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Abstract

Advances in bioinformatics are primarily due to new algorithms for processing diverse bio-

logical data sources. While sophisticated alignment algorithms have been pivotal in analyz-

ing biological sequences, deep learning has substantially transformed bioinformatics,

addressing sequence, structure, and functional analyses. However, these methods are

incredibly data-hungry, compute-intensive, and hard to interpret. Hyperdimensional comput-

ing (HDC) has recently emerged as an exciting alternative. The key idea is that random vec-

tors of high dimensionality can represent concepts such as sequence identity or phylogeny.

These vectors can then be combined using simple operators for learning, reasoning, or que-

rying by exploiting the peculiar properties of high-dimensional spaces. Our work reviews

and explores HDC’s potential for bioinformatics, emphasizing its efficiency, interpretability,

and adeptness in handling multimodal and structured data. HDC holds great potential for

various omics data searching, biosignal analysis, and health applications.

Introduction

Computational biologists and bioinformaticians collect, organize, process, and analyze large

amounts of biological data to extract biological knowledge [1]. Parallel advances in biological

data generation and computer science have further expanded the capabilities and usefulness of

bioinformatics, proving immensely valuable for uncovering biological knowledge from

sequence data. Today, bioinformatics is being transformed once again by deep learning (DL)

[2] and its ability to handle complex, high-dimensional, and multimodal data such as

sequences and images, redirecting interest from earlier powerhouses such as kernel-based

learning [3,4]. Prominently, the development and use of complex DL models such as Alpha-

Fold [5], ESMFold [6], and RoseTTAFold [7] represent a paradigm shift in protein structure

prediction. Moreover, DL is also leading to significant breakthroughs in other fields, such as

protein design [8], medical imaging [9], and drug discovery [10], with modest progress in

fields such as systems biology and phylogenetic inference [11]. Many advances in deep learn-

ing for bioinformatics problems leverage novel neural architectures, such as the transformer

[12], which was originally developed for natural language processing [13]. Curiously, there is a
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disparity between the fields in which the impact of DL can, to some extent, be explained by

only the need for learning a mapping based on large data sets (e.g., protein structure predic-

tion) versus the fields in which the problem settings involve complex combinations of struc-

tured data and information (e.g., multi-omics and phylogeny).

Two limitations currently hamper the utilization of DL models in bioinformatics [11].

Firstly, large connectionist models are often black boxes, while the explainability of models

is an essential property for biologists, arguably more so than predictive performance. For

example, when medical practitioners use a model to aid in making a diagnosis or finding a

treatment, they must understand why this conclusion was reached [14]. Despite the great

strides in explainable machine learning [15,16], DL methods still lack the clarity inherent in

methods such as decision trees or logistic regression. Some authors argue that data-to-deci-

sion pipelines require truly interpretable models instead of explanations for black-

box models [17]. Secondly, DL models are typically costly to train in terms of the required

data and the associated computational cost. Most DL methods are very data hungry—with

some notable exceptions, e.g., a recent RNA folding model trained on only 18 structures

[18]. Training a single competitive DL model may cost tens to hundreds of thousands of US

dollars and has a high environmental cost regarding CO2 emissions [19]. Meanwhile, trans-

fer learning and fine-tuning have emerged as approaches to circumvent large additional

training costs [20]. Furthermore, developing efficient architectures and training protocols

is an active area of research [21,22].

This work explores the potential of hyperdimensional computing (HDC), sometimes called

vector symbolic architectures (VSAs), as an alternative learning and information processing

paradigm for bioinformatics [23]. While abstract models of the brain inspire HDC and DL,

they are very different. Rather than mimicking the hierarchical connectionist neural architec-

ture, HDC is a conceptual model of how representations are stored in the human brain. Here,

concepts are represented by high-dimensional vectors (i.e., 10,000 dimensions or more), the

eponymous hypervectors (HVs). HDC uses a set of mathematical operations to combine and

change the information stored in different HVs to create an associative memory, a database of

concepts. Using a small set of mathematical operations, one can construct, process, combine,

split, or query the concepts in this database. For high-dimensional vectors, one can show that

similarity metrics such as the cosine similarity or similarity based on the Hamming distance

are extremely sensitive for detecting related vectors. Rather than being based on exact, algo-

rithmic computing, HDC uses a cybernetic form of computation [24] where concepts are

stored in a distributed fashion. Inferences are made by computing the similarity between

query HVs and those stored in a memory, similar to how nearest-neighbor and other proto-

type methods work. Having many attractive characteristics that will be explored in the sections

below, we believe HDC is a promising complementary paradigm to DL in bioinformatics with

a wide range of applicability.

In the next section, we first outline the characteristic aspects of HDC. Then, we provide an

accessible, though relatively comprehensive, introduction to HDC, including the different

strategies of creating HVs, the basic operations and their intuition, how to represent the most

commonly used data types (numbers, vectors, sequences, graphs, etc.), and how learning is

performed. Finally, we discuss the strengths and promising applications of HDC for bioinfor-

matics and computational biology. Though HDC is considered an obscure topic in some cir-

cles, there exists a vast amount of exciting work, which we cannot cover comprehensively. This

paper should also serve as a general introduction for computational life scientists. We point to

other work that is more specific or broader in scope.
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The nature of hyperdimensional computing

The HDC framework emerged in the nineties [25,26] and has recently seen a surge of interest

in the machine learning community. It originates from a broader range of computational

models that, by implementing an efficient binding operation to combine different sources of

information, attempt to combine the benefits of so-called old-fashioned symbolic AI with the

more modern connectionist and data-driven machine learning approaches. After the intro-

duction of tensor product representations [27], many similar models, such as holographic

reduced representations [28], binary spatter codes [29], and multiply-add-permute [30], have

been suggested. Today, various models exist to construct HVs, for example, using binary, real-

valued, or complex components. For an extensive overview, we refer to [26,31].

