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Abstract

Cellular automata (CAs) are fully-discrete dynamical models that have re-
ceived much attention due to the fact that their relatively simple setup can
nonetheless express highly complex phenomena. Despite the model’s the-
oretical maturity and abundant computational power, the current lack of
a complete survey on the ‘taxonomy’ of various families of CAs impedes
efficient and interdisciplinary progress. This review paper mitigates that
deficiency; it provides a methodical overview of five important CA ‘fam-
ilies”: asynchronous, stochastic, multi-state, extended-neighbourhood, and
non-uniform CAs. These five CA families are subsequently presented from
four angles. First, a rigorous mathematical definition is given. Second, we
map prominent variations within each CA family, as such highlighting math-
ematical equivalences with types from other families. Third, we discuss the
genotype and phenotype of these CA types by means of mathematical tools,
indicating when established tools break down. Fourth, we conclude each sec-
tion with a brief overview of applications related to information theory and
mathematical modelling.
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1. Introduction

1.1. Definition

A cellular automaton (CA) is a discrete dynamical system, first defined
by John von Neumann while attempting to abstractly mimic and explain
biological self-replication [1]. He describes an n-dimensional (n-D) infinite
regular lattice whose cells can take a discrete number of states. The state of
every cell is evaluated at regular time steps, obeying a rule that only depends
on its own state and the states of cells in its proximity. We represent such
an object as a sextuple C as follows.

Definition 1.1 (Cellular automaton). A cellular automaton (CA) is a sex-

tuple C = (T, S, s, 50, N, ¢}, where

1. T is a countably infinite reqular tessellation of an n-dimensional Fu-
clidean space R™ consisting of cells ¢;, 1 € Z;

2. S is a finite set of k states, often S C Z

3. The output function s : T X Z — S yields the state value of cell ¢; at
the t-th discrete time step, i.e. s(c;,t);

4. The function sy : T — S assigns to every cell ¢; an initial state,
i.e. s(c;,0) = so(c;);

5. The neighbourhood function N : T — P(T) maps every cell ¢; € T to
an element in the power set P(T), i.e. a finite subset of T, such that

N(Cz) = {Ci,h e ,Cz‘,|N|} = {ng}y\:ﬂp

where ¢; ; 1s the j-th neighbour of cell c;.
6. The function ¢ : SN — S determines the next state of cell ¢;, i.e.

s(ci,t 4+ 1) = ¢(3(N (i), 1)),

where §(N(c;),t) is the tuple (s(ci’j,t))‘jj\:q. This function ¢ is called
the ‘local update rule’.

By acting on all cells, ¢ induces a ‘global update rule’ ® : S%" — S=" on the
space of all possible configurations.

Despite their simple nature, CAs are capable of generating spectacular
complexity; some have even been proven to be computationally universal [2].
The potential of this “new kind of science” 3] has lead to an increasingly
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wide interest from scholars over the entire scientific landscape [4], roughly
classified into three axes of study [5]: pure mathematics, computer science,
and mathematical modelling. While the maths of CAs is concerned with for-
mal CA structures and symbolic dynamics [6], the latter two axes of study
are associated with a number of applications, a selection of which we list in
Tab. 1.1. In virtually all of these domains, however, one or more of the defin-
ing items of the CA ‘sensu stricto’ (cf. Def. 1.1) are generalised. This results
in abandoning spatiotemporal uniformity, locality, and/or synchronicity [7],
and allows for what we may call CAs ‘sensu lato’.

The goal of this review paper is to map the taxonomy of the most in-
fluential CA variations that go beyond the classical definition in Def. 1.1,
additionally indicating the implications of the particular extension on the
mathematical structure and behaviour, and listing a number of prominent
applications. Rather than an in-depth discussion of the applications, or a
lengthy collection of scrutinous formal proofs, our ambition is to establish
an overview of the CA landscape starting from the previous definition of a
classical CA.

While Bhattacharjee et al. |7]| established a similar survey, the merit of
our work lies in its highly systematic approach. Our hope is that this will
help the reader to observe the large collection of CA extensions not as a
melting pot of trial and error, but as a well-structured family tree. Like a
taxonomist, we identify various CA families, each containing several types
with distinct definition variations. Unlike in biological taxonomy, however,
we encounter CA types that belong to multiple families, due to a demon-
strated mathematical equivalence.

1.2. Elementary CAs

One type of CA sensu stricto, the so-called ‘elementary’ CA (ECA), has
been studied extensively [2, 149, 150], and serves as the CA archetype. This
is due to the observation that such CAs are the simplest non-trivial type
(leaving 1-neighbour binary CAs aside [151]). The ECA is defined by further
narrowing Def. 1.1 as follows:

Definition 1.2 (Elementary cellular automaton). An elementary cellular
automaton (ECA) is a sextuple C = (T, S, s, so, N, @), where

1. T s a countably infinite reqular tessellation of the 1-D Fuclidean space
R consisting of cells ¢;, © € Z;
2. S is the binary set {0,1};
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Figure 1.1: Rule table (left) and a spacetime diagram (right) for elementary rule 110,
which can generate complex behaviour [152], despite its minimal set-up.

3. The output function s : T X Z — S yields the state value of cell ¢; at
the t-th discrete time step, i.e. s(c;,t);

4. The function sy : T — S assigns to every cell ¢; an initial state,
i.e. (i, 0) = so(cy);

5. The neighbourhood function N : T — T2 maps every cell ¢; to the set
N<Cz) = {Cifla Ci, Ci+1};

6. The local update rule ¢ : S — S determines the cell state evolution,
i.e. s(ci,t+1) = é(s(eim,t), s(ci, t), s(ciy, t)).

This setup allows for 22" = 956 local update rules ¢ commonly referred to
as elementary or ‘Wolfram’ rules, and denoted by an integer W (¢) from 0 to
255 calculated on the basis of the rule table [3]. We observe two symmetries:
the CA’s overall dynamics remain the same when taking the mirror image
(‘reflection’), and upon switching states (‘complement’). This implies that
we are left with only 88 independent rules (see e.g. [150]). Some of these
very simple rules are still capable of generating complexity [152], e.g. rule
110 (Fig. 1.1).

Practically all CA-related research outside pure mathematics considers
a finite tessellation 7* C T consisting of N cells {¢; | 0 < i < N}, in
order to allow for ‘in silico’ simulations. It is then required to specify the
neighbourhood of boundary cells ¢; and ¢y, resulting in a slight alteration of
Def. 1.2:

Definition 1.3 (Finite ECA with boundary conditions). A finite ECA with
N cells and boundary conditions (BCs) is a sextuple C = (T*, S, s, so, N, 9),
as defined in Def. 1.2, with changes to properties 1 and 5:

1. T* is a finite regular tessellation of R consisting of N cells {c1,...,en};
5. The neighbourhood function N : T* — (T*)* U {co, cny1} maps every
internal cell ¢; to the set N'(¢;) = {ci_1,¢i,Civ1}-
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We rename 7* — 7T for notational convenience and assume a finite number
of cells in this survey, unless stated otherwise. The BCs specify the state of
“fictitious’ cells ¢p and ¢y 1, most commonly identifying s(¢q) = s(cy) and
s(eny1) = s(eq) (periodic boundary conditions). We provide an overview of
possible BCs in Tab. 1.2. The choice for particular BCs can significantly af-
fect the dynamics of the system, in particular the propagation of information
and the emergence of patterns [153].

ECAs have historically gotten attention as random number generators
[27], for inspiring computer processor design [154], and they have served as
toy models, e.g. in traffic modelling [155]. Occasionally, the effect of BCs
on such mathematical models is explicitly investigated, e.g. in pedestrian
flow models [156]. It should be clear, however, that the number of practical
applications of ECAs is limited, which motivates extensions to non-classical
CAs. The five CA families discussed in this paper will be defined as a (often
minor) variation on Def. 1.2, tacitly including the possibility of adding BCs
such as in Def. 1.3.

1.8. CA properties as taxonomic tools

Research into the nature and behaviour of CAs has generated a large
amount of jargon denoting particular properties that allow for CA classifi-
cation. In a recent survey, Vispoel et al. [157| distinguishes four approaches
for characterising CAs: (i) classification based on the rule table, (ii) iden-
tification of global properties, (iii) a division into behavioural classes, and
(iv) quantification based on local properties. The former two may be called
‘genotypic’ (Tab. 1.3), and the latter ‘phenotypic’ (Tab. 1.4), because they
resp. take information from the model setup (definition) and the model out-
come (simulation).

We will use some of these properties as tools to distinguish between vari-
ous CA families and types, either by demonstrating that the properties differ
with those of their elementary counterpart, or by arguing that the properties
are ill-defined for the non-classical CA at hand.

1.4. Owverview of CA selection and presentation of our methodology

All five CA families that (generally) require an extension of the classical
definition are listed in Tab. 1.5. For completeness we highlight that this
table contains CAs for which some non-trivial version of the definition is still
within the domain of the classical CA (e.g. a k-state CA). On the other hand,
some families are omitted, either because we consider them both rare and
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inert (e.g. ‘polygeneous’ CAs [208]), or because they are too remote from the
canonical research field and would deserve a separate survey (e.g. quantum
CAs [209]). For a historical perspective, the bar chart in Fig. 1.2 shows the
number of publications per five-year period, associated to ECAs and to each
of the five CA families. The absolute numbers in this figure are of course
highly dependent on the formulation of the query in the search engine of
Web of Science (cf. figure caption), but an interesting trend is visible in the
normalised counts. First, an increasing number of articles is written for most
CA families, with the clear exception of asynchronous CAs. Moreover, the
number of new papers on non-uniform CAs and continuous/fuzzy CAs seems
to have reached a plateau.

Table 1.5: List of CA families discussed in this review paper. An asterisk (*) indicates
that such a complete survey is missing, followed by cited papers that perform a partial
review.

CA family Nature of the definition extension Surveys

Asynchronous  The local update rule ¢ no longer applies [210], [151],

(ACA) to all cells simultaneously. 5]
Stochastic Cells update their state (partially) ran- *[211],
(SCA) domly with regards to location, timing, [212], [213],
or update rule. [214]
Multi-state The state space is no longer binary but *[215],
(MSCA) k-nary or continuous. [216], [217]
Extended The neighbourhood N (¢;) of a cell ¢; is  *[218],
neighbourhood larger in space and/or time, differently [219], [220]
(ENCA) shaped, or no longer consist of its direct
(‘physical’) neighbours.
Non-uniform The local rule ¢ can take more arguments [221], 7]
(vCA) than simply the neighbourhood configu-

ration, allowing for heterogeneity.

