




Battery Storage Applications for Enterprise Users

Vasileios Papadopoulos

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Electrical Engineering

Prof. Jan Desmet, PhD - Prof. Jos Knockaert, PhD
Department of Electromechanical, Systems and Metal Engineering
Faculty of Engineering and Architecture, Ghent University

Supervisors

July 2024



Wettelijk depot: D/2024/10.500/60
NUR 959
ISBN 978-94-6355-855-6



Members of the Examination Board

Chair

Prof. Em. Luc Taerwe, PhD, Ghent University

Other members entitled to vote

Prof. Thierry Coosemans, PhD, Vrije Universiteit Brussel
Prof. Emmanuel De Jaeger, PhD, Université catholique de Louvain

Prof. Chris Develder, PhD, Ghent University
Prof. Dirk Van Hertem, PhD, KU Leuven
Prof. Lieven Vandevelde, PhD, Ghent University

Supervisors

Prof. Jan Desmet, PhD, Ghent University
Prof. Jos Knockaert, PhD, Ghent University





 

 

Battery Storage Applications for Enterprise Users 
 

Abstract 

The energy sector is undergoing a significant change on global scale. The climate change is 

pushing humanity away from conventional fossil fuel based energy sources; green energy 

technologies are becoming the new norm. Countries all over the world have committed to 

reduce their carbon footprint by investing massively in renewable energy sources such as wind 

power and photovoltaics (PV). Nevertheless, the growth of renewables comes at a price. The 

intermittent nature of wind and PV poses  serious challenges to the electric grid. As forecasting 

uncertainty continues to rise, the grid must become more flexible. In response to this need, 

different market players are currently undertaking several actions.  

Transmissions System Operators (TSOs) are uniting in Europe under a common pan-European 

framework with the aim to standardize the electricity balancing market and allow the most 

efficient transaction of balancing reserves. In the meantime, in the energy wholesale market, 

energy trading is shifting closer to the delivery date through spot markets (day-ahead and 

intraday); also here, major initiatives have been taken to increase flexibility and allow a more 

cost-effective market operation by creating the pan-European Single Day-Ahead Coupling 

(SDAC) and Single Intraday Coupling (SIDC). Furthermore, as Distribution System Operators 

(DSOs) are rolling out digital meters to enable energy monitoring and invoicing closer to real 

time, end users are incentivized to adapt their consumption and reduce electricity costs 

through dynamic pricing contracts.  

To facilitate the green energy transition, system operators need to adopt a “prosumer” centric 

approach. The once typically passive end user is now interacting with the grid through 

decentral generation and flexible assets such as batteries, electric vehicles, heat pumps, etc. 

Among these technologies, especially battery storage can play a crucial role. Over the past 

decade, we have seen globally a tremendous research effort to valorize battery storage 

applications for prosumers. What is the value of battery storage for households, buildings or 

an industrial site ? What kind of applications are available for the user ? How should a battery 

be dimensioned or be controlled to provide a certain application ? What are the options  to 

combine different applications together for improving  profitability ? 



 

 

In this PhD thesis, we address battery storage applications mainly from an enterprise user’s 
perspective located in Belgium. Back in 2018, when this thesis was conceptualized, we set as 

ultimate goal the development of a software tool that will serve as a guide in battery storage 

projects. We imagined a master Energy Management System (EMS) that would conduct 

optimizations considering different applications concurrently e.g., increasing the self-

sufficiency of the PV installation, peak demand reduction, ancillary services. This concept, 

maximizing the profitability by combining multiple revenue streams from diverse applications, 

is what we call “value stacking” and it is regarded by many as the holy grail for unleashing 

mainstream adoption of battery storage systems.   

In a first step, we dedicated our research on exploring the electricity market in Belgium. In 

Chapter 2, we provide a bird’s eye view on how the electricity market in Belgium works. How  

the market is structured in terms of the electricity unit traded (capacity or energy), the contract 

horizon, the products and the existing trading platforms and market operators. Next, we 

explain how these market mechanisms open up opportunities for battery storage. Finally, we 

decide to focus on three major applications that exhibit good potential for widespread 

adoption: (i) increasing the self-sufficiency of renewable energy systems, (ii) peak shaving, (ii) 

pricing arbitrage 

In Chapter 3, we continue with a case study on increasing the self-sufficiency of a hybrid 

renewable energy installation comprising wind, PV, a hydrogen electrolyzer and batteries. We 

compare different battery technologies and assess their techno-economic impact.  Afterwards, 

in Chapter 4, we carry out a study on the impact of the time resolution of the data inputs. We 

compare results conducted from two different scenarios (i) 10 min and (ii) 1 sec averaged 

power flow simulations in a hybrid battery–wind powered industrial site. In Chapter 5, we shift 

our focus on peak shaving. Here, we conduct a comparative techno-economic study on peak 

shaving for 40 different end users after introducing an analytic power flow model and an 

optimization method for dimensioning the battery storage system. Finally, Chapter 6 presents 

an optimization framework for day-ahead pricing arbitrage applications under peak shaving, 

considering a fully representative electricity invoicing model (in Flanders) and forecasting 

uncertainty in the load and power source.  

In Chapter 7, we summarize some important conclusions and make suggestions for future 

research in the field. A major bottleneck in the development of a multi-objective EMS is 

certainly the unstable regulatory framework but also the inherent uncertainty caused by 

fluctuating prices and auction based trading platforms. From an investor’s point of view, it is 
difficult to draw financial projections on the long term (5–10 years). A battery EMS is not like 



 

 

a wind or PV installation that once it is commissioned  simply injects power to the grid for the 

next decade. Conversely, a battery EMS needs to be sufficiently flexible to adapt according to 

the latest market evolutions whatever this might be e.g., electricity tariff model, balancing 

market rules, changes on the user’s load infrastructure, forecasting analytics on power and 

price data. This poses serious challenges to project developers since it requires additional 

effort for maintaining and updating the software over its entire lifetime. 

Our initial goal to build a master EMS that operates the battery in value stacking mode has not 

been accomplished as we imagined. Nevertheless, this thesis has generated valuable 

deliverables and insights for future research towards this direction. From our experience, we 

strongly recommend to approach the problem as a two-step optimization process. In a first 

step the EMS operates at daily resolution; every day the EMS decides which applications will 

be considered for the next day based on a kind of priority ranking e.g., (i) peak shaving, (ii) 

increasing self-sufficiency, (iii) ancillary services. In the second step, the EMS carries out 

repetitive intraday optimizations given the latest forecast data and current state of the user’s 
infrastructure. Finally, we note that, over the past 2 years (2022–2024), this PhD thesis has 

been the foundation for the development of a software prototype (FlexLab – Flexible 

Laboratory, see Annex). FlexLab is a web application that provides a suite of energy tools 

designed for the non-expert end user covering a variety of interest areas such as visualization 

widgets, forecast analytics, alerts, optimization tools and more. The prototype is currently in 

valorization phase. 

  



 

 

Beknopte samenvatting 

De energiesector ondergaat op wereldschaal aanzienlijke veranderingen. De 

klimaatverandering duwt de mensheid weg van conventionele, op fossiele brandstoffen 

gebaseerde energiebronnen; Groene energietechnologieën worden de nieuwe norm. Landen 

over de hele wereld hebben zich ertoe verbonden hun ecologische voetafdruk te reduceren 

door massaal te investeren in hernieuwbare energiebronnen zoals windenergie en 

fotovoltaïsche zonne-energie (PV). Niettemin heeft de groei van hernieuwbare energiebronnen 

een prijs. Het intermitterende karakter van wind- en zonne-energie zorgt voor een aantal 

serieuze uitdagingen voor het elektriciteitsnet. Nu de onzekerheid over de voorspellingen blijft 

toenemen, moet het elektriciteitsnet flexibeler worden. Als antwoord op deze behoefte 

ondernemen verschillende marktspelers momenteel verschillende acties. 

Transmissienetbeheerders (TNBs) verenigen zich in Europa onder een gemeenschappelijk pan-

Europees raamwerk met als doel de balanceringsmarkt te standaardiseren en de meest 

efficiënte transactie van balanceringsreserves mogelijk te maken. Ondertussen verschuift de 

energiehandel op de groothandelsmarkt voor energie via spotmarkten (day-ahead en 

intraday) steeds dichter naar de leveringsdatum; ook hier zijn belangrijke initiatieven 

genomen om de flexibiliteit te vergroten en een meer kosteneffectieve marktwerking mogelijk 

te maken door het creëren van de pan-Europese Single Day-Ahead Coupling (SDAC) en Single 

Intraday Coupling (SIDC). Bovendien worden eindgebruikers, nu distributienetbeheerders 

(DNBs) digitale meters uitrollen om energiemonitoring en facturering dichter bij realtime 

mogelijk te maken, gestimuleerd om hun verbruik aan te passen en de elektriciteitskosten te 

verlagen door middel van dynamische prijscontracten. 

Om de transitie naar groene energie te vergemakkelijken, moeten systeembeheerders een 

“prosumenten”-gerichte aanpak hanteren. De ooit typisch passieve eindgebruiker heeft nu 

interactie met het elektriciteitsnet via decentrale opwekking en flexibele middelen zoals 

batterijen, elektrische voertuigen, warmtepompen enz. Van deze technologieën kan vooral 

batterijopslag een cruciale rol spelen. De afgelopen tien jaar hebben we wereldwijd een 

enorme onderzoeksinspanning gezien om batterijopslagtoepassingen voor prosumenten te 

valoriseren. Wat is de waarde van batterijopslag voor huishoudens, gebouwen of een 

industrieterrein? Wat voor soort toepassingen zijn er beschikbaar voor de gebruiker? Hoe moet 

een batterij gedimensioneerd of aangestuurd worden om een bepaalde toepassing te kunnen 

bieden? Wat zijn de mogelijkheden als het gaat om het combineren van verschillende 

applicaties om de winstgevendheid van de use case te verbeteren? 



 

 

In dit doctoraat behandelen we toepassingen voor batterijopslag voornamelijk vanuit het 

perspectief van een zakelijke gebruiker in België. In 2018, toen dit proefschrift werd 

geconceptualiseerd, stelden we als uiteindelijk doel de ontwikkeling van een softwaretool die 

als leidraad zal dienen bij batterijopslagprojecten. We stelden ons een master 

energiebeheersysteem (EMS) voor dat optimalisaties zou uitvoeren, rekening houdend met 

gelijktijdige verschillende toepassingen, b.v. het vergroten van de zelfvoorziening van de PV-

installatie, vermindering van de piekvraag, ondersteunende diensten. Dit concept, dat de 

winstgevendheid maximaliseert door meerdere inkomstenstromen uit diverse toepassingen 

te combineren, is wat wij ‘value stacking’ noemen en wordt door velen beschouwd als de 
heilige graal voor het ontketenen van de mainstream adoptie van batterijopslagsystemen. 

In een eerste stap hebben we ons onderzoek gewijd aan het verkennen van de 

elektriciteitsmarkt in België. In hoofdstuk 2 geven we een overzicht in vogelvlucht van hoe de 

elektriciteitsmarkt in België werkt. Hoe is de markt gestructureerd in termen van de 

verhandelde elektriciteitseenheid (capaciteit of energie), de contracthorizon, de producten en 

de bestaande handelsplatformen en marktpartijen. Vervolgens leggen we uit hoe deze 

marktmechanismen kansen bieden voor batterijopslag. Ten slotte besluiten we ons te 

concentreren op drie belangrijke toepassingen die goede mogelijkheden bieden voor brede 

adoptie (i) het vergroten van de zelfvoorziening van hernieuwbare energiesystemen, (ii) peak 

shaving, (ii) prijsarbitrage 

In hoofdstuk 3 gaan we verder met een case studie over het vergroten van de zelfvoorziening 

van een hybride hernieuwbare energie-installatie bestaande uit wind, PV, een 

waterstofelektrolyzer en batterijen. We vergelijken verschillende batterijtechnologieën en 

beoordelen hun techno-economische impact. Daarna voeren we in hoofdstuk 4 een onderzoek 

uit naar de impact van de tijdsresolutie van de gegevensinvoer. We vergelijken de resultaten 

van twee verschillende scenario's (i) 10 min en (ii) 1 sec gemiddelde power flow simulaties in 

een hybride batterij-windaangedreven industriële locatie. Later in hoofdstuk 5 verleggen we 

onze focus naar peak shaving. Hier voeren we een vergelijkend techno-economisch onderzoek 

uit naar peak shaving voor 40 verschillende eindgebruikers na de introductie van een 

analytisch power flow model en een optimalisatiemethode voor het dimensioneren van het 

batterijopslagsysteem. Ten slotte presenteren we in hoofdstuk 6 een optimalisatiekader voor 

day-ahead prijsarbitragetoepassingen onder peak shaving, waarbij we een volledig 

representatief elektriciteitsfactureringsmodel (in Vlaanderen) in ogenschouw nemen en 

voorspellingsonzekerheid in de belasting en energiebron. 



 

 

In hoofdstuk 7 vatten we enkele belangrijke conclusies samen en doen we suggesties voor 

toekomstig onderzoek op dit gebied. Een belangrijk knelpunt bij de ontwikkeling van een EMS 

met meerdere doelstellingen is zeker het onstabiele regelgevingskader, maar ook de inherente 

onzekerheid die wordt veroorzaakt door fluctuerende prijzen en op veilingen gebaseerde 

handelsplatforms. Vanuit het perspectief van een belegger is het moeilijk om financiële 

projecties op de lange termijn (5-10 jaar) te maken. Een batterij-EMS is niet zoals een wind- of 

PV-installatie die, zodra deze in gebruik is genomen, eenvoudigweg stroom aan het 

elektriciteitsnet injecteert voor de komende tien jaar. Omgekeerd moet een batterij-EMS 

voldoende flexibel zijn om zich aan te passen aan de laatste marktevoluties, wat deze ook 

mogen zijn. tariefmodel voor elektriciteit, balancingmarktregels, veranderingen in de 

infrastructuur van de gebruiker, voorspellingsanalyses van stroom- en prijsgegevens. Dit 

brengt serieuze uitdagingen met zich mee voor projectontwikkelaars, omdat het extra 

inspanningen vergt voor het onderhouden en updaten van de software gedurende de gehele 

levensduur ervan. 

Ons oorspronkelijke doel om een master-EMS te bouwen dat de batterij in value stacking 

bedient, is niet bereikt zoals we ons hadden voorgesteld. Niettemin heeft dit proefschrift 

waardevolle resultaten en inzichten opgeleverd voor toekomstig onderzoek in deze richting. 

Vanuit onze ervaring raden we ten zeerste aan om het probleem te benaderen als een 

optimalisatieproces dat uit twee stappen bestaat. In een eerste stap werkt het EMS op 

dagelijkse resolutie; elke dag beslist het EMS welke toepassingen de volgende dag in 

behandeling zullen worden genomen op basis van een soort prioriteitsrangschikking, b.v. (i) 

peak shaving, (ii) vergroten van de zelfvoorziening, (iii) ondersteunende diensten. In de tweede 

stap voert het EMS repetitieve intraday-optimalisaties uit op basis van de nieuwste 

voorspellingsgegevens en de huidige status van de infrastructuur van de gebruiker. Tenslotte 

merken we op dat dit proefschrift de afgelopen 2 jaar (2022-2024) de basis heeft gelegd voor 

de ontwikkeling van een softwareprototype (FlexLab – Flexibel Laboratorium, zie bijlage). 

FlexLab is een webapplicatie die een reeks energietools biedt die zijn ontworpen voor de niet-

deskundige eindgebruiker en die een verscheidenheid aan interessegebieden bestrijkt, zoals 

visualisatiewidgets, voorspellingsanalyses, waarschuwingen, optimalisatietools en meer. Het 

prototype bevindt zich momenteel in de valorisatiefase.  
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Abbreviations and Acronyms 
 

aFRR Automatic Frequency Restoration Reserve 
AMR Automatic Meter Reading 
BESS Battery Energy Storage System 
BRP Balancing Responsibility Party 
BSP Balancing Service Provider 
CAES Compressed Air Energy Storage 
CAPEX Capital Expenditures 
CHP Combined Heat and Power 
CCMD Consumer Centric Market Design 
CRM Capacity Remuneration Mechanism 
DAM Day-Ahead Monthly 
DoD Depth of Discharge 
DSO Distribution System Operator 
EBGL Electricity Balancing Guideline 
EMS Energy Management System 
EoL End of life 
ESCO Energy Service Company 
EV Electric Vehicle 
FCR Frequency Containment Reserve 
FFN Feed Forward Network 
IGCC International Grid Control Cooperation 
LFP Lithium iron phosphate (LiFePO4)  
LV Low Voltage 
MCP Marginal Clearing Price 
MCV Marginal Clearing Volume 
MDP Markov Decision Process 
MDP Marginal Decremental Price 
MIP Marginal Incremental Price 
mFRR Manual Frequency Restoration Reserve 
OPEX Operating expenditures 
OTC Over-The-Counter 
PPA Power Purchase Agreement 
PV Photovoltaics 
RES Renewable Energy Systems 
ROI Return of Investment 



 

 

SDAC Single Day-Ahead Coupling 
SIDC Single Intraday Coupling 
SoC State of Charge of the battery 
SR Strategic Reserve 
ToU Time of User 
TSO Transmission System Operator 
UPS Uninterruptible Power Supply 
VRB Vanadium Redox Flow 

  



 

 

Terminology 
 

Aggregator A service provider that integrates different decentralized units 
(e.g.,  EVs, heat pumps, batteries) into a single flexible asset that 
can be upwards (power generation) or downwards (power 
consumption) activated.  

C rate Rate of time at which the battery is charged or discharged.  
ENTSO-E European Network of Transmission System Operators for 

Electricity. ENTSO-E is an organization that promotes the closer 
collaboration of the TSOs in Europe. It consists of 39 TSOs across 
35 countries.  