Rather than the specific choice of the values in the hyperdimensional representations, we

identify 4 hallmarks that distinguish hyperdimensional computing from other approaches

(Fig 1A). These are:

1. hyperdimensional: the HVs live in a very high-dimensional space, large enough such that

random components can be seen as distinct and dissimilar from one another;

2. homogeneous: the vast majority of HVs all have highly similar properties: they have

(approximately) the same norm, are all equally (dis)similar to one another, and have the

same dimensionality, even if they embed more complex information, etc.;

3. holographic: the information encoded in an HV is distributed over its many dimensions;

no specific region is more informative than another for a specific piece of information;

4. robust: randomly changing a modest number of the components does not substantially

change an HV’s meaning.

These hallmarks characterize the nature of the HVs, and together with a well-chosen set of

mathematical operations, they allow one to encode complex structures such as amino acids,

genes, gene regulatory networks, proteins, or whole genomes. As a general guide, information

is preserved using similarity: similar entities or complex constructions have similar HV repre-

sentations. A sensitive similarity measurement, such as one based on the Hamming distance

or the Jaccard similarity, is vital for inference and querying.

The first vital aspect of the power of HDC is the high dimensionality, typically around

10,000 as a guideline. It leads to an astronomical representational power for complex objects

such as genes or networks: 2 randomly selected vectors will likely be dissimilar, allowing them

to store information independently. Hyperdimensionality also leads to robust systems, a phe-

nomenon known in mathematics, statistics, and physics as the blessing of high-dimensionality.
For example, in statistical physics, systems with many degrees of freedom lead to robust behav-

ior that can be described by emergent properties such as pressure [33]. Different data types are

encoded in the same form of HVs, a property we call homogeneity. One cannot tell whether a

specific HV encodes a more complex concept, such as a protein, or an atomic concept, such as

an amino acid. In HDC, individual components of the HVs cannot be linked to specific infor-

mation about an entity. Instead, all components contribute slightly to representing all the

properties at once. This distributed representational property is called holographic. Storing a

little bit of all the properties in every component is the basis for homogeneously constructing

complex objects. This property is in marked contrast with, for example, TF-IDF word embed-

ding vectors (each component corresponds to the occurrence of a word in a particular text) or

molecular fingerprints (components correspond to the occurrence of specific subgroups of the

molecule). Finally, HDC is robust to noise because of the above properties. Due to its
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holographic nature, each component comprises the same information but in a differently cor-

rupted way, such that hyperdimensionality ensures a representation that is inherently robust

to corruption. This will allow for the construction and manipulation of complex entities with-

out too much loss of information. In essence, computing similarities of large, randomly initial-

ized vectors can be seen as approximating expected values, which are preserved under

unbiased corruption, i.e., noise.

Fig 1. (a) The hallmarks of HDC. HVs work reliably due to their large dimensionality N (i.e., the Law of Large Numbers states that

component-wise properties SN, such as the fraction of positive components, converge to their expected value for largeN), and the space is

very homogeneous (e.g., most HVs are approximately equidistant). The information about an object is encoded holographically, and the

information is robust to random errors. (b) Overview of the elementary operations of HDC: generating, bundling, binding, and permuting.

(c) Similarity is computed based on component-wise comparisons. (d) General HDC workflow, based on Thomas, Dasgupta, and Rosing

[32], where red boxes indicate the data space and blue boxes indicate operations in the hyperdimensional space.

https://doi.org/10.1371/journal.pcbi.1012426.g001
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A gentle introduction to HDC

Computing with HVs

The basic operations needed for HDC are remarkably simple. In brief, they hinge on 4 opera-

tions to manipulate and extract the information in the HVs (Fig 1B and 1C). These are the

following:

• generating new HVs from scratch;

• combining a set of HVs into a new HV that is similar to all;

• using one or more HVs to generate a new one that is dissimilar to its parent(s);

• comparing 2 HVs to detect whether they are more (dis)similar than expected by chance.

This work will limit the discussion to the most basic, generally used cases. For an exhaustive

overview, we refer to survey papers such as [26,34]. We also refer to [31], who compare eleven

different HDC architectures in-depth and [32] for theoretical analysis. As a running example,

we will use the encoding of amino acid sequences to explain the operations.

Hypervector generation. Firstly, one has to fix the nature of the HVs, e.g., whether to

work with binary ({0, 1}), bipolar ({–1, 1}), ternary ({–1, 0, 1}), sparse, or real-valued vectors.

One needs to define a function for these types to generate new atomic vectors. Atomic vectors

represent the basic building blocks of the entity of interest. For example, protein sequences

consist of amino acids, DNA sequences of nucleotides, and protein networks of proteins.

These are atomic in the sense that they are, within their context, not composed of simpler sub-

structures. In practice, generation can be done by initializing an N-dimensional vector with i.i.

d. (pseudo-)random numbers of the appropriate type, e.g., Booleans drawn from a Bernoulli

distribution, −1 and 1 drawn from a Rademacher distribution, or with normally distributed

values. The high dimensionality ensures that these randomly generated vectors satisfy the

properties described earlier.

Bundling. Given a collection of HVs, bundling (also called aggregation or superposition)

yields a HV similar to all elements in the collection. For example, bundling 3 HVs is denoted

as follows:

u ¼ ½v1 þ v2 þ v3�;

where [. . .] denotes a potential normalization operation. In the case of binary HVs, for exam-

ple, normalization corresponds to thresholding such that u is again a binary HV, and aggrega-

tion boils down to a component-wise majority rule. Here, we have that u ~ v1, u ~ v2 and u ~

v3 where “~” informally denotes that 2 HVs are similar, i.e., they are related. In the case of

binary (0/1) or bipolar (−1/1) HVs, “similar” means that they share more components than

expected by chance.

As an example, consider the task of finding a HV that represents the set of all hydrophobic

amino acids. For binary HVs, one could solve the closest string problem, an NP-hard problem

that finds the bitstring with the smallest Hamming distance to all the given HVs. In practice,

however, one often uses a much simpler method: the HVs of the hydrophobic amino acids are

bundled using component-wise majority. When bundling an even number of components,

one has to adopt a convention to resolve ties by setting a default value or randomly picking

one. Bipolar HVs are particularly easy to bundle, as one can add the vectors and take the sign

of the components; in the case of ties, one can use 0 as a neutral component and upgrade to

ternary HVs. Taking the average for real-valued HVs seems appropriate, though this will

reduce the aggregate’s norm, violating the homogeneity property. This decrease in norm can
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easily be understood from the variance rule for independent random variables:

Var
X1 þ X2

2

� �

¼
Var½X1� þ Var½X2�

4
:

To bundle nHVs, it is better to either compute n−1/2 ∑i vi or to renormalize the sum to

match the norm of an atomic HV.

Binding. Though powerful, bundling alone cannot represent complex, hierarchical struc-

tures. For example, suppose one has the dimer AC (alanine and cysteine) and the dimer CE

(cysteine and glutamic acid). In that case, one cannot directly create a bundling from which

the identity of these dimers can be recovered. A superposition of both dimers would represent

a bag of amino acids, unable to specify which nucleotides are connected to each other in a

dimer. This problem is called the superposition catastrophe [35]. Binding, denoted by �, solves

this problem by generating a new vector from 2 old ones:

u ¼ v1 � v2;

such that u≁v1 and u≁v2, where “≁” indicates that the vectors are not similar. For bit vectors,

component-wise, XOR-ing serves well. For bipolar or real-valued HVs, one typically uses com-

ponent-wise multiplication, though alternative binding operations such as circular convolu-

tion [28] are also used. Importantly, binding is often reversible and does not destroy the

information, i.e., there is an unbinding operator⊘ that reverses the binding and releases
the bound information:

v1 � u ¼ v1 � ðv1 � v2Þ ¼ v2:

For binary and bipolar HVs, binding and unbinding are the same operations, e.g., XOR is

self-inverse. Combining bundling and binding allows one to store a data record, i.e., a set of

key-value pairs u1�v1,. . .,un�vn, which one can query as follows:

ui � ½u1 � v1 þ � � � þ un � vn� ¼ ½vi þ noise� � vi:

The above operation is one of the central ideas behind inference with HVs. For example, by

storing a collection of sequences with a bound functional annotation (e.g., enzymes with their

associated EC numbers), one can query with new sequences to obtain the likely function anno-

tation. Additionally, this data record encoding is a generic template for encoding different

types of data, allowing to store feature identifiers as keys and their associated values.

Permutation and shifting. A special case of binding is binding by permutation, creating a

variant ρ(v) of a single HV v such that

rðvÞ≁v:

Permutation generates a concept variant, such as the phosphorylation of a protein or the

methylation of a nucleotide. The permutation is often implemented as a circular vector shifting

with one or more positions, denoted as ρi(v). Typically, one can easily invert this operation by

shifting the corresponding number of positions in the opposite order, i.e., ρ−i(v). Permutation

is often used to generate bindings of sequences that retain order information. For example,

one can embed the amino acid sequence GNP as

r1ðvGÞ � r
2ðvNÞ � r

3ðvPÞ

from the respective amino acid HVs.

Similarity. The above operations suffice to create arbitrarily complex structures in the

hyperdimensional space. One can extract information from this space by comparing HVs

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012426 September 24, 2024 6 / 23

https://doi.org/10.1371/journal.pcbi.1012426


based on (dis)similarity. A meaningful similarity measurement is vital for performing infer-
ence. One often tries to find the entity in the data space that matches the HV result most

closely, either by search or optimization. Typically, the large dimensionality ensures that the

similarity between 2 arbitrary HVs is tightly bound, leading to an extremely high sensitivity to

detect related HDs.

For bit vectors, one often uses similarities based on the Hamming similarity. The normal-

ized Hamming similarity is given by

tHamðu; vÞ ¼
1

N

XN

i¼1

dui ; vi;

with δx,y the Kronecker delta function, yielding 1 if x = y and 0 elsewise. This relative Ham-

ming similarity yields values between 0 and 1, with 2 randomly generated vectors having a

value of 0.5.

In bioinformatics, the Jaccard index (often called the Tanimoto similarity in the compari-

son of chemometric fingerprints [36]) is a popular alternative. It is the ratio of the number of

components that equal 1 in both vectors to the number of components that equal 1 in at least

one of the vectors:

tJac u; vð Þ ¼
u � v

u � uþ v � v � u � v
: ð1Þ

The Jaccard index also yields values in [0,1] with 1/3 the expected value for comparing 2

random vectors (0.52/(1–0.52)). Since the Jaccard index is appropriate for comparing sets,

every position of the HVs is interpreted as a holographic property that the entity does or does

not possess, similar to how molecular fingerprints yield information on whether a subgroup is

present or absent in a molecule.

For bipolar or real-valued HVs, the cosine similarity is a more natural choice:

tcos u; vð Þ ¼
u � v
jujjvj

:

Here, the output ranges from −1 to 1, and the similarity of 2 randomly generated vectors is

expected to be close to 0.

Encoding of data types

Armed with the 4 basic operations of HDC, one can map all kinds of objects, such as sequences,

graphs, or vectors, into the hyperdimensional space. Several strategies exist for all the different

data types. As often in data science, some feature engineering might be required to obtain the

best representations for a given application. As a general guideline, similar objects should result

in HVs with an increased similarity. We refer to [26] for a more comprehensive survey.

The atomic building blocks

The first step for a given data type is typically identifying the atomic building blocks (e.g.,

amino acids for protein sequences or proteins for protein–protein networks) and representing

them using random generation. Next, these can be combined into structured hierarchical

object representations using bundling, binding, and permutation.

Symbols. Atomic building blocks, such as symbols representing a unique concept, can be

generated directly. These symbols might, for example, represent the characters of biological

sequences, metabolites, or elements from some ontology. Because of the hyperdimensionality,

randomly generated HVs are all dissimilar, meaning that these concepts can be seen as
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independent. If one wants to encode that one concept is semantically closer to another con-

cept, one can randomly copy a small fraction of one HV to the other, making them more simi-

lar [37]. A more general way of embedding semantic information in HVs is embedding them

into a graph where semantically similar concepts are connected and optimizing the HVs to

minimize an energy function over this graph [38,39].

Scalars. Like nodes in a graph, scalars are another data type where some values are semanti-

cally closer to one another than unrelated symbols. For scalars, it is vital to incorporate the

notion of closeness. Care has to be taken when the HV components are low-resolution, such as

binary, bipolar, or ternary HV. A scalar, representing, for example, gene expression, is usually

represented by considering a fixed range of values divided into discrete bins, with intermediate

values obtained by interpolation. The HV representing one bin is typically constructed by ran-

domly changing a fraction of components of the HV of the previous bin. This type of encoding

originates from the scatter code [40]. One can achieve different similarity patterns with varying

properties and resolutions by defining the bin width and the number of randomly changed

components. The bundling of neighboring bin representations can be interpreted as an

approximation of values right in between—alternatively, more continuous approaches without

discrete bins exist [41,42]. We refer to [26] for a more detailed overview. Scalar encodings can

also form the basis for regression using HDC.

Composite objects

Numerical objects. Numerical composite objects, such as real-valued vectors (e.g., gene expres-

sion vectors) or functions (e.g., dose-response curves), can be constructed using the above-

mentioned atomic scalar representations and operations. For example, small vectors can be

encoded by binding their scalar components, likely by shifting to encode the position. Alterna-

tively, to encode a larger vector x, one can use a random projection

v ¼ Sx ð2Þ

where S is a random, potentially sparse projection matrix containing normally distributed val-

ues or components from {−1,1}. Some schemes, such as [43]’s BRIC, suggest a specific structure

in the projection matrix to promote hardware optimizations. The resulting HV v might need to

be thresholded, sparsified, or normalized [43]. Such random projections are well established

with an extensive body of theoretical justification for why they retain the properties of v, e.g.,

the Johnson–Lindenstrauss lemma [44–46] or its sparser variants [47]. Additionally, using well-

chosen numerical value encodings, more complex numerical objects such as functions and dis-

tributions can be approximated arbitrarily close using integral transformations [42,48–50].

Sets and sequences. Sets can be represented as an aggregation in terms of their symbols.

This aggregation acts similarly to a Bloom filter [32,51], a stochastic data structure used for

checking whether an element is part of a set using multiple hash functions.

Sequences, such as DNA, RNA, or peptides, differ from sets in that the order of the symbols

matters. Merely bundling the symbols would not suffice. To account for the order, one can

encode the position using shifting, e.g., no shift for the first symbol in the sequence, a shift of

one for the second symbol, and so on. One can form the HV of the sequence either by bun-

dling, e.g.,

u ¼ ½r0ðv1Þ þ r
1ðv2Þ þ r

2ðv3Þ þ r
3ðv4Þ� ð3Þ

or using binding:

u0 ¼ r0ðv1Þ � r
1ðv2Þ � r

2ðv3Þ � r
3ðv4Þ: ð4Þ
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When using bundling, one can measure the similarity between 2 sequences based on their

representation. An HV obtained by binding the sequence is dissimilar to the representation in

which a single symbol differs. When encoding longer sequences, such as proteins or whole

genomes, one typically uses the n-gram approach (often called k-mer in bioinformatics), using

both binding and bundling. Here, one typically represents all subsequences of length n using

binding, after which the n-gram representations are bundled into one sequence representation

[52]. It might be beneficial to combine several different representations at different levels. For

example, to encode a bacterial genome, one might combine multiple n-gram representations

with a representation based on the presence of the different genes, themselves encoded based

on their DNA and protein-coding sequences.