We follow the same approach within each of the five families of non-
classical CAs. First, we motivate the family’s existence and formalise its
definition. Second, we present the taxonomy of the various CA (sub)types
belonging to the family at hand, generally guided by the kind and the de-
gree of the extension. We highlight when particular definitions encompass

10



Number of publications per 5-year period in Web of Science Core Collection
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Figure 1.2: The number of publications found in the Web of Science Core Catalogue
from searching six different topics, grouped in five year periods, and normalised over
the total number of publications. These topics are “elementary cellular automaton/a”
(black), “asynchronous cellular automaton/a” (red), “stochastic/probabilistic cellular au-
tomaton/a” (green), “continuous/fuzzy cellular automaton/a” (orange), “network automa-
ton/a” OR “graph/nonlocal cellular automaton/a” (purple), and “non-uniform /hybrid cel-
lular automaton/a”. The absolute number of recorded publications is indicated in paren-
theses in the legend.

others within the same family, and especially when they are mathematically
equivalent across families. Third, we demonstrate how the genotype and
phenotype of these CAs compare to that of ECAs and other CA families.
We indicate when a particular characteristic (referring to Tabs. 1.4 and 1.3)
breaks down, inhibiting a quantitative comparison. Fourth, we briefly discuss
how the unique character of the CA family allows for a number of applications
(referring to Tab. 1.1).

Fig. 1.3 shows the central diagram related to the taxonomy presented in
this review paper. This diagram summarises the relationship of the various
CA families with the ECA and with each other, and will serve as a conve-
nient mnemonic device for the reader while we progress through our detailed
review.

2. Asynchronous CAs

2.1. Motivation and definition

Global synchronisation of the local update rule is contradictory to the
CA philosophy (claiming to be ‘fully local’), and often does not reflect the
nature of the modelled phenomenon; nature has no ‘central clock’ [222|. For
these reasons, the assumption of synchrony was challenged by Priese [223|

11



Figure 1.3: We identify five families of CAs, based on their divergence from the elemen-
tary cellular automaton (ECA). Some important identities and trade-offs between these
families are indicated by arrows annotated with the required change in interpretation.
Clockwise, the diagram contains non-uniform (vCA), multiple-state (MSCA), extended-
neighbourhood (ENCA), asynchronous (ACA), and stochastic cellular automata (SCA).

(investigating the mathematical and computer-scientific implications), and
Ingerson and Buvel [224] (with a more phenomenological approach).

Of course synchrony does occur in nature (see e.g. references in [225]),
but rather than interpreting this observation as a justification for top-down
synchrony-by-design, it better suits the spirit of CA research to regard this
as a challenge to find bottom-up synchrony emerging from the dynamical
system. In fact, it was counter-intuitively shown in the recent past that
global synchronisation (from arbitrary initial conditions) can even only be
achieved by going beyond synchronous deterministic updating [226]. In any
case, this suggests that the study of asynchronous CAs (ACAs) is not merely
an exercise in computational tinkering, but motivated by the principles of a
proper scientific model.

Expanding on the ECA paradigm, we define elementary ACAs by ex-
panding Def. 1.2 (see also Fig. 1.3).

Definition 2.1 (Asynchronous cellular automaton). An asynchronous cellu-
lar automaton (ACA) is identical to an ECA (Def. 1.2), with the exception
of the suxth property, which becomes:

12



6. The dynamics of cell ¢; at time t is determined by either the identity
rule (the state remains unchanged), or one of the possible elementary
Wolfram rules ¢ : {0,1}* — {0,1}.

Spatiotemporal variations in this choice define the various ACA subtypes.

2.2. ACA taxonomy

Despite the long tradition of ACAs, no overall consensus exists in liter-
ature on what defines a particular subtype, nor on its nomenclature. Rel-
atively recent work concerned with statistics on ACA spacetime diagrams
(e.g. |5, 151, 210]), has however somewhat converged on a number of sub-
types, of which we display the taxonomy below.

2.2.1. Spatial ACA variations
Partially asynchronous CAs. An ‘a-asynchronous CA’, also known as an m-
ACA [227] or block-sequential ACA [228], allows for partial synchrony, and
is contrasted with what Fateés calls fully asynchronous updating |5]. Whether
or not a cell is updated depends on the ‘synchrony rate’ a € [0, 1]. The limit
situation where o = 1 reduces the ACA to the synchronous case, while a = 0
induces an entirely static CA.

The synchrony rate is mostly (and most generally) interpreted as a prob-
ability on a cell-per-cell basis:

d(8(N(¢),t)), with probability a,

. . (2.1)
s(cg, t), with probability 1 — «.

s(ei,t+1) = {

We identify the set of updated cell indices at time step ¢t as Z(t) C {1,..., N}.
Since |Z(t)| ~ Bin(V, «), with expectation value aN, Eq. (2.1) is (up to a
rounding error) equivalent with

H(SN(c;), 1)), ifie Z(t),

2.2
s(ci, ), else. (22)

s(ei,t+1) = {

Clearly, there are many other ways to choose the set Z(t), resulting in dif-
ferent dynamics. Worsch [229], for example, discusses a particular type called
a ‘neighbourhood-independent’ ACA, additionally demanding that neigh-
bouring cells cannot update simultaneously. It is more common practice,
however, to demand that the number of updated cells per time step is always
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exactly |aN|. The fixed-size subset Z(t) is typically chosen in an entirely
N
stochastic fashion, allowing for <|Z(t)|) choices. Note that if Z(t) = Z is

static, we arrive at a trivial two-rule spatially non-uniform CA, where one of
the rules is the identity operator (see Section 6).

Some authors have explored updating different cells with different fixed
periods or phases (e.g. Ingerson and Buvel [224]) which is equivalent to deter-
ministically selecting Z(t) at any time step. Note, however, how in these cases
one tyrant overthrows another: the global deterministic clock is replaced by
a global deterministic selection of the update set. Such a non-stochastic Z(t)
is interesting from a mathematical point of view, however, as Worsch [229]
demonstrated that for all deterministic choices of Z(t), a single ACA with
a radius-1 rule can simulate all others. That is to say: precisely the same
dynamics are achieved by either (i) choosing a set Z(t) given a rule ¢, or
(ii) choosing a rule ¢ given a set Z(t). Similar equivalences were shown by
Aracena et al. [228] for random Boolean networks (see Section 5) with var-
ious asynchronous update schemes. In a classic paper, Golze [230] showed
how to construct a synchronous CA in d 4+ 1 dimensions from an ACA in d
dimensions, by reinterpreting time as a spatial dimension.

The ACA is fully asynchronous if |Z(t)| = 1. Many authors, including
Schonfisch and De Roos [210], consider full synchrony to be more natural
in the context of mathematical modelling, because physical time can be in-
finitely divided (up to the Planck limit). Synchrony, in other words, is a
fictional notion, as events are never really simultaneous.

Fully asynchronous CAs. The most general approach to fully asynchronous
CAs, a ‘random independent’ ACA from a uniform choice, is to select and
update a single cell at random, i.e.

P(3(N (i), 1)), ifi=k,

2.3
s(c, t), else, (2:3)

s(e,t+1) = {

where k is chosen randomly and independently from the set {1,..., N}. The
number of updates of cell 7 in N time steps is again binomially distributed
~ Bin(N, 1/N) with expectation value 1. Next, for ‘randomly ordered’ ACAs
with a ‘random new sweep’, we further impose that updating the N cells oc-
curs in cycles. That is to say: every N-th time step, a permutation of the
tuple (1,...,N) is randomly chosen, and the cells are updated in this order.
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This prevents cells from updating more than once every cycle, and makes
sure any given cell is updated at least once after 2N time steps. Narrow-
ing this down further, said permutation is chosen randomly but only once
(‘random fixed sweep’), resulting in any given cell being updated after ex-
actly N time steps. One may distinguish further the particular case where
the updating happens according to ascending cell number, in a ‘line-by-line
sweep’. This assures, after all, that always precisely one neighbour will have
been just updated, resulting in spatial correlations [231]. In any of these
fully-asynchronous cases, the expectation value for the number of time steps
between two consecutive updates is simply N (see Tab. 1 in [210] for all
statistics).

2.2.2. Temporal ACA wvariations

Schonfisch and De Roos distinguish ‘step-driven’ and ‘time-driven’ asyn-
chronous updating [210]. In the former approach — tacitly assumed up to
this point — some rhythmic notion of discrete time remains. In the latter
approach, discrete time is abandoned and the update of a cell depends on
some continuous time-dependent probability, typically according to an ex-
ponential distribution. The difference between CAs with various temporal
asynchronies is arbitrary, however. After all, due to the unidirectionality of
time, a bijective mapping between step-driven updates (computer time) and
time-driven updates (physical time) is always possible [5].

2.3. ACA genotype and phenotype

Introducing asynchronous updating affects the way CAs can be described
mathematically, as well as the way they behave dynamically.

2.3.1. The ACA genotype

All metrics used to classify the rule table (Tab. 1.3, top) are still fully
applicable to any of the above ACA types, with respect to the rule ¢ that
updates the selected ACA cells. The rule table itself could be extended to
include, with a particular probability, the identity operator; this is however
identical to the rule table of a stochastic CA, and will therefore be discussed
in Section 3.

Global properties (Tab. 1.3, bottom) are affected not only by the local
rule ¢, but also by the selected subset Z(t). Generally, therefore, the math-
ematics regarding attractor structure and topological dynamics now involve
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Z(t), hindering closed expressions, but some progress was made for particu-
lar cases. Hansson et al. [232] formally identified all 1-D ACAs with periodic
boundary conditions (including non-elementary CAs) that are independent
of the asynchronous update order. Amongst these ACAs, Macauley and
Mortveit [233] reviewed and catalogued those with a random fixed sweep
for all 104 ECA rules for which the set of periodic points is independent of
update sequence. Manzoni [234] generalised a number of mathematical prop-
erties (e.g. surjectivity and injectivity) to study periodic orbits in the space
of configurations of fully-asynchronous CAs, highlighting how these formal
results can contribute to expanding knowledge of properties that are already
known for synchronous CAs.

Regarding computational complexity, some ACAs have been shown to
support universality [235]. While more recent universal ACAs [236] are
less complex than the original proposals, they however still require non-
uniformity of the local update rule (see Section 6).

2.3.2. The ACA phenotype

Spacetime diagrams of ACAs can be analysed in exactly the same fashion
as those of ECAs, keeping in mind that fewer cell updates occur during a
fixed time interval. For a fair comparison, ACA diagrams are therefore typ-
ically cropped to only show configurations after (on average) all cell states
are updated. Behavioural classifications and local properties (Tab. 1.4) can
subsequently be deduced from the resulting diagram, e.g. entropy-based clas-
sification [237]. Notably, the choice of Z(¢) introduces additional degrees of
freedom that can be perturbed when investigating the CA phenotype, es-
pecially when results are plotted against the quasi-continuous a parameter.
Fatés 5] emphasises that this is of particular help in the (computational)
study of self-organisation and robustness.

Baetens et al. [238] use Lyapunov exponents [194, 197| to examine the
stability of 2-D totalistic ACAs, comparing four fully-asynchronous update
schemes. Using mean-field theory based on a large number of simulations,
they show that introducing asynchronicity strongly affects stability and may
even change the CA’s Wolfram class. This is confirmed in the study by
Bouré et al. [239], who additionally suggest that the robustness properties
of a system may actually be used to probe the desired update scheme of
the underlying mathematical model. Lumer and Nicolis had done similar
research some ten years prior [240] on 2-D continuous CAs (or ‘coupled-map
lattices’, see Section 4). Using tools directly related to the Lyapunov expo-
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nents, they demonstrated that ACAs remain stable for higher values of the
logistic map’s nonlinearity parameter, compared to their synchronous coun-
terpart, especially for a random new sweep. Perhaps most convincing in its
simplicity, however, is the study by Bandini et al. [151|. These authors show
that non-trivial phenotypical change arises from some type of full asynchrony
for 9 out of the 16 one-neighbourhood CAs, despite being even simpler than
ECAs.

2.4. Applications of ACAs

Next to being of strictly methodological interest, ACAs are applied in
the study of parallel computation (e.g. [241]), and for a wide range of math-
ematical models [242, 243, 244, 245]. Applications are generally motivated
by the ACA’s demonstrated enriched phenotype, and by a sense of realism
(no central clock).

2.4.1. Computational advances

Faced with practical considerations, most notably the scaling of semicon-
ductor elements and the demand for long-range interconnection [13|, early
research into nano-scale computers had shifted from Von Neumann’s theo-
retical automaton to simpler CAs by the early 90s [14]. Peper et al. [246]
showed how not only ACAs support integration into electrical circuits, but
how asynchronicity actually allows for the construction of ‘delay-insensitive’
circuits [247|. The relatively recent work by Fei et al. [236] discusses a 3-state,
10-rule ACA that uses its asynchronicity for the 2-D crossing of signals. Asyn-
chronicity in these computational units therefore protects the system from
inherent noise [248|, and is required for efficient information transfer.

Beyond hardware implementations, asynchronicity has its merits in solv-
ing computational tasks such as the prisoner’s dilemma [241|, where asyn-
chronicity is sometimes even required for the existence of a solution. Ruivo
et al. [249] discuss a 4-neighbour ACA that solves the global synchronisation
problem — which is impossible for synchronous CAs [226]. Asynchronous so-
lutions have also been put forward to tackle the density problem [250] and
the parity problem [23].

2.4.2. ACAs in mathematical modelling

Asynchronicity has been used for CA-based modelling in every domain
listed in Tab. 1.1. Most notably, ACAs are used in biology and chemistry,
where the loss of synchrony is almost invariably either a way of including
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stochasticity, or a pragmatic choice for (speedy) computation. In biology,
for example, Messinger et al. [251] use partial asynchrony for investigating
biology-inspired task-performing dynamics, and Sieburg et al. [53] use the
fully asynchronous variation to simulate HIV infection in an artificial immune
system. In chemical modelling, Perez-Brokate et al. [252] reviewed ‘blocked’
a-asynchronism to model corrosion, Seybold et al. [59] used stochastic par-
tial asynchronicity to simulate chemical kinetics, and Kier et al. [60] reviewed
similar simulations for ACAs with a random new sweep. Full asynchronic-
ity with a random order is also imposed onto Van der Weeén et al.’s CA
model for photocatalytic degradation [253]. We stress, however, that none
of these examples use ‘pure’ ACAs, but rather CAs with more than one ex-
tension, typically including multiple states and an extended neighbourhood
(cf. Sections 4 and 5).

More interesting than listing how all ACA types are used in various do-
mains of science, is to highlight a number of applications in mathematical
modelling where the asynchronicity itself was studied. Ruxton [242] stud-
ied the effect of four update types in a very simple ecological model (see
also Ref. [68]) of stochastic and temporally non-uniform ACAs. He shows
how this choice strongly affects the average time until extinction, and gen-
eralises these results in later work [222]|. Another early biological work, by
Gunji [243], shows how macroscopic patterns on mollusc can be generated by
various ACA types, indicating that the particular update scheme influences
the emergent patterns even more than the choice of the local update rule.
Bezbradica et al. [244] studied the effect of various updating schemes in the
context of molecular pharmacology, and found that a random independent
ACA hosts the most robust models of structural chemical interactions. Such
stabilising effects had already been accentuated a decade earlier by Bersini
and Detours [245] for an abstract immune network model. Similar effects are
observed for stochastic CAs, which we will investigate in the next section.
We observe how this is largely the consequence of the high similarity between
both definitions of the CA extensions.

3. Stochastic CAs

3.1. Motivation and definition

Most natural processes appear to exhibit some degree of unpredictability,
and randomness has been long identified as a driving force for many types of
structure formation, e.g. morphogenesis [254]. Adding stochasticity to CAs
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therefore again expresses realism in mathematical modelling [222]. From
a methodological point of view, a non-deterministic setup also significantly
affects a CA’s emergent behaviour, e.g. in terms of sensitive dependence
on initial conditions [255]. The motivation for stochastic CAs (SCAs, also
‘probabilistic’ CAs [213]) is therefore very similar to that for partially asyn-
chronous CAs, and so is its definition; most generally, we again alter the
sixth property in Def. 1.2 (cf. Fig. 1.3).

Definition 3.1 (Stochastic cellular automaton). A stochastic cellular au-
tomaton (SCA) is identical to an ECA (Def. 1.2), with the exception of the
siath property:

6. The dynamics of cell ¢; at time step t is governed by

| S o(3(N(ci), 1),  with probability p,
set+1) = {¢(§(N(ci),t)), with probability 1 — p.

(3.1)
Typically p is independent of time and space, clearly reducing to the elemen-
tary case if p = 1. Time and/or space dependence is however often desirable
with applications in mind; these options generate the landscape of SCA types
discussed next.

3.2. SCA tazonomy

We first observe some notable special cases. When ¢ is the identity
rule in Eq. (3.1), the SCA reduces to an a-asynchronous CA (cf. Eq. (2.1)),
with o = p. We also observe that if rules ¢ and ¢ are not complementary,
i.e. when W(¢) + W () # 255, the CA is only partially stochastic, as some
neighbourhood configurations will generate an identical outcome for both ¢
and . At the opposite side of the stochastic spectrum we find SCAs with
complementary ‘null’ rules ¢ and ¢ = ¢© with W(¢) = 255 — W(¢®) = 0.
This induces complete neighbourhood independence and loss of information,
which for p = 1/2 clearly leads to pure noise. Due to its simplicity and its
intuitive link to sociological behaviour, we additionally highlight the ‘major-
ity SCA’ [256], which is equivalent to choosing W (¢) = 232 and W (¢) = 51
in Eq. (3.1).

3.2.1. Spatial SCA wvariations
Local space dependence. The state transition of a cell is determined by the
states of its neighbouring cells in the classical sense, but may also be in-
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fluenced by this neighbourhood in a stochastic (yet local) sense. Observe a
particular SCA where the probability p is also neighbourhood-dependent:

1, with probability p(5(N(¢))),

0, with probability 1 — p(§(N(¢))). (3:2)

s(e,t+1) = {

Because for ECAs there are K"V = 8 different neighbourhood configurations,
such an SCA is entirely defined by the octuple p = (p(0,0,0),...,p(1,1,1)) =
(po, ---,p7) € [0,1]%. Note how this matches the definition in Eq. (3.1), if
we demand that 1 = ¢, and if we perform a suitable permutation of p.
Clearly, many choices for p are possible; we highlight three that induce some
structure between the tuple’s elements.

First, diploid CAs are a type of neighbourhood-dependent SCAs proposed
by Fatés [257], and are motivated by a formal investigation into symmetry
breaking in biological systems resulting from inherent stochasticity. This
particular type of SCA is based on the definition in Eq. (3.2), but reduces
the dimensionality of p from eight to three by setting

P3N () = Ad(5(N (i) + (1 = N (5N (). (3.3)

For a non-trivial diploid CA, we have that ¢ # ¢ and 0 < A\ < 1, such that
(again referring to Eq. (3.2)) p € {0, X\, 1=\, 1}, or p € {\, 1 = \} if ¢ = ¢°.
For a particular A € (0, 1) there are 8088 pairs {¢, '} that result in a unique
diploid rule [257].

Second, Mairesse and Marcovici [212] discuss some particular cases of two-
state, |[N| = 2 SCAs that also rely on a reduction of the probability tuple
dimensionality. These cases are entirely defined by k¥ = 4 probabilities in
the quadruple p = (po, p1, P2, p3). Clearly, such CAs are of very little interest
for applications, but they do invite exhaustive mathematical treatment. Four
special one-parameter cases are the ‘noisy additive SCA’ with parameters
(0,p, p,0), the ‘symmetric noisy additive SCA’ with parameters (1—p, p, p, 1—
p), the ‘Stavskaya SCA’ with parameters (0, p, p, p), and the ‘directed-animals
SCA’ with parameters (p,0,0,0).

Third, a well-studied case is the Domany-Kinzel CA [122]. This CA
is totalistic, minimally asychronous — odd (even) cells are only updated at
odd (even) time steps —, and determined by the probability octuple p =
(x,y,2,9,y, 2,9, 2). This model’s demonstrated equivalence to an Ising model
is of particular interest to percolation theory in statistical physics [122].
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Global space dependence. If the probability p = p(c¢;) depends on the position
of the cell, the SCA is globally space-dependent and cannot be considered
uniform. After all, two transition rules with different associated probabili-
ties may be considered as distinct rules altogether. We investigate spatially
non-uniform CAs in Section 6. Here, we simply note that many applica-
tions require a position-dependent probability due to some global parameter,
e.g. temperature in Vichniac’s Ising model [121] (see Section 3.4).

3.2.2. Temporal SCA variations

Most generally, the probability may again depend on some global model
parameter, which is now time-dependent, such that p = p(¢). This breaks
uniformity, but now in a temporal sense, and is again hard to map due to its
highly idiosyncratic ties to the model at hand.

What can be investigated methodologically is what is known as a ‘tem-
porally stochastic CA’ [214]. Here all cells also follow either rule ¢ or rule
1 in a spatially uniform sense, but the global parameter that decides this
assignment is stochastic:

®((s(ci, 1))Y,), with probability 1 —

3.4
\I/((s(ci,t))i]\il), with probability 7. (3.4)

(slent + 1), = {

Recall that @ : SV — SV (resp. W) is the global transition rule induced by
the local transition rule ¢ (resp. ©). Probability 7 is called the ‘temporal
noise rate’, as a sporadic global update according to W is often considered
a transient noisy ‘hiccup’ in the system. Note that this again fits into the
general definition of SCAs (Def. 3.1) upon setting

(1) = 1, with probability 1 — 7,
P = 0, with probability .

3.8. SCA genotype and phenotype

Introducing stochasticity generates a number of interesting differences
and subtleties regarding both input and output of the dynamical system,
as compared to ECAs. Below we discuss the SCA genotype and phenotype
respectively, again referring to Tabs. 1.4 and 1.3 for background information.
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3.83.1. The SCA genotype

In terms of the rule table parameters, a naive extension for SCAs consists
of applying the definition to either of the applying rules ¢ or 1, or to a
probability-weighted average of both. From Def. 3.1, the mean-field rule
table parameters, and hence the Langton parameter, may for example be

defined as

M= X (o) £+ (- Do) 24
N with i
non-q values

where the square brackets output 0 or 1 depending on the truth condition,
and ¢ is the quiescent state. Note how this definition naturally allows for
summing over a neighbourhood-dependent probability p = p(N). Despite
the elegance of these parameter extensions, it is not a priori evident (and in
general untrue [214]) that the properties of the SCA update rule are ‘some-
where in between’ of those of its constituent rules. An extension rooted in
a weighted average is therefore not necessarily useful. Investigating correla-
tions between particular SCA rule-table property definitions and their actual
behaviour is an open direction of further inquiry.

A different, global approach arises from the observation that consecutive
SCA configurations form a Markov chain on the state space S — S, This
allows for adopting the Markov chain formalism in the study of CA attractor
structure, mapping and analysing the distribution of future configurations.
The main topics of interest are (i) short-term time-dependent behaviour, (ii)
long-term steady-state behaviour, and (iii) the study of the ‘absorption time’
[258], to which some theoretical insight has been provided [259, 260|. A
recurring theme is to determine whether or not a particular SCA is ergodic,
i.e. whether it will have visited all 2V configurations for ¢ — oco. Maes
and Shlosman provided a sequence of general criteria for ergodicity in SCAs
[261]. Particular SCAs may however require a more tailor-made approach,
e.g. Holroyd et al.’s recent proof of ergodicity related to a ‘percolation game’
262].

3.3.2. The SCA phenotype

An analysis of SCA spacetime diagrams is generally mathematically iden-
tical to that of ECAs. It may, however, reveal distinct classifications or local
properties due to inherent randomness.
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Regarding classification, first note that no SCA can be considered truly
homogeneous or periodic, as randomness will disturb any repetitive pattern
in consecutive configurations. Additionally, while Wolfram’s class IV (com-
plexity) may still be a pertinent classification visually, the capacity to support
universal computation can no longer be an argument for assigning this class.
Indeed, Arrighi et al. showed that universal SCAs do not exist [211]. Roy et
al. [214] exhaustively investigated the classification of temporally stochastic
CAs, for all 3825 combinations of non-equivalent Wolfram rules. They show
i.a. that (i) two rules that are classified as chaotic, may join forces in an SCA
to generate periodicity (and vice versa), and that (ii) a behavioural phase
transition may occur for particular values of the temporal noise rate. We
note that the quantitative results of their research are contingent on what
constitutes a ‘class’, which is mathematically insufficiently defined for SCAs,
and for CAs in general [191]. This nonetheless does not affect the validity of
the qualitative observations, demonstrating paradoxically that randomness
can aid stability.

Regarding local properties, the phenomenology of an SCA can be in-
vestigated in function of the probability p, often demonstrating ‘jumps’ in
behaviour when p surpasses a particular value. Such a jump may indicate a
phase transition or a system bifurcation; Bagnoli and Rechtman [263| pro-
vide an overview of different types of possible phase transitions in SCAs.
More specifically, Baetens et al. [255] mapped such dynamics of SCAs by
means of a sensitivity measure, the maximum Lyapunov exponent, and the
Lempel-Ziv complexity, for a large number of simulations of SCAs. Their
research is limited to SCAs with ¢ the identity operator, such that the re-
sults apply to a-asynchronous CAs as well. They demonstrate that an SCA’s
sensitivity to initial conditions and its tendency towards chaos is highly de-
pendent on the update probability; a small change in p may radically alter
the system’s behaviour. Similar results have been achieved for diploid SCAs
where 1 is not the identity rule. A highly-cited study by Martins et al. [264]
shows that this CA can accommodate three phase transitions. The third
phase was discovered by studying the influence of slightly changing initial
conditions — i.e. studying “damage spreading” [265]. This clearly has im-
portant consequences for the physical systems that this CA models, such
as reaction-diffusion systems. Fatés [257| demonstrates second-order phase
transitions and symmetry breaking when varying the mixing parameter A,
by mean-field analysis of (kinks) density. Cirillo et al. [266] studies this in
more detail (stochastic ‘reset’), and provides some theoretical justifications of

23



Fatés’s numerical results for mixtures with the null rule. Also majority-voter
SCAs exhibit such behaviour, both in one [259], and two dimensions [256].

3.4. Applications of SCAs

Above-mentioned methodological advances have inspired applications in
computer science and mathematical modelling (and vice versa) [213]. Sys-
tems that are robust to noise — or even require noise — are especially valuable
in the former, while the phenomenological richness provided by SCA phase
transitions is highly relevant for the latter.

3.4.1. Computational advances

Robustness to noise is a highly desirable property of nanoscale computing
systems, so a lot of research has been done on CAs that can ‘remember
information’ [267]. Specific computational tasks may also be solved by SCAs,
most notably the density classification problem (e.g. [268]).

3.4.2. SCAs in mathematical modelling

A classical SCA application is Vichniac’s implementation of the Ising
model for ferromagnetism [121]. He shows that an approach with determin-
istic CAs leads to a “feedback catastrophe”, which not at all represents the
observed physical behaviour of magnetic metals. This is solved by associat-
ing a temperature-dependent transition probability to each of the possible
neighbourhood configurations, and is therefore another curious example of
a system that requires randomness to achieve stability. Research related
to the Domany-Kinzel CA [122, 264] further solidifies this relationship with
statistical physics.

As Baetens et al. [255] conclude, an SCA’s propensity for phase transitions
necessitates scrutiny while developing a discrete mathematical model. Ad-
ditionally, the inclusion of stochastic parameters of course generates a much
wider spectrum of conceivable model setups. While sometimes an exhaustive
grid search is feasible (e.g. [269]), genetic algorithms exist to help determin-
ing which stochastic rule may be most pertinent to describe (and predict)
the physical data at hand (e.g. [270]). The latter approach was recently
used for parameter optimisation for an SCA-based epidemiological model for
COVID-19 [83], acquiring quite remarkable results. The latter model (and
many other non-toy models) also includes extended neighbourhoods (Section
5) and multiple states, to which we turn next.
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4. Multi-state CAs

4.1. Motivation and definition

The general definition of Von Neumann (cf. Def. 1.1) allows for more
than two states, but the ECA definition (Def. 1.2) should be generalised to
accommodate more than two states (cf. Fig. 1.3).

Definition 4.1 (Multi-state cellular automaton). A multi-state cellular au-
tomaton (MSCA) is identical to an ECA (Def. 1.2), with the exception of the
second property:

2. S is the state set, which may or may not be finite, and which may or
may not have some structure imposed on it.

MSCAs serve as a basis for a wide variety of applications [271, 272, 273,
63, 274, 275] because it is rarely the case that a natural system allows only
two discrete states. Still, an in-depth understanding of the dynamics of such
models and a robust mathematical framework is mostly lacking.

Most of the theoretical work on CAs has been done for two-state CAs.
This is in part due to the observation that for some (mostly computational)
objectives, the study of binary-state CAs is rich enough by itself. It was
shown, for example, that replicating machines in the framework of CAs could
also be established in a two-state CA [276]. It is also due to the overwhelming
complexity of the mathematics when allowing more than two states: consid-
ering three rather than two states in a 1-D CA with |A/| = 3 increases the
number of possible local update rules from 256 to ~ 10'3. While this can
be an advantage, e.g. for random number generation [277], it often obstructs
theoretical progress.

MSCAs with a continuous state space are called continuous CAs (CCAs).
Rucker raises a number of objections against the study of CCAs [278], the
most important of which is redundancy. CCAs are similar to well-established
finite-difference methods for numerically solving differential equations [3],
and also similar to coupled-map lattices [279]. Rucker also emphasises that
the CA approach is different, however, being more rooted in computational
experiment and observation, rather than theory and proof.

4.2. MSCA taxonomy

Below, we first distinguish between ternary, k-nary, and continuous-valued
CAs, zooming in on a particular type of continuous-valued CA called ‘fuzzy’
CAs. Note that we no longer distinguish between spatial and temporal vari-
ations, as variations only affect the state space and its internal structures.
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Figure 4.1: Complexity trade-off between neighbourhood size, number of cells, and number
of states. Here a k = 2,|N| =5 CA with 50 cells is simulated by a k = 32,|N| = 3 CA
with 10 cells, without loss of information in either direction.

Ternary and k-nary CAs. Generally, for k-nary CAs we find ok possible
local update rules. It is shown that a CA with a local rule defined for a
particular neighbourhood is equivalent to a CA with neighbourhood size three
and a different state space [280], by ‘pooling’ cells together (see Fig. 4.1). This
implies that only considering the |N| = 3 case is sufficiently general.
Following the convention for ECAs, a ternary CA rule can be identified
by associating the number s; € {0, 1,2} with each of the 27 possible neigh-
bourhoods. This may in turn be translated to a decimal number, i.e.
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where the subscript indicates the numeral base. Due to the quickly increasing
number of possible neighbourhood configurations for increasing k, often only
totalistic k-nary CAs with S = {0,...,k — 1} are considered (see e.g. [3]).
This reduces the number of rules (or “codes”) to kF—DWI+1,

Continuous-valued CAs. A k-nary CA in the limit of & — oo, where the state
space is typically mapped to S = [0, 1], can take an infinite number of values.
If additionally S is continuous, the entire object is called a continuous-valued
(or simply continuous) CA (CCA).