Imbalance Netting Imbalance Netting is the process agreed between TSOs of two or 
more Load Frequency Control (LFC) areas that allows avoiding the 
simultaneous activation of frequency restoration reserves in 
opposite directions. The TSO members of the IGCC perform 
imbalance netting on the aFRR.  

NEMO Nominated Electricity Market Operator. NEMOs are the 
organizations mandated to run the day-ahead and intraday 
integrated market coupling. Examples are EPEX SPOT, Nord Pool, 
OTE, Nasdaq 

OTC OTC refers to financial instruments traded directly between two 
parties, rather than on an organized exchange.  

Power Exchange A trading platform where different parties come together to buy 
and sell electricity. Examples are ICE Endex, EEX, EPEX Spot.   

  



 

 

Nomenclature 
 

Symbols Definition Unit 
a Hellman exponent  
am Action m in Markov decision process  
A Action space in Markov decision process  
Aincr Consumption increase % 
Apeak red Peak reduction percentage % 
Cp1 Capacitance of 1st parallel element in LFP battery cell 

electric model 
F 

Cp2 Capacitance of 2nd parallel element in LFP battery cell 
electric model 

F 

CAh Battery capacity in Ah Ah 
CkWh Battery capacity in kWh kWh 
CMWh Battery capacity in MWh MWh 
CPpv Capacity factor of PV % 
CPwind Capacity factor of wind % 
Crate Battery C rate  
Costbat Battery CAPEX per unit €/kWh 
Edis tot Total energy discharged by the battery kWh 
Eload tot Total load energy demand kWh 
Egrid tot Total energy delivered to load by the grid kWh 
Eq activated Activated energy volume for quarter q MWh 
ERtot Total self-sufficiency error % 
ERbat Battery utilization error % 
ERinst(t) Instantaneous self-sufficiency error % 
Eload inst(t) Instantaneous load consumption at time t kWh 
Egrid inst(t) Instantaneous energy delivered to the load by the grid 

at time t 
kWh 

h Height m 
OCV Open Circuit Voltage V 
Pa(s, ś ) Probability of Markov decision process that action a in 

state s at time step t will lead to state ś at time step 
t+1  

 

Pbat Power of the battery kW 
Pcapacity bid Power of the capacity bid MW 
Pinv Power of the DC/AC inverter kW 



 

 

Pnom Nominal power of the DC/AC inverter kW 
Pbattery max Upper charging power limit of the battery kW 
Pbattery min Lower discharging power limit of the battery kW 
Pelect Electricity price €/kWh 
Pbattery AC 

output(t) 
Power of the battery storage system (AC output) at 
time t 

kW 

Pgrid(t) Power of the electric grid at time t kW 
Pload(t) Power of the load at time t kW 
Pwind(t) Power of the wind turbine at time t kW 
Prq energy bid Energy bid price for quarter q €/MWh 
Prcapacity bid Capacity bid price €/MW/h 
qt, m Real power measurement Pload – Ppv in the quarter m of 

time step t 
 

Q(St, At) State action value function at time step t  
R Total internal resistance of LFP battery cell Ω 
R0 Resistance of series element in LFP battery cell electric 

model 
Ω 

Ra(s, ś ) Expected immediate reward received after 
transitioning from state s to ś to action a  

 

Rcapacity Remuneration for reserved power capacity € 
Renergy Remuneration for activated energy volume € 
Rp1 Resistance of 1st parallel element in LFP battery cell 

electric model 
Ω 

Rp2 Resistance of 2nd parallel element in LFP battery cell 
electric model 

Ω 

Rpeakred-to-cap Ratio peak reduction to capacity  
Rt Reward in Markov decision process at time step t   
Rev Peak compensation revenue €/kW/h 
S State space in Markov decision process  
Stot Total self-sufficiency of the installation % 
SoCact time Average percentage of time during the simulation that 

the battery is deployed for peak shaving 
% 

SoC(t) Battery State-of-Charge at time t % 
Sinst(t) Instantaneous self-sufficiency of the installation at 

time t 
% 

Tstep Time step of the simulation s 
Ubattery Battery utilization % 
UPEM Electrolyzer utilization % 
v Wind speed m/s 



 

 

v10 Wind speed at 10 meters height m/s 
ΔPpeak Peak reduction kW 
γ Discount factor in calculation of MDP reward  
ηbattery Round trip efficiency of the battery % 
ηDC/AC Efficiency of the DC/AC converter % 
ηtotal Total efficiency of the battery storage system % 
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1 Introduction 

1.1 CONTEXT AND MOTIVATION 

Energy storage has been at the forefront of the renewable energy landscape for many years. 

It is regarded by many experts as an indispensable part of the solution towards a 100 % green 

energy world. In general, energy storage technologies can be divided into 3 categories 

depending on how long the energy is stored: (i) long-term storage, from months to years (e.g.,  

CAES, hydrogen storage), (ii) medium-term storage, from days to weeks (e.g., batteries, pumped 

hydro), (iii) short-term storage, from seconds to minutes (e.g., batteries, supercapacitors, 

flywheels). Among these technologies, battery storage is by far the most popular mainly due 

to the fact that batteries, at least until now, are still the most cost-effective technology to be 

adopted for mainstream use.  

With respect to battery storage applications, we make a distinction between mobile and 

stationary applications. Mobile applications refer to the use of batteries in transportation such 

as electric vehicles, trucks, buses, bikes etc. In stationary applications, batteries are basically 

part of the electric grid infrastructure e.g., homes, grid interactive PV systems, ancillary services 

to TSOs etc. As of 2024, battery storage has seen some growth in mobile applications, while 

the adoption of the technology for stationary applications is still in its early stages due to a 

variety of reasons as explained in the next paragraph. 

First of all, one would argue that there is some serious lack of stability in long term market 

rules. The increased penetration of renewables is changing the way we think of electricity. The 

forecasting uncertainty of renewables is impacting the wholesale and retail markets. Energy 

trading is shifting closer to the delivery date to hedge against risks. The once taken for granted 

fixed pricing contracts are not  the norm anymore. To mitigate  forecasting errors, energy 

suppliers opt to expose the end user to variable or even dynamic pricing contracts, which 

impacts negatively investments in green technologies such as batteries with long payback 

horizons (more than 5 years). What is more, on DSO level, as renewables grow, the tariff 

structure is also experiencing major reviews; additional costs are imposed on the connection 

capacity and peak demand of the installation.  Furthermore, on TSO level, the balancing market 

is being reshaped through pan-European integration initiatives for the FCR, aFRR and mFRR 

reserve. Consequently, the electricity market is in continuous transition that creates challenges 

and doubt especially for the typical non-expert end user who is nevertheless the final decision 

maker when it comes to the implementation and final technology valorization.  
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On the other hand, battery storage exhibits a lot of potential for creating value to different 

market players (see Figure 1). (i) Prosumer (commonly known as behind-the-meter), (ii)  DSO, 

(iii)  TSO1. Behind-the-meter battery systems can technically provide the largest number of 

applications. The further downstream the system is installed on the electric grid, the more 

applications it can provide to the whole system. Depending on the use case, the battery can be 

deployed either for a single standalone application or for a combination of multiple 

applications to benefit from different revenue streams; the latter is commonly known as 

“value-stacking”. 

 

Figure 1: Battery storage applications 

 

1.2 QUESTIONS AND CHALLENGES 

The present research work can be regarded as a contribution to behind-the-meter battery 

storage applications. Here, we distinguish two main user groups: households and enterprises. 

This thesis focuses primarily on enterprises rather than households since enterprises have 

generally speaking the biggest potential to benefit from value stacking and deliver services to 

the DSO or TSO. Although this decision was made back in 2018 and it still holds, we see that 

                                                             
1 Note that depending on the regulatory framework, some countries like Belgium prohibit the DSOs and/or TSO from owning 

any power generation units (incl. batteries).       
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some parts of our research can now be applied for residential users as well.2 The thesis is 

organized in five chapters, where each chapter deals with a separate key question. All 

questions mentioned below came up in chronological order as the research work evolved:   

Chapter 2: What are the opportunities for battery storage ? 

 Which applications exist and how do they work in practice ? 

 Which applications have the biggest potential; is there sufficient market liquidity or are 

these unique non-reproducible use cases ? 

Chapter 3: What is the self-sufficiency of hybrid renewable energy installations ? 

 How is the self-sufficiency affected under different system topologies and dimensioning 

criteria (e.g., only PV, PV and wind, PV and wind and battery) ?  

 What is the impact of using different battery technologies in terms of utilization, efficiency 

and the overall added value to the system ? 

Chapter 4: How does the time resolution of the data inputs impact the simulation result in self-

sufficiency studies ?  

 How big is the simulation error as we move closer to real time: 60 min > 15 min > 1 min > 

1 sec ? 

 Is it worth recording high resolution measurements for the load, PV or wind power source 

?  

Chapter 5: What is the value of peak shaving for enterprises in Belgium ?  

 How do we simulate the peak shaving process and how do we optimize the battery size ?  

 What is the battery utilization, degradation and economic profitability of the application ? 

Chapter 6: How can we deploy a battery for day-ahead pricing arbitrage combined with peak 

shaving ?  

 Do we need forecasting or not; if yes for which data inputs (e.g., load, PV yield, market 

prices) and what kind of models can we use ?  

 What is a suitable optimization methodology ?  

                                                             
2 Residential users are now charged for their peak demand and have access to dynamic pricing contracts, thus allowing them 

to take advantage of pricing arbitrage and peak shaving. 
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 How does the model perform in different scenarios of forecasting uncertainty  ? 

1.3 CONTRIBUTIONS 

Figure 3 summarizes the contributions delivered by each chapter of the thesis; we split the 

contributions in four segments: (a) Theory, (b) Data, (c) Methodology, and (d) Results. The 

present research work has delivered three journal publications, each one treated in a separate 

chapter (see Chapters 3 – 5); these chapters correspond to an extended version of the original 

published papers.  

Chapter 2 is split into two parts. The first part is an introduction to the electricity market in 

Belgium. It gives a bird’s eye overview how the market works. We start by presenting who are 
the market players and how the market is structured in general. Then we continue elaborating 

on the different market mechanisms: (a) forward/futures,  (b) day-ahead,  (c) intraday,  (d) 

balancing market, (e) imbalance pricing and (f) retail market. In the second part of Chapter 2, 

we give an overview of the different battery storage applications describing how each 

application works, for whom it creates value and what is the current state of the application 

in Belgium. Finally, we close the chapter summarizing our conclusions and decisions for the 

next research objectives. Chapter 2 forms the basis of the research providing input to all next 

chapters but also being constantly updated following the latest market evolutions (see Figure 

2). 

Chapter 3  was published in the International Journal of Hydrogen Energy (see Ref. [1]). Here, 

we carried out a real case study on increasing the self-sufficiency of a renewable energy 

installation considering different scenarios for the power source (only PV, PV and wind, PV and 

wind and battery). The electric load is a 1 MW PEM electrolyzer powered by a 15 MW photovoltaic 

park. In this paper, we deploy battery storage to assist the PV and wind power sources during 

nighttime or time periods of low wind speeds in order to maximize the utilization (self-

sufficiency) of the electrolyzer. The contributions of Chapter 3 are: (i) the datasheets & 

quotations that we have received from the involved business partners, (ii) the sensitivity 

analysis on the impact of wind and battery storage (VRB and Lithium-ion) in terms of increased 

self-sufficiency and battery utilization, (iii) the economic profitability analysis (payback period 

& accumulated profit) given real market data, quotations and offers received by the project 

developers from that time. Next, based on this study, we decided to focus on investigating the 

impact of the time resolution, therefore setting the path for Chapter 4. 

Chapter 4  was published in Applied Energy (see Ref. [2]). In this paper, we carried out a 

comparative study investigating how the self-sufficiency of a wind powered industrial site 

changes considering different time resolutions (10 min vs 1 sec). For this study, we collected 
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high resolution measurements (1 sec) both for the power source (wind turbine) and the load 

(industrial site).  The study delivered two major contributions: (i) the analytic power flow 

model of the battery storage system developed in  Matlab Simulink, (ii) the sensitivity analysis 

on the self-sufficiency and battery utilization error. Next, the developed power flow model was 

used as input in Chapter 5, where we also applied some improvements by integrating non-

linearity in the efficiency curve of the DC/AC converter.   

Chapter 5 was published in Energies (see Ref. [3]). In this paper, the focus lies on peak shaving. 

We carry out a techno-economic analysis on 40 low voltage enterprise users. We consider that 

each user has a battery storage system which is (dis)charged to minimize the peak demand, 

therefore reducing the electricity costs imposed by the DSO. The contribution of this work are: 

(i) the dataset that was used as input for our analysis (40 enterprise power profiles, 3 years of 

15 min resolution data, (ii) the optimization algorithm for the sizing of the battery capacity, 

(iii) the economic profitability analysis for all 40 use cases, taking into account the battery 

degradation,  the DSO grid tariff tables/costs and electricity prices from that time. The 

conclusions from this paper led to the final part of our research work where peak shaving is 

combined with day-ahead pricing arbitrage. 

Chapter 6 is the final part of our research work. Here, the battery application is day-ahead 

pricing arbitrage  under peak power constraints. The end user has a dynamic pricing contract 

with an energy supplier. The goal is to define a (dis)charging policy for the battery controller 

in order to minimize the total electricity cost of the next day. Chapter 6 delivered two 

contributions: (i) the multi-objective optimization algorithm, which is a variant of the DQN 

architecture from Reinforcement Learning, (ii) the sensitivity analysis on the performance of 

the algorithm affected by the forecasting accuracy of the power profiles. Finally, we close the 

thesis summarizing important conclusions and making suggestions for future research ideas 

in Chapter 7.  
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Figure 2: Flowchart - Relation between the different chapters 

 

 

Figure 3: Thesis contributions by chapter  
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2 Electricity market & opportunities for battery storage 

2.1 ELECTRICITY MARKET IN BELGIUM 

2.1.1 Introduction 

This chapter was written having in mind the non-expert reader. The aim is to provide a bird’s 
eye view of how the electricity market works in Belgium. We start by defining the market 

players, then provide a generic overview of the market structure and afterwards address each 

market segment separately. This chapter can be used as a backbone guide for those who want 

to understand the basic driving mechanisms of the market but also forms an introduction for 

later diving into the main scope of this thesis on battery storage applications.     

The electric grid as we know it today has been shaped over time by different players, ranging 

from governments, public institutions, regulators, private enterprises and single individuals, 

each one with his own interests and responsibilities but all actions governed by the 

fundamental necessity of maintaining grid stability. Next, we present a list of the most 

important players describing their role.  

 Transmission System Operator (TSO): The TSO is responsible for the management of the 

high voltage electric grid. This includes the maintenance and upgrade of the high voltage 

transmission line infrastructure transferring electricity over long distances, from power 

plants to distribution networks and directly connected customers. Furthermore, he is the 

operator of the balancing reserve market, providing ancillary service products to BSPs and 

activating those products when required to ensure grid stability in real time (per second 

based controlling mechanisms). In Belgium, the TSO is Elia.  

 Distribution System Operator (DSO): The DSO is responsible for the management of the 

distribution electric grid, including the medium and low voltage distribution line 

infrastructure. He operates all energy metering installations (residential digital meters 

and enterprise AMR) based on which end users are invoiced by energy suppliers. In some 

countries, DSOs also offer secondary grid support services for managing congestion issues; 

such services are expected to become more popular with the increase of renewable energy 

systems. In Belgium, there are different DSOs for each region separately. These are Fluvius 

in Flanders, ORES and RESA in Wallonia and Sibelga in Brussels [4-6]. 

 Producer: These are owners of power sources that inject electricity directly into the electric 

grid without serious load consumption behind the meter. A producer can be a big nuclear 

power plant, an offshore wind farm, a CHP or even a small scale PV park. The producer 

usually requires an energy supplier to purchase his energy and sell it to the electricity 
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market; sometimes to maximize the profits, big producer companies may choose to sell 

their energy without the mediation of energy suppliers.  

 Prosumer: The majority of users belong to this category ranging from homes, small 

residential communities, small and big industrial enterprises. In the past, prosumers 

where simply consumers since there was no or little decentral generation. However, with 

the advent of renewables, the once only passive end user now interacts with the grid 

through PV, wind and flexibility assets (batteries, EV, heat pumps).  

 Energy supplier: The energy supplier is a company that buys electricity from producers and 

sells it to prosumers at a profit. They buy and sell electricity in energy exchange markets 

(forward, day-ahead, intraday). Producers and prosumers engage with energy suppliers 

through contracts defining the electricity price paid by (to) consumers (producers). In the 

past, electricity price tended to be fixed for long periods of time, in the range of years, 

whereas today users are more exposed to short-term variable and dynamic pricing 

formulas.  

 Balancing Service Provider (BSP): These are the parties that provide balancing services to 

the TSO for maintaining grid stability. There are three main balancing services available to 

BSPs: FCR, aFRR, mFRR (see section on balancing market). The BSP engages with the TSO 

through short term (4h block) capacity reservation agreements. In the past, providing 

balancing services to Elia was available only to big companies (e.g., MW scale, gas fired 

generators) whereas today the market has opened also to smaller units such as batteries 

[7, 8]. 

 Balancing Responsibility Party (BRP): (Also called ARP – Accessible Responsible Party in 

Belgium) Each access point on the transmission grid must have a designated BRP, which 

can be a producer, major customer, energy supplier, or trader. The BRP is responsible for a 

portfolio of access points. The BRP takes care to maintain always a balanced portfolio 

including all injections, offtakes and commercial power trades. At each quarter of the hour 

(15 min resolution), the BRP’s portfolio is checked against imbalances and if an imbalance 
occurs the BRP is subject to imbalance tariffs [7, 8].   

 Energy Service Company (ESCO). These are companies that offer energy services to other 

players (mostly prosumers). Examples of such services are energy audits, energy 

management systems, monitoring equipment,  system integrators of renewable energy 

systems, data analytic platforms.  

 Regulators. The electricity market in Belgium is supervised by four regulators, one on 

federal level (CREG) and one for each region separately: VREG (Flanders), CWaPE 

(Wallonia), BRUGEL (Brussels). Regulators can express opinions, examine and approve 
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official documents related to diverse aspects of the electricity market and grid 

infrastructure management (e.g., tariffs,  infrastructure upgrades, design of new products).    

 

Figure 4: Market players 

 

2.1.1.1 Market structure 

One of the main characteristics of electricity is that it cannot be stored cost effectively. The 

electric grid must stay in equilibrium operating at constant voltage and frequency, which 

requires electricity generation adapting to the electricity consumption in real time. Large 

voltage or frequency deviations may cause malfunctions and damage the infrastructure or 

even result in complete system blackouts. Maintaining the equilibrium is a difficult task 

especially after the liberalization of the electricity market; electricity is purchased (sold) as a 

product over different time horizons and platforms. Figure 5 gives an overview of the market 

structure in Belgium. The market can be viewed as a tree diagram evolving stepwise by asking 

the following questions:  

What type of market is it?  

At the bottom level, we distinguish two types of markets: a) wholesale market and b) retail 

market. The wholesale market is where electricity is purchased and sold in bulk. This market is 
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accessible to energy suppliers, traders, big power generators and large enterprise consumers. 

A large part of the electricity that is purchased in the wholesale market is then sold in the 

retail market by energy suppliers to end users. The price of electricity in the wholesale market 

is usually lower than the price in the retail market; in the latter case, additional costs are 

charged e.g., transmission and distribution costs, energy supply fees, levies and taxes.  

What is the electricity unit traded? 

The electricity market is basically an energy only market since generators (consumers) are 

remunerated (charged) based on the energy volume (MWh) generated (consumed) rather than 

the power capacity (MW). In Belgium, as of 2024, the only case where electricity is traded based 

on power capacity (MW) is the balancing market (FCR, aFRR, mFRR). Special cases are also the 

Strategic Reserve (SR) and Capacity Remuneration Mechanism (CRM).  We elaborate on these 

in the next sections.   

What is the time horizon from the contract trade to the electricity delivery? 

All products are traded in advance before the actual delivery of the energy. Examples of 

notations such as Y-3, M-1, D-1, D correspond respectively to 3 years ahead, 1 month ahead, day-

ahead and same-day delivery. Having different time horizons is essential to all involved 

players for maintaining grid stability under forecasting uncertainties and hedging against 

financial risks.       

What are the traded products?  

Each market segment has its own products depending on the type, unit and time horizon of 

the contract trade. In the next sections, we provide a bird’s eye view how those products work, 
who are the primary players involved, recent market evolutions and statistics.    

What are the trading platforms?  

Depending on the product, electricity is traded, purchased and sold in different ways such as: 

a) power exchanges or multilateral trading platforms, b) bilateral over-the-counter (OTC), c) 

organized OTC trading, d) auction based platforms, e) energy supplier websites for retail 

contracts.  
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Figure 5: Electricity market structure in Belgium 

2.1.2 Forward and future market 

Forward and future markets are both derivative3 arrangements involving two parties who 

agree to buy or sell electricity at a set price by a certain date in the future. These markets run 

from years before up to the day before delivery [9]. The main difference between the two, is 

that future contracts are public whereas forwards are private. Trading electricity in these 

markets has the advantage that the involved parties can hedge against risks of price 

fluctuations by setting fixed prices over the entire delivery period, which enables them to 

forecast more accurately their revenues and costs .   

In the future market, contracts are traded on power exchanges. They are settled on a daily 

basis and they are standardized in terms of quantity, quality, delivery and maturity date. Buyers 

and sellers submit bids (orders) to the power exchange platform. The trading algorithm checks 

all submitted bids; if a buyer and a seller agree on a price, the algorithm matches the two 

                                                             
3 In finance, derivative is a financial contract whose value depends on an underlying asset, group of assets or benchmark. 
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together and creates a contract. In Belgium, future contracts are traded on the ICE Endex and 

the European Energy Exchange (EEX).  

In the forward market, contracts are traded bilaterally over-the-counter (OTC). OTC contracts 

are not standardized, thus allowing more flexibility in terms of trading volumes and pricing 

since agreements are reached bilaterally among the involved participants. However, 

unavoidably, the lack of standardisation exposes the participant to increased risks. In general, 

future contracts are less risky than forward contracts since they are traded on power 

exchanges that guarantee fixed maturity dates, uniform terms and payments on the agreed 

upon date [10].  

ICE Endex publishes an index reflecting the price of electricity traded in Belgian Power Base 

Futures. The index indicates the price that the different market players are willing to pay 

(receive) for buying (selling) electricity at a specific date of delivery. It publishes prices for the 

next three years (CAL+1, CAL+2, CAL+3), next four quarters (Q+1, Q+2, Q+3, Q+4) and next three 

months (M+1, M+2, M+3). Figure 6 (Ref. [11]) shows an example of the price evolution in 2022 

for electricity to be delivered in 2023, 2024 and 2025 [11]. 4    

 

Figure 6: Evolution of prices in 2022 for a delivery in 2023, 2024 and 2025 [11] 

                                                             
4 In 2022, due to the adequacy uncertainty in natural gas supply caused by the war in Ukraine electricity prices skyrocketed to 
record levels.  
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2.1.3 Day-ahead 

In the day ahead market, electricity is traded on the short-term, just one day before the actual 

delivery. Trading electricity in the day ahead market occurs either through a power exchange 

or bilaterally OTC [9, 12]. In Belgium, the leading day-ahead power exchange platform is EPEX 

SPOT. In the next paragraphs, we explain how the market works on a power exchange having 

as reference EPEX SPOT. 

The Day-ahead market works as a blind auction that occurs once every day of the year. The 

Market participants submit their orders before the order book closes at 12:00 CET. Day-ahead 

contracts are traded either in single hours or in blocks of combined hours at the same time. 

Every day, 24 hourly contracts are available corresponding to the 24 hours of the next day. The 

minimum price and volume increment are 0.1 €/MWh and 0.1 MW respectively. The minimum 
and maximum price are -500 €/MWh  and 4000 €/MWh respectively. For each hour of the next 

day, the trading algorithm calculates a clearing price, known as the Market Clearing Price 

(MCP). In Belgium, the index showing the evolution of the day-ahead prices is called Belpex 

(see Figure 7, Ref. [11]). This index is essentially the backbone of dynamic pricing formulas (see 

section 2.1.7). Another important index is the DAM (Day-Ahead Monthly), which is the monthly 

average of the Belpex.  Next, we explain how the MCP is calculated.  

 

Figure 7: Evolution of Belpex for Jan 2023 [11] 

Sell-orders correspond to power generation bids while buy-orders correspond to power 

consumption bids. At each hour, a supply curve is established by aggregating all generation 

bids from the lowest price to the highest [13]. Second, a demand curve is established by 

aggregating all consumption bids from the highest price to the lowest. The intersection of the 

two curves defines the Market Clearing Price (MCP) and volume (MCV) (See Figure 8, Ref. [13]). 



15 
 

All bids located at the left side of the intersection are considered as accepted and all bids at 

the right side are rejected. The MCP is always lower or equal to the price set by the buyer and 

always higher or equal to the price set by the seller. The MCP is a single price that applies to 

all accepted buyers and sellers; all accepted buyers will pay the MCP and all accepted sellers 

will be paid the MCP regardless of the price of the submitted bids.  

In the auction, there is no one-to-one match between buyers and sellers. There is an 

aggregated executed sell volume that equals an aggregated executed buy volume for each 

delivery period (1 hour). The advantage of the auction is that it offers liquidity to the market in 

general and that it offers transparency regarding the clearing volume and price.  

 

Figure 8: Market Clearing Price in Day-Ahead auction [13] 

Spot markets such as day-ahead and intraday are beneficial in different ways but also come 

with their own risks. A major advantage when compared to forwards and futures is that the 

participant has a better understanding about the future (next day). Since the delivery day is 

closer to the trade, forecasts are more accurate e.g., weather prediction, loss of power due to 

defects in generators, unforeseen events that could cause load peaks. The spot market in 

essence is an extra lever for increasing the balance between nominations and actual 

measurements, consequently reducing exposure against real time electricity prices. An obvious 

disadvantage is that the electricity price on spot markets is difficult to predict, especially on 

the long term (weeks to years ahead), therefore costs and revenues of the involved assets 

(power generators and loads) are also difficult to assess on the long term.       
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Figure 9: Evolution of Day-Ahead volumes traded in EPEX SPOT [14] 

Single Day-Ahead Coupling (SDAC) 

The EPEX SPOT Day-ahead auction is part of the Single Day-ahead Coupling (SDAC) which is a 

broader pan-European day-ahead auction covering 27 countries all over Europe (Figure 11, Ref. 

[15]), excluding Great Britain and Switzerland (see Figure 10, Ref. [14]). Having all different day-

ahead markets integrated into a single auction system is beneficial for boosting competition, 

increasing liquidity and enabling a more efficient usage of the generation and consumption 

resources in Europe.  SDAC operates a single algorithm called PCR EUPHEMIA that processes 

various inputs (i.e. bids, transmission capacities and constraints such as local market rules)  

from all involved countries (NEMOs and TSOs) to finally output matched trades, clearing prices, 

scheduled exchanges and the net position of bidding areas [15].    

 

Figure 10: Time frame of Day-ahead auctions [14] 
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Figure 11: Countries participating in Single Day-Ahead Coupling [15] 

2.1.4 Intraday 

In the intraday spot market, electricity is traded for delivery in the same day, up to 5 minutes 

before delivery. Here also, trades occur either through a power exchange or OTC. The largest 

spot market exchanges in Europe are  EPEX SPOT and Nord Pool. In Belgium, the intraday 

market is operated by EPEX SPOT. In EPEX SPOT the intraday market is divided into continuous 

and auction based trading.5 In the next paragraphs, we address specifically the continuous 

trading case which is the most popular and provides by far the most liquidity in Europe [14].  

The continuous intraday market is running 24/7 (7 days a week, 24 hours a day). A major 

difference compared to the day-ahead market is that in intraday there is no single market 

clearing price (MCP) that applies for all accepted bids; prices are set in a “pay-as-bid” process 
where each trade has its own price. The trading platform checks continuously for any 

submitted supply and demand bids. If a supply bid has a price lower than a demand bid and 

they have the same volume then a trade is closed between the two. The intraday market is 

very often called an organized OTC market because trades are closed directly between two 

parties but still operated by the power exchange [16].  

In Belgium, the market opens at 15:00 on the previous day (see Figure 12, Ref. [14]). The 

minimum price and volume increment are 0.01 €/MWh and 0.1 MW respectively. The minimum 

                                                             
5 More information on auction based intraday trading can be found in the website of EPEX SPOT. 
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and maximum price are -9999 €/MWh  and 9999 €/MWh respectively. With respect to the time 

resolution, depending on the country different contracts exist (e.g., 60 minutes, 30 minutes, 15 

minutes). In Belgium, the market is organized in 15 minute contracts.     

 

Figure 12: Timeframe of Intraday trading in EPEX SPOT [14] 

Over the past decade, the energy volumes traded in the intraday market have increased 

considerably (see Figure 13, Ref. [14]). The main reason for this trend is due to the increase of 

the renewables share in the electric grid. The intraday market is a traders last chance to 

improve their purchases and sales based on the latest forecasts and unforeseen events. It is 

an additional flexibility mechanism that allows market participants to adjust their positions 

even closer to real time compared to the day-ahead market. Furthermore, similarly to SDAC, 

there is also a pan-European intraday market coupling (SIDC) where traders can take 

advantage of price arbitrage through cross border transactions.  
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Figure 13: Evolution of Intraday volumes traded in EPEX SPOT [14] 

Single Intraday Coupling (SIDC) 

SIDC creates a single pan-European cross border intraday electricity market. SIDC makes 

intraday trading more efficient in Europe by promoting competition, increasing liquidity, 

allowing the share of generation resources across different market zones and generally 

helping market participants being in balance. SIDC has evolved to this date through four waves 

of country integrations (see Figure 14, Ref. [17]). Next, we explain briefly how SIDC works. 

SIDC works on a common IT system comprising three main components: a) a Shared Order Book 

(SOB), b) a Capacity Management Module (CMM) and c) a Shipping Module (SM). When market 

participants of each NEMO (e.g., EPEX SPOT, Nord Pool) submit orders, they are put in a Shared 

Order Book (SOB). Furthermore, the different TSOs enter the cross-border capacities in the 

Capacity Management Module (CMM). Orders from different countries can be matched together 

provided that the cross border capacity is available and that local market rules are in 

agreement.  
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Figure 14: Evolution  of SIDC in 4 major waves [17] 

2.1.5 Balancing market 

At the moment of the electricity delivery (real time) after completing all trades – nominations 

(purchases and sales in the forward/future, day-ahead and intraday markets), the total 

consumption (sum of loads) must be equal to the total generation (sum of power sources). 

Nevertheless, this equilibrium cannot be met by relying exclusively on the operation of the 

energy markets (forward/future, day-ahead and intraday) due to the inherent forecasting 

uncertainty. The System Imbalance (SI) reflects the deviations from this planned balance which 

are compensated by the activation of balancing reserves (mainly aFRR and mFRR, see next 

paragraph). When the system imbalance is negative there is generation shortage (consumption 

excess) and vice versa when the system imbalance is positive there is generation excess 

(consumption shortage).6    

To maintain grid stability (satisfy the power equilibrium consumption = generation) , the TSOs 

across Europe need to operate continuously in real time different balancing reserves. A 

balancing reserve can be simply viewed as a pool of flexible assets (e.g., power generators, 

hydro pumped station, batteries) that are activated in real time either upward (system 

                                                             
6 SI = ACE − NRV, the system imbalance is expressed as the difference between the Area Control Error (ACE) and the Net 
Regulation Volume (NRV), where NRV is roughly equal to the sum of aFRR and mFRR. Analytic explanations regarding the 
definitions  of terms and mathematical notations can be found in the website of Elia.  
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imbalance is negative) or downward (system imbalance is positive) in function of an imbalance 

signal (e.g., frequency deviation, ACE). In Belgium (and most European countries), the balancing 

market consists of three main balancing products/services: a) Frequency Containment Reserve 

(FCR), b) automatic Frequency Restoration Reserve (aFRR), c) manual Frequency Restoration 

Reserve (mFRR).7  

Activation sequence of balancing reserves 

In this paragraph we give an example how the balancing process works (see Figure 15). 

Suppose, that at some moment, unexpectedly, a big power generator that is connected to the 

grid goes off (e.g., due to some malfunction). This event will result in a drop of the grid 

frequency below its reference value (50 Hz).8 To restore the frequency, the TSO activates the 

three balancing reserves in sequence FCR > aFRR > mFRR. Here, FCR is the fastest reserve. As 

the FCR is activated (in our case upward), the frequency is contained from further dropping 

until it reaches a stable point (but still below the 50 Hz reference). Next,  aFRR  is activated to 

restore the frequency and gradually take over from FCR. aFRR is slower than FCR; aFRR requires 

that the reserved capacity be provided within 7.5 minutes after receiving the command. Finally, 

in the event of a major disturbance, the TSO activates as a final support mechanism mFRR to 

relieve the burden from aFRR. mFRR will be activated as long as needed until the frequency is 

fully restored. Here, also note the presence of RR (Replacement Reserve) which is an extra 

measure taken in some countries but not in Belgium. The activation of balancing reserves is a 

non-stopping continuous process running 24/7. In the aforementioned example we took the 

extreme case of having a major power loss on the grid resulting in the activation of all three 

(or four) balancing reserves. Nevertheless, most of the time, the frequency deviation is 

relatively small and therefore only FCR and aFRR suffice.      

                                                             
7 In some countries, there is also a fourth product called Replacement Reserve (RR), but this is not applicable in Belgium. 
8 At the very first moment after the generator goes off, there is an imbalance between mechanical and electrical power, and 
directly coupled synchronous machines will then decelerate and, thus, kinetic energy is converted into electrical energy. This 
explains how the electrical balance is kept at first instance (before FCR takes over) 



22 
 

 

Figure 15: Activation sequence of balancing reserves in Europe 

Auction system  

The balancing market is an auction based system. For each product, there are six 4-hour 

capacity auctions every day (0–4, 4–8, 8–12, 12–16, 16–20, 20–24). Interested BSPs willing to 

sell their capacity submit bids (i.e. capacity volumes and prices); then based on the merit order 

principle, the TSO selects those bids minimizing the total operating cost of the system. The 

auctions take place in sequence FCR > aFRR > mFRR and end before the opening of the day-

ahead market to allow participants to re-optimize their planning (Figure 16, Ref. [18]). 

Furthermore, only in aFRR and mFRR, apart from the capacity auctions, the winners of the 

capacity auction are required to participate in an energy auction. In the energy auction, the BSP 

submits energy bids (€/MWh) in 15 minutes resolution. The merit order curve is calculated 96 

times per day for each quarter of the day and direction (see Figure 17: upward – from lowest 

to highest activation price, downward – from highest to lowest activation price).   

 

Figure 16: Sequence of capacity auctions in the balancing market [18] 
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Figure 17: Merit order curve in aFRR and mFRR energy bids 

Activation method 

In FCR, the frequency droop control method is used (Figure 18). The activation of FCR is 

symmetric within a frequency range of 0.2 Hz (positive and negative). The power reference to 

be followed is inversely proportional to the frequency deviation from 50 Hz (Note here also 

the dead band within 49.99 – 50.01). In aFRR, the aFRR controller defines the global power 

reference based on the Area Control Error (ACE) (see Ref. [19] for analytic mathematical 

notations) and selects, according to the merit order principle, each 4 seconds the energy bids 

that need to be activated and the power reference per energy bid. In mFRR, a major difference 

is that the activation does not happen continuously as in the case of FCR and aFRR; this is why 

it is called “manual”. In general, Elia will analyze the need for possible activation of mFRR 

depending on the system imbalance of at least the last 10 minutes and the level of activated 

aFRR. When needed, mFRR is activated based on the merit order of energy bids but also taking 

into account technical properties of the BSPs assets.  

  

Figure 18: FCR activation method: Frequency droop control 
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Remuneration 

With respect to the BSP remuneration, in FCR the remuneration is exclusively capacity based 

(see Equation 2-1). In aFRR and mFRR, apart from the capacity component, the remuneration 

includes also an energy based component (see Equation 2-2): Rcapacity =  Pcapacity bid  ∙  Prcapacity bid  ∙  ∆T 2-1 

where:  

 Rcapacity is the remuneration in € for the reserved power capacity  

 Pcapacity bid is the power of the capacity bid in MW 

 Prcapacity bid is the price of the of the capacity bid in €/MW/h 

 ∆T is the time period of the reserved capacity in hours (e.g., 4 hours, 8 hours etc.) 

Renergy =  ∑ Eq activated  ∙  Prq energy bidq= N
q=1  

2-2 

where:  

 Renergy is the remuneration in € for the total energy volume activated from quarter 

1 to quarter N  

 Eq activated is the activated energy volume in MWh for quarter q  

 Prq energy bid is the price of the of the energy bid in €/MWh for quarter q 

As of 2024, the balancing market in Europe is undergoing an important transition. In 2017, the 

European Commission established the Electricity Balancing Guideline (EBGL) aiming to develop 

a common and standardized framework that will finally integrate the different markets into a 

single cross-border pan-European balancing market. The FCR market is already running 

through the FCR cooperation; a common platform exists for the procurement and exchange of 

FCR between 12 TSOs in 9 countries [20]. With respect to aFRR and mFRR, two pilot projects are 

currently under development; these are the PICASSO project for aFRR and MARI project for 

mFRR [21, 22].  

As already mentioned, FCR, aFRR and mFRR are in essence the backbone of the balancing 

market. However, TSOs need also other grid support services to guarantee grid stability. In 

Belgium, Elia has the Strategic Reserve (SR) which is a kind of reserve that is activated very 

rarely in special occasions (e.g., in winter to meet peak load consumption). Furthermore, Elia 
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implements the Capacity Remuneration Mechanism (CRM) to deal with the imminent phase-

out of the nuclear power plants and secure energy supply in the long term. Big power 

generators participate in annual auctions starting from 2021 for deliveries planned from 2025 

onwards, after the closure of the nuclear plants. Other less popular grid services worth 

mentioning are the provision of reactive power for voltage support and the deployment of 

start-up power generation units in the event of a black out.      

2.1.6 Imbalance pricing 

As mentioned in the previous section, the TSO is responsible for maintaining the instantaneous 

balance between generation and consumption. In Belgium (and many other European 

countries), Elia outsources this responsibility to the so-called Balance Responsibility Parties 

(BRPs).  A BRP is private entity that oversees one or multiple access points on the transmission 

grid. Each BRP is holder of a balancing portfolio that comprises generations, consumptions and 

exchanges with other BRPs. The BRP has to make sure that the amount of electricity sold 

(generation) always equals the amount of electricity purchased (consumption) for each and 

every hourly quarter (15 minute) of the day. When the BRP fails to keep the balance, then any 

deficits or surpluses of power, which are measured at the moment of the electricity delivery, 

will be subject to imbalance pricing. The imbalance pricing settlement is a continuous process 

running in real time 24/7 every quarter of the day (96 quarters per day); it consists of two 

parts:   

a) Marginal Incremental Price (MIP): This is the highest price (€/MWh) paid by Elia to 
BSPs for the upward activation of balancing reserves for a given quarter. 

b) Marginal Decremental Price (MDP): This is the lowest price (€/MWh) received by Elia 
from BSPs for the downward activation of balancing reserves for a given quarter. 

Figure 19 illustrates how imbalance pricing is settled. In the event of a negative system 

imbalance (generation shortage) Elia activates the balancing reserves for upward regulation. 

The last activated balancing unit, which is the most expensive, defines the MIP.9 BRPs who are 

in negative position (generation shortage) will pay the MIP to Elia, whereas BRPs who are in 

positive position (generation excess) will be paid the MIP by Elia.  Similarly, if a positive system 

imbalance (generation excess) occurs, Elia activates the balancing reserves for downward 

regulation. BRPs who are in negative position (generation shortage) will pay the MDP to Elia, 

                                                             
9 Note here the presence of IGCC (see imbalance netting in Terminology). TSOs check each other’s imbalance and if they are in 
opposite sign they would first subtract them before the activation of aFRR. IGCC reduces the total system cost by avoiding the 
simultaneous activation of opposite reserves from different TSO control areas (without IGCC if TSO A is in positive imbalance 
and TSO B is in negative imbalance they would counteract each other).   
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whereas BRPs who are in positive position (generation excess) will be paid the MDP by Elia. 

Here, note also the presence of parameter α which is applied only in cases of big system 
imbalances (larger than 150 MW) as an incentive mechanism encouraging BRPs keeping their 

portfolio always in balance (more information regarding parameter α can be found in Ref. 
[23]).  

 

Figure 19: Imbalance pricing settlement 

Trading example 

Closing this section, we give an example of how the different market mechanisms 

(forward/future market, day-ahead, intraday, imbalance pricing) work together in a trading 

process. The owner of a wind farm has contracted an energy supplier to act as BRP for all the 

electricity generated by the wind farm. In a first trading step, the biggest part of this energy is 

sold through a PPA (Power Purchase Agreement) contract to a large consumer. The PPA is 

simply a long term (forward) OTC contract defining a power base  profile (see Figure 20) at a 

fixed price. In reality, the wind power profile is fluctuating, resulting in energy surpluses or 

deficits that need to be sold or purchased at a later step as we approach the delivery date. In 

the second step, one day before the delivery, the trader makes a first rough estimation of the 

wind power profile for the next day and decides to sell the energy that is left (after subtracting 
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the base profile) to the day-ahead market (OTC or through power exchange). Finally, when the 

delivery date arrives, the trader has access to accurate weather forecasts and therefore is able 

to re-estimate the wind power profile; this results in surpluses and deficits that have to be 

traded intraday. Afterwards, by the end of the delivery date, any deviations between all 

aggregated (PPA, day-ahead, intraday) nominations and real time measured power profile will 

be subject to imbalance pricing.        

 

Figure 20: Trading example combining forwards/futures, day-ahead and intraday contracts 

 

2.1.7 Retail market 

In the retail market, electricity is purchased and sold through energy supply companies. Energy 

suppliers are the mediators between the wholesale market and end users (e.g., households, 

SMEs). Electricity invoices for end users typically consist of three main cost components:    

 Energy supply cost: This is the amount of money you pay for the electricity you consume. 

This cost is paid to the energy supplier and is proportional to the consumed energy 

quantity (kWh). Users that inject energy to the grid (e.g., owner of PV or wind installations) 

receive a payment proportional to injected energy quantity (kWh). The energy cost or 

revenue is calculated differently depending on the energy supply contract.  

 Cost for the distribution and transmission of electricity: These are the costs charged by the 

DSO and TSO for using the electric grid infrastructure (e.g., transport of electricity, 

maintenance, telemetering). Factors that influence these costs are the location of the end 

user’s installation, type of connection (e.g., low voltage, medium voltage, connection 

capacity), the consumed energy quantity and the peak power of the load.  
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 Taxes and levies: These costs are imposed by the government for funding various 

programs and initiatives. They are very often expressed in function of the total consumed 

energy or as a percentage of the total electricity cost. 

Over the past decade, we have seen some important evolutions in the retail market due to the 

renewable energy transition and technological advancements primarily in the field of 

Information Technology (IT). One of the main events currently in progress is the roll out of 

digital meters in Europe. Digital meters allow the measurement of power and energy 

consumption (and generation) in high resolution intervals (e.g., every day, 15 minutes). High 

resolution measurements open opportunities for new types of energy supply contracts that 

create benefits both for the end user and supplier company. In general, energy contracts can 

be divided into three categories depending on how often the electricity price changes.10 Here, 

“electricity price” refers exclusively to the energy supply component (see first bullet in 

previous list):   

a) Fixed pricing: In the past, fixed pricing was the norm; a fixed price was applied over a long 

time period (e.g., 1–5 years). In fixed pricing, the user knows what the price will be from 

the present until the next year(s).11 

b) Variable pricing: In variable pricing, the electricity price changes on a monthly to yearly-

quarter (e.g., a new fixed price is set every month or every 3 months) basis following a 

market index usually from the future market. Popular market indexes in variable pricing 

are the endex101 12 and endex103 13 from the ICE Endex power exchange. In variable pricing, 

the user knows what the price will be from the present until the next month or 3 months.  

c) Dynamic pricing: In dynamic pricing, the electricity price follows the spot market. Here, 

there are mainly two market indexes: the day-ahead price (Belpex) and the DAM (Day-

Ahead-Monthly). Belpex indexed contracts have a different price for each hour of the year 

(8760 hour per year); the user knows the prices for all 24 hours of the next day. In DAM 

indexed contracts, the price is calculated as the monthly average of the day-ahead prices 

and therefore the user only knows the price at the end of the month.  

                                                             
10 The contract duration on its own, is not a distinguishing factor. Most contracts have at least an annual duration, and they 

are automatically renewed when the contract ends. Users can change however their energy contract whenever they want as 
long as they notify their energy supplier at least 1 month in advance.  
11 Nowadays, having fixed prices longer than 1 year is a rare case.  
12 Endex101 is the arithmetic average of the closing prices in Belgian Power Base Load Futures for the month preceding the 

month of delivery. 
13 Endex103 is the arithmetic average of the closing prices in Belgian Power Base Load Futures for the month preceding the 

quarter of delivery. 
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Below we present a generic pricing formula that can model all aforementioned types of energy 

contracts. Most energy supply contracts in Belgium are built based on this formula. We also 

include some examples in the next paragraph: Prenergy = A ∙ Belpex +  B ∙ DAM + C ∙ Endex101 + D ∙ Endex103 + E 2-3 

where: 

 Prenergy is the energy price €cent / kWh paid to or remunerated by the energy supplier 

for the energy offtake or injection.    

 A, B, C, D, E are the parameters of the respective market index. 

 All market indexes are expressed in € / MWh 

Table 1: Examples of pricing formulas in energy supply contracts 

Pricing 
examples 

Offtake  

(€cent / kWh) 

Injection  

(€cent / kWh) 

Fixed price, with 
injection 

Proff = 8.5 Prinj = 5 

Variable price, 
only offtake 

Proff = 0.1 ∙ Endex101 +  2 N/A 

Dynamic price, 
with injection 

Proff = 0.1 ∙ Belpex + 1.5 Prinj = 0.1 ∙ Belpex 

Hybrid variable 
and dynamic, 
only offtake 

Proff = 0.05 ∙ Belpex + 0.05 ∙ Endex101 + 1 N/A 

 

Having different types of contracts gives flexibility to end users and suppliers. Energy suppliers 

design their contracts based on their client portfolio and trading strategy. Energy suppliers 

that buy bulk quantities of electricity from the future or forward market can estimate their 

costs in advance, years before the delivery and therefore can offer fixed pricing contracts. 

Nevertheless, as renewable energy sources grow, trading electricity takes place closer to real 

time through short term futures/forwards and spot markets. Consequently, pricing needs also 

to be adapted on the short term to hedge against financial risks. For end users, especially 

dynamic pricing has the benefit that the user can reduce the energy supply costs by adapting 

consumption or generation based on the spot market price; users with flexible assets (e.g., 

heat pumps, electric vehicles) can take advantage of price arbitrage.  
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2.2 BATTERY STORAGE APPLICATIONS 

2.2.1 Introduction 

As mentioned in Chapter 1, battery storage systems have different applications depending on 

the involved market players. As mentioned before, we focus on behind-the-meter systems. This 

means that the primary end user of the system is a prosumer and that the battery is installed 

as part of his energy infrastructure (e.g., house, apartment, office, industrial site) in order to 

reduce the total electricity bill. Nevertheless, in this section, we keep a global scope, addressing 

all different applications that are currently present in the electric grid. Finally, we summarize 

important notes and key conclusions which influenced the further evolution of our research 

work.   

2.2.2 RES self-sufficiency 

PV and wind turbines are very often installed behind-the-meter in households and businesses 

in order to reduce the electricity bill. Since the cost of energy produced by the renewable 

energy source (pv or wind) is much cheaper than the cost of energy consumed from the electric 

grid, the goal here is to help the user become as much as possible self-sufficient (independent 

from the electric grid). However, becoming fully independent from the grid (100 % self-

sufficiency) is not possible e.g., due to the inevitable presence of night time, low wind speeds. 

To maximize his self-sufficiency the user can deploy a battery. In the case of a PV power source, 

the battery is charged for example during the day when there is excess of power (Ppv > Pload) 

and then discharges the energy back to the load in the evening when there is shortage of 

power (Ppv < Pload).  

This type of application has been more popular in residential systems rather than enterprises 

since in the first case the electricity bill is usually much higher due to the increased costs for 

distribution, taxes and levies. In the past, designing an energy management system for this 

type of application was not a complex task. Fixed pricing contracts were the norm; the end user 

would be charged (paid) at a fixed price proportionally to his energy offtake (injection). Since 

the cost for the energy offtake was always higher than the revenue for the energy injection 

from PV, a naïve threshold controller could do the job; the battery was (dis)charged in function 

of the power difference (Ppv – Pload). However, nowadays, due to the rise of short-term trading 

in spot markets (day-ahead, intraday), the energy supplier might expose the end user to 

dynamic pricing formulas. In such case the electricity price is changing every hour. For example, 

during the day it is possible that the electricity price goes below zero and consequently, it 

might be beneficial to charge the battery even if the PV power is higher than the load. An 

energy management system must be able to deal with such occasions.          
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2.2.3 Peak shaving 

Peak shaving has been existing as an application in enterprise users for a long time before the 

advent of batteries. DSOs usually split the cost for the electricity distribution into two 

components: (i) power (kW), (ii) energy (kWh). For (ii), the cost is usually proportional to the 

total energy offtake from the grid. For (i), different approaches exist among the DSOs in Europe; 

for instance, it can be a function of the connection capacity of the installation, the highest 

measured peak over the past 12 months, the average annual of the monthly peaks or a 

combination of the above. An installation with high peak demand would result in increased 

electricity costs and therefore the end user would “shave” his peak to save some money.  

In the past, peak shaving was possible through different mechanisms. For example, an 

assistant power generator would be activated during periods of peak demand or the user 

would change the production plan to shift the operation of an energy intensive process to off-

peak periods. Nowadays, as battery prices continue to fall, peak shaving is becoming more 

appealing for battery storage. The profitability of an investment in such application varies a 

lot, but mainly affected by three things that usually change over time: the electricity tariff 

structure, the load profile and the capital & operating expenditures for the battery storage 

system.   

With respect to the battery controller, it depends on different factors. Here, the predictability 

of the load plays a crucial role. A user with a very deterministic load profile allows the design 

of time-based controllers where the battery is scheduled hours in advance to be (dis)charged 

during certain time periods. Conversely, a user with a very stochastic load profile imposes the 

design of power threshold-based controllers where the battery is (dis)charged on demand 

based on the current real time measurement. Furthermore, if the user considers additional 

revenue streams (value stacking) the controller gets more complex (e.g., predictive analytics, 

advanced optimization algorithms,  battery capacity segmentation).  

2.2.4 Pricing arbitrage 

In this type of applications, the main idea is that we have a market mechanism that exposes 

the end user to fluctuating electricity prices. The end user wants to charge the battery (buy 

energy) when the electricity price is low and discharge the battery (sell energy) when the 

electricity price is high. There are mainly three arbitrage mechanisms in the electricity market 

for battery storage: (i) day-ahead, (ii) intraday, (iii) imbalance. We address each mechanism 

separately in the next paragraphs.  



32 
 

In day-ahead pricing arbitrage, we distinguish two types of end users: (i) the user who buys or 

sells electricity directly through the wholesale day-ahead auction, (ii) the user who buys or 

sells electricity through the retail market having a dynamic pricing contract based on the 

Belpex index. In (i), the end user acts like an energy trading company e.g., large industrial 

consumer or power plant or an energy supply company. The battery can generate profit by 

buying energy from the day-ahead auction when the price is low and selling it back when the 

price is high. The main difficulty with this practice is that the user needs a way to predict the 

clearing prices of the auction for each one of the 24 hours of the next day; therefore the 

profitability is influenced considerably by the accuracy of the forecasting model. Conversely, in 

(ii), the user buys (sells) electricity from (to) the energy supply company based on the dynamic 

pricing formula of his contract. Here, the main difference with (i) is that the prices are known 

in advance; the day-ahead prices are published the day before the energy delivery at the end 

of the auction. Consequently, in case (ii), there is no need to forecast the prices  and the 

optimization is easier; we still though need a forecasting model for the load and power source 

profile (e.g., PV, wind).  

In intraday pricing arbitrage, the arbitrage mechanism is the intraday market. Here, the end 

user acts like an energy trading company. Similarly to the day-ahead arbitrage case (i), the 

user needs a way to forecast the intraday prices. Nevertheless, forecasting the intraday prices 

several hours in advance is a very difficult task. First of all, the intraday market evolves as a 

result of the very short term weather forecast data and latest unforeseen events. Secondly, the 

intraday prices are calculated in bilateral agreements and there is no single clearing price 

reference like in the day-ahead market.  

In imbalance pricing arbitrage, the end user is exposed to imbalance fees (e.g., BRP, large 

consumers or power plants). We distinguish two control strategies: (i) the user wants to 

minimize the imbalance fees by keeping his portfolio as much as possible in balance, (ii) the 

user wants to take advantage of imbalance fees by going on purpose in imbalance; when the 

system imbalance is positive (generation excess) the user’s portfolio is negative (generation 

shortage) and vice versa. In case (i), the battery is (dis)charged mainly in function of the user’s 
portfolio imbalance. While the battery helps reducing the portfolio’s imbalance, we still need 
to make sure that the battery State-of-Charge (SoC) stays within the limits (e.g.,  SoC recovery 

through purchases or sales in the intraday market). In case (ii), the control strategy is more 

complex since the user needs to forecast accurately the overall system imbalance hours in 

advance which is very difficult. Also in this case, similarly to (i), a secondary mechanism is 

required for SoC management.                
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2.2.5 Power Quality 

Enterprise users very often suffer from Power Quality issues. Batteries have been well 

established in this field a long time ago. Uninterruptible Power Supplies (UPS) are an example 

of such applications. In the event of a voltage dip or power outage UPS ensures the smooth 

operation of the business process, by bridging the power loss through an energy buffer 

component (e.g., battery, capacitor). Another popular application related to Power Quality is 

the reactive power compensation,  known also as power factor correction. DSOs very often 

apply additional costs to enterprise users based on their reactive power footprint; the higher 

the reactive power (inductive or capacitive) with respect to the active power the higher the 

electricity distribution costs. As a result, enterprises are incentivized to maximize their power 

factor to reduce the electricity bill. Batteries have been proven very efficient in such 

applications. A major advantage here, when compared to other technologies (e.g., capacitor 

banks) is that battery can provide additional services to the end user. For instance the 

controller decouples the power in two parts: (i) reactive component for power factor 

correction, (ii) active component for increasing the self-sufficiency of a PV installation.   

2.2.6 Balancing market 

The balancing market forms another opportunity for battery storage to create value for 

enterprise users. In the past, participating in FCR, aFRR, mFRR was only available to big players 

(power generators in the MW scale). However, nowadays, TSOs in Europe are redesigning the 

market to allow broader participation and increase competition. Small decentralized assets 

such as batteries, EVs and heat pumps can offer their flexibility to aggregators. In general, the 

basic idea is that market is becoming gradually more consumer centric – Consumer Centric 

Market Design (CCMD) where end users i.e., prosumers are put at the forefront of the renewable 

energy transition [8].  

Batteries have been proven very efficient especially for the provision of FCR. FCR is the fastest 

from all three balancing reserves requiring the full activation of the BSP asset within 30 sec. 

Batteries can deliver almost instantly their power (ms – sec) either in charging or discharging 

mode. In essence, the main issue is that the battery storage system be appropriately 

dimensioned. Elia requires that the minimum reserved power capacity of an asset providing 

FCR be at least 1 MW. Furthermore, for assets with limited energy (e.g., batteries), the energy 

capacity must suffice to foresee a worst case of 40 minutes of continuous activation (either 

upwards or downwards) [24]. These specifications need to be considered when designing a 

battery storage system for FCR.  
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Regarding aFRR and mFRR, the requirements are more strict. The participant asset in aFRR or 

mFRR must be capable of providing power for as long as needed. Each balancing reserve is 

organized as daily auction comprising six 4h blocks. In the simplest case, having no consecutive 

blocks, the BSP must foresee a worst case of 4 hour continuous activation (upwards or 

downwards). One way to make sure that there is always enough energy is to segment the 

battery power in two parts; 50 % for the provision of the balancing service (aFRR or mFRR) and 

50 % for managing the SoC [25]. For instance, 2 MWh a LiFePO4 battery at 1 C rate can provide 1 

MW for upward or downward aFRR (or mFRR) and use the remaining 1 MW for SoC management.  

To summarize, battery storage is an appropriate technology for all three balancing reserves. 

Nevertheless, the profitability of an investment in such applications is still questionable. First 

of all, as already mentioned, the balancing market is undergoing a transition; the PICASSO and 

MARI projects are in progress and there is not yet a well-established regulatory framework to 

be based on. Furthermore, another issue is that the balancing market is an auction based 

system with limited procurement demand; in Belgium, the FCR and aFRR procurement 

demands for 2024 were merely 93 MW and 117 MW respectively [8].    

2.2.7 Other grid services  

To guarantee the smooth operation of the electric grid infrastructure, apart from the balancing 

market, TSOs and DSOs very often need other services. For example, in the event of a black out, 

TSOs have to manually restore the grid by activating black start services. In Belgium, Elia first 

activates black start services from the neighboring TSOs and if these are not available, it will 

look for providers within its zone to power up the grid. Another example of grid services is the 

provision of reactive power control. While grid frequency mainly depends on the active power 

flows, grid voltage depends on the reactive power flows. To maintain the voltage level within 

the specified limits, Elia makes contracts with Voltage Service Providers (VSP). If an incident 

occurs destabilizing the grid voltage, Elia activates automatically or manually VSPs to generate 

or absorb reactive power and restore the voltage level.  

Batteries storage  has been proven a suitable technology candidate for providing black start 

and voltage control services. Finally, another example worth mentioning here is the use of 

battery storage in grid infrastructure upgrades. TSOs and DSOs usually foresee large hosting 

capacities in their grid plans. However, some parts of the grid might become vulnerable to 

congestions with time as the load increases. In such occasions, investing in new infrastructure 

(e.g., bigger cables, transformers) can be very expensive. Instead, deploying a battery storage 

can be much cheaper. The battery supports the grid during congestion moments by delivering 
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part of the power to the load; this is similar to peak shaving but at grid level (usually low or 

medium voltage grid).  

2.2.8 Conclusions and discussion          

In this section, we summarize some important conclusions that shaped in a way the further 

evolution of this thesis. We note once more, in this research work we want to valorize battery 

storage from a prosumer’s perspective.  

From those applications mentioned above, we decided to focus on the following three: (i) 

increasing the self-sufficiency of RES, (ii) peak shaving, (iii) pricing arbitrage in retail contracts. 

In our opinion, these are currently the most interesting for enterprises as they have the biggest 

potential for widespread adoption. All next chapters of the thesis are dedicated to these 

applications.  

Regarding Power Quality applications, we believe that these are already well established in 

the industry world and there is not much need to make a contribution towards this direction. 

Most companies are well aware and have taken action to install UPS or power factor correction 

units.  

With respect to the other categories of pricing arbitrage (i.e. day-ahead, intraday, imbalance) 

we note two issues. One issue is that the profitability of such applications depends 

substantially on the accuracy of the electricity price forecasting model; building such models 

is a very complex or in some cases even impossible task. Another issue is that these 

applications are very limited since they concern only the big players and not the typical 

enterprise end user who buys his energy from the retail market; big power generators or 

industrial consumers can act on their own as traders without energy supply mediators.  

Regarding the balancing market, there are certainly opportunities here but there are still 

challenges to overcome. From our literature review and based on discussions with experts in 

the field, we note the following challenges especially from a prosumer’s perspective:  

 Unstable regulatory framework: As noted, the balancing market is in a transition phase 

through pan-European integration initiatives; the MARI and PICASSO projects are still in 

progress and consequently important parts of the existing regulatory framework are 

under revision.  

 Difficult access for prosumers: A lot of work needs to be done to encourage participation 

from small prosumers (kW scale). At this moment, the minimum capacity bid is 1 MW. Small 

user groups can participate only through aggregators.  
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 Unpredictable revenues: Furthermore, other factors that would make it unattractive to 

investors is the fact that it is an auction based system having its ups and downs and the 

fact that the total procurement demands are not large enough for having reproducible use 

cases. 

Finally, we leave all other grid support services (i.e. black start, voltage control or infrastructure 

upgrade) out of scope also. These are very special use cases for battery storage especially from 

a prosumer’s centric perspective.  
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3 Increasing the self-sufficiency in renewable energy systems 

3.1 INTRODUCTION 

In this chapter, we present a case study of a hybrid renewable energy installation combining 

PV, wind power, batteries and a PEM electrolyzer device. This work reflects a real use case that 

was conducted as part of a feasibility study on the 15 MW photovoltaic park of Terranova Solar 

located in Zelzate, Belgium. For the rest of this introduction section,  we elaborate on hydrogen 

as a technology and address previous works on hydrogen projects. Afterwards, we give a 

detailed description of our study, mentioning the differences with previous projects and the 

main contributions delivered.   

In general, energy storage systems can be classified into three categories: i) short-term 

storage (sec-min), ii) medium term storage (min-hours-days), iii) long-term storage (days-

months) [26, 27]. Among these categories, especially, long-term storage systems can make a 

crucial contribution by absorbing renewable energy over extended periods of time without 

exceeding capacity limits. Long-term storage can be implemented by units with high energy 

densities and very low rates of self-discharge. Hydrogen is considered to be one of the most 

appropriate energy carriers for long-term storage [27-29]. In addition, hydrogen can provide 

several services in different sectors such as: i) backup power generators (fuel cells or internal 

combustion engines (ICEs)) ii) transportation sector iii) chemical industrial processes iv) gas 

boilers v) combustion turbines [30-33].  

Among those sectors mentioned above, hydrogen has been used until now mostly for chemical 

industrial processes. For the rest, it has not yet reached commercial success. An explanation 

for this lies in the fact that electromechanical power generators (i.e. fuel cells and ICEs) making 

use of hydrogen are still under development [34]. Other explanations can be attributed to the 

need for demonstration projects, limited political incentives and the current public acceptance 

[34]. A major factor impeding the commercialization of hydrogen applications is the absence 

of a well-established infrastructure; by this meaning production, transport and distribution of 

the fuel [35, 36]. In order to accelerate the progress of a hydrogen economy, all these 

challenges need to be resolved.  

Depending on the primary energy source (e.g., electrical, thermal, photonic etc.) different 

hydrogen production methods exist; each one having its own environmental footprint [37, 38]. 

A recent study has shown that hydrogen production through electrolysis driven by 

photovoltaics and/or wind power exhibits by far the lowest environmental impact, compared 

to conventional methods based on fossil fuels [39]. So far, hydrogen production through 
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electrolysis has been too expensive to compete against fossil fuel production methods such as 

steam methane reforming (SMR) [40]. However, as the price of photovoltaics and wind turbines 

decreases in combination with more austere regulations towards environmentally friendly 

solutions, renewable energy electrolysis becomes more attractive.  

In the next two paragraphs, a short review of previous studies is given addressing the 

feasibility of Power to Hydrogen projects from a techno-economic point of view. These studies 

can be divided into two categories: i) Grid to Hydrogen [41-45], ii) PV/Wind to Hydrogen [46-

50]. The difference is that in the first category the electric grid is used as the main power 

supply to drive the electrolytic process, whereas in the second category the power supply is 

exclusively a renewable energy source (PV and/or Wind power) without any contribution from 

the electric grid. Grid to Hydrogen studies: Kopp et al. [42] analyzed the performance of a 6 

MW PEM electrolysis Grid to Hydrogen plant. Different market mechanisms were explored in 

order to generate revenue. It was concluded that through participation in the secondary 

reserve market the profitability of the plant can be improved. However, as stated by the 

authors, the study was carried out without considering the required capital expenditures of 

the electrolyzer. In Ref. [45], an economic study of a Grid to Hydrogen system is presented. 

Here, one of the objectives is to identify the optimal wholesale electricity price at which the 

levelized cost of the system is minimized. The study considered both PEM and alkaline 

electrolysis. Other factors included in the analysis are the size of the electrolyzer and its 

degradation. One of the conclusions was that the utilization factor of systems making use of 

PEM electrolysis must be higher compared to systems with alkaline electrolysis in order to 

minimize the levelized cost. Another Grid to Hydrogen project is presented by Felgenhauer and 

Hamacher in Ref. [43]. In this project, hydrogen is intended to be used for fuel cell logistic 

vehicles in an automobile factory. The study shows clearly that the production cost of hydrogen 

is influenced considerably by the cost of electricity and the utilization factor of the electrolyzer. 

In addition, the authors suggest that research scientists should focus on renewable energy in 

order to reduce the production cost of the fuel. In Ref. [44], an economic study was conducted 

regarding a hydrogen refueling station, located in Halle, Belgium. The station is powered 

partially by the electric grid. The other part of the power supply is provided by wind and PV 

power. As stated by the author, no information was provided to assess the contribution of 

renewables to the total power supply and therefore the study was done considering as 

electricity price the average grid price of Belgian medium-sized enterprises. A complete 

overview regarding the cost of each component (e.g., electrolyzer, compressors, storage, civil 

works etc.) is presented in the paper. The results show that the production cost of hydrogen 

can be reduced at 10.4 €/kg as long as the utilization of the system is maximized and provided 

that the electricity price is 0.04 €/kWh. Walker et al. [41] simulated the economic performance 
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of a Grid to Hydrogen plant considering different sizes of the electrolyzer (2 MW, 5 MW and 30 

MW). Given an input value/threshold (e.g., 40 US $/MWh) a comparison was made with the 

hourly wholesale electricity price. When the wholesale price is higher (lower) than the input 

threshold, the electrolyzer operates at minimum (maximum) power. It is mentioned that the 

profitability of the plant is strongly dependent on the utilization factor of the electrolyzer. 

Moreover, it was concluded that with big-sized systems the investment can achieve internal 

rates of return in the range of 15–21 %. 

PV/Wind to Hydrogen studies: A Wind to Hydrogen project is presented in Ref. [46]. In this study, 

the objective is to generate hydrogen that will be used in refueling stations for fuel cell 

vehicles, in Sweden. The researchers used HOMER (software tool developed by NREL) to 

calculate the levelized cost of hydrogen production. Two types of wind turbines were 

considered: i) type V112, ii) type V82. The results delivered a levelized cost in the range of 5.18–
7.25 US $/kg and 6.52–9.62 US $/kg respectively for the type V112 and V82. In Ref. [49], different 

scenarios of hybrid renewable energy systems were investigated to optimize the design of off-

grid systems in Saudi Arabia. The simulation was done considering input data (PV, wind) at 

hourly resolution. Although this research work does not focus explicitly on the production of 

hydrogen, its proposed methodologies and results are interesting to take into account. An 

important conclusion is that in an optimized configuration where hydrogen production makes 

part of the system topology, wind power co-exists with PV power instead of using single 

sources (only PV or Wind). In Ref. [50], the objective is to design a hydrogen fueling station 

using only renewable energy sources. Given a specified demand to supply on daily basis 25 fuel 

cell vehicles, the researchers used HOMER to define an optimal combination of PV with wind 

power and battery storage. The resolution of the input data (i.e. wind speed, solar irradiance) 

used in this study is hourly. The results delivered a configuration at which the levelized cost of 

hydrogen production was in the range of 7.5–7.8 US $/kg. Hou et al. in Ref. [48] carried out a 

techno-economic study of a Wind to Hydrogen system. The system was simulated using hourly 

resolutions of electricity price and wind speed data. One of the conclusions was that generating 

hydrogen from the wind farm in order to re-inject it afterwards back to the grid (re-

electrification) using fuel cells is not profitable. Nevertheless, if instead of re-electrification 

hydrogen is sold to the industry at prices above 5 €/kg high returns of investment can be 

achieved. In Ref. [47], the research goal is to design optimally a renewable energy source 

system in order to maximize the amount of hydrogen produced by alkaline water electrolysis. 

It is mentioned that optimization is achieved by combining PV with wind power. Furthermore, 

it was concluded that wind power delivered a greater contribution to the total production of 

hydrogen compared to PV. 
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Conclusions and relation to present work 

In this paragraph we summarize important conclusions drawn from the literature review and 

explain how these are related to the present research work: 

 Research should focus on the utilization of the system: In general, the economic 

profitability of the installation increases with the utilization of the electrolyzer. 

Nevertheless, increasing the utilization is not a straightforward process as the utilization 

depends on several factors such as: (i) system topology (e.g., Grid and/or PV/Wind), (ii) 

electrolyzer technology (e.g., PEM or alkaline), (iii) control strategy  [41], [45]. 

 Present study: We consider different system topologies (PV, Wind, Batteries) to 

investigate how their impact on increasing the utilization of the system, taking into 

account the existing geographical conditions and topological limitations of the site 

under consideration.  

 The need for hybrid power sources: Research suggests that projects targeting renewable 

energy electrolysis should investigate synergies on the power source i.e., combining PV 

with wind power. A hybrid power source, where PV co-exists with wind, typically exhibits 

better stability (lower intermittency) on the long term (i.e., months – years)  [47], [49].  

 Present study: The analysis starts from the basic scenario where only PV exists as the 

power source. Wind power is considered in all subsequent scenarios coexisting with 

PV. Wind power was sized (i.e., total wind power capacity) based on the provided 

datasheets from the involved wind turbine manufacturer and considering the 

topological input data of the site.  

 PEM technology is preferred for renewable energy electrolysis. Regarding the electrolyzer 

technology, there are in essence two major technologies: (i) PEM and (ii) alkaline. PEM has 

the advantage that the electrolyzer device can operate at full load range. On the other 

hand, alkaline electrolyzers are cheaper but they require a minimum partial load and 

therefore they are less flexible in the context of intermittent power sources such as wind 

and pv [38, 42, 51]. 

 Present study: In this study, we received quotations for both PEM and alkaline 

electrolyzers. Finally, it was decided to go forward with PEM. We explain in more detail 

why this decision was made in the relevant section presenting the electrolyzer 

specifications.  

 Battery storage has not been addressed. Previous research works have investigated 

different control strategies for operating the electrolyzer (e.g., in function of renewable 

power yield, wholesale electricity price). However, there is very limited knowledge about 

the potential added value of a battery storage system. 
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 Present study: A sensitivity analysis was carried out quantifying the impact of battery 

storage in increasing the utilization of the system in function of the battery energy 

capacity. Two popular battery technologies were considered (Vanadium Redox Flow, 

Lithium NMC). Furthermore, results include the annual battery utilization (cycles per 

year) and an economic profitability analysis considering real market prices and 

quotations received by the involved partners.   

 The need for real case studies: In general, the great majority of research works are purely 

theoretical investigations built upon key assumptions very often not curated by industry 

experts and practitioners in the field.  

 Present study: This research work forms the deliverable of a real feasibility study – 

producing hydrogen from the biggest photovoltaic park (15 MW, as of 2018) in 

Belgium. The research was conducted under the supervision and in strong 

collaboration with industry experts comprising (i) a  PV park owner, (ii) energy supply 

company, (iii) electrolyzer manufacturer, (iv) wind turbine manufacturer, (v) battery 

storage system developer, (vi) natural gas pipeline company and (vii) Ghent 

university.   

 The business case is selling hydrogen to the industry: Although hydrogen technically has a 

broad scope of applications, there are not many options when considering the profitability 

of the system. Research has shown that compression and storage in high pressure tanks 

can add up significantly to the total capital expenditures [44]. The cost of hydrogen sold 

through refueling stations (e.g., fuel cell cars or trucks) is too high to compete with today’s 
conventional fuels in mobile applications (e.g., diesel, gasoline) and re-electrification is 

not an option due to the large efficiency losses power-to-gas-to-power [48]. Other ideas 

such as grid support services (e.g., provision of aFRR) are doubtful for providing stable 

revenue streams on the long term [42].  

 Present study: We present a techno-economic feasibility study for ‘hydrogen 
blending’. By injecting hydrogen directly into the natural gas pipeline, there is no need 

to install compressors and high pressure storage tanks, therefore significant cost 

reductions can be achieved.   

Research core, key questions & contributions  

An overview of the system topology is given in Figure 21. A 15 MW PV park provides power to 

the electrolyzer device generating hydrogen that is later sold to the industry. The business 

owner wants to keep the electrolyzer powered as long as possible during the year in order to 

maximize the hydrogen quantity generated. The hydrogen must be 100 % green meaning that 

the electric grid cannot be used as a power source; it is only used as a sink to absorb the power 
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surplus of the PV (and/or Wind) when it exceeds the power of the load. The electrolyzer uses 

renewable energy derived either directly from the sources (i.e. photovoltaic park, wind 

turbines) or indirectly from the battery that has been charged by the sources. Next, we present 

the key research questions addressed in this work including the delivered contributions.  

 Which electrolyzer technology and what size should I choose ? 

In Section 3.2.3, we provide explanation which technology was chosen and how the size 

the of the electrolyzer was selected. The electrolyzer datasheets and quotations can be 

used as references in future research works. 

 How do I calculate the utilization of the electrolyzer ?  

To calculate all performance metrics (e.g., battery cycles, hydrogen quantity, utilization) a 

power flow model was developed (see Section 3.2.5). This is a basic power flow model 

ignoring non-linearities in the efficiency of the electrolyzer device and the battery storage 

system (see Chapter 5 for the analytic model in Matlab/Simulink).  

 What is the utilization of the electrolyzer under different system topologies ? 

We analyzed and compared the utilization of the system in four separate scenarios 

(Section 3.3.1). All simulations had a yearly time period (1 Jan 2016–31 Dec 2016) at 10 min 

resolution. Table 5 summarizes the techno-energetic results from all four scenarios 

including the renewable energy yield, utilization factor, hydrogen quantity and battery 

cycles.  

 What is the added value of battery storage and which technology to choose ? 

A sensitivity analysis was carried out in Section 3.3.1 and 3.3.2 investigating the impact of 

battery storage in increasing the utilization of the system. Results are given separately 

for the VRB and Lithium NMC technology.  

 How do I store, distribute and sell hydrogen ?  

This question is treated in Section 3.3.2. We explain which options were available for the 

PV park owner given the topological conditions of the site and input/constraints from the 

involved partners.     

 What is the cost of hydrogen (€/kg) within an investment payback period of 5 – 10 years ?  

In Section 3.3.2, we present the results from the economic profitability study focusing on 

two (out of four) scenarios.  
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Figure 21. System topology 

Section 3.2 presents the methodology of the study. It explains the input data (i.e. wind speed, 

PV power profile), the technical specifications of all participant components (PV, wind, 

electrolyzer and battery) and the power flow model. At this point, it is worth mentioning that 

this methodology is not exclusively applicable to the present case study. It is a data driven 

approach that can be generalized to other locations as well, as long as the appropriate input 

data is available. Section 3.3 is dedicated to results, comprising two parts. Part 1 deals with 

generic energetic assessments. The aim of Part 1 is to investigate how the utilization factor of 

the electrolyzer changes for each scenario (A, B, C and D) depending on the type and size of the 

source and storage component. Part 2 concerns economic evaluations (i.e. payback period, 

accumulated profit) only for scenarios B and C which seemed to be the most realistic to 

implement taking into account the constraints of the existing installation. Finally, all relevant 

conclusions, remarks and ideas for further research are given in Section 3.4. 

3.2 METHODOLOGY 

3.2.1 Photovoltaic park 

The photovoltaic park is located in Zelzate, East Flanders, Belgium. To give an indication of its 

size, the total surface covered by photovoltaic panels is estimated at 240000 m2. With respect 

to the electric peak power, 15 MW is the highest ever measured value during sunny days. So far, 

the photovoltaic park has been injecting all its energy into the electric distribution grid 14. Since 

its commissioning, the active power generation is measured and monitored per timeslots of 5 

min. 15 In all scenarios presented in section 3.3, the photovoltaic power profile was simulated 

using the measurements of the period: 1 January 2016–31 December 2016.  

                                                             
14 The voltage level of the distribution grid at which the photovoltaic park is connected is 12000 V.  
15 This means 1 average active power registration every 5 min.  
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3.2.2 Wind turbines 

The simulation of the wind power profile was more complicated since no measurements were 

available for the location and type of wind turbines that were meant to be installed. The 

methodology followed in this study consists of three steps: Initially wind speed data was 

received and processed for the concerned location and period of simulation. Afterwards, the 

processed wind speed data was converted into electric power data using the datasheets of the 

chosen wind turbine manufacturer. Finally, the power data of the single wind turbine was 

multiplied by a constant to calculate the total wind power profile according to the desired 

wind power capacity. The methodology is further explained in the following paragraphs.  

Wind speed data was received from a weather station located nearby the site. The wind speed 

measurements were carried out at 10 m height above the ground at 1 registration every 10 min, 

concerning the period: 1 January 2016–31 December 2016. However, the actual hub height of 

the wind turbines studied in this project was 55 m. In order to calculate the respective wind 

speed values at 55 m the following equation was used [52]: vv10 = ( hh10)a
 

where, 

 v is the wind speed (m/s) at height  h 

 v10 is the wind speed (m/s) at 10 m height 

 a is the Hellman exponent 

In this study, the Hellman exponent was set at 0.5 regarding the geographical topology of 

the site. This choice resulted in multiplying all speed values at 10 m by 2.35. The probability 

density function of the final calculated wind speed at 55 m is given in Figure 22. The average 

wind speed is 6.7 (m/s).  
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Figure 22: Wind speed distribution 

After having defined the wind speed profile, the active power profile of a single wind turbine 

can be calculated, based on the datasheets provided by the manufacturer. The technical 

specifications and the power-to-speed curve of the chosen type of wind turbine are given in 

Table 2 and Figure 23 respectively. The wind turbine can deliver up to 330 kW electric power. 

It has an automatic yaw control mechanism, meaning that it always follows the optimal wind 

speed direction. If the wind speed is very high (above 20 m/s) the wind turbine is shut down 

for protection. It is also important to note that, during periods of speeds below 3 m/s the wind 

turbine does not generate electricity. The probability of having wind speeds below that value 

is 12 % (See Figure 22). Finally, the total wind power profile is formed by multiplying the wind 

profile of a single wind turbine with a constant depending on the desired power capacity. For 

example: A 2 MW wind farm is almost equivalent to six medium-sized wind turbines of the type 

XANT L-33:  330 x 6 = 1980 MW.  

 

Figure 23: XANT L-33: Power-to-speed curve 
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Table 2: Wind turbine: Technical specifications 

Characteristics Specifications 

Type XANT-L33 

Number of blades 3 

Rotor diameter 33 m 

Hub height 55 m 

Rated electrical power (see also 16) 330 kW 

Cut-in wind speed 3 m/s 

Cut-out wind speed 20 m/s 

Orientation Downwind 

Yaw control Auto-yaw 

 

3.2.3 Electrolyzer 

The technical specifications of the electrolyzer used in this study are presented in Table 3. The 

technology chosen is Polymer Electrolyte Membrane (PEM) electrolysis instead of alkaline 

electrolysis. As mentioned before, in contrast to alkaline electrolyzers that require a minimum 

partial load, PEM electrolyzers can operate at full load range [38, 42, 51]. Based on our 

literature review and discussions with the involved electrolyzer manufacturer it was concluded 

that PEM electrolyzers are more suitable for applications where the power supply is 

intermittent (e.g., PV, wind turbines). This conclusion is doubtful in the scenario where battery 

storage makes part of the system topology to support the power source (similarly to UPS 

applications). If the battery storage is appropriately sized (in terms of power and energy 

capacity) the combined power source (i.e., PV/Wind and battery)  can provide continuous power 

to the alkaline electrolyzer; loss of power is less frequent. Nevertheless, the disadvantage of 

this approach is that the battery design is unavoidably coupled to the electrolyzer device 

specifications; for instance a 1 MW alkaline electrolyzer at 40 % minimum load would require 

a 400 kW battery. Based on the received quotations and discussions with the battery storage 

developers, it was concluded that neither the battery costs were sufficiently low nor the 

                                                             
16 At standard conditions (air density 1.225 kg/m3) 
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necessary expertise existed in building such large scale UPS for alkaline electrolyzers. Finally, 

the decision was made to proceed with the PEM technology.      

Regarding the size of the electrolyzer device we received quotations for a modular system: 

250 kW, 500 kW, 1 MW, 2 MW and 4 MW. Figure 24 illustrates the capital expenditures 

(normalized in €/kW) of the system comprising (i) electrolyzer stack, (ii) software and (iii) 
installation. On the one hand, as can be seen, the cost of smaller installations becomes higher 

due to the impact of fixed costs (i.e. manufacturing, project development, installation & 

maintenance). On the other hand, smaller systems have higher utilization; the smaller the 

system the higher the utilization (and therefore the normalized revenue). Based on a 

preliminary study, maximizing profits within a 10 year payback period, we concluded that 1 MW  

is the optimal size to proceed with.  

 

Table 3: Electrolyzer: Technical specifications 

Characteristics Specifications 

Type PEM 

Rated stack power 1 MW 

Lifetime 70000–80000 h 

Efficiency 60 % 

Load range 0–100 % 

Hydrogen production at rated power  (see 
also 17) 

200 Nm3/h or 18 kg/h    

Purity 99.99 % 

Output pressure 30 bar 

Water consumption  0.019 m3/kg H2 

 

                                                             
17 Considering the lower heating value of hydrogen: LHV = 119.9 (MJ/kg)  
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Figure 24: Electrolyzer capital expenditures 

 

Monetization 

Four monetization options were investigated and presented to the PV park owner: (i) provision 

of grid support services to the TSO, (ii) hydrogen re-fueling station for mobility, (iii) re-

electrification, (iv) hydrogen blending. Regarding (i), the idea was to use the electrolyzer for 

the provision of aFRR (downward regulation). The owner acts as a BSP participating in aFRR 

auctions; winners of the auction get remunerated for their reserved capacity and activated 

energy volume. The aFRR market serves as mechanism for reducing the electricity price  (i.e., 

electrolyzer operating cost). However, the disadvantage is that control is taken over by the TSO 

and therefore this impacts negatively the utilization of the system. Option (i) was finally 

rejected; our analysis showed that the added value of aFRR is very stochastic and therefore 

difficult to establish a predictable revenue stream on the long term. With respect to (ii), the 

idea was to build a local re-fueling station for fuel cell vehicles e.g., early adopters of hydrogen 

buses, trucks and cars. In such case, once hydrogen is produced after the electrolysis process, 

the next step would be to store hydrogen in high pressure tanks before it can be distributed 

through hydrogen dispensing systems. Our analysis showed that investing in additional 

components (mainly compressors and storage tanks) would result in significant capital 

expenditure increase, 40–50 % above the basic case having only the electrolyzer device (see 

Section 3.3.2 for quotations). Finally, option (ii) was abandoned because the hydrogen cost 

proved to be unacceptably high for mobility end users (above 9 €/kg). In (iii), the idea is 
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building a complete power-to-gas-to-power plant. Similarly to (ii), compressors and high 

pressure storage tanks are needed. What is more, a fuel cell system would be installed to 

convert hydrogen back to electricity and inject power to the grid. By combining hydrogen 

storage with fuel cells we decouple the weather conditions from electricity generation and 

similarly to conventional power plants we can inject power at any moment we want. The plant 

would be in essence a ‘green’ alternative of fossil fuel based generators (e.g., natural gas, 

diesel) setting the price in the merit order of electricity generation and providing flexibility to 

the system (i.e. ancillary services to the TSO). Nevertheless, this option (iii) was also 

abandoned; a preliminary study showed that the capital expenditures were too high to 

compete against today’s natural gas driven generators. Option (iv) was the most promising to 
proceed with. The availability of a natural gas pipeline passing nearby the PV site allowed us 

to consider ‘hydrogen blending’. In such cases, hydrogen can be injected directly into the 

pipeline without the need of local on-site storage. Discussions started with the 

company/owner of the pipeline to investigate the feasibility of the idea. The company verified 

that there would be no issues regarding the potential risks in mixing hydrogen with natural 

gas. Furthermore, they stated they were willing to purchase the fuel at a reasonable price (see 

Section 3.3.2 for sensitivity analysis on the fuel price).     

As already mentioned, in order to evaluate the performance of the system, in all scenarios 

presented in the following section, the term utilization is used. The definition of the term is 

given as the ratio of the actual hydrogen quantity generated within a certain time period to 

the ideal hydrogen quantity generated if the electrolyzer was operating continuously at its 

rated power. In this study, where the simulation period was always one year the utilization 

was calculated as follows: 

UPEM =  Actual H2 quantityIdeal H2 quantity =  Actual H2 quantity18 kgh  ∙ 8760 hyear 

3.2.4 Battery storage system 

Inevitably, there are always periods when the sun does not shine and the wind speeds are very 

low irrespective of the size of the renewable energy sources. The idea was to use a battery 

storage system to support the electrolyzer during those periods of poor renewable energy 

yields. With respect to the type of battery, it was difficult to identify a battery technology that 

best suited the intended application of this project. Based on literature reviews, It was decided 

to focus on two technologies: Redox Flow and Lithium-ion batteries. Although both 

technologies exhibit interesting characteristics especially for stationary grid-scale 

applications, there are many differences between them as explained in the following 

paragraph.  
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One of the most important advantages of redox flow compared to Lithium-ion is that the 

energy capacity component is independent from the power component, thus allowing a more 

flexible design. Redox flow batteries can endure many more cycles than Lithium-ion with 

almost zero capacity fade. New generations of Lithium-ion batteries can undergo high depths 

of discharge (DoD) comparable to those of redox flow batteries. However, this comes at the 

expense of accelerated capacity fade. The major advantages of Lithium-ion is that their 

efficiency is higher and that they are much cheaper per unit of power capacity (expressed in 

€/kW) [28, 53, 54].  

Among all scenarios investigated in this study, only scenario C includes a battery storage 

system. The analysis in scenario C was done twice. The first simulation was done with a 

Vanadium Redox Flow battery whereas the second simulation was done with a Lithium NMC 

battery. Table 4 presents the technical specifications of both batteries. This information was 

derived from commercial datasheets. It is also worth mentioning that the presented batteries 

belong to the same price range,18 therefore maintaining a fair comparison.  

 

Table 4: Battery: Technical specifications 

Characteristics Specifications 

Type Vanadium Redox Flow Lithium NMC 

Cycles >> 12000 6000 19 

Efficiency 75 % 95 % 

Capacity fade Insignificant 70 % EoL 

DoD 100 % 100 % 

Self-discharge Insignificant Insignificant 

C-Rate 0.2 C 1 C 

Cost 400–600 €/kWh 400–600 €/kWh 

 

                                                             
18 The price indications are based on offers received from different battery storage developers. Due to confidentiality 

agreements, the participant industrial partners preferred that the origin of these offers is not mentioned in the publication.  
19 Under a (dis)charging rate of 1C, at 100 % DoD after 6000 cycles the battery capacity will have decreased at 70 % of its 

initial value. At that moment the battery has reached its End-of-Life (EoL). 
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3.2.5 Power flow model 

Figure 25 illustrates the pseudocode of the power flow algorithm that was used to calculate 

the results for all four scenarios presented in Section 3.3.1:  

 

Figure 25: Power flow model (pseudocode) 

where: 

 CMWh is the energy capacity of the battery (MWh) 

 Tstep is the time step of the yearly simulation (h-1). 

 PPEM_nom is the nominal power of the PEM electrolyzer (MW) 

 i is the index of the current simulation step 

 Pi is the power of the component (i.e., PV, Wind, battery or electrolyzer) during the 

time slot [i, i + 1] 

 SoC is the State-of-Charge of the battery (%) 

 H2_rate is the rate of hydrogen production (kg/MWh) when the electrolyzer operates at 

nominal  power. 

 EPEM is the total energy consumption of the electrolyzer (MWh) over the year. 

 H2_total is the total hydrogen quantity (kg) produced over the year.  

The time step of the simulation is set at 10 min (1 / 6 h); the time step was defined by the 

dataset with the lowest time resolution which was the wind speed measurements. 
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Consequently, the power profile of the PV park, recorded at 5 min resolution, was scaled-down 

to 1 average measurement every 10 min. At this point, it is important to note that PEM 

electrolyzers can respond very fast to command signals. The rate of hydrogen production can 

change from 0 to 100 % within a few seconds [55]. Therefore, since the yield data changes 

much slower, it can be considered that the available for hydrogen production energy is always 

captured by the PEM electrolyzer at any time. The time period in all power flow simulations is 

set fixed 1 Jan 2016–31 Dec 2016.  

Regarding the operation of the battery, we considered a simple rule based control strategy. 

When the power of the renewable energy power source (PV and Wind) is higher (lower) than 

the rated power of the electrolyzer, the battery is charged (discharged) with the power surplus 

(deficit). The (dis)charging power is always constrained by the battery C rate. Furthermore, in 

discharging mode the battery is never allowed to discharge more power than the electrolyzer 

rated power; in other words, the battery is exclusively used to power the electrolyzer in no 

case is it allowed to discharge (inject) power back to the grid.    

3.3 RESULTS  

3.3.1 Energetic assessments 

Table 5 summarizes the results from all four scenarios investigated in this study:  

Table 5: Energetic results 

 Scenario 
A 

Scenario 
B 

Scenario C Scenario 
D Lithium NMC 

0.05–10 MWh 

VRB 

0.05–10 MWh 

PV energy yield (MWh) 16150 16150 16150 16150 16150 

Wind energy yield (MWh) N/A 5594 5594 5594 41960 

Battery cycles N/A N/A 424–179 242–159 N/A 

Electrolyzer Energy 
consumed 
(MWh) 

3365 5740 5792–7554 5784–7361 7183 

H2 quantity 
produced (kg) 

65495 103000 103950–
135550 

103780–
132090 

128900 

Utilization (%) 41.5 65.5 66.1–86.2 66.0–84.0 82.0 
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Scenario A: electrolyzer, 15 MW PV  

The participant components are the photovoltaic park and the electrolyzer. This the basic 

scenario where PV is the only source of electric energy; no contribution is made by wind power 

or by a battery storage system. The total annual energy yield delivered by the photovoltaic 

installation is 16150 MWh. Comparing the power capacity of the PV park (15 MW) to the power 

capacity of the electrolyzer (1 MW), one could state that the photovoltaic installation is 

overdimensioned. Nevertheless, despite the abundance of solar energy, the amount of energy 

consumed by the electrolyzer was found to be merely 3635 MWh or 22.5 % of the total solar 

energy yield. The utilization of the electrolyzer is 41.5 %. 

The fact that no energy is generated during the night and the frequent presence of cloudy days 

are the most important factors affecting the utilization. Due to the low utilization factor, an 

investment in such system would not be very competitive. Consequently, the results of scenario 

A lead to the development of scenario B where PV co-exists with wind power. 

Scenario B: electrolyzer, 15 MW PV, 2 MW wind 

The system comprises the photovoltaic park, six XANT L-33 wind turbines and the electrolyzer. 

The owner of the photovoltaic park was considering, before the start of this study, to upgrade 

his renewable energy installation by adding wind power; we also noted that previous research 

works suggested the co-existence of wind with PV in renewable energy electrolysis projects. 

Due to space limitations and geographical constraints, it was not possible to install more than 

six medium-sized wind turbines. This explains the choice in scenario B (and C) to consider 

precisely six medium-sized wind turbines and no more than that. 

The additional amount of renewable energy produced by the wind turbines is 5594 MWh. The 

energy consumed by the electrolyzer is 5740 MWh or 26.5 % of the total energy produced (PV 

and wind). The utilization of the electrolyzer is 65.5 %. This is an increase by 24.0 % compared 

to scenario A. It can be concluded that the contribution made by wind power is bigger, 

proportionally to its size, than the contribution of photovoltaic power. A way to explain this 

fact is that the capacity factor of wind power in this project is almost three times bigger than 

the capacity factor of the photovoltaic installation. The capacity factor is defined as the ratio 

of the actual energy yield produced within a certain period to the ideal energy yield if the unit 

operated continuously at its maximum power. In this project the capacity factors for PV and 

wind are:  

CPPV = 16150 MWh15 MW×8760 hyear = 12 %,  CPWind = 5740 MWh2 MW×8760 hyear = 33 % 
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With the utilization factor at 65.5 % scenario B proves to be more competitive than scenario A. 

However, this percentage is the maximum that can be achieved using only power source 

components. To increase the utilization beyond this limit it is necessary to include also an 

energy storage component in order to allocate more efficiently the already available 

renewable energy yield. Such hybrid topology comprising PV, wind and battery storage has 

been studied in scenario C. 

Scenario C: electrolyzer, 15 MW PV, 2 MW wind, battery 

The components participating in this scenario are the photovoltaic park, the electrolyzer, six 

XANT L-33 wind turbines and a battery storage system. As already mentioned, two cases were 

considered, one with Lithium-ion NMC and the other with Vanadium Redox Battery (VRB). For 

each case, the simulation was done repeatedly by changing the battery capacity within the 

range 0.05–10 MWh. 

The utilization for the Lithium-ion NMC case is 66.1–86.2 %, which is slightly better compared 

to the 66.0–84.0 % of the VRB case. Thanks to its higher efficiency and C rate, the Lithium NMC 

battery can transfer more energy to the electrolyzer than the VRB, given the same time period 

and battery capacity. Finally, it is noticeable in both cases that as the battery capacity increases 

the number of battery cycles per year declines. In other words, although bigger batteries make 

larger contributions to the increase of hydrogen production, their investment potential is lower 

compared to smaller batteries. 

As expected, scenario C outperforms scenario B, where the percentage of improvement is 

obviously dependent on the size of the battery. What is important to note here is how wind 

power outperforms battery storage in increasing the utilization (and generally speaking as an 

investment choice in the context of renewable energy electrolysis). 2 MW of wind power 

resulted in increasing the utilization by 24 % compared to a 10 MWh Lithium battery resulting 

in 22 % increase. Although we cannot reveal the quotations that we received from the wind 

turbine manufacturer, we can confidently state that the cost of a 10 MWh Lithium NMC battery 

is clearly higher than the cost of an equivalent 2 MW wind power installation. What is more, 

another important advantage of wind power is that the owner still generates a considerable 

revenue stream by injecting power to the grid, which is of course something that the battery 

cannot do standalone.    

In both scenarios B and C, it was assumed that the wind power capacity is maximized at 2 MW. 

What has not been mentioned yet and it is interesting to address is a system that consists of 

both infinite PV and infinite wind power (scenario D). 
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Scenario D: electrolyzer, 15 MW PV, 15 MW wind 

The system consists of the photovoltaic park, forty five XANT L-33 wind turbines and the 

electrolyzer. One of the ideas proposed by the industrial partners, was to purchase electric 

energy from an external already existing wind farm, instead of installing new turbines inside 

the site. The wind farm was located at less than 300 m outside the photovoltaic park. It was 

therefore possible with a cable connection to transfer energy directly from the wind farm to 

the electrolyzer. The power capacity of the wind farm was estimated around 15 MW. Since no 

data was available, the power profile of the wind farm was simulated by multiplying the power 

profile of a single XANT L-33 by forty five: 330 x 45 = 14.85 ≈ 15 MW 

The energy yield produced by wind in this scenario is 41960 MWh. The energy consumed by the 

electrolyzer is 7183 MWh or 12.5 % of the total energy produced (PV and wind). The utilization 

of the electrolyzer is 82.0 %. This is an increase by 40.5 % compared to scenario A. 

Proportionally to its size, scenario D performs worse than scenario B. The amount of additional 

hydrogen quantity produced by wind in scenario D is almost 1.7 times greater compared to 

scenario B. However, the total wind energy yield in scenario D is 7.5 higher than the wind 

energy yield in scenario B. It was therefore concluded that by oversizing the renewable energy 

sources only, it is not possible to reach 100 % utilization. Even with abundant solar and wind 

energy, the utilization is saturated due to the inevitable presence of unfavorable weather 

conditions (i.e. night-time, cloudy days, low wind speeds). In order to increase hydrogen 

production beyond the saturation point a battery storage system is needed.  

3.3.2 Economic evaluations 

The economic evaluations presented in this section concern specifically scenario B and C. 

Scenario A was left out of scope due its limited utilization (merely 41.5 %). Furthermore, 

scenario D was not considered despite its high utilization, since it required additional studies 

to clarify some technical and legal issues. It is important to note, that the entire economic 

study was based on the assumption that the renewable energy sources, both PV and wind, 

already exist. This means that hydrogen production comes only as a solution to increase the 

value proposition of the renewable energy installation that was initially designed to produce 

and provide electric energy to the grid. As a result, the capital investments needed to realize 

the photovoltaic and wind power installation were ignored. 

The economic analysis was done considering the parameters and variables that are given in 

Table 6. The most important parameters are the costs of the electrolyzer and electricity 

consumption. Regarding the electrolyzer, the investment was split into two components: i) 

capital expenditures and ii) operating expenditures. The cost of each component was the 
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average value calculated on three separate offers received from well-known manufacturers in 

the European region (Once more, it is mentioned that is not possible to disclose the origin of 

these offers. Readers who want to draw a comparison with price indications presented in other 

papers can refer to [44, 56, 57]). Furthermore, the electricity cost was set at 0.04 €/kWh, which 
is representative of the average price for the Belgian wholesale electricity market in 2017 [58]. 

Lastly, the study included also the cost of water consumption [59] and a moderate rate of 

inflation.   

Table 6: Economic evaluations: Parameters & Variables 

 Value 

Parameters Electrolyzer CAPEX 1750 €/kW 

Electrolyzer OPEX 4 % of the CAPEX per year 

H20 cost 4 €/m3 

Electricity cost 0.04 €/kWh 

Inflation 2 % 

Variables H2 price (revenue) 4–7 €/kg 

Battery capacity 500–5000 kWh 

Battery CAPEX 150–600 €/kWh 

 

With respect to the price of hydrogen purchased by the gas supplier, there were no exact 

indications. Nevertheless, it was estimated that a realistic value would be within 4–7 €/kg. The 
battery capacity was also regarded as variable, as already presented in the energetic 

assessments of scenario C. However, the analysis was done this time considering only the type 

Lithium NMC which proved to be more efficient compared to the VRB. Finally, the capital 

expenditure of the battery was selected to be the third variable. Although the available price 

indications suggested to set the variable within 400–600 €/kWh (See Table 4), it was decided 

to extend the range at 150–600 €/kWh, thus taking into account scenarios of significant cost 

reductions as expected in the near future [38]. 

The economic performance of each scenario was evaluated by two indicators: i) the payback 

period (years) of the investment and ii) the accumulated profit (€) realized 10 years after the 

system was commissioned. The payback period is simply the time in years needed to pass until 

the revenue equals the total capital and operating costs of the system. The accumulated profit 
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is the difference between the revenue and the total capital and operating costs of the system 

precisely 10 years after the start of the project. 

The results of scenario B are given in Table 7. Since no battery storage system exists in this 

scenario, the price of hydrogen is the only variable influencing the two indicators. In order to 

reach a payback period in less than 10 years, hydrogen must be sold at least 5 €/kg. If hydrogen 
is sold above 6 €/kg the return of investment is quite higher delivering a payback period less 

than 6 years. 

Table 7: Economic evaluations: Scenario B 

Hydrogen price (€/kg) Payback period (Years) Accumulated profit after 10 
years (€) 

4 15 -582000 

4.5 11 -13800 

5 8 554000 

5.5 7 1120000 

6 6 1690000 

6.5 5 2260000 

7 5 2830000 

 

The results of scenario C cannot be presented effectively using tables, since the outcome is 

always a function of three variables. The performance of scenario C can be illustrated in the 

form of a 4D space, where three dimensions correspond to the variable coordinates and the 

fourth dimension is colorized representing the result of the function (payback period or 

accumulated profit). 

The payback period is given in Figure 26. The price of hydrogen remains the most important 

factor affecting the payback period. Another conclusion to note is that the payback period 

becomes higher as the battery capacity increases. This can be explained by the fact that the 

battery is getting more underutilized (lower number of cycles) as its size increases. It is worth 

mentioning that compared to scenario B, the payback period in scenario C is always higher (or 

slower). The accumulated profit of scenario C, illustrated in Figure 27, is expressed as the 

additional accumulated profit (%) having as reference scenario B. All values in Figure 27 equal 

to 0 % represent cases where the accumulated profit is equal or worse to that of scenario B. 
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As it can be seen, there are cases where scenario C outperforms scenario B in terms of 

accumulation of profit. Such cases require that the maximum capital investment of the battery 

does not exceed 250 €/kWh. Furthermore, as it can be seen in some cases, for a given hydrogen 
price and battery cost, the profit becomes higher as the battery capacity becomes bigger. In 

other words, given a certain period of comparison (in this experiment 10 years) there are cases 

where scenario C is more profitable than scenario B although the return of investment is 

always faster in scenario B. 

 

Figure 26: Economic evaluations: Payback period of scenario C with Lithium NMC 

 

Figure 27: Economic evaluations: Additional accumulated profit of scenario C with Lithium NMC, having as 
reference of comparison scenario B 
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3.4 CONCLUSIONS 

An overview of the most interesting conclusions/notes drawn out of this feasibility study is 

presented below: 

 Renewable energy electrolysis can be a profitable business case. Hydrogen production 

through electrolysis powered by photovoltaics and/or wind turbines can add value to an 

already existing renewable energy installation as long as the electrolyzer is not 

underutilized. In this study, we showed that a payback period below 8 years is achieved 

provided that hydrogen is sold at least 5 €/kg. In this project, the business case is selling 

hydrogen to the industry; after production the fuel is injected directly into the natural gas 

pipeline eliminating the need for additional components (i.e., compressors, storage tanks) 

that would lead to an overall capital expenditure increase of 40–50 %.     

 For new system topologies, we suggest the priority order  Wind → PV  → Battery.  In this 

study, our analysis started from PV since the installation already existed. As has been 

proven (also concluded from the literature review), wind power contributes more than PV 

in generating hydrogen in terms of power capacities. We also note that the availability of 

space for placing PV panels is always a major concern for new installations. In the context 

of renewable energy electrolysis, we suggest that wind power be considered as the basic 

scenario; PV comes as a second choice. Regarding the battery, given the currently high 

prices, a battery may be considered as a last auxiliary component for maximizing the 

utilization of the system (e.g., refueling stations requiring non-stop continuous 

production).  

 Lithium-ion NMC outperforms VRB. The techno-energetic results show that Lithium-ion 

performs better than the VRB. Thanks to its higher C rate and efficiency, Lithium-ion can 

transfer more energy to the electrolyzer given a period of one year. The VRB could 

outperform Lithium-ion if the comparison was extended up to the moment that Lithium-

ion reaches its end of life. By that time, the VRB would still have lots of cycles to provide. 

However, such scenario would require many years to pass (at least 15) exceeding the 

payback period of investment. Consequently, the Lithium-ion battery is preferred.    

 Battery storage is still very expensive in the context of renewable energy electrolysis. Under 

the current price indications received from battery developers (400–600 €/kWh) and 

considering the targets when setting the price of hydrogen that is sold to the industry, it 

is concluded that battery storage is for the time being too expensive to provide added 

value.  

It must be emphasized once more that the time resolution of all datasets used to carry out this 

techno-economic analysis was set at timeslots of 10 min. In comparison to many other studies 
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where the time resolution is lower (e.g., 15 min, 30 min, 1 h or even lower), a 10 min resolution 

leads to more accurate estimations. However, in reality, the characteristic frequency spectrum 

of both the photovoltaic and wind power profile lies in the range of seconds. Depending on the 

intensity of those second occurring variations, the validity of all studies conducted at lower 

resolutions is influenced. Consequently, the next goal of our research is to focus on high time 

resolution datasets (e.g., 1 min, 30 s, 10 s) in order to evaluate the performance of the system 

under real-time conditions. Having datasets at such high resolution will enable us to estimate 

the simulation error when lower resolutions are considered.  

Moreover, in the next chapter, we will shift our focus on the lithium-ion technology. From our 

literature review and discussions with industry partners, we conclude that this is currently the 

most promising technology primarily due to its high energy efficiency and high C rate 

capabilities. What is more, lithium-ion is the technology preferred in the automobile sector and 

we see a big potential in reusing batteries from EVs in second life stationary applications. 

Finally, a next milestone to be reached in the next chapter is the development of a power flow 

model  that is suitable for high resolution simulations (simulation step > 1 sec).         
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4 The impact of time resolution in self-sufficiency studies 

4.1 INTRODUCTION 

In general, regarding the application of the renewable energy source (e.g., PV, wind turbine), 

there are two basic services: (i) either the source is deployed as a standalone production unit 

where no load exists; here the objective is to sell the entire energy yield to an electricity 

supplier (ii) or the source is installed behind the consumption meter of a user; in this case the 

objective is to consume the energy yield locally to increase the self-sufficiency rate of the 

installation and thus reducing the electricity invoice [60-62]. As already mentioned, in this 

thesis we address the second service (case ii). 

When the source  is located behind the consumption meter, a battery storage system can act 

as an asset to better exploit the customer’s renewable energy installation to become more 
independent from the grid. When analyzing the performance of such topology, most scientists 

follow a data driven approach. Historic load and yield power data are imported into a model 

generating a number of key performance metrics based on which conclusions are drawn. In an 

attempt to obtain better results, the scientists typically concentrate extensively on improving 

the model by adding new features or even introducing completely different methodologies. 

Nevertheless, they very often omit to consider that no matter how advanced their methodology 

is, the accuracy of the results will always be dependent on the quality of the data inputs and 

more specifically the time resolution. 

Even though the variability of the output, both of PV and wind power sources, can have high 

frequency components in the range of seconds [63-66], the yield measurements are usually 

registered as average values at lower resolutions (e.g., 10, 30, 60 min) aiming to reduce the 

size of data. Similar conclusions apply also for the load consumption [67, 68]. Depending on 

the origin of the dataset, the resolution can be different. When the data comes from weather 

stations in the form of solar irradiance or wind speed measurements, then the resolution in 

most cases does not exceed the 10 min. If the data is derived from the AMR (Automatic Meter 

Reading) infrastructure delivered by the system operator of the electric grid then the 

resolution is typically 15 min, for both load and yield measurements. The main conclusion to 

note out of this paragraph is that, given the resolution scale of the existing datasets it is not 

possible to know how the power profiles behave in real time (in seconds) and therefore the 

presence of errors in our simulation results is always inevitable. 

The impact of time resolution on the performance of renewable energy storage systems has 

been investigated by previous research works. Wright and Firth [69] conducted simulations at 
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different resolutions (1, 5, 15 and 30 min) for residential consumers with on-site generation 

(e.g., micro-CHP,20 PV). The results showed that when the resolution is lower than 1 min (bigger 

time slots e.g., 5, 10 min), the total energy quantities imported by the grid and exported to the 

grid are underestimated. Cao and Siren [70] carried out a comparative study for residential 

consumers with PV installation at 1, 5, 15, 30 and 60 min resolution. Using the self-sufficiency 

error (See definition in Subsection 4.2.3), as a performance metric, they found that in some 

scenarios, when the simulation is done at 60 min resolution, the error can be bigger than 60 

%. In [67], an optimization algorithm was applied to design a residential PV battery system. 

Real-time measurements at 10 s resolution were used, derived from 25 different households 

in Germany. One major conclusion was that the time resolution must be higher than 5 min for 

sizing the battery inverter effectively. In [68], the researchers also studied a residential PV 

battery system. The study, focusing on the performance of the battery, showed that the battery 

utilization is always underestimated at lower resolutions. At 60 min resolution the battery 

delivered on average 10.70 % less energy compared to the results at 1 min resolution. 

Hoevenaars and Crawford [71] studied different hybrid systems including wind, PV, CHP, battery 

storage and residential loads. The results were compared at 1 s, 10 s, 1 min, 10 min and 60 min 

resolution. It was concluded that the errors were higher when the CHP was used as the back-

up generator compared to the scenarios having the battery as the back-up generator. Kools 

and Phillipson [72] investigated the impact of time resolution (1 min, 15 min and 60 min) on 

the optimal planning of a residential district with distributed generation (DG). Here, the 

objective is to determine the capacities of DG (i.e. PV and micro-CHP) in order to minimize the 

energy losses of the grid. They concluded that for optimization purposes, the 60 min resolution 

is sufficient. In [73], the researchers simulate a LV grid that has PV sources and residential 

consumers. One of the objectives was to study how the time resolution (10 min and 60 min) 

influences the statistical distribution of the voltage. The results were not considerably 

different for the two resolutions. Consequently, it was suggested that higher than 60 min 

resolution measurements are not needed. Hawkes and Leach [74] developed a simulation 

model for grid-connected households with micro-CHP using load profiles at 5 min, 10 min, 

30 min and 60 min resolution. They concluded that at 60 min resolution the results can be 

very inaccurate. In particular, the total CO2 emission reduction was overestimated up to 40 %. 

In [75], the researchers developed a PV battery optimization model using both PV and load 

profiles at 30 s, 1 min, 2 min, 5 min, 15 min, 30 min and 60 min resolution. The results showed 

that at 60 min resolution the optimized costs and savings for a battery owner with flat tariff 

are underestimated by 2.9 % and 12.6 % respectively. It was suggested that 5 min resolution 

measurements deliver sufficiently accurate results. In [56], a residential PV battery system is 

                                                             
20 CHP stands for “Combined Heat and Power” 
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considered. Here, the objective is to show how the battery cost-savings are affected by the 

time resolution (1 min, 2 min, 5 min, 10 min, 30 min) of the PV and load profile. The results 

revealed that at 30 min resolution the cost-savings delivered by a 5 kWh battery are 

underestimated by 17 % compared to the same scenario at 1 min resolution. 

Conclusions and relation to present work 

In the paragraphs above, we summarized studies from a broader scope on the impact of time 

resolution. In this study, however, we investigate in particular the impact on the self-

sufficiency and battery utilization. Next,  we summarize important conclusions drawn from the 

literature review and explain how these are related to the present research work: 

 Wind power has not been addressed: All previous works have addressed PV systems, mainly 

for households. Generally speaking, compared to PV, wind power is less popular  in 

prosumer applications; the number of wind power installations is significantly lower than 

PV and therefore obtaining high resolution datasets is an issue.  

 Present study: This study focuses on wind power. We investigate the simulation errors 

(i.e., self-sufficiency, battery utilization) having as input 2 months of high resolution 

power measurements (1 sec) recorded from an industrial site and a medium sized 

wind turbine. 

 60 min resolution is unacceptable for PV systems: Previous research works suggest that 

simulations at 60 min resolution can lead to significant errors [70] [74]; the self-

sufficiency error may exceed 60 % in some cases [70].  

 Present study: We strongly suggest for self-sufficiency studies to avoid simulations 

lower than 10 – 15 min resolutions (e.g.,  30 min, 60 min).  We confirm from our own 

experience that this statement applies not only for PV but also for wind power 

systems. When estimating errors, as a general recommendation, future research 

should focus on the critical zone 10 – 15 min; the great majority of today’s digital 
metering infrastructure sooner or later (depending on the roll-out of digital meters) 

will be working in this time resolution.  In this study, we examine the errors between 

10 min and 1 sec.  

 15 min resolution is a good choice for PV systems: The self-sufficiency is always 

overestimated at lower resolutions [69], [70]. Furthermore, it has been shown that at 15 

min resolution, the self-sufficiency error is relatively low (a few percentage points, around 

0–5 %) [70]. Regarding the battery utilization error, we know that it is always 

underestimated at lower resolutions [56, 68, 75]. In [68] where a residential PV battery 

system is considered, the error is in the range of 2.57–11.52 % at 1C. In other words, previous 
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studies on PV systems suggest that both the self-sufficiency and battery utilization errors 

are not significant and therefore a 15 min resolution is a good choice. 

 Present study: In our work, it has been proven that the self-sufficiency error ranges 

merely between 0.06 – 3.6 % at 10 min resolution; this is in agreement with previous 

studies on PV indicating that 15 min is a good choice for estimating the self-

sufficiency. Conversely, regarding the battery utilization, our study shows that the 

error can be significant ranging within  18.1 – 33.1 % at 1C or even higher when we 

increase the battery C rate to 3C.  

Research core, key questions & contributions  

The system topology under consideration is given in Figure 28. The system comprises an on-

shore medium sized wind turbine,21  a high power LiFePO4 battery, an industrial consumer and 

the electric grid. We focus specifically on the performance error generated at 10 min resolution 

having as reference of truth real time measurements at 1 s resolution. The reason for this 

decision is that the majority of studies dealing with wind power modeling techniques adopt 

the 10 min resolution. The classic method followed by many scientists is using wind speed data, 

mostly available at 10 min resolution from weather stations, as input to the wind turbine 

power curve provided by the manufacturer and thus converting wind speed into wind power. 

Yet, this technique is only applicable to calculate the average per 10 min wind power output 

and it does not reveal any information about the dynamic behavior of the wind turbine [76]; 

Figure 29 shows in comparison the scatter plots of the wind speed and wind power for the 

same time period at 1 s and 10 min resolution. To simulate the load consumption and wind 

power output, real time measurements were recorded at 1 s resolution over a total period of 

2 months (June–August 2017), derived from two different locations in Belgium.22 The battery 

storage system, including the DC/AC converter, was modeled in Matlab®. In order to evaluate 

the errors of the simulation, three key performance metrics were used: (i) total self-sufficiency, 

(ii) battery utilization, (iii) instantaneous self-sufficiency. Moreover, each metric was 

calculated for different variable settings by changing the battery capacity, battery C rate limit 

and the load ratio of the installation. Next, we present the key research questions addressed 

in this work including the delivered contributions.  

 What is a suitable model to carry out the power flow simulation ? 

                                                             
21 Here, “medium sized” means that the electric power output of the wind turbine lies in the range of 100–1000 kW. 
22 Since it was not possible to find a single installation offering both measurements together. Furthermore, we assume that 

the wind and load power profiles are not correlated to each other. 
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One of the concerns when conducting simulations at high time resolutions (msec – sec) is 

the method used to calculate the power flow equations; do we need a full dynamic model 

solving the equations in the time domain or can we simply proceed with a steady state 

model without sacrificing accuracy when calculating energy losses ? In Section 4.2.2, we 

present the methodology used to develop the power flow model.  

 What is the self-sufficiency and battery utilization error at 10 min resolution ? 

In Section 4.3 we present the results of a sensitivity analysis showing the self-sufficiency, 

battery utilization and the respective errors in function of three variable settings: (i) the 

load ratio, (ii) battery capacity (kWh) and (iii) battery C rate.  

 How does the relation between the power source and load profiles impact the self-

sufficiency ? 

In Section 4.3.5, we also examine how the self-sufficiency error behaves instantaneously 

instead of exclusively looking at the average error over the entire simulation period. This 

enables us to link the instantaneous self-sufficiency error with the instantaneous ratio of 

the averaged powers Pload/Pwind. 

 Is 10 min resolution a good choice for studies considering wind power ?  

This question is partly addressed in Section 4.3 (see results from the sensitivity analysis). 

We also elaborate on this in Section 4.4 and 4.5.   

 How to interpret results and make suggestions for project developers and practitioners?  

This question is addressed in Section 4.5 .   

 

Figure 28: System topology 
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Figure 29: Scatter plot of wind speed and wind power at 1 s and 10 min resolution for the 2 months period: 1 
June 2017 12:00:00–1 August 2017 11:59:59. 

The rest of this chapter is structured as follows. Section 4.2 provides a short description of the 

data inputs (load and wind power data). It describes the dynamic model of the battery which 

was initially used to specify the characteristics of the battery and evaluate its dynamic 

response. Afterwards, an analytic description of the power flow model is given which was used 

to conduct all final simulations needed. The last part of Section 4.2 defines the three 

performance metrics mentioned in the previous paragraph including also the definition of the 

respective errors. Section 4.3 presents the results, discussing the error deviations between the 

two resolution scales. Finally, Section 4.4 and 4.5 summarize the most important conclusions, 

recommendations and ideas for future work. 

4.2 METHODOLOGY 

4.2.1 Data inputs – wind power and load power 

The entire study was conducted using two data inputs: (i) wind power and (ii) load power. The 

resolution scale and the time period of the measurements is the same for both data sets. The 

measurements were recorded at 1 s resolution with a total duration of two months, starting 

from 1 June 2017 12:00:00 until 1 August 2017 11:59:59. The wind data was derived from a wind 

turbine located in Zwijndrecht, Belgium. The specifications of the wind turbine are presented 

in Table 8. The load data was provided by an industrial consumer located in Ronse, Belgium. As 

explained further, multiple simulations were executed by scaling down the load profile with a 

factor of 1/2, 1/6, 1/10 and 1/20. The reason for doing so was that the actual load profile was 

quite bigger than the wind profile. 

Table 8: Wind turbine: Technical specifications 
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Characteristics Specifications 

Type XANT-M21 

Rotor diameter 21 m 

Hub height 31 m 

Rated electrical power (see also 23) 100 kW 

Cut-in wind speed 3 m/s 

Cut-out wind speed 20 m/s 

Yaw control Auto-yaw 

 

4.2.2 Battery model 

The battery model forms the core of the simulations carried out in this research work. The first 

step, towards the development of the model, was the definition and evaluation of a 

fundamental equivalent capable of simulating the behavior of the battery under dynamic 

conditions. Our choice to follow a fundamental approach instead of considering a simplified 

model can be justified by the high resolution scale of the measurements. However, as 

explained in the following paragraphs, the dynamic equivalent was finally replaced by the 

power flow model after concluding that this simplification would not influence the accuracy 

of the simulation even at such high resolutions. Hence, all simulations leading to the final 

results (section 4.3) were done using the power flow model. The dynamic equivalent was only 

used to calculate the internal parameters of the battery (e.g., open circuit voltage, resistance) 

which were used for the development of the power flow model. 

4.2.2.1 Dynamic model 

The battery technology is LiFePO4 (LFP). The specifications of the LFP cell are presented in 

Table 9. The dynamic response of the battery cell was analyzed using the second order RC 

equivalent model (Figure 30). Our decision to choose this type of model was based on previous 

studies that validated its performance as very accurate [77, 78]. The open circuit voltage (OCV) 

to the state of charge (SOC) characteristic of the battery was derived in [79]. In general, the 

OCV to SOC characteristic of the battery is defined with hysteresis, since the OCV depends not 

only on the SOC of the battery but also on the (dis)charging process [80]. However, in this study 

the hysteresis effect was ignored given our research goal and also knowing that such 

                                                             
23 At standard conditions (air density 1.225 kg/m3) 
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simplification does not influence dramatically the model accuracy. The OCV to SoC 

characteristic was made based on the [79], taking as equivalent the voltage discharge curve at 

C/25 (Figure 31). 

Table 9: LFP cell characteristics [79] 

Characteristics Specifications 

Chemistry LiFePO4 

Nominal capacity 2.28 Ah (7.52 W h) 

Nominal voltage 3.3 V 

Recommended voltage range 2 to 3.6 V 

Operating temperature range −30 °C to +60 °C 

Cell weight 70 g 

 

 

Figure 30: 2nd order RC equivalent for LFP cell 
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Figure 31: Voltage discharge curves for C/25, C/3 and 1C according to Ref. [79] 

To estimate the parameters R0, Rp1, Rp2, Cp1, Cp2, the response of the model was optimized to 

match the voltage discharge curve at 1C (Figure 31). As shown in Figure 31 each voltage 

discharge curve corresponds to a constant C rate. Knowing that the current is always constant 

during the discharging process and that the accumulated charge (expressed as capacity in Ah) 

can be found at any given point on the curve, it is possible to construct the time axis of the 

process. In other words, each static voltage-to-capacity curve can be transformed into a 

dynamic voltage-to-time curve. The dynamic current-to-time curve can be easily defined by 

calculating the total duration of the discharging process. As can be seen with a discharge rate 

at 1C the battery will have delivered almost 2.2 Ah. Therefore the total duration is calculated 

as follows: 

Ttotal =  2.2Crate ×  CAh  × 3600 =  2.21 × 2.28 = 3474 s 

Now that both the voltage-to-time and the current-to-time curves are known, the response of 

the model can be optimized. The current-to-time curve was used as the input of the model 

whereas the voltage-to-time curve was selected to be the output. We assumed that the LFP 

cell is connected at its output with a current source. Furthermore, we considered as initial 

conditions that the SoC is 100 % and that no current flows towards or from the battery (open 

circuit condition). Next, the current source is commanded to discharge the battery at 1C over a 

period of 3474 s. The experiment ends at 3474 s and the voltage response of the battery is 

compared to the desired response. 
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Table 10 presents the values for the parameters R0, Rp1, Rp2, Cp1, Cp2. These values were calculated 

using Matlab’s optimization toolbox. The two voltage-to-time curves, the reference to follow 

and the result of the simulation, are illustrated in Figure 32. The small deviation towards the 

end close to 3500 s is possibly due to the change of the battery’s internal resistance when the 
SoC becomes almost 0 %. In reality the internal resistance of the battery can slightly change 

when the SoC is close to the upper (100 %) or lower (0 %) boundary [77]. Nevertheless, all final 

simulations (section 4.3) were done with the battery operating in the range of 10–90 % SoC 

and therefore the internal resistance was considered constant. Our decision to set the SoC 

within 10–90 % is explained in a separate paragraph (See Process 2 - Limitation imposed by 

power capability). 

Table 10: Parameters of the 2nd order RC model using Matlab’s optimization toolbox. The values refer to a single 
LFP cell. 

Parameters Values 

R0 0.02 Ω 

Rp1 0.005 Ω 

Rp2 0.004 Ω 

Cp1 600 F 

Cp2 1500 F 
 

 

Figure 32: Comparison of voltage to time curves between simulation and reference with optimized parameters 
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4.2.2.2 Evaluation of the dynamic response 

As can be seen from Figure 30, the model of the battery consists of an ideal voltage source, 

resistors and capacitors. Since the model does not include any inductances, when the battery 

is discharged (charged) the maximum voltage drop (increase) at its output (compared to the 

OCV) is affected only by the amplitude of the current and the size of the ohmic elements (R0, 

Rp1, Rp2). We note also that the presence of the capacitive elements does not influence the 

maximum voltage drop (increase) because both capacitors are connected in parallel with a 

resistor. In other words, the derivative (rate of change) of the (dis) charging current cannot 

impose limitations to the reaction time of the battery. As a result, the battery is expected to 

respond instantaneously to any power commands specified by the control system of the DC/AC 

converter. This is in agreement with previous studies that state that the reaction time of 

lithium-ion batteries is very fast, in the range of ms according to [81] and below 5 ms according 

to [82]. 

In fact, if any delays occur between the power command and the actual power delivered by 

(to) the battery, these are probably due to extended software execution time and bandwidth 

limitations of the communication protocol. In the present study, we considered that the 

communication protocol operates at 20 Hz, which is much faster compared to the resolution 

scale of the simulations carried out at time slots of 10 min and 1 s. The resolution scale of the 

simulation defines how often a power command can be sent to the DC/AC converter. Since the 

resolution scale of the communication protocol is much higher, it can be concluded that the 

actual power delivered by (to) the battery during a single time slot (10 min, 1 s) will always be 

approximately constant and equal to the power command. Based on this fundamental 

assumption, it makes sense to ignore the dynamics of the system (including the battery and 

the DC/AC converter) and proceed with a more simplistic modeling method. 

4.2.2.3 Power flow model 

Following the conclusions of the previous paragraphs, it was decided to develop a new model 

for the battery storage system. Here, the modeling approach starts from the equation of power 

flows: Pwind(t) + Pgrid(t) =  Pbattery(ACoutput)(t) + Pload(t) 

The power flow model is illustrated in Figure 33. Data inputs are the load power and the wind 

power profile. The main objective-output of the model is the calculation of the battery’s power 
profile. Obviously, after the battery power has been defined, the power of the grid can be 

defined as well, simply by satisfying the Equation 4-2.  
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The model has four variables: (i) simulation time step, (ii) battery capacity, (iii) battery C rate 

limit (iv) load ratio. During a single simulation the values of all variables remain constant. Each 

simulation is executed with a fixed discrