in the learning process to increase the utility of the proposed
methodology.

Furthermore, the autocorrelation behavior of households with and without
electric heating differs significantly during heating and non-heating seasons.
Grouping these two types of households together for the evaluation of a
single autocorrelation-based microbenchmark that spans an entire year in-
troduces additional difficulties. The divergent seasonal consumption patterns
result in mixed autocorrelation signals, complicating the assessment of the
synthetic data fidelity. Limiting the generation process to a single cluster is
expected to alleviate this concern.

8.6 Conclusion

The primary methodological contribution of this chapter to the state-of-
the-art of load modeling lies in using GANs as state-of-the-art technique
for synthetic data modeling to generate annual load profiles. Based on a
review of literature on time series generation, we selected the DoppelGANger
architecture for this dissertation due to its proven ability to capture long-term
time correlations and its capability to batch-generate short-term intraday
variations at the weekly level.
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In the absence of established evaluation criteria for the output of GANs, our
contribution extends to the introduction of three microbenchmarks which
assess the synthetic dataset’s fidelity in terms of (i) annual consumption
values, (ii) daily consumption variability, and (iii) time correlations within
the generated load profiles. The first two microbenchmarks are specific for
smartmeter data and are able tomeasuremode collapse in the amplitude and
frequency domain respectively. Furthermore, to the best of our knowledge
we are the first to publish an in-depth sensitivity analysis of GAN hyper-
parameters and show how they influence the generation process. We finally
identified a set of hyperparameters that effectively eliminated mode collapse
in both the frequency and amplitude domains.

However, the evaluation of the DGAN-generated profiles using the pro-
posed microbenchmarks should not be viewed as conclusive evidence of the
methodology’s effectiveness in producing realistic profiles. Instead, these
benchmarks primarily validate that the GAN model has successfully con-
verged and is functioning as intended according to the microbenchmarks.
Therefore, it is essential to further validate the fidelity of the high-frequency
profiles on an annual scale and assess their practical utility. This compre-
hensive validation is performed in the following chapter, where we consider
the performance of the generated data across various use cases relevant to
residential consumers.





9
Benchmarking of the synthetic

high-frequency annual load profiles

The proof of the pudding is in the eating.

English proverb, earliest known written
reference by William Camden.

In this penultimate chapter, we validate the high-resolution annual load
profiles using a series of benchmarks. Drawing inspiration from the overview
of use cases for residential smart meters as discussed in Chapter 2, we
benchmark the constructed synthetic dataset at both the individual and
aggregated level.

At the individual level, the evaluation is threefold. First, we compare the
LDCs of the synthetic data to those of the real data to assess distributional
similarity. Second, we validate whether the synthetic data accurately recon-
structs different elements of the electricity invoice, with a focus on the mean
monthly peak demand behavior for peak-based pricing and the commodity
cost under dynamic pricing. Third, we demonstrate that the synthetic data
can replicate the performance of real data in applications involving both PV
and PV-BESS systems. At the aggregated level, hosting capacity (HC) studies
involving EVs and heat pumps serve as validation.

141
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The benchmarks presented in Subsection 9.2.4 to 9.2.6 were previously pub-
lished in:

• R. Claeys, R. Cleenwerck, J. Knockaert, and J. Desmet, "Capturing
multiscale temporal dynamics in synthetic residential load profiles
throughGenerative Adversarial Networks (GANs)",Applied Energy, vol.
360, p. 122831, 2024. [200]

Similarly, the benchmark discussed in Subsection 9.3.1 is derived from:

• R. Claeys, R. Cleenwerck, J. Knockaert, and J. Desmet, "Stochastic
generation of residential load profiles with realistic variability based
on wavelet-decomposed smart meter data", Applied Energy, vol. 350, p.
121750, 2023. [188]

9.1 Combining daily and annual profiles

Our methodology to generate annual data at high resolution was introduced
in Chapter 3. We decoupled the generation process as visualized in Figure
9.1, opting to model each timescale with the appropriate technique.

The annual profiles obtained through GANs as described in Chapter 9 and
daily profiles from Chapter 8 are combined to obtain annual load profiles
with high-frequency variability and realistic temporal short-term and long-
term dynamics. For each day of a generated profile of daily consumptions,
the stochastic daily load profile with the closest consumption is rescaled to
the value obtained during the GANmodeling and appended to the new high-
frequency profile. For the proposed validations, 2,000 individual profiles at
the annual level are generated.

It is important to note that, unless otherwise stated in the benchmark de-
scription, no metadata is taken into account for (i) the generation process,
and (ii) the linking process, where the daily load profiles are added together
based on the annual load profile. The inferred clusters from Chapter 6 could
theoretically serve as metadata. However, this would lead to subsets of the
considered dataset that are too small to reliably generate synthetic data
without memorization effects occurring. To provide context for the limitation
related to cluster size, the publication that introduced DGAN considered a
minimum training data size of 500 samples [210].
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Figure 9.1: Two-step methodology for generating an annual load profile at
high resolution.

9.2 Benchmarks at the individual level

9.2.1 LDC parameters

The first considered benchmark at the individual level concerns the 5-
parameter LDC of individual consumers as introduced in Equation (5.2) in
Chapter 5. As such, in this section we verify whether the dataset of generated
synthetic consumption data exhibits the same distributional behavior for
all parameters that shape the load-duration curve of the consumers in the
original, measured dataset.
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Figure 9.2: Comparison between the 2D KDEs of the five LDC parameters.

The 2D KDE of the parameter values obtained from the fitting procedure are
given in Figure 9.2 for both the real (gray) and synthetic (blue) data. The
parameter values are given as a function of the annual consumption, as was
done in Figure 5.2. Furthermore, Figure 9.3 on the following page reiterates
Figure 5.3 from Chapter 5 for additional context to these results. This plot
displays the generic LDC shape and the relation between the five parameters
and the shape of the fit.

Although the synthetic data generation process successfully replicates the
broad trends of the parametric distributions observed in the real dataset, it
falls short in capturing the variability in certain parameters, notably b, d, f ,
and g. However, as illustrated in Figure 9.3, these parameters show inherent
correlations due to the positioning andmagnitude of the exponential decay in
the LDC. For instance, an overestimation of the b parameter tends to coincide
with an underestimation of the d parameter.

Hence, we hypothesize that the underlying factor(s) contributing to the de-
viation in these three parameters are shared. In Chapter 8, we discussed sev-
eral limitations associated with the Generative Adversarial Network (GAN)
generation process.



Benchmarking of synthetic high-frequency annual load profiles 145

Figure 9.3: Shape of the 5-parameter LDC.

First, due to the constraints of sample size, both in terms of the number of
consumers and temporal extent, the generation process struggles to accu-
rately capture the general weekly calendrical patterns while accommodating
deviations during holiday periods and the heating season. These variations
also significantly impact the autocorrelation behavior, one of the considered
microbenchmarks.

Second, the absence of metadata in the generation process poses another
limitation. The limited number of consumers within each cluster prevents
the inclusion of metadata as a training set for the generative AI. However, it
is important to bear inmind that the step in the LDC function associatedwith
the d, f , and g parameters is influenced by consistently high consumption
attributed to larger appliances like electric heating or boilers.

Therefore, our current working hypothesis suggests the necessity of intro-
ducing clusters based on the presence of larger electrical appliances within
households to replicate the observed distributions accurately. This approach
is expected to yield coherent clusters of sufficient size that can effectively
guide the GAN generation process for more realistic interday behavior.

9.2.2 Mean monthly peak demand

Sections 9.2.4, 9.2.5, and 9.2.6 will investigate the applicability of synthetic
data for PV(-BESS) installations. Systems designed to maximize PV self-
consumption and those controlled to both increase PV self-consumption and
perform peak shaving are considered.
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However, to accurately perform an economic optimization for the hybrid con-
trol strategy, it is necessary to first verify if the synthetic data can accurately
reconstruct all aspects of the electricity bill of residential consumers. In this
section, we focus on the mean monthly peak demand, as the non-volumetric
component of the grid tariffs for residential consumers in Flanders is based
on this value.

Until the end of 2022, network costs in the Flemish distribution grid tariffs
were calculated purely on a volumetric basis. However, starting in 2023, the
operator’s network costs are no longer billed volumetrically to households.
Smart meters log the monthly peak demands, which are then averaged
over the past twelve months to determine a mean monthly peak demand.
Additionally, a minimum monthly peak of 2.5 kW is assumed, meaning that
if a household’s monthly peak demand is less than 2.5 kW, it will still be billed
the cost equivalent of 2.5 kW.

The comparison between the mean monthly peak demand of the real and
synthetic datasets is given in Figure 9.4. The distributions are visualized in
boxplots binned per MWh annual consumption. As annual consumptions
higher than 9 MWh are underrepresented in the synthetic dataset, this
allows for a fair comparison between the real and synthetic dataset. The
whiskers of the boxplots denote the [10, 90] percentiles.

Figure 9.4: Binned boxplots visualizing the distributions of the (corrected)
mean monthly peak demands for different annual consumption
ranges.
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Figure 9.4 reveals two conclusions about the peak behavior of the synthetic
dataset. First, the general trend is accurately captured by the synthetic data.
However, the synthetic data does not accurately reconstruct the diversity
in mean monthly peak demands as seen from the interquartile range and
whiskers of the boxplots.

To investigate the possible cause of this underestimated diversity, Figure 9.5
considers the distributions of the standard deviations of the 12 individual
monthly peak demands used to calculate the mean monthly peak demand.
The monthly peaks of the synthetic individual consumers exhibit a signifi-
cantly higher standard deviation.

This observation is expected and not an immediate cause for concern, as
the linking process of the considered daily profiles is currently completely
random, unguided by additional information. Instead of consistently com-
bining either high or low monthly peak demands, consistent with real-life
habits, the random combinations currently regress towards the mean value
of the binned distributions, leading to a lack of diversity in the averaged
monthly peaks. However, even despite this random combination, the obser-
vations from Figure 9.4 are encouraging. Limiting the generation process to
consumers showing similar behavior in their daily consumption versus daily
peak demands is expected to further increase the consistency and therefore
the diversity in the mean monthly peak demand.

Figure 9.5: Distributions of the standard deviation of the individualmonthly
peak demands, per dataset and consumption range.
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9.2.3 Annual commodity price under dynamic tariffs

While the previous section examined the average monthly peak demands
for peak-based grid tariffs, this section shifts focus to the commodity prices
under a dynamic tariff system. To calculate the total commodity cost for each
consumer, we used the hourly energy prices from 2023 provided by Eneco, an
energy supplier. The hourly cost is calculated as follows:

(0.102× Belpex-H+ 1)× 1.06, (9.1)

where Belpex-H indicates the wholesale Day Ahead price.

The distributions of the calculated annual commodity cost under a dynamic
tariff are given in Figure 9.6. An excellent agreement is observed between the
real and generated datasets for annual consumptions lower than 9 MWh.
This deviation is expected, as the higher annual consumptions are underrep-
resented in the output of the chosen GAN model, as previously discussed in
Section 8.4.3.

Figure 9.6: Distributions of the annual commodity price under a dynamic
tariff, using the Belpex Day Ahead Market prices of 2023, for
real (red) and synthetic (blue) datasets.
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9.2.4 PV installation

The self-consumption ratio (SCR) is considered as an evaluation metric of
interest. The SCR is defined as the ratio between the instantaneous con-
sumed PV energy and the total produced PV energy, for our case over the
entire year [12]. Distributional deviations in the observed SCR for similar
irradiation profiles can be indicative for consumption which is modeled at
the wrong time period, either at the seasonal or intraday level.

To account for various sizes of photovoltaic (PV) installations, we adopt the
conventional sizing scheme in Flanders as the baseline. This baseline is es-
tablished at annual yield = annual consumption. We introduce the parameter
kPV as a relative size factor in relation to the base case, where kPV ranges
from 0.5 to 1.5. This sweeping range encompasses installations undersized
(with kPV < 1) and oversized (with kPV > 1) relative to the established base
case, enabling a comprehensive exploration of different installation sizes for
each consumer.

First, a visual comparison of the performance of the synthetic dataset for the
PV self-consumption is shown in Figure 9.7 on the next page. The left subplot
highlights the probability density function for the SCR for the conventional
PV sizing scheme, while the right subplot displays the results for the relative
sizings.

This benchmark highlights challenges in accurately modeling consumption
behavior. The generated dataset exhibits limitations in capturing the low
SCRs that are present in the original dataset. Notably, the SCR distribution
of the generated data is concentrated around the most prevalent value ob-
served in the real dataset. This discrepancy can be observed both for the
conventional sizing scheme, as well as for different sizings of the considered
PV installations. The following paragraphs explore the underlying cause of
this discrepancy, as well as how to alleviate this problem.