A complete rule table would now be infinitely large. In order to nonethe-
less quantify transition rules, the state set S is considered to be a field, and
some (neighbourhood-dependent) function applies on its elements. In the
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language of coupled-map lattices, this is called a ‘map’, and the ‘coupling’
is achieved by including the neighbourhood. Wolfram showed that CCAs
can also display the rich and often chaotic dynamics found in their discrete
counterparts [3].

Referring back to Section 3, we note that a neighbourhood-dependent
SCA is a particular case of a CCA, provided we interpret the continuous
values as probabilities for the cells to be either in state 0 or state 1. An SCA
is entirely determined by the tuple p = (po, . . ., p7), such that the continuous
local update rule becomes

O(Si—1, Siy Sit1) = D0Si—1 Si Sit1 + P15i—1 Si Sit1 + P2Si—15iSit1 + P3Si—1SiSi+1

+ P4Si—1S; Sit1 T P5Si—15:Si+1 T P6Si—15iSi+1 + P7Si—15iSi+1,

where 5; = 1 — s;, and s; is shorthand notation for P(s(¢;,t) = 1). Other
particular relationships can be inferred for specific types of SCAs, such as

diploid SCAs.

Fuzzy CAs. Fuzzification is understood as generalising Boolean-logical AND,
OR and NOT operators such that they can operate on all elements in S,
typically with the aim of expressing a ‘degree of truth’ rather than simply
true (1) or false (0) [281]. Fuzzy-state CAs (FCAs) constitute a particular
type of MSCAs where the state space S is the unit interval, but where the
governing rules are defined from a binary-state CA. The FCA framework
forms an elegant bridge between k-nary CAs and continuous CAs, which
allows for a more well-defined analysis of chaotic dynamic behaviour.

The FCA local rule is defined as the ‘fuzzification” of the local rule of a
binary CA; it is defined from a rule written as a Boolean expression (cf. [3]
p. 884) in ‘disjunctive normal form’. Wolfram’s rule 18, for example, can be
expressed as

A(Si—15 5, Sit1) = (Bict A5 A sig1) V (Si21 A5 AFiga),

where A and V denote the logical AND and OR, respectively, and an overbar
denotes the NOT operator.

For a formal definition and a better application-driven methodology, we
refer to Doostfatemeh and Kremer [282]. Note that CAs have also been called
‘fuzzy’ when referring not to the states themselves, but rather to the choice of
a deterministic transition rule applying to a non-continuous CA [215]. These
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CAs are however more akin to SCAs.

4.8. MSCA genotype and phenotype
4.8.1. The MSCA genotype

Most rule table parameters remain well-defined for k-nary CAs. Provided
q € S is a quiescent state, the definition of the Langton parameter A still
holds. As a matter of fact the parameter was originally introduced for ex-
amining the rule space of |N| > 5,k > 4 CAs [158], and the paper’s main
results are only valid for rule spaces significantly larger than that of ECAs.
The resulting A values are roughly correlated to the four Wolfram classes.
The Z-reverse and obstruction parameters still hold for deterministic k-nary
CAs. The p-sensitivity can also be computed, but some care should be taken
in defining (or perhaps quantifying) a ‘change of state’; as now more than
one option is available.

Global properties of k-nary CAs are generally difficult or impossible to
achieve or even define, in part again due to undecidability [191]. More be-
comes possible when some structure is imposed on S (e.g. linearity allows
for a study of attractor structures [283]) or when particular rules are investi-
gated in detail (e.g. rule 2460N in 2-D [284]). Conversely, it is also possible
to determine particular types of k-nary CA that are required to possess a
specific property. For example, Bhattacharjee et al. [285] pinpoint a number
of reversible k-state finite CAs. More recently, Wolnik et al. [286] shared a
formula for finding all number-conserving k-state CAs, and showed that the
only reversible number-conserving ternary CAs are shifts that are intrinsi-
cally 1-D [287].

For fuzzy CA, one could of course simply adopt all rule table parameters
associated with the ECA the fuzzy CA is defined from. Due to the defini-
tion of fuzzification, this should indeed reflect the FCA’s properties when
Vi @ s; € {0,1}, but it is not obvious how the rule table parameters are
to be interpreted when s; € |0, 1[. Neither is it evident that such parame-
ters would convey useful information; after all, FCAs and binary CAs can
exhibit similarities [288], but fuzzy logic may also lead to entirely different
behaviour. Flocchini et al. [289] show, for example, how a randomly ini-
tialised FCA based on rule 90 will evolve to a homogeneous value of 1/2,
while paradoxically its Boolean counterpart is entirely aperiodic [290]. For
the characterisation of an FCA rule, and for all types of continuous CAs, it
is therefore generally more insightful to adopt the formalism of coupled-map
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lattices, e.g. for determining steady states (attractors). An overview thereof
is provided by Kaneko [291] and more recently by Bunimovich [292].

4.8.2. The MSCA phenotype

A classification of k-nary CAs according to emergent behaviour is gener-
ally still possible, and often even more systematic (cf. Langton parameter).
Nonetheless, no classification appears to be entirely deterministic, which is
complicated even further by the large number of variations on periodicity or
complexity with larger k.

Local properties require some attention in order to apply for k-nary CAs,
but the finiteness of the state set generally enables a logical extension of the
definition. Welch [293], for example, extended the definition of Lempel-Ziv
complexity to accommodate any symbol, in the context of data compression.
For many other properties, however, the nature of the extension depends
on whether the state set is additive or not. State density, for example,
is no longer defined when states are mere symbols with no mathematical
relationship, such as the S, I and R states in epidemiology. Additionally,
as the state at the previous time step may be important for the measured
property, a change of state is no longer unambiguous. This is highlighted
in the recent publication by Vispoel et al. [294], continuing work on the
Lyapunov exponent for ternary CAs initiated by Baetens and De Baets [217].

Behaviour-based classification of CCAs is typically based on the attractor
structure associated with the update function (map), i.e. the location and
type of fixed point(s). This behaviour generally changes (and bifurcations
can occur) for different parameter values of the map, such as the r param-
eter in the logistic map. For FCAs an exhaustive classification is provided
by Mingarelli [295]. Most mean-field parameters and correlation functions
can easily be extended for CCAs, but measures for sensitivity to initial con-
ditions and complexity are again generally better expressed using the tools
and methods developed for coupled-map lattices.

4.4. Applications of MSCAs

4.4.1. Computational advances

Applications of MSCAs within the domain of computer science are as
old as the entire research field, as Von Neumann’s universal constructor [1]
required 29 states. Computational tasks are generally more difficult to solve,
e.g. the density problem for ternary CAs [296]. The additional complexity of
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adding more states can however also be exploited, such as in random number
generation [277].

4.4.2. MSCAs in mathematical modelling

Some successful work on the edge of theory and application has been done,
including a multi-state extension of the Ising model [297|, the Greenberg-
Hastings model for excitable media [298], and studies in artificial life in three-
state CAs [299].

Examples of k-nary CA applications for mathematical modelling are of
course widespread, because realism almost invariably requires more than two
states. Examples include biological competition [271], pattern classification
[272, 300], epidemiology [87, 273|, immunology [301], reaction-diffusion [63],
forest fire modelling [274], stock market dynamics [302|, and traffic flow mod-
elling [275].

FCAs have been applied in the context of pattern recognition [45], but
also in artificial life research [303], forest fire modelling [304], or for modelling
snowflakes on a hexagonal grid [305|. As indicated, dynamics of more general
CCAs essentially overlap with finite difference methods for partial differen-
tial equations, and are especially useful for modelling physics [123]. Some
notable examples of CCAs used in this fashion are a CA model for diffuse
and dissipative systems [306], the reproduction of the Navier-Stokes equa-
tion in theoretical hydrodynamics [124], a model for groundwater dynamics
[307], and a model for seismic elastodynamics [308]. Conversely, PDEs can
simulate CAs with complex behaviour [309].

5. CAs with extended neighbourhoods

5.1. Motiwation and definition

A CA as defined in Defs. 1.1 and 1.2 is characterised by local and uniform
interaction: a cell only interacts with its neighbours, and the definition of
this neighbourhood A is identical relative to any cell ¢; in the tessellation
7. This is narrowed further for ECAs (Def. 1.2), where T is a tessellation
of R and N(¢;) = {ci_1,¢i, ¢cit1} is limited to its direct neighbours in one
dimension.

This neighbourhood definition is of course quite restrictive. From a math-
ematical point of view, it is of interest to study the effect of altering the
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neighbourhood size and regularity on the dynamical behaviour. As a neigh-
bourhood of maximal size is identical to a global system, varying neighbour-
hood parameters allows for the examination and quantification of ‘quasi-
local’ systems. Moreover, from the perspective of mathematical modelling,
relaxing the neighbourhood condition is nearly always indispensable. First,
in terms of dimensionality: 3-D events can often be reduced to 2-D models
by omitting the least influential dimension (in a top-view fashion), but los-
ing another dimension often means losing important information. Second,
in terms of neighbourhood size: many phenomena cannot realistically be
assumed to only and fully rely on its closest neighbours, and even if they
would, these neighbours are rarely distributed in a perfect grid, such that an
approach more akin to mean-field theory presents itself. Third, ‘local’ inter-
actions can be physically and temporally separated, and may very well differ
for distinct elements in the model. This is an important difference between
e.g. a lattice of magnetic dipole moments in the Ising model, and an irregu-
lar grid (network) of friends on the Internet. Both the methodological and
the application-driven perspective on this family of extended CAs motivate
further inquiry.

A so-called ‘adjacency matrix’ A contains all neighbourhood information,
and consists of elements A;; that are non-zero if cell ¢; contains cell ¢; in
its (non-local) neighbourhood. If ¥i,j : A; € {0,1}, this allows for 2V’
possibilities. For ECAs with periodic BCs, the adjacency matrix alone is
sufficient for expressing all neighbourhoods since A is tridiagonal.

Other interesting CA families are identified with particular choices for A,
and are discussed next. They are all spatial or temporal variations of the
following definition extension (cf. Fig. 1.3):

Definition 5.1 (Extended-neighbourhood cellular automaton). A finite (size-
N) extended-neighbourhood cellular automaton (ENCA) is a sextuple C =
(T,S,s,80,A,0), defined as in Def. 1.2 with the exception of properties 5
and 6:

5. The adjacency matriz A is implicitly defined as
N(ei) ={e;|Ai; # 0},

where A;; is an element of A and N (c;) is the neighbourhood of cell ¢;.
6. The function ¢ : SWIU+D — S determines the next state of cell ¢;, i.e.

s(ci,t +1) = ¢(8(N (i), 0), 5N (), 1), - ., 5(N (i), 1)),
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where 3(N(¢;),t) is the tuple (s(c;,t)|A;;(t) # O)j.vzl. This function ¢
1s called the ‘local update rule’.

5.2. ENCA taxonomy

5.2.1. Spatial ENCA variations

Larger local neighbourhood. First, consider enlarging the neighbourhood size
symmetrically (although some authors discuss asymmetric neighbourhoods
as well [151]) around the cell with a radius r € N such that |[N| = 2r + 1.
The elements of the adjacency matrix then become

Aip =065+ > (8(i4k); + Sigji))s (5.1)

k=1

where 9;; is the Kronecker delta, with indices mod N. The number of possible
local update rules now increases to k¥ More systematic approaches to an
enlarged neighbourhood are sometimes considered to enable a mathematical
description and a link to other CA families, e.g. [310].

Higher dimensions and irregular tessellations. Second, virtually all applica-
tions require CAs with more than one spatial dimension. In a regular square
grid with N2 cells, two symmetrical neighbourhoods are typically considered,
called the Von Neumann neighbourhood and the Moore neighbourhood. The
former consists of the central cell and all directly adjacent cells, while the
latter additionally contains all diagonally adjacent cells. Mathematically,
these neighbourhoods are the simplest non-trivial form of ‘templates’ Hﬁ”)

and JI" . first defined by Cole [311]:

n—1
H™ = {a Z la;| < r} : Jn = {a
=0

Here, n is the CA dimension, and a is the vector indicating the location of
neighbourhood cells, relative to the central cell. Note that HY = JY. But-
ler [312] demonstrated that (in two dimensions) any CA with Moore neigh-
bourhood of radius r can be simulated by a CA with a larger state space and
Von Neumann neighbourhood of radius r’ > r, but performing calculations
r’ /r times faster. These definitions can be extended to more general shapes
and into higher dimensions (e.g. [313]), but the fact remains that any n-D
CA can be reduced to a 1-D CA with an extended neighbourhood.

max {|a;|} < r} .

0<i<n—1
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The classical CA paradigm is built on the assumption that the tessellation
T is defined over a regular domain. Yamada and Amoroso [314] showed that
any CA on a regular tessellation can be simulated by a CA on a different reg-
ular tessellation, provided we alter the state space. The most well-researched
alternative is the hexagonal grid [315]. CAs defined on irregular tessellations
were examined by Baetens and De Baets [316]. Examples include a Voronoi-
like tessellation [317] and Penrose tilings [318]. Margenstern [319] has gone
even further, by considering CAs defined on hyperbolic space.

Network automata. Third, neighbourhoods can be so irregular and/or non-
local that it no longer makes sense to consider a CA as ‘cellular’. All cells
(now typically called ‘nodes’) are connected in a so-called ‘network automa-
ton’ (NA, also: ‘graph CA’ or ‘nonlocal CA’) [320], where the connectivity of
nodes may again be represented in the adjacency matrix A. The neighbour-
hood size | N (¢;)| now generally depends on the node, and in the context of
network theory it is often referred to as the ‘node degree’. In general, the
value A;; representing the connection from node ¢; to ¢; may be any positive
real number, where typically a higher value indicates a ‘stronger’ connection.

This of course allows for a virtually endless structural variation of net-
works, whose properties are studied in the field of ‘complex networks’ [321].
When other NA properties such as state space and local update rule are
still sufficiently reminiscent of the classical CA paradigm, e.g. for random
Boolean networks [322], theoretical knowledge and practical applications may
nonetheless be transferred between both research domains.

5.2.2. Temporal ENCA variations

The adjacency matrix A may be time-dependent, such that neighbour-
hoods can vary as the CA evolves. Such CAs were suggested by Ilachinski
[323] and coined ‘structurally dynamic’ CAs. This dynamic structuring of
neighbourhoods may be random, preserve some statistical property, be de-
pendent on the state of the node, etcetera [324]. It may even allow for adding
or removing nodes, which is studied in percolation theory [325]. This again
opens Pandora’s box of possible variations, and takes us beyond the scope of
this CA-centred review paper. Within the confines of this review, however,
we discuss the static temporal ENCA types named ‘memory CAs’, and the
related concept of ‘reversible’ CAs.

Memory CA. An ECA is considered to be memoryless in the sense that
the new state of a cell depends on the neighbourhood configuration at the
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preceding time step only. This can however be extended by considering
past states in the evolution of the CA, which particularly Alonso-Sanz has
intensively researched (e.g. [326]). Mathematically, the local update rule in
Def. 1.2 is extended such that s(c;,t + 1) = ¢(m(N(¢;),t)), where

m(N(e), 1) = (§<N<ci>, 0), 3N (). 1), N (@), t>) .

Many ways of incorporating neighbourhoods in previous time steps present
themselves, some of which support the design of desirable (complex) be-
haviour [327]. One particular ENCA type is the ‘average memory CA’ [219],
where at every time step ¢, and for each cell, one computes a weighted mean
of all states since the initial configuration. More often, however, the local
rule incorporates a limited memory in the state transition [328]; it is said to
be of order M if it depends on M previous time steps. Motivated by physical
realism, a variation of memory CAs where some cells have a longer memory
than others — i.e. non-uniform memory CAs, see Section 6 — has also been
explored [329].

Reversible CA. CAs are generally not ‘reversible’, meaning that a particular
configuration may have multiple predecessors: only six of the 256 ECAs are
reversible, indeed [3], and all are trivial. As temporal reversibility (or tech-
nically, CPT invariance) is a fundamental symmetry in physics, CA models
that aim to describe physics ideally reflect this property [330]. Additionally,
reversibility is desirable from a computer architecture perspective [123].

Reversibility can be induced in ECAs by involving second-order memory
(M = 2) [330]. The new state of a cell is inverted if two steps previously the
cell was in state 1, i.e.

A(S(N (), 1)), if s(c;,t—1)

0,
1 — o(8(N(ci), 1)), if s(e;t—1) =1.

s(ei,t+1) = {

The resulting rule is simply called W (¢) with a suffix ‘R’; some examples
of 1-D reversible CAs and their respective rule tables are shown in Fig. 5.1.
Similar procedures have been investigated for 2-D CAs [331], and generalised
for reversible CAs supported by higher-order memory [332]|. As an important
remark in the context of our taxonomic treatment, Toffoli [333] showed that
any n-D CA can be simulated by a reversible CA of dimension n + 1.
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Figure 5.1: Rule 30 can be made reversible by imposing the complementary rule (rule 225)
if the updated cell was in state 1 two time steps ago. The rule table is on the left, and two
resulting spacetime diagrams, which are clearly symmetric under time reversal, are on the
right.
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5.83. ENCA genotype and phenotype

The family of ENCAs contains a relatively wide variety of types. We
discuss the genotype and phenotype of these types in the same order as these
were presented above, and note that they generally exhibit less characteristic
overlap than types in other CA families.

5.3.1. The ENCA genotype

When the neighbourhood size increases, this affects the rule table pa-
rameter values, as many more neighbourhood configurations make up the
rule table. The definition of these parameters however remains identical
(cf. Tab. 1.3), again demonstrated by the fact that e.g. the Langton param-
eter was originally investigated for |[N'| = 5 [158]. Global properties are also
still well-defined for larger neighbourhoods, but can become much more in-
volved as there are many more possible configuration transitions. One way
to circumvent this, is to only consider totalistic rules, e.g. when identifying
global periodicity [334]. Also recall the complexity trade-off between a CA
with a larger neighbourhood and a CA with more states [280|, which may
aid to rephrase particular definitions. One such example is given in Fig. 5.2.

When the neighbourhood is irregular (i.e. for NAs) but the neighbourhood
size is homogeneous, Li [190] showed that rule table parameter definitions
can be generalised. This no longer holds when the local update rule does not
operate on a neighbourhood with fixed size; this rule, then, is therefore almost
always phrased in a totalistic fashion. Marr and Hutt [335], for example,
determine a node state update based on the weighted density of states over
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Figure 5.2: Complexity trade-off between neighbourhood size, number of time steps, and
number of states. Here a k = 2, |[N'| =5 CA is simulated by a k = 8, || = 3 CA with the
same number of cells, but twice the number of time steps.

all neighbouring nodes,

1
s(eit+1) = ¢ el > Ays(est)

c; €N (ci)

This type of local update function allows for analysis, but not in the sense
of the classical rule table. A similar consideration holds for global properties
of the NA, and it is generally advised to make use of tools and properties
devised for the analysis of complex networks, in particular in relationship to
the node degree distribution [321].

Memory CAs can have a rule table, as we illustrated in Fig. 5.1. If
additionally the memory CA is reversible, only half of the rule table contains
all required information for constructing rule table parameters. However, if
the memory degree M is large, such a rule table may become impractically
large, impeding an elegant generalisation of the rule table parameters in
Tab. 1.4. When previous states are weighed, the resulting memory CA of
course runs into the same issues as the CCAs discussed in Section 4.

As for CAs with a larger neighbourhood size, generally the space of pos-
sible (subsequent) configurations in a memory CA increases in size, resulting
in more involved global properties. The particular case of the reversible CA,
however, strongly limits possible dynamics: every configuration has one and
only one successor and predecessor. This generally strongly simplifies global
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mathematical description [336].

5.8.2. The ENCA phenotype

Subsequent 1-D configurations of ENCAs with a larger neighbourhood
can still be described with local properties defined for ECAs. Due to more
distant (but still local) information transfer, spatial correlations are generally
achieved on shorter time scales. We also observe that simply the size of the
neighbourhood may affect the global behavioural class [310].

Phenotypical classification and quantification of ENCAs in higher dimen-
sions and — especially — with irregular tessellations, requires some attention.
The behavioural classes that are employed for 1-D CAs generally apply for
CAs in two or more dimensions [337]. However, Gerling [338] observed dras-
tically different behaviour for 3-D CAs. Generally, the much larger variety of
dynamical outcomes in higher dimensions suggests that a richer classification
(i.e. more than four classes) may be informative [339].

In terms of local properties of dynamical behaviour (cf. Tab. 1.4) of n-
D CAs, either the metric should be extended into n dimensions, or some
measure for direction should be provided. As an example for the first case,
consider some local structure theory where a particular property is averaged
over an n-D block or sphere. For the second case, imagine the Lyapunov
exponent related to the spread of a difference pattern in one specified direc-
tion, which could be averaged over all directions [294], or directing according
to some perturbation front [199]. Baetens and De Baets [340] use Lyapunov
exponents for totalistic CAs with irregular tessellations, demonstrating that
even something as drastic as a phase transition can be induced by solely
altering the topology.

Network automata disregard all sense of ‘geographical’ direction. Be-
haviour on networks can however still be classified in the classical sense,
e.g. according to the Li-Packard classes [190]. In particular, by adjusting
a number of entropy definitions to the context of a complex network, Marr
and Hiitt [335] showed that outer-totalistic NAs on various network types
can evolve according to all four Wolfram behavioural classes. They also ob-
served that the fraction of such NAs that exhibit complex behaviour shrinks
for increasing neighbourhood size [218]. At the same time, the analysis of
emergent NA dynamics can be used to classify the type of network itself
when the adjacency matrix is unknown, e.g. by running a NA based on the
Game of Life [341].

Local properties can still be investigated when the ‘direction’ required
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in the original definition from a particular node is generalised as some well-
defined path through the network. The generalisation of i.a. the Lyapunov
exponent [342], then, allows for quantifying the robustness of an NA to topo-
logical variations. NAs exhibit topology-induced phase transitions [340], and
topology influences an NA’s tendency towards self-organisation [322].

CAs with memory are typically characterised with the canonical be-
havioural classes. Interestingly, adding memory to ECAs can also induce
a class transition. Martinez et al. [343] show that almost half of all ECAs
will completely transform their behaviour when information from up to ten
previous time steps is taken into account. In particular, adding memory to
CAs based on elementary rules can help ‘design’ complex behaviour [344].
This is confirmed by Ninagawa et al. [345].

5.4. Applications of ENCAs

5.4.1. Computational advances

1-D binary CAs with a larger neighbourhood are typically more suited
than ECAs to solve computational problems such as density classification,
even though no finite-radius perfect solution exists [346]. This is because
they allow a wider range of rules, and because they represent some ‘inter-
mediate’ model between a purely local and global model. In the context of
cryptography, randomness properties of a 1-D CA have also been investigated
[347| for larger radii. In particular, » = 2 (‘pentavalent’) CAs were shown to
be advantageous for a type of plain text cryptography called stream cipher
design [348], while still remaining computationally feasible.

Most applications of ENCAs, however, require more than one dimension
and /or special tessellations. The performance difference between the (2-D)
Moore and Von Neumann neighbourhoods has been reported for image cryp-
tography [349]. Adamatzky [350] showed that hexagonal grids can support
logical operations by generating gliders reminiscent of the Game of Life, and
also Penrose tilings were shown to support some variation on the Game of
Life [318].

Turning to NAs, many computation-related questions remain open, but
some advances have clearly been made. Watts [351] examined the majority
and synchronisation problems for small-world networks, showing that a local
majority rule was typically sufficient for solving the problem, despite being
inadequate for regular networks [352]. Darabos et al. [353] considered a wider
range of network architectures, but still concluded that a small-world network
is superior for solving the density or synchronisation problem.
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Memory CAs, finally, also appear to facilitate density classification [354],
although more research into their relation to computational problems is re-
quired.

5.4.2. ENCAs in mathematical modelling

Nearly all CA applications in mathematical modelling require a CA with
more than one spatial dimension. Some authors have explicitly examined the
influence of 2-D tessellations on model properties. Hopman and Leamy [355],
for example, compared irregular triangular tessellations in elastodynamics
with the rectangular case [308]. Also for geographical applications such as
urban growth modelling, triangular [356] and irregularly-shaped CAs [357]
are routinely applied. In social sciences, Flache showed that many general
properties are robust to variation in the grid structure [358].

Mathematical modelling has a rich history involving complex networks,
with networks optimised for representing i.a. metabolic [359], social [360],
and biological [361] networks. When no direct access to the network’s ad-
jacency matrix is available, an analysis of the dynamical behaviour induced
by an NA may serve as a tool for categorising the network type, useful for
e.g. authorship attribution of written text [362]. With this aim, Miranda et
al. [341] proposed an NA running an extended definition of the Game of Life,
using measures such as Shannon entropy and word entropy in the decision
process. This work was refined more recently by Ribas et al. [363] and Zielin-
ski et al. [364]. NAs are of course also used when, inversely, the network is
known but the emergent dynamical behaviour is not. Such applications like-
wise cover a wide spectrum of research areas, ranging from urban planning
[365] to fungal growth [366].

For memory CAs, finally, the most obvious application of memory CAs is
again found in their relation to reversibility and (hence) conservation [367].
This property justifies its use in modelling e.g. Newtonian mechanics [368],
although also here the number of practical applications found in the literature
is limited.

6. Non-uniform CA

6.1. Motivation and definition

A final extension to CAs allows for different cells to follow different rules,
i.e. the cells behave in a ‘non-uniform’ fashion. CAs in which rule uniformity
is abandoned are therefore called non-uniform CAs (or ‘heterogeneous’ CAs,
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e.g. [135]), often abbreviated as vCAs. Now, the local update rule depends on
the cell identity ¢ and time step ¢, so we have ¢ = ¢(i,t). Cattanco et al. [369]
identify three reasons to relax the uniformity constraint. First, generality, as
some models may require local interactions to be dependent on some global
spatial positioning. Second, the investigation of structural stability, because
some emergent properties may be strongly dependent on all cells following
the same rule, implying that some of the CA behaviour is ‘artificial’. Third,
reliability (robustness to noise), particularly in the context of fast parallel
computation. These motivations are highly similar to those for ACAs and
SCAs, and we will in fact show that in many cases the mathematics is similar
(or identical) as well.

In principle, vCAs may have an arbitrary number and type of local update
rules that depend on time and space. The simplest non-trivial size-N vCA
allows for two local elementary update rules, say ¢ and . We arrive at the
following definition (and at the final leg in Fig. 1.3):

Definition 6.1 (Non-uniform cellular automaton). A non-uniform cellular
automaton (vCA) is identical to an ECA (Def. 1.2), with the exception of
the sizth property:

(5N (i), 1), ifie Z(t),

V(EWN(c), 1)),  else, (6.1)

s(ei,t+1) = {

VN

where the set Z(t) C {1,..., N} generally changes over time and determines
the ‘rule allocation’.

We refer to |Z(t)|/N = v(t) € [0,1] as the degree of non-uniformity,
where v = 1/2 represents maximal non-uniformity. Note that if ¢ is the
identity rule (W (y) = 204), this is equivalent to the general definition of
a-asynchronous CAs (Def. 2.1 and Section 2), with ¥ = «. In that spirit, the
set Z(t) again allows for distinguishing between various types of vCAs.

6.2. Non-uniform CA taxonomy

6.2.1. Spatial vCA variations
If Z(t) = Z, the rule allocation is static. Clearly, for a two-rule size-

N
N vCA, there are 2V possible rule allocations in total, and (|Z|) for a

particular v. We may, however, distinguish between various types.
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First, a stochastic rule allocation, for which every cell has a probability
p (resp. 1 — p) of following rule ¢ (resp. ¥), such that |Z| ~ Bin(N,p), and
Elv] = p. This of course is identical to the general definition of an SCA
(Def. 3.1). This setup is of interest because, especially for p = 1/2, it is
the ‘least global’ non-uniform rule allocation, which is still in line with the
CA philosophy of maximal locality [7], and which generally still allows for
mathematical generalisations. As with SCAs, we may additionally demand
that |Z(t)| is constant.

Second, only a single cell may behave differently, i.e. Z = {j|0 < j < N}.
This is of interest in the research of robustness to noise due to permanent
failures [370], allowing the quantification of the effect of one ‘rogue cell’.

Third, Z can be chosen such that the rule allocation is periodic, e.g. Z =
{2j | 0<j < N/2 Aje N}, or more generally

N/T—1
Z= |J {1+kT,... . vT +kT}. (6.2)
k=0

Here T represents the period, in such a way that /N is a whole multiple of T',
and v = n/N with n € {0,..., N}. This approach represents a setup that
more conveniently enables properties with a closed mathematical expression.

The fourth type is the most general one, where Z is entirely ‘user-defined’
at the global level. One notable case that is especially relevant for mathe-
matical modelling may be called clustered rule allocation, for which adjacent
cells are on average more likely to follow the same rule. Such clusters may
be generated stochastically, but typically they are defined by the modeller
based on a spatial distribution of e.g. geographical features. For instance,
in a wildfire model [274], this may be understood as geographical regions
containing water versus those containing soil, for which different rules apply.

The CA’s non-uniformity can be further increased, going beyond Def. 6.1.
This is done by including more rules (that need not be elementary), which
generally implies more variation and less mathematical oversight. Three
mathematical types of these ‘general’ vCAs allow for the generalisation of
properties of uniform CAs, so-called default-rule, structural-period, and radius-
r vCAs [221]. As all three definitions require some symmetry around a central
cell, the artificiality of their setup generally impedes any interesting applica-
tion beyond mere mathematical constructions.
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6.2.2. Temporal vCA variations
If Z(t) is time-dependent, we may distinguish between purely temporal
and spatiotemporal non-uniformity:.

Purely temporal vCAs. 1If (for binary vCAs) Z(t) identifies at time ¢ either
all cells or none of the cells, the CA is spatially uniform, but its global update
function can change over time. For a two-rule ¥CA, this may be expressed
as a set Z C {0,...,t} with 2! possible choices, where t; is the final time
step in the simulation. We may identify the same general variations as for
the spatially non-uniform case, with a similar motivation. Note that the
stochastic case, where Z ~ Bin(t; + 1,¢) determines whether global rule ¢
(reps. W) applies with probability ¢ (resp. 1 — q) is entirely equivalent to a
temporal SCA [214] (cf. Section 3.2.2).

Spatiotemporal vCAs. In the most general case, the rule allocation changes
both in space and in time. We discuss two special cases of two-rule vCAs
with some systematic local rule allocation, and demonstrate how this locality
causes the vCA to be equivalent to a uniform (multi-state) CA, and vice
versa.

First, Z(t) may change over time if the local rule depends on the neigh-
bourhood. However, as an example, suppose rule 153 applies when the neigh-
bourhood is symmetric, and rule 102 otherwise. In binary code, we write this
as 153 = 100110015 and 102 = 011001105, where the bold bits indicate when
the rule applies. The effective uniform rule is then simply the combination
of the boldface bits, so 110000115 = 195. This is easily generalised to CAs
with more states and/or a larger neighbourhood.

Second, we can build a simple vCA with local rule allocation dynamics,
stacking from two rules ¢ and 1. Suppose rule ¢ applies to cells {¢;|i € Z(t)},
and rule ¢ applies to all others. From some initial rule allocation Z(0), the
set Z(t) is updated according to some local rule, say another Wolfram rule £
with

[0i(t +1) = ¢] = £([9i-1(t) = ], [9i(t) = 9], [dira(t) = ¢])- (6.3)

Here ¢;(t) indicates the rule that updates cell ¢; at time step ¢, and [¢;(t) = ¢]
outputs 1 (resp. 0) when the update rule is rule ¢ (resp. rule v).

Note, now, that any cell can be in one of four ‘dual’ states, namely
{0,0},{0,9v}, {1, ¢} or {1,74}, and the dual state of a cell at the next time
step is deterministically and uniformly dictated by the dual states of its
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Figure 6.1: A four-state (quaternary) CA can simulate a vCA with locally defined dynamic
rule allocation. Here, the cells in a ¥CA are evolved according to either rule ¢ = 110 or
rule v = 170. The allocation of these rules to the cells at a particular step is determined
by the initial rule allocation — in this case periodic with period 7" = 5 —, and evolved by
rule £ = 240 (left). The resulting vCA spacetime diagram is shown in the centre diagram.
The righthand spacetime diagram displays the quaternary uniform CA that simulates this
vCA by means of rule 326 159 115819648 357 517613 529 732 932 608 160.

< Time

neighbourhood. The dual state’s first element depends on the first elements
of the dual states of the cell’s neighbourhood, as well as the second element
of the dual state of the cell itself. The dual state’s second element depends
only on the second elements of the dual states of the neighbourhood. This
amounts to 256% ~ 107 possible rules, essentially picking a Wolfram rule
for ¢,1, and &. These rules form a (tiny) subset of the ~ 103 quaternary
IN| = 3 local update rules. That is to say: a binary three-neighbourhood
two-rule vCA can be mapped to — and therefore simulated by — a quater-
nary three-neighbourhood uniform CA. The general case of this mapping was
demonstrated by Kamilya et al. [371].

As an example of such a mapping, consider a binary two-rule vCA C; and
a quaternary uniform CA Cy, both with |N| = 3. If we consider C; to have
four dual states, we may perform a mapping (choosing one of 4! possibilities)
between the states of both CAs:

({0,0}, {0, ¢}, {1, 0}, {1, ¢'}) = (0,1,2,3).

This implies that a cell in an even state in Cy corresponds to a cell that
obeys rule ¢ in C;. A cell in a state smaller than 2 in Cy corresponds to a cell
in state 0 in C;. These are two independent binary observations (odd/even
and smaller/greater than 2), which always lead to a definite state value for
the cell in the quaternary CA. We show an example of the result from this
mapping in Fig. 6.1.
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More generally, a vCA governed by [ rules and hosting k states can be
mapped to a uniform (k x [)-nary CA with the same neighbourhood size.
The inverse is generally not true as the rule space cardinality of the former
is much smaller than that of the latter:

V0> 1 KR« (B0

This is due to the fact that many quaternary rules are illegal for vCA simu-
lation, because the outputs of all (kI)? neighbourhood configurations must
be mutually consistent.

Hybrid CAs. Because one of the central CA properties is its locality, CAs
that violate this attribute are sometimes called ‘hybrid CAs’. The local
update rule can generally be written as ¢ = ¢(5(N,t),6(i,t)), with 6 a time-
and space-dependent global parameter. This essentially allows for an infinite
number of rules and is arguably the most general form of a vCA. Its merit
is however again mostly in applications, as closed mathematical expressions
are now generally infeasible.

6.3. Non-uniform CA genotype and phenotype
6.3.1. The non-uniform CA genotype

Dennunzio et al. [370] identify three directions in the genotypical char-
acterisation of ¥CAs: (1) the investigation of sensitive dependence on initial
conditions, (2) the generalisation of conditions for dynamical properties such
as number conservation and reversibility, and (3) the exploration of the set
of reachable states, and of the fixed-point sets in particular. Because many
genotypical properties of classical CAs are supported by the uniform appli-
cation of a single rule table, many of these are no longer true for vCAs in
general. Some clever generalisations can be made for particular vCAs [221],
but these results are difficult to exploit outside the realm of pure mathemat-
ics.

Dependence on initial conditions, which is a measure of chaoticity, has
been studied from a genotypical perspective by Kamilya and Das [372] by
quantifying the information flow through the CA.

Rule table parameters for vCA may be constructed from the rule table
parameters associated with the rules that make up the vCA, e.g. by simply
taking the average. However, an approach that depends less on contingent
choices is supported by the observation that the uniform k-nary CA that sim-
ulates the vCA at hand, must also encode its genotype. That is to say: just
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look at the rule table of the uniform CA that simulates the vCA. Whether
or not this approach is helpful, however, depends on whether (1) this com-
plexity trade-off map between the two CA families exists — which is not true
in general —, and whether (2) the genotype of the k-nary CA is known and
sufficiently informative. If these conditions are met, a ¥CA can be associated
with all rule table parameters and global properties known to the k-nary CA,
independent of the initial configuration. To our knowledge, no such approach
has yet been taken.

Regarding the identification of genotypical dynamical vCA properties
(Dennunzio et al.’s second research direction), much theoretical work has
been focused on number conservation (e.g. [373]). In particular, Wolnik et
al. [374] recently identified all number-conserving and reversible finite 1-D
vCAs constructed from Wolfram rules. More generally, Dennunzio et al. [375]
formally investigated properties of ¥CAs for different rule allocations, iden-
tifying a number of complexity classes, but also again pinpointing the many
methodological challenges that non-uniformity invokes [375].

Concerning the third research direction, Dennunzio et al.|370] have ap-
plied de Bruijn graphs in formal language theory to identify a number of
fixed-point configurations of the ¥CA. Adak et al. [376] developed a construc-
tion method for vCAs whose fixed-point set has cardinality one, i.e. that have
a static end state. Taking a slightly different perspective, Adak et al. [377|
recently developed an (often efficient) algorithm that decides whether or not
a VCA configuration can be reached from another one.

6.3.2. The non-uniform CA phenotype

Little work has been done on the classification of #CAs based on their
phenotype. Arguably, this is due to the large number of possibilities — allo-
cating two rules in a periodic CA of N cells provides 2 /N options —, and
due to the unpredictable interference of rules — e.g. two periodic rules may
cooperate, generating a complex pattern. While the latter reason is indeed
a symptom of the theoretical difficulty associated with vCAs, it is also an
important reason to investigate this model further. After all, it demonstrates
yet again the principle of emergence in (evolving) artificial life [378].

We argue that computational resources can now accommodate large-scale
simulations that may uncover instructive statistical correlations within the
large set of vCA possibilities. This is especially the case considering that
almost all local phenotypical properties remain well-defined. Nonetheless,
the amount of research in this direction is limited, and established results
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are mostly formulated in terms of equivalent stochastic CAs. In particular,
the aforementioned work by Fates [257] on diploid CAs in fact also documents
phase transitions in ¥CAs with random dynamic rule allocations, and Roy
et al.’s work on temporally stochastic CAs [214| demonstrates the emergence
of unexpected behaviour in purely temporal vCAs.

As a closing remark, note that also the Lyapunov exponent remains well-
defined, but that the introduction of non-uniformity opens the possibility of
inspecting a new type of sensitivity: dependence on initial rule allocation.
The initial defect is then represented by breaking uniformity via the allo-
cation of a different rule to one cell, possibly causing a defect cone in the
resulting spacetime diagram.

6.4. Applications of non-uniform CAs

6.4.1. Computational advances

In the context of computer science, vCAs were explored in the context of
tasks such as the majority problem [379]. In particular, Sipper [22] showed
that ¥CAs are capable of solving this problem in over 90 percent of the cases,
mainly due to the higher number of design variations. As with the uniform
case [380], evolutionary algorithms can be of great help for identifying these
rules, as well as for constructing a ¥CA that performs simple arithmetic
operations [381]. Further, Kumaravel and Meetei [382] used reversible vCAs
for increasing the complexity (and hence the safety) of encryption-decryption
algorithms. This research was continued more recently by Mukherjee et
al. [383]. A better understanding of the theoretical foundation is of particular
interest for these approaches, and a lot is left to uncover.

6.4.2. vCAs in mathematical modelling

Outside theoretical computer science, ¥CAs have been applied to model
both natural and man-made phenomena, such as epidemiology [92], insect
movement [384], and biochemistry [385]. In theoretical biology, Adams [386]
again highlights the importance of randomness in evolution, by means of
a purely temporal vCA where the local rule is determined by some global
property of the system. Hybrid CAs have been used in wildfire modelling
where the global parameter could be the time-dependent direction of the
wind [274], and in cancer therapy research where the changing nutrients
concentration affects the local transition rule [101]. Another example of a
hybrid CA is Vichniac’s Ising model [121], in which the temperature plays
the role of global parameter that affects transition probabilities.
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7. Conclusion and outlook

We reviewed literature on five CA families: asynchronous CAs, stochastic
CAs, multi-state CAs, extended-neighbourhood CAs, and non-uniform CAs.
Each of these families is characterised by a distinct departure from the defi-
nition of ECAs, and are interconnected by mathematical identities, as shown
in this taxonomy’s central diagram (Fig. 1.3). Despite the fact that some
CA types and applications were not covered, we consider this review to be
highly comprehensive. This is because we chose to only leave out particular
topics when the relation to ECAs was considered too remote (e.g. spatially
continuous CAs), when the CA was too idiosyncratic to a particular research
field (e.g. quantum CAs), or when applications were not chiefly of a scientific
nature (e.g. CAs in the arts).

This survey disclosed a number of noteworthy patterns and realisations
within the study of CAs. First, we emphasise the conceptual paradox that
many CA families and types are in some sense opposed to the CA philosophy
of strict locality, as often some global or random choice is imposed onto the
individual cells. Second, we observe a trade-off of sorts: increased realism
and applicability almost invariably comes at the cost of decreased mathe-
matical elegance and methodological generality. Third, the methodological
approach to each CA family brought with it an appreciation for the sub-
stantial mathematical overlap between these families. This clearly allows for
an entire spectrum of approaches to a particular mathematical matter, but
also bridges the gap between various academic branches within this field of
research.

Concluding, we perceive the study of CAs as a great scientific oppor-
tunity, both as the object of mathematical inquiry as well as a modelling
tool. CA research has a mature theoretical basis, presents many promis-
ing research avenues, and is studied at a time when computational power
allows for thorough exploration. Non-uniform CAs and network automata
in particular are currently well-positioned for disclosing their properties and
merits. This is underlined by their close relationship to well-documented CA
families and their properties, the many straightforward simulations that can
be statistically described with these properties, and the wide spectrum of
applications.
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