Graphs. Graphs, such as metabolic networks, protein–protein networks, or molecules, are

also structured datatypes consisting of vertices and edges. Vertices can be atomic or composite.

Representations of an edge can be constructed by combining the representations of the corre-

sponding nodes as done in GraphHD [53] and GrapHD [54]. One can directly bind the 2 node

vectors if the graph is undirected. When the graph is directed, e.g., in gene-regulatory net-

works, one can shift one of the node vectors to distinguish between an ingoing and an outgo-

ing edge. When all edges are encoded, they can be bundled to create an HV representing the

entire graph. These HV representations allow for solving graph problems such as graph match-

ing, shortest path finding, graph classification, and object detection. Specific methods such as

Holographic Embeddings can even scale efficiently to very large data sets [55].

Images. Images are the last data type we consider. An image is usually a 2D matrix in which

the components represent the pixel values, either as brightness, color, or something more spe-

cialized, such as different channels of microscopy images. Again, one can represent the whole

image by bundling the pixels with the appropriate spatial context. A simple way to encode this

context is by defining 2 permutation types, representing the pixels’ coordinates [39]. This

approach has the drawback of not accounting for the closeness between pixels. Representations

based on role-filler binding [56] mediate this problem. Here, close positions are made more

similar, in a similar way as we discussed for scalars. In [57], black-and-white MNIST images

were processed directly in flattened format, in which each pixel location was represented by an

atomic vector that was shifted or not, depending on the pixel value. This naive approach per-

formed quite poorly compared to a CNN, with a reported training accuracy of only 86% com-

pared to the 99% accuracy of LeNet. One effective alternative to creating image representations

directly from the pixel values is using a hidden layer of a (convolutional) deep neural network

(see, e.g., [58]). This strategy can also be used for other data types with associated pretrained

deep neural architectures, such as (graph) convolutional neural networks or transformers.

Learning with hypervectors

Here, we give an example of the practical learning flow for machine learning with HDC,

depicted in Fig 1D. Hyperdimensional computing bears more than a passing similarity to ker-

nel-based learning [3]. Both project the data to a higher-dimensional space to make the data

patterns more easy to capture. However, whereas kernels typically use implicit mapping and

linear algorithms in this space, HDC creates this space explicitly and mainly uses prototype-

based learning. The majority of the work within HDC focuses on classification [26,59], but

some variants for regression exist [41,60]. Typically, one first maps the data to HVs using the

methods described in this section. Then, these encoded data points are processed for learning

and reasoning using the operations in the hyperdimensional space. Finally, similarity measure-

ments allow for mapping the processed HVs back to interpretable predictions.
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More concretely, a classification, such as embedding variants of a particular protein with a

function, is typically performed using prototype methods [59]. Each class has a prototype HV

designed so that the classification of a new data point can be performed based on similarity

measurement. The predicted class is the one for which the prototype HV is most similar to the

HV representation of the data point to predict. Most HDC learning schemes can be seen as a

specific instance of vector quantization [61] or its supervised variants [62,63].

Different heuristic algorithms exist to compute class prototype HVs. The basis is bundling

all the HV representations of the members of a class. Although simple bundling is computa-

tionally efficient, easy to implement and often works reasonably well, it frequently falls short

in predictive performance compared to other contemporary machine learning methods. The

predictive performance can be greatly improved by various retraining algorithms. Typically,

one cycles through the training set several times, during which wrongly classified examples are

added to the correct class prototype and subtracted from the wrongly associated prototype

[59,64]. For example, assume 2 classes A and B with initial hypervectors CA and CB obtained

by bundling. If a data point, represented by hypervector v, is misclassified as A, then one

updates CA CA− αv and CB CB + αv with α the learning rate. Different variants with, e.g.,

data-dependent or iteration-dependent learning rates, exist to increase performance or speed

of convergence [65].

Strengths of HDC for bioinformatics

Though HDC is gaining some prominence, it remains relatively underexplored for bioinfor-

matics applications compared to other machine learning approaches. The HDC paradigm can

be instrumental in bioinformatics because the field increasingly deals with large amounts of

sequence data linked with knowledge. More specifically, in this work, we identify 4 opportuni-

ties that HDC can bring to the field of bioinformatics (Fig 2):

1. fast and efficient: HDC has the potential to be much faster than classical alignment algo-

rithms or DL approaches;

2. explainable: the operations in HDC are tractable and often reversible, making them close

to white box operations;

3. multimodal: all data are mapped to the same N-dimensional vectors, combining different

sources of data (e.g., transcription and metabolomics or sequence and structure) is trivial;

Fig 2. Opportunities for bioinformatics. (i) HDC is computationally efficient because it can usually be done using simple bit or arithmetic

operations; (ii) it is explainable because of its reversibility; (iii) it can easily combine different types of data sources; and (iv) it can represent

complex, structured, and hierarchical information.

https://doi.org/10.1371/journal.pcbi.1012426.g002
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4. symbolic and hierarchical: HDC is equipped with an algebra to reason about structured

data, such as representing a gene construct.

A similar set of strengths was explored by [66] in the context of biosignal processing.

The field of bioinformatics is generating ever-growing amounts of data [67]. This is primar-

ily due to plummeting sequencing costs, making reading expression possible from the individ-

ual cell level to the level of entire microbial communities. In addition, other rich and diverse

data sources, such as metabolomics [68], imaging [69], and flow cytometry [70], are also

becoming available in a high-throughput fashion. These data types require specific data pro-

cessing algorithms to be analyzed and compared. For example, sequence analysis is driven by

advancements in sequence alignment algorithms. Machine learning methods, and specifically

DL architectures, represent flexible, trainable operations with unprecedented power—and

often exorbitant computational demands! Hyperdimensional computing is seen as a time- and

energy-efficient form of machine learning because processing is extremely fast despite the

large size of the HVs, with speed improvements from 5 to 50 times compared to traditional

methods reported [71]. For example, the review by [71] reports speedups ranging from a factor

2 to a factor 50 for various applications, often with a minor performance cost. The reason is

that encoding, training, and inference usually require only simple component-wise operations.

The operations can often be done using bit vectors, allowing for efficient low-level encoding.

Due to the simplicity of the operations, HDC systems can be implemented on specialized hard-

ware, such as GPUs [72,73], FPGAs [74,75], and memristors [76]. For example, Demeter [77],

an HDC-based metagenomics profiler, used extensive hardware optimizations to attain more

than a hundred-fold speed improvement and 30-fold memory improvement compared to Kra-

ken2 [78] and MetaCache [79], while maintaining comparable accuracy.

There is a large gap between the vast amount of data and the generation of biological

knowledge. Ideally, a model must be explainable to create robust predictions so the user can

verify its assumptions, i.e., why something is predicted and not something else [14]. Many

approaches exist toward explainable machine learning [80], either as models that are naturally

interpretable or using post hoc analysis such as Shapley value analysis [81]. Symbolic regres-

sion methods can directly distill parsimonious, human-readable rules from data, often with

great accuracy [82,83]. Given that HDC works with large, randomly constructed high-dimen-

sional vectors, it is surprising that it is quite explainable. This explainability is due to HDC’s

reversible operations, meaning one can decompose complex representations to learn how they

work. One can use similarity matching to compare the HV with different components to see

what is essential, for example, to learn which groups or combinations of groups are responsible

for the biological activity of a molecule.

Bioinformaticians not only have to deal with more data, but these data are also becoming

more diverse. Data fusion combines data from different modalities that provide separate and

complementary views on common phenomena to solve an inference problem. Considering

the different data sources to discover molecular mechanisms, sample clustering, or attaining

the best predictions is far from trivial [84]. In precision medicine, for example, one can

describe a patient’s health status using various omics, metabolites and biomarkers, the micro-

biome, wearable reading, and the environment [85]. Deep learning has shown considerable

success in data fusion, as the hierarchical representation makes such models very suitable for

multimodal learning [85]. In HDC, different data sources are mapped to the same vector

types, bringing them to equal footing. Simple binding or more complex strategies can combine

the different HVs into a single HV representing the different modalities of the object. For

example, a fusion of different types of wearable sensor reading—electroencephalography
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recordings, accelerometers, galvanic skin response—can accurately detect human activity and

emotions [86,87].

A final aspect where HDC shines is representing complex, structured hierarchical informa-

tion. Biological data is inherently hierarchical and nested: protein networks consist of proteins,

which include domains and amino acids. The most potent representations also incorporate the

aspects of the lower-level constituents. However, combining complex information is a chal-

lenging problem, referred to as the binding problem [88]. For example, combining the con-

cepts of a “red apple” and a “green pear” might lose the specific color-object associations. In

bioinformatics, an example would be adding semantic information to individual genes in a set.

The operations of HDC are well suited to handle this issue, allowing one to freely combine spe-

cific concepts due to the distributive properties of the operations. For example, in image pro-

cessing, one can use bundling to combine several holistic image descriptors with local image

descriptors of specific regions in the image for more accurate place recognition for mobile

robotics [89]. This allows HDC to thrive for problems with reasoning and structure, such as

recently outstripping DL on Raven’s progressive matrix problem [90].

Many tricky machine learning problems can become trivial using HDC. For example, sup-

pose one has computed several energetically favorable RNA secondary structures, but one

does not exactly know which one(s) is or are biologically active—an instance of multi-instance

learning [91]. Such problems are ubiquitous in bioinformatics. They are easily handled by

aggregating to obtain an HV similar to all candidates.

Opportunities for bioinformatics

Here, we identify several domains in bioinformatics in which HDC has proved valuable. In

addition, we also speculate on which other domains in bioinformatics remain to be explored

and which domains might not be a perfect fit for HDC.

Analyzing omics data at scale

HDC has proved its worth in processing omics data. Within the omics domain, problems usu-

ally involve matching high-throughput generated data to a reference database. This application

is especially useful for HDC, given its speed and low memory footprint. Notably, because

HDC works with fixed-shape representations, (sub)sequence matching becomes independent

of the length of the reference sequence. Several studies have reported magnitudes of improve-

ments in both speed and energy use compared to the state-of-the-art. HDNA [92], GenieHD

[93], BioHD [94], and HDGIM [95] are HDC-based frameworks to match DNA sequences to

reference databases efficiently. Often, these make use of highly parallelized implementations

and specific hardware optimizations. For example, BioHD uses processing in memory (PIM)

for massive parallelism to obtain 100× speedups and energy efficiency, even compared to other

algorithms running on PIM accelerators. As a tool for protein back-translation, they resolve

ambiguities in similar-encoding nucleic acid sequences by superposing them. Another exam-

ple is Demeter [77], a metagenomics profiler made for real-time monitoring of food. The

authors use specific memristor optimizations to obtain large memory reductions and speed

improvements compared to state-of-the-art methods while seeing only negligible drops in

accuracy. In epigenetics, HDC was successfully used to classify tumor and non-tumor

sequences based on their methylation profile [96]. Alternative sequence encodings were pro-

posed, improving performance on tasks such as protein secondary structure prediction [97].

These encodings provided equivariance concerning the shift of sequences and preserved the

similarity of sequences with identical elements.
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Biosignals and spectra

A second domain with large amounts of data relates to biosignals and spectra. Here, HDC can

also provide fast ways to analyze large-scale data at competitive performance. For example,

HyperSpec [98] is an HDC-based approach for clustering mass spectrometry data that achieves

speedups of up to 15-fold compared to alternative clustering tools. In addition, HyperSpec

combines both the spatial locality of the spectra peaks and the intensity of those peaks, making

it an excellent example of HDC’s advantage in coping with complex data. HDC has been used

for classifying the sensitivity of glioma to chemotherapy using proteomics SELDI-TOF spectra

[99]. Similarly, the recently proposed HyperOMS [100] is an HDC-based algorithm for open

modification spectral searching in mass spectrometry proteomics for identifying posttransla-

tional modifications.

Related to biosignal processing, a prominent example using HDC is the work by [101], who

developed a set of HD architectures for encoding ExG signals across multiple modalities and

demonstrated how these architectures result in explainable HVs. In later work, [66] extensively

explored the potential of HDC for various ExG biosignals (i.e., electromyography, electroen-

cephalography, and electrocardiography) and found equal to superior performances compared

to the state-of-the-art, while HDC (i) demanded much less data and could work in the zero-

shot setting; (ii) dealt well with noisy and unprocessed inputs; and (iii) proved to be transpar-

ent and repeatable. In general, a lot of work within HDC has focused on the processing of bio

(medical)signals, often on IEEG, EEG, or EMG signals, for example, in seizure detection, sep-

tic shock modeling, and hand gesture recognition [66,102–125].

Molecules and graphs

HDC methods are also suitable for learning with molecules and graphs. Graphs and networks

are invaluable tools in systems biology, for example, in metabolic networks, protein–protein

networks or gene regulatory networks. GraphHD [54] and GrapHD [53] are general HDC-

based approaches for encoding and classifying graphs, achieving comparable performance as

state-of-the-art methods on real-world classification problems. HyperRec [126] is a recom-

mender system based on HDC. The method encodes items and users into HVs to predict rank-

ings for new items based on user preferences, which can be seen as predicting links in a graph.

Graphs containing drug–drug, protein–protein, and drug–target interactions were repre-

sented as HVs to predict new adverse drug–drug effects [127]. Also, the hierarchical structure

of atoms in a molecule represents a graph and can used to predict molecular properties based

on HDC [128]. MoleHD [129] is a more recently proposed HDC tool for molecular property

prediction, such as permeability through the blood–brain barrier or drug side effects. This

method performs favorably compared to several state-of-the-art methods, including graph

convolutional neural networks, while requiring mere minutes to train on a CPU, as opposed

to days to weeks of GPU training times for the deep-learning-based approaches.

Online and precision healthcare

HDC is also being applied in the domain of online health care. It is an excellent fit due to its

efficiency and multimodal-friendly characteristics. For example, [86] developed HDC-MER,

an HDC framework for emotion recognition based on multiple modalities that are encoded

into HVs across time. [102] also developed an HDC method for emotion recognition but spe-

cifically leveraged a cellular automaton for HV generation to maximize energy efficiency in

settings with many modalities. A third example is the work by [130], in which a proposed

HDC method can analyze computed tomography scans for early COVID-19 detection.
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Furthermore, HDC has been applied for seizure [104] and septic shock detection [110], in

overlap with the works cited earlier on the processing of biomedical signals.

Text mining

HDC was used for natural language processing and analogical retrieval of information using

predication-based semantic indexing [131,132]. For example, from the composition in the sen-

tences such as “drug A treats disease B,” one may infer the predicate pathway “drug A interacts
with gene C associated with disease B.” In this way, HDC can be used to mediate the identifica-

tion of therapeutically valuable connections for literature-based discovery [133]. Similarly,

HDC was discussed in the context of pharmacovigilance, drug repurposing, and discovery-by-

analogy [134,135]. Note that these (analogical) interferences of interactions based on language

show a strong connection to the more explicit graph representations discussed earlier, empha-

sizing the multi-modality of HDC. The scale at which modern DL techniques can process

large, diverse data sets has given rise to foundation models, general models capable of being

adapted to a wide range of downstream tasks [136]. Large models, such as BioBERT [137],

allow for the processing of large amounts of biomedical data, for example, for drug discovery

or personalized medicine [138]. HDC can complement such approaches as its strengths com-

plement the weaknesses of DL, i.e., HDC systems being lightweight to train and deploy and

their transparent operations. Here, HDC is suited to create relatively small, highly specialized

knowledge systems.

Finally, HDC is also used in medical imaging [139]. For example, [140] used fMRI images

for biological gender classification, and [130] used CT scans for detecting COVID-19-related

pneumonia.

Other opportunities

Beyond areas where HDC is already being applied, we also see opportunities to apply HDC in

yet-to-be-explored areas. Phylogeny is the first domain where HDC could shine. In the field of

high-throughput genomics, there is a strong need for novel and performant phylogenetic

methods, for example, to link genomic features and traits based on macroevolutionary geno-

mic data [141]. HDC would be a powerful and versatile alignment-free method [142], which

can be more flexible and computationally performant than traditional alignment-based meth-

ods (though the former might be less accurate), especially when sequences are not homolo-

gous. There are many approaches to alignment-free methods, but there is no clear general best

[143]. Many of them are based on k-mer counts or numerical representations, similar to how

HV embeddings are constructed. For example, Li and colleagues [144] found that numerical

vectors of nucleotide composition could lead to excellent phylogenetic trees throughout the

Tree of Life. Hypervectors can incorporate both the location information and physicochemical

information of the k-mers. They allow for incorporating various data sources—genomics,

expression, morphology—in simple vectors that can be compared directly to build a tree. The

hierarchical nature of HDC would allow one, for example, to encode all the gene variants of a

species and combine these in an HV that represents their relative order in the genome. This

would, for example, allow for studying organisms with complex mosaic genomes, such as

phages [145].

A final application in which we see a lot of potential for HDC is genetic engineering, bio-

technology, and breeding. Such endeavors are often very specialized projects, frequently of a

proprietary nature, in which a lot of domain knowledge and experimental data are available.

For example, enzyme engineering combines wild-type sequence data in their biological con-

text with various mutation experiments and activity and stability assays. This information has
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to be integrated into a model that correctly incorporates the causal mechanisms so that the

most promising new mutations can be highlighted. Synthetic biology is modular in the sense

that the basic parts, genes, protein domains, or cells can be combined into new functional enti-

ties [146]. The composability of HDC can be suitable to represent such designs.

Limitations of HDC

Some application areas are likely less relevant for HDC. These are areas where highly complex

relationships need to be learned with rather limited knowledge and where one can rely on ade-

quate objective functions for optimizing a complex black-box function: cases where DL shines.

One example is protein structure prediction, in which the goal does not match the strengths

that HDC can offer. A second area is generative applications such as protein design. Although

HDC methods can be generative, we believe that the goal of protein design needs to be aligned

better with the strengths of HDC frameworks. In general, DL’s strength is in learning to map

from one space to another, given that these spaces are densely populated with examples. HDC,

however, shines when there is a specific, known structure that one wishes to encode.

In general, obtaining a performance that is as good as that of conventional machine learn-

ing algorithms can be tricky for some applications. For example, in [71], it is observed that

while HDC can perform state-of-the-art for 1D data, such as text, sound and biosignal classifi-

cation, its performance on 2D data, such as images, is still inferior. The large dimensionality of

the HVs also incurs a large memory footprint, for which clever implementation or hardware

accelerations are needed to attain high speeds. Like kernel-based methods, the flexibility of

representing data in HDC also has the drawback that substantial feature engine ering might be

required for good encoding. To attain competitive predictive performance, one usually needs

some retraining scheme.

Conclusions

A key idea in bioinformatics is that statistically meaningful similarities indicate a biological sig-

nal, a reasoning often based on evolutionary principles. Many alignment-based algorithms for

sequences, structures, or graphs exploit this principle by searching large databases for homo-

logs and the like. More recent approaches based on machine learning, specifically deep learn-

ing-based approaches, have been highly successful at learning general maps from complex

input to output domains, such as sequence to structure [5]. Their power and generality have

transformed nearly every subdomain of bioinformatics.

This work discussed hyperdimensional computing as an additional tool in the bioinforma-

tician’s arsenal. Hyperdimensional computing shares similarities with search-based and learn-

ing-based paradigms, such as kernel methods. Hyperdimensional computing’s strengths nicely

complement some of the weaknesses of deep learning (and likely vice versa). Initially, the most

prominent selling point of hyperdimensional computing appears to be its speed and computa-

tional efficiency, allowing for training on parallel hardware and performing online inferences

at scale on specialized hardware such as FPGAs [147]. Extensive benchmark studies for differ-

ent applications will be critical for making the right design choices.

Future “unconventional computation” strategies might use alternative physical, chemical,

or biological processes for computation, such as optics [148], reaction-diffusion processes

[149], or plants [150]. Hyperdimensional computing would be well suited for such forms of

stochastic cybernetic modes of computation [24].

The ability of hyperdimensional computing for structural compatibility using algebraic

operators might be even more useful than its computational efficiency. These operations allow

the bioinformatician to encode prior domain knowledge and the problem structure in the
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predictive model. This might be particularly relevant in cases with limited data availability

[57]. Problem structure is especially important when using the model to guide interventions,

such as in precision medicine and genetic engineering. The most exciting advancements will

likely occur by combining the general, gradient-based mappings of DL with the symbolic rea-

soning of HDC into neuro-symbolic AI [151]. Recent work highlighted the potential of such

hybrid model [90,152–155] for combining the compositional power of symbolic reasoning

with the flexibility and scalability of gradient-based learning.
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