So far, the generation process of the load profiles has not yet taken any
information related to metadata into account, as this is often unavailable due
to privacy concerns. However, previous research has shown that metadata
such as dwelling type, inhabitant properties as well as appliance ownership
are intrinsically linked to household consumption behavior [90, 215, 216]. For
example, the presence of an electric heating unit significantly contributes to
the consumption behavior, both intraday and seasonally [217].
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Figure 9.7: Results of the PV SCR for the real (red) and synthetic (blue)
datasets, where metadata is not yet taken into account. The
whiskers of the boxplots denote the [10, 90] percentiles.

Therefore, the discrepancy in Figure 9.7 needs to be attributed to the ex-
clusion of metadata during the generation and linking process. This can be
grasped intuitively by considering the step described in Section 9.1. Therein,
high-resolution profiles at the daily level are linked to a consumption value
of day d for a GAN-generated time series. However, this allows for the
assignment of a load profile with LF approximation belonging to a household
with electric heating at day d, while day d+1 of the same annual load profile
gets assigned a LF profile without electric heating. While the consumption at
the daily level matches by design, the interday behavior is inconsistent and
unrealistic.

The joining of daily LF approximations belonging to all types of consumers
leads to the tendency of the distribution of the synthetic SCR to regress to the
mean of the real SCR distribution, without reaching the variety present in the
original dataset. Therefore, the proof of concept presented in this dissertation
needs to be extended for further validation by taking into account metadata
during the generation and linking process. However, as no metadata are
available for the considered dataset, the unsupervised learning methodology
from Chapter 6 is used to partition the households comprising this dataset
into clusters with similar properties.

For the intended proof of concept validation of this chapter, we limit the
number of clusters to three, as one of these already groups the households
with a significantly high consumption during the night pointing towards the
presence of electric heating in these dwellings [152].
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This cluster contains 102 households, which is consistent with 7% of house-
holds in Flanders that use electricity as energy source for space heating at
the time of the data gathering [218].

This clustered subset is subsequently used to generate a new synthetic
dataset of households with high nighttime consumption, both in DGAN as
well as in the wavelet-based recombination scheme. As the clustered dataset
only contains 102 entries, the results should be interpreted with caution.
Nonetheless, the results of including metadata are encouraging.

Figure 9.8 displays the SCR of the clustered subset, as well as the previous
results for the SCR shown in Figure 9.7. As intuitively expected, limiting
the generation process to householdswith significant nighttime consumption
leads to a distribution of the SCR which is significantly lower and captures
the lower bound of the SCR observed in the original dataset for all considered
sizing schemes, which was absent when excluding metadata during the
process.

It is clear that the inclusion of metadata is necessary to obtain annual profiles
with high-frequency resolution which exhibit realistic interday variability
consistent with their metadata. This has been illustrated for a clustered
subset with high nighttime consumption, but could analogously have been
proven for households with high daytime consumption, e.g., corresponding
to retirees, leading to significantly higher SCR values than obtained in the
dataset constructed without metadata.

Figure 9.8: SCR of the real dataset (red), a synthetic dataset generated
without metadata (blue) and a dataset generated on a subset
with high nighttime consumption (light blue).
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9.2.5 PV-BESS installation (self-consumption)

The second evaluation metric under consideration is the increase in PV self-
consumption realized by adding a BESS to a regular PV system. Residential
BESS traditionally operate on an intraday basis, e.g., charging during the day
and discharging during the evening. Deviations between real and synthetic
data therefore can indicate unrealistic modeling of the daily consumption
behavior and variability.

The determination of the BESS size parallels the methodology used for sizing
the PV installation: a conventional sizing criterion is established for BESS
before introducing a relative size factor. We initially consider a lithium-ion
battery size of 1 kWh per MWh annual consumption for residential appli-
cations. This sizing methodology aligns with common practices in Western
European countries [219, 220].

Introducing the parameter kBESS as the relative BESS size factor, the range
of kBESS values varies between 0.5 and 1.5, allowing for an examination of
diverse BESS sizes relative to the base case.

The performance of the synthetic dataset for this application is investigated
in Figure 9.9 on the following page. The upper subplot illustrates the increase
in self-consumption achieved through the conventional sizing scheme of 1
kWh BESS capacity per MWh annual consumption, in conjunction with 1
MWh annual production per MWh of consumption. The synthetic dataset
successfully emulates the observed behavior in real data for the conventional
sizing scheme.

Given the observed linear trend, an Ordinary Least Squares (OLS) estimation
was conducted, providing both slope and intercept values, as included in the
legend of subplot (a). Subplots (b) and (c) respectively depict the variations
in slope and intercept for relative sizings of both PV and BESS components.

While the generated dataset accurately reproduces the slope, indicated by
the congruence of the surface plots in subplot (b), a consistent underesti-
mation of the intercept is evident. Notably, this deviation becomes more
pronounced for larger PV installations. However, given the magnitude of
the increase in self-consumption, the deviation in the OLS intercept can be
considered negligible.
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Figure 9.9: Results of the PV-BESS application, where the storage system
is solely used to improve the PV self-consumption, for the real
(red) and synthetic (blue) datasets, where metadata is not yet
taken into account. Subplot (a) depicts the increase in self-
consumption for the conventional sizing scheme with OLS fits
for both datasets, while subplots (b) and (c) respectively present
the slope and intercept of the OLS estimation for relative sizes
of both PV and BESS components.
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9.2.6 PV-BESS installation (hybrid)

The third considered metric is related to a PV-BESS system with a hybrid
control strategy. The optimal control strategy between increasing the PV self-
consumption and peak shavingwhen the demand exceeds a fixed threshold is
determined for an economic optimization. The peak shaving behavior serves
as a validation for the realistic modeling of the daily peak demands and
variability.

Figure 9.10 schematically displays the operation of the BESS for this case
study. Five distinct modes can be observed:

(a) At any time t, the first priority is maintaining the minimally reserved
capacity for peak shaving at time t + 1. If SoC(t) < SoCth, the BESS
charges from the grid as long as P (t)− PV (t) + Pcharge < Pth.

(b) If SoC(t) > SoCth, the BESS only charges with self-produced PV
energy. Once the BESS is full, it remains idle and the excess PV energy
is injected into the grid and sold at a feed-in tariff.

(c) Charging with PV-produced energy occurs bearing in mind the in-
volved efficiency and maximum inverter power.

(d) If the net household demand exceeds the predetermined threshold
Pth, the BESS performs peak shaving, bearing in mind the maximum
inverter power, available SoC, E-rate, and inverter efficiency.

(e) If the net household demand does not exceed Pth, the BESS is allowed
to discharge while keeping its SoC above SoCth.

Pth and SoCth are determined iteratively at the level of the individual house-
holds to find the combination which minimizes the annual electricity bill,
given a fixed electricity price, feed-in tariff, and peak-based price. For the
peak shaving aspect of the hybrid control strategy, a demand threshold has
to be determined above which the BESS will discharge. Furthermore, a
percentage of the BESS capacity is reserved for the purpose of peak shaving
at all times as no forecasting is assumed. SoCth is the State of Charge (SoC)
corresponding to this reserved capacity.

Table 9.1 lists the specifications of the considered battery energy storage
systems, as well as tariff properties used for the iterative optimization.
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Figure 9.10: Flowchart of the BESS operating scheme under the hybrid
strategy combining self-consumption with peak shaving.

Table 9.1: Considered BESS and tariff properties.

Parameter Value
Type Lithium-ion battery
Capacity (reference) 1 kWh / MWh consumption
E-rate 1
Inverter power min{5 kW,max(demand)}
Self-discharge rate 3% per month
Depth of discharge (max) 80%
Electricity price 30 c€/kWh
Feed-in tariff 10 c€/kWh
Capacity-based grid tariff 50 €/kW
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Figure 9.11: Results of PV-BESS configurations where the storage system
is used to reduce the mean monthly peak (MMP) demand
and improve the PV self-consumption, for the real (red) and
synthetic (blue) datasets, where metadata is not yet taken into
account. Subplot (a) depicts the results for the conventional
sizing scheme, while subplots (b) present the reduction of the
MMP and annual invoice for relative sizes of both PV and BESS
components.

Figure 9.11 presents the performance of the generated dataset benchmarked
with respect to the real dataset for the final, individual downstream applica-
tion. Two values are displayed both for the conventional sizing scheme and
the relative sizings: the reduction of the mean monthly peak demand and
the annual invoice reduction.

While the distributions of the mean monthly peak demand reduction show
an agreeable match for the conventional sizing scheme, the generated data
encounters challenges in accurately reproducing the extended tail observed
in the annual invoice reduction distribution. This discrepancy can be at-
tributed to the incongruity in the annual consumptions within the generated
dataset. Figure 8.9 displays the distribution of the annual consumption in
the real and generated dataset. The generated dataset exhibits a reduced
representation of profiles with annual consumptions above 5,000 kWh.
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The leads to an underestimation of higher savings on the annual invoice due
to the chosen sizing schemes of both PV and BESS components with respect
to the consumer’s annual consumption, which is evident in the tail of the
distributions in Figure 9.11 (a). A higher overlap coefficient could reduce this
mismatch, although possibly at a cost of performance on other downstream
applications if other microbenchmarks score worse.

We can conclude that the synthetic dataset is able to reproduce the real
data behavior for the benchmarks comprising the applicability of PV-BESS
systems, e.g., the cases serving as proxy to benchmark the behavior of the
peak demands and the interday and intraday variability. Furthermore, the
generated data matches the performance of the real data for a wide variety
of relative component sizes, illustrating its suitability for these applications.
However, here we once more observe that the synthetic data is not yet able
to capture the full diversity in the real data, as metadata is not taken into
account during the generation and concatenation process.

9.3 Benchmarks at the aggregated level

Two case studies related to the HC of the distribution grid are considered as
benchmarks at the aggregated level: a study related to the voltage drop due
to the charging of electric vehicles, and a study related to the impact on the
LV distribution grid caused by widespread integration of heat pumps.

Section 9.3.1 discusses the impact of EV charging, comparing the perfor-
mance of the synthetic dataset to the real data. In contrast to the case studies
at the individual level, we use this case study to only investigate the usability
of the generated daily load profiles from Chapter 7. If the usability at the
daily level needs to be validated, a case study where the use of (disjoint)
daily profiles is a viable option is necessary. An EV HC study was deemed to
be suitable, as the problems related to EV charging happen at a daily level.
Furthermore, HC studies typically involve multiple runs with a Monte Carlo
allocation of consumers on nodes in the network. Hence, the disjoint nature
of the daily profiles on each node is of lesser importance for this benchmark.

Finally, Section 9.3.2 concludes the benchmarking analysis with a study
focused on the integration of heat pumps. This benchmark considers the
same LV distribution grid from Section 9.3.1, alongside a future scenario in
which the residential building stock is sufficiently insulated and equipped
with heat pumps. In this scenario, the aggregated peak demands serve as a
validation metric for the synthetic data, which simultaneously allows us to
quantify the impact of including high-frequency components in the synthetic
profiles.
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The HC study of Section 9.3.1 involves comparing voltage profiles across
a network using both real and generated consumption data assigned to
individual nodes. To determine the voltages at each node for each time step,
a steady-state load flow calculation is performed, starting with the active
power consumed at each bus.

Given that distribution networks tend to be radial networks which exhibit
higher resistance-to-reactance (R/X) ratios than transmission lines, an itera-
tive Backward-Forward Sweep (BFS) method is chosen to perform the load
flow calculations at each time step [221, 222]. Conceptually, this method
involves two main iterative steps after initializing all nodes on the network:

1. Initialization: The initial voltage at the substation, a slack bus, is set
to its specified value, typically its nominal value of 1 p.u. with zero
phase angle. All other bus voltages are initially set to this value as
well.

2. Backward sweep: Starting at the end nodes of the network with
no downstream connections, the branch currents flowing into each
load are calculated. For a bus j connected to bus i (downstream to
upstream), the current Iij is calculated as follows, with Sj the complex
power demand at bus j and Vj the voltage at bus j:

Iij =
S∗
j

V ∗
j

(9.2)

The current flowing through downstream branches can subsequently
be summed to obtain the total current flowing into each node.

3. Forward sweep: Starting from the substation, the currents calculated
in the backward sweep are used to recalculate the voltages for each bus
downstream, with Zij as the impedance of the line between bus i and
bus j:

Vj = Vi − IijZij (9.3)

4. Check convergence: The procedure stops after the mismatch of the
calculated and the specified voltages at the substation is less than a
convergence tolerance.

5. Repeat steps: If the calculated change is not within a specified toler-
ance, the newly calculated bus voltages are used as the initial voltages
for the next iteration of the backward sweep, followed by a forward
sweep.
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9.3.1 EV hosting capacity

The considered network is a representative network for Flanders of a semi-
urban area with a balanced mix between detached and semi-detached hous-
ing units. The considered grid is shown in Figure 9.12. A summary of its
specifications is given in Table 9.2.

Each household is assigned a load profile and an EV charging profile. Similar
to Section 7.7, only households with annual consumption between 2.750 kWh
and 3.750 kWh are considered for the original dataset. These profiles are
subsequently used to construct a dataset of similar size with synthetic load
profiles.

Figure 9.12: Line diagram of the considered LV distribution network.
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Table 9.2: Summary of the considered grid specifications.

Description Values

Transformer rating 250 kVA
Grid voltage 3x400 V + N

Distribution cable EAXeVB 4x 150 mm2

Connection cable EXVB 4x 16 mm2

No. of housing units 91
Max. feeder length 400 m
Distance to junction [8,..., 15] m

The EV charging is assumed to occur at 3.7 kW, and the EV charging profiles
are constructed based on the data sources andmethodology presented in Sec-
tion 4.3. These constructed charging profiles are subsequently superimposed
on the load profile assigned to that household. Furthermore, it is assumed
that the load distribution of the house-units is symmetrically connected to
the distribution cable (i.e., housing units 1 is connected to L1-N, 2 to L2-N, 3
to L3-N, 4 again to L1-N etc.).

Simulations are performed within an OpenDSS-Python environment, there-
fore the distribution network is modeled in OpenDSS [223] while the actual
power flow analysis is performed in Python through the OpenDSS COM
interface, as presented in [60, 224]. The method adopted for the modeling
of the cables is described in [225]. Results are obtained through a steady-
state power flow analysis performed every timestep.

To compare the performance of the measured and synthetic dataset, the
voltage level is calculated for every 15 minutes, for each individual household
over the course of one year.

Figure 9.13 displays the resulting distributions of the voltage levels through-
out the day, where the distributions contain the voltage levels of all 91 house-
holds and the 365 considered days of the year. The median value, 10th and
90th percentile are displayed in the figure together with the minimum and
maximum values of the voltage. The performance is evaluated in Table 9.3
by the MAPE and MAE.

As seen in Figure 9.13 by visual inspection, as well as in Table 9.3, the
synthetic dataset yields nearly identical results to the original data, proving
its suitability for EV-related hosting capacity studies. The synthetic dataset
adequately captures the simultaneity of the residential peak demands and
the EV charging behavior.
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Figure 9.13: Comparison of the distributions of the daily voltage profile for
the considered case study.

Table 9.3: Performance evaluation of the synthetic data compared to the
original data in the voltage drop profile of the EV HC case study
as shown in Figure 9.13. Pi denotes the ith percentile of the
distribution.

Metric P10 median P90

MAPE [%] 0.055 0.016 0.014
MAE [V] 0.127 0.037 0.031

9.3.2 HP hosting capacity

In the previous benchmark, the individual EV charging profiles for each day
exhibited a high degree of non-simultaneity due to the stochastic nature of
arrival and departure times, as well as the energy charged per session. In
contrast, the consumption of heat pumps is characterized by a high degree
of simultaneity. Therefore, for this validation, the voltage profile is not
our primary focus, as the synthetic data accurately reproduce it. Instead,
we concentrate on the LDC of the aggregated demand of 91 households
equipped with air-source heat pumps (ASHPs).

To maintain consistency with the EV charging case study, we randomly
selected 91 households. Themethodology for constructing the ASHP demand
profiles was detailed in Section 4.4. In this study, the 91 residential consumers
are assumed to reside in dwellings of 240 m2 with an E-level between 0 and
20, indicating a well-insulated building stock where heat pumps are expected
to be most effective and prevalent. We then superimposed the electric load
profiles of these heat pumps onto the residential smart meter data, both real
and synthetic, to quantify differences in the resulting aggregated demand
profile.
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The purpose of this case study is to investigate whether the inclusion of
high-frequency components in the synthetic data is necessary for accurately
modeling aggregated demand. HF details refer to short-term fluctuations
in energy usage, which can be significant at an individual level but may
average out when data is aggregated across many households. By focusing
on the LDCs of the synthetic data with and without HF details, we aim to
assess the impact of these HF components on the overall demand patterns
and determine their relevance in aggregated scenarios.

The LDCs of the aggregated demands are visualized in Figure 9.14. An
excellent match between the real and synthetic data in the aggregated LDC
can be observed over the course of the full year, regardless of the inclusion
of HF components in the synthetic data. However, the inset plot displays the
LDC for the highest 50 values of the aggregated demand. The synthetic data
without HF components underestimates the maximum peak demand by 8.2
kW, or 4.2%, although this deviation is only observed for less than 0.01% of
the time. In contrast, the synthetic data with HF components captures this
coincident peak more accurately, with a deviation of only 1.7% between the
real and synthetic data.

Figure 9.14: LDCs of the aggregated demand of 91 residential consumers
equipped with ASHPs for the real (red) and synthetic (blue)
data. The aggregated synthetic data with (full line) andwithout
(dashed line) high-frequency components are included in the
figure. The inset plot displays the first 50 values of the LDC.
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9.4 Conclusion

In this chapter, we validated the constructed synthetic data through a series
of downstream applications involving residential smart meter data. This
approach contrasts with the validations conducted in Chapters 7 and 8,
which focused solely on the similarity between the synthetic data and the
original data. The validation process in this chapter followed a two-track
approach, first focusing on downstream applications at the individual level
and subsequently discussing applications at the aggregated level.

At the individual level, the validation was threefold. First, we compared the
LDCs of the synthetic data to those of the real data to assess distributional
similarity. While the general behavior was reproduced in the parametric
distributions, the synthetic data was unable to replicate the step behavior
observed in the LDCs. We suggested that limiting the generation to clus-
ters of households with similar larger electrical appliances is necessary to
reproduce this behavior. Second, we investigated whether the synthetic
data is able to reproduce different elements of the electricity invoice, with a
focus on the mean monthly peak demand behavior and the commodity cost
under dynamic pricing. The synthetic data shows an excellent match for the
general trend over a wide range of annual consumption values. However,
they fail to capture the diversity present in the real data without metadata
to guide the generation and concatenation process. Third, we demonstrated
that the synthetic data can effectively replicate the performance of real
data in applications involving both PV and PV-BESS systems. However, the
need for metadata again became apparent in these downstream applications.
Without metadata to obtain consistent interday behavior, the synthetic data
failed to capture the diversity of the input samples.

At the aggregated level, our focus was on quantifying the impact of the
widespread integration of low-carbon appliances, such as electric vehicles
and heat pumps, on a typical Flemish LV network. The EV hosting capacity
validation demonstrated that our proposed approach accurately reconstructs
the impact of voltage drop caused by residential EV charging. Additionally,
we investigated the necessity of including high-frequency components in the
synthetic data for accurately modeling aggregated demand, specifically in
the case study involving the integration of heat pumps. The load duration
curves of the aggregate demand showed an excellent match between the real
and synthetic data, even without the HF components. However, the aggre-
gated peak demand was underestimated by 4.2%. If this level of accuracy
is critical for an application, our results suggest the inclusion of HF details
is necessary. Otherwise, the HF components at the individual level tend to
average out when aggregating over many residential consumers.
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The absence of metadata during the generation and linking process high-
lights a key limitation of the current validation. The input dataset used
throughout this work remains limited and metadata had to be inferred,
resulting in distinct clusters, as discussed in Chapter 6, that are too small
to serve as effective inputs for the GAN-based generation of annual profiles
in Chapter 8.

However, our validations in this chapter underscore the importance of in-
corporating metadata into the generation process at multiple stages. This
inclusion is crucial in the linking stage to ensure that synthetic profiles ex-
hibit interday variability that consistently aligns with the patterns observed
in real data. Metadata provides context such as appliance usage patterns
during heating and cooling seasons, which is necessary for producing real-
istic synthetic data. For example, without metadata, the generation process
is unable to (i) reproduce the step in the LDCs of the synthetic data, and
(ii) replicate the wide range of self-consumption values resulting from the
addition of PV installations to residential consumers.

Despite this limitation stemming from the proof-of-concept research phase
and the limited dataset, the results from the diverse benchmarks included in
this chapter demonstrate that the proposed proof-of-concept for synthetic
residential load modeling is able to capture the different temporal behaviors
inherent to real smart meter data, leading to acceptable performance for
downstream applications over a wide range of consumption values. This
validates the potential of our proposed two-step methodology to support
various downstream applications at both the individual and aggregated lev-
els. These applications include the integration of low-carbon technologies
such as electric vehicles and heat pumps, peak shaving initiatives by PV-
BESS installations, as well as grid planning at the aggregated level.
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Conclusions and perspectives

I may not have gone where I intended to go,
but I think I have ended up where I intended to be.

Douglas Adams

This thesis has developed a new methodology for generating synthetic res-
idential load data over a full year that accurately reproduces the peak de-
mand behavior. In this concluding chapter, we first contextualize the work
presented in this dissertation. Following this, the key methodology andmain
findings are summarized, highlighting the contributions and implications of
the research. Finally, we discuss recommendations for future improvements
and potential directions for continuing the development of this methodology,
aiming to improve its accuracy, applicability, and integration into practical
applications.

10.1 Motivation and objectives

The residential sector is a significant contributor to greenhouse gas emis-
sions, being responsible for approximately 20% of the total emissions in the
European Union. Given the increasingly urgent need for decarbonization
across all segments of society to mitigate the impacts of climate change, this
sector faces a critical transformation within a relatively short time frame of
less than three decades.

165
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A widespread deployment of PV systems, coupled with a rapid transition
to heat pumps and electric vehicles, is essential to reduce emissions. While
these transitions are driven by the urgent need to decarbonize, it is crucial
that distribution grids can accommodate the increasing number of these
appliances. Grid operators are therefore actively reinforcing their networks,
and various stakeholders are introducing economic incentives to encourage
consumers to spread their energy consumption. Smart meters and digitaliza-
tion play a key role in these efforts, enabling more effective grid management
through demand-side response and flexibility initiatives.

Smart meters record consumption behavior at sub-hourly timescales, pro-
viding unprecedented insight into consumer habits. This detailed data has
paved the way for innovative, data-driven digital business models, rapidly
evolving into a billion-dollar market. However, due to privacy concerns,
public access to residential smart meter data has quickly been restricted.

The research presented in this dissertation resides within the field of load
modeling, a research discipline dedicated at leveraging privacy-sensitive
smart meter data to produce synthetic datasets suitable for unrestricted
sharing. Research within this domain endeavors to unlock the vast potential
of smart meter data for innovative, data-driven research while upholding the
privacy rights of individuals.

Traditional loadmodeling techniques typically rely on unsupervisedmachine
learning to group consumers with comparable characteristics, followed by
the averaging and smoothing of their smart meter data to produce synthetic
load profiles. However, contemporary applications of smart meter data fo-
cusing on flexibility and demand response initiatives emphasize the need for
information on both the timing and amplitude of individual peak demands,
rendering traditional smoothened curves inadequate.

Given the complex interplay of factors that collectively shape the smart
meter output of residential consumers, we have argued that accurate syn-
thetic load models at this timescale and resolution cannot be achieved with
a single modeling method. Recognizing this complexity, we advocated for
the decoupling of the problem and the adoption of scale-appropriate model-
ing techniques for different timescales, each tailored to capture the unique
dynamics inherent to the timescale under consideration.

To systematically address these methodological challenges and refine the
primary research objective, we formulated several additional secondary re-
search questions. These secondary objectives, listed on the following page,
served as critical milestones, collectively contributing to achieving the pri-
mary research question of obtaining synthetic residential metering data with
realistic peak demand properties.
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Secondary research objectives
➢ To identify the use cases for granular smart meter data, both at

the individual and aggregated level. These downstream applica-
tions will serve as benchmarks of the synthetic data throughout
this dissertation.

➢ To define a rigorous mathematical framework to classify which
values can be considered ‘peak demands’.

➢ To construct a feature set capable of incorporating the peak
demand behavior, and to use this feature set in a clustering
methodology to investigate and quantify the difference in peak
demand behavior for different consumer categories.

➢ To construct daily load profiles with sufficiently stochastic peak
demands.

➢ To generate annual profiles with realistic multiscale time corre-
lations.

10.2 Summary of methodology and conclusions

Mathematical framework to identify peak demands

To achieve the first objective of this thesis, we utilized the concept of the Load
Duration Curve (LDC). The LDC is derived by ordering power consumption
measurements in descending order rather than chronologically. Historically,
LDCs have been extensively used for network planning and power plant
operations.

We began by validating a 5-parameter analytical expression for the LDC of
individual residential consumers. This proposed equation is characterized
by (i) a steep exponential decline representing stochastic peak demands,
followed by (ii) a step reflecting the consistent concurrent consumption
behavior of larger household appliances, before slowly transitioning into (iii)
the residential base load.

The point of maximum curvature in the exponential decay of the LDC was
identified as the threshold for peak demands. Any value above this unique
consumer-specific threshold was classified as a peak demand. We derived an
expression for this point of maximum curvature based on the LDC equation.
Finally, applying this threshold to our dataset of residential consumers re-
sulted in, on average, 2.8% of the consumption values being labeled as peak
demands on an annual basis.
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Constructing a feature set with peak-based properties

Armed with a rigorous method to define peak demands at the level of indi-
vidual consumers, we subsequently constructed a new feature set designed
to capture and quantify the stochastic behavior of these peak demands. Two
types of features were developed: first, the fraction of total consumption
occurring within specific daily or weekly periods; second, the fractions of
peak demands occurring during these same periods.

The constructed feature set was used in a hierarchical clustering process
to build 10 clusters from the dataset under consideration. The clustering
algorithm produced compact clusters with clear connections to real-life ap-
plications involving residential peak demands, such as demand response ini-
tiatives and the applicability of battery storage systems for peak shaving. The
timing of consumption was the primary factor driving the separation of the
full dataset into three distinct clusters, aligning with the current synthetic
load profiles provided by the Flemish regulator. Subsequently, the timing of
the demand peaks emerged as the secondary factor for transitioning from
the initial 3 clusters into 10 distinct clusters.

In the final analysis of this secondary research objective, the stochastic
nature of peak demands was investigated by examining the relationship
between consumption and the presence of peak demands in the same time
period. The disproportionate presence of peak demands in certain peri-
ods was quantified, revealing a linear relationship between the fraction of
consumption and peak demands in each time period. The spread in these
results quantified the stochasticity of the peak demands, highlighting the
limitations in the general applicability of the observed relations.

However, the constructed clusters demonstrated a clear connection to the
predictability and variability of consumption and peak behavior, effectively
reducing the stochasticity of these peak demands and their timing. This
alignment underscores the robustness and coherence of the clustering ap-
proach, as it successfully grouped consumers with similar consumption pat-
terns and peak demand behaviors.

The clusters and metadata resulting from this secondary research objective
were used throughout the remainder of this work to highlight the necessity
of incorporating metadata for producing realistic data. However, due to the
size limitations of the initial dataset, the resulting clusters were relatively
small, which posed challenges for performing cluster-specific synthetic data
generation. Consequently, the data generation processes developed for both
daily and annual levels as discussed in the following sections should be
regarded as proof of concept rather than fully scalable solutions.
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Daily load profiles through decomposition-recombination

The fourth research objective of this thesis was to explore the use of time-
frequency analysis to construct daily load profiles, with a particular focus on
addressing the stochastic nature of peak demands. Time-frequency analysis
was explicitly proposed as a method because it allows us to decompose the
load profiles into their constituent frequency components. By doing so,
we can treat the stochastic peak demands as high-frequency components
superimposed on a more slowly varying, low-frequency base load.

A multi-resolution analysis with the Haar wavelet as mother wavelet was
used to decompose daily smart meter data in their low-frequency and high-
frequency components. The high-frequency component of the load profile
corresponding with one household can be rescaled and shifted, and subse-
quently superimposed on the approximated profile of a different household.
This yields a synthetic load profile with a given daily peak demand and
daily consumption. By sampling the two-dimensional distribution of (i) the
daily consumption and (ii) the daily load factor of the original dataset, their
relation is preserved in the resulting generated profiles.

The generated profiles were benchmarkedwith respect to the original dataset
for the daily peak demand behavior. The seasonal behavior in the original
data is preserved by limiting the generator to the daily level. Furthermore,
the distribution of the synthetic daily peak demands showed a MAE of 0.09
kW, corresponding to a MAPE of 4.1%, compared to the original dataset.

A limitation of the proposed methodology was identified, concerning the
reconstruction of daily load profiles with a high peak demand. These profiles
tend to have a significant contribution of the high-frequency component to
their peaks, which leads to fewer other households which can be used for
constructing a synthetic profile with a similar peak demand. This highlighted
the trade-off between anonymization of the privacy-sensitive data and the
computational process involved in the load profile generation.

Annual load profiles through Generative Adversarial Networks

At the annual level, a different modeling technique is suggested, as annual
consumption profiles exhibit more consistent and correlated behaviors over
longer timescales compared to daily load profiles. The complex interplay
of these behaviors across interday, weekly, monthly, and seasonal levels ne-
cessitates the use of advanced modeling techniques. Generative Adversarial
Networks (GANs) are particularly well-suited for this task, as they have been
shown to reproduce the patterns and correlations present in long-term data.
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After reviewing literature on time series generation, we opted for the Dop-
pelGANger architecture for its established capability to capture long-term
time correlations and its capacity to generate short-term intraday variations
efficiently, particularly at the weekly level. To evaluate the output of the
trained GANs, we introduced three application-specific microbenchmarks.
These benchmarks assessed the synthetic dataset’s fidelity in terms of (i)
annual consumption values, (ii) daily consumption variability, and (iii) time
correlations within the dataset.

In a sensitivity analysis of five key parameters influencing the generation
process, 6,750 GAN models were trained. Through this in-depth analysis,
we managed to identify a set of hyperparameters that effectively eliminated
mode collapse in both the frequency and amplitude domains, where the
difference in learning rates between the generator and discriminator proved
to be instrumental.

Drawing from the insights gained in the sensitivity analysis and the perfor-
mance of the converged model on the three microbenchmarks, we affirmed
that DoppelGANger can generate annual load profiles of daily consumptions
that (i) align with the distribution of total annual consumption and (ii)
exhibit similar variability. The batched generation ensures accurate weekly
correlations, while the seasonal correlation remains robust due to the smaller
number of individual RNN generation steps.

Validation through downstream applications

In the final segment of this thesis, we evaluated the performance of our
constructed synthetic dataset across a diverse array of practical downstream
applications, selected through a literature review on the uses of residential
smart meter data. The annual profiles generated through GANs were com-
bined with daily profiles obtained through a wavelet-based decomposition-
recombination scheme to obtain annual load profiles with high-frequency
variability and realistic temporal short-term and long-term dynamics.

At the individual level, the validation was threefold. We compared the
distributional similarity of the 5 parameters describing the individual LDCs,
followed by a comparison of the mean monthly peak demand as proxy for
capacity-based grid tariffs. Finally, we demonstrated that the synthetic data
can effectively replicate the performance of real data in applications involving
both PV and PV-BESS systems. However, without metadata to guide the
generation and linking process to obtain consistent intraday behavior, the
synthetic data failed to capture the diversity of the input samples.
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At the aggregated level, our focus was on quantifying the impact of the
widespread integration of low-carbon appliances, such as electric vehicles
and heat pumps. The EV hosting capacity validation demonstrated that
our proposed approach accurately reconstructs the impact of voltage drop
caused by residential EV charging. Additionally, we considered a case study
involving heat pumps to investigate whether it is necessary to include high-
frequency components in the synthetic data for accurately modeling ag-
gregated demand. Indeed, the HF components at the individual level tend
to average out when aggregating over many residential consumers. The
load duration curves of the aggregate demand showed an excellent match
between the real and synthetic data, even without the high-frequency com-
ponents. However, our results showed that the aggregated peak demand was
underestimated by 4.2% by omitting the high-frequency components.

Overall, the outcomes of this thesis confirm the viability of the proposed
two-step methodology for generating synthetic, high-frequency annual load
models as a viable alternative for real, privacy-sensitive residential smart
meter data across a broad spectrum of practical applications. Nonetheless,
it is important to acknowledge the limitations identified throughout this
dissertation, which stem from its proof-of-concept nature. Moving forward,
we expect that improving the quality of the metadata, the size of the training
data, labeling the time series for GAN training, and more diversification in
the microbenchmarks evaluating the GAN models will further increase the
coherence and fidelity of the synthetic data. These recommendations will be
further elaborated upon in the following section.

10.3 Recommendations and further research

The introduced methodology for generating synthetic smart meter data was
trained and validated on a limited dataset, consisting of one year of metering
data from 1,422 consumers. An evident area for improvement is to use a larger
dataset that spans multiple years and includes a diverse range of residential
consumers for the training process. A larger dataset is particularly important
when partitioning into clusters, as clusters need to be of sufficient size
for effective GAN-based modeling of annual profiles of daily consumption.
Additionally, incorporating multiple years of data would enable better inte-
gration of seasonal effects into the synthetic data, increasing its accuracy and
applicability. Consequently, discussions are ongoing with Fluvius, the data
manager of smart meter data in Flanders, to obtain a larger dataset spanning
a longer time period, as this would allow us to advance the introduced
methodology beyond its current proof-of-concept phase.
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Two future research directions for the stochastic generation of daily load
profiles, as introduced in Chapter 7, are currently being considered. First,
we currently use a time resolution of 2 hours for the low-frequency approx-
imations, with each consumer having the same LF time blocks (e.g., 00:00
to 02:00, 02:00 to 04:00, etc.). A refinement to this approach is to introduce
more diversity by varying the start time for the LF approximation for each
consumer. Second, we are considering other time resolutions that align better
with specific practical applications, such as the time-of-use periods for grid
tariffs, or the 4-hour time blocks used for aFRR frequency response.

Furthermore, themain limitations of themethodology were identified during
the GAN-based annual load modeling presented in Chapter 8. As discussed,
evaluating the fidelity of GAN outputs in a rigorous manner is difficult with
no separate objective function for the generator to evaluate the generated
data sequences, nor standard agreed-upon evaluation criteria. We intro-
duced three microbenchmarks to evaluate the output dataset. However,
there is a degree of arbitrariness in the selection of these microbenchmarks.
They were chosen to be application-specific, gauging properties relevant in
the context of smart meter data analytics.

However, several areas for improvement were identified. First, in the auto-
correlation microbenchmark, minor discrepancies were observed within time
lags of up to twoweeks. These deviations were traced back to the challenge of
simultaneously capturing both the weekly calendrical cadence and variable
behavior during holiday periods. We suggest that labeling the datetime series
to include information on holidays and school closures would enable the
GAN to better incorporate this information, thereby improving the quality
of the synthetic data. Second, the presence of electric heating significantly
skews the autocorrelation depending on whether it is the heating or cool-
ing season. Limiting the generation process to a cluster containing only
households with electric heating would make this microbenchmark more
informative. Additionally, a promising future research direction is to split
the generation process between heating and non-heating seasons.

A final recommendation is related to the downstream applications selected
for this thesis. While only a limited subset of the numerous potential appli-
cations for residential smart meter data was chosen for the validation of the
synthetic data, it is evident that additional use cases are necessary. This
broader validation will help confirm the robustness and versatility of the
synthetic data across a wider range of practical applications.
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Beyond future research directions, we are considering the dissemination of
our work through the development of an open-source Python package that
incorporates all aspects of the proposed two-step methodology for synthetic
smart data generation. Making our research more easily accessible in this
manner would enable broader use and further refinement by both the re-
search community and industry practitioners. However, this endeavor would
only be pursued subsequent to validating our proof-of-concept methodology
on a larger and more contemporary dataset of residential metering data.
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B
List of Software Packages

In the context of this PhD dissertation, one simulation model was specifi-
cally developed using results of our research. Furthermore, several software
packages were used to facilitate our simulations. Below we first provide a
description of the developed software model, after which an alphabetical
overview is given of software packages which have been used extensively
without alterations.

Developed software model

Simulator home batteries

In 2021, EELab/Lemcko developed a publicly available simulator to assess
the economic feasibility of residential battery systems, commissioned by the
Flemish Energy and Climate Agency. This simulator incorporated elements
from this PhD thesis related to the characterization of residential consumers
and peak shaving algorithms.

From its launch in April 2021 until its retirement in March 2024, the home
battery simulator was visited 265,092 times. This underscores the significant
market potential for accessible, data-driven, digital tools. The high engage-
ment rate highlights the growing interest among consumers in sustainable
energy solutions and the importance of providing user-friendly and objective
resources to guide their decision-making.
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Used software packages

Gretel Synthetics

Gretel Synthetics is a library designed for generating synthetic data using
advanced machine learning techniques. It is part of the Gretel.ai platform,
which focuses on privacy-preserving machine learning and synthetic data
generation. We used the implemented version of the DoppelGANger algo-
rithm as optimized by Gretel.ai as GAN architecturue of choice throughout
Chapter 8.

lmfit

The fitting procedure described in Chapter 5 to fit an analytic expression of
the LDC to the raw data was performed through the lmfit package. This
package is designed for nonlinear optimization and curve fitting, providing
a high-level interface to implement custom equation shapes and parameter
constraints.

PyWavelets

We made extensive use of PyWavelets (pywt) in Chapter 7. The PyWavelets
package is library dedicated to wavelet transforms in Python. As discussed in
Section 7.4, wemade extensive use of the 1DDiscreteWavelet Transform and
wavelet-based decompositions to decompose the high-frequency daily load
profiles in a low-frequency approximations and a high-frequent oscillating
detail function.

SciPy

SciPy is a package that is widely used in the scientific community for a wide
array of tasks involving scientific computing. In Chapter 6, we made use
of the agglomerative clustering algorithm with Ward’s linkage method as
implemented. Furthermore, theWasserstein-1 distance was used in the same
chapter as distance metric for the distributional analysis.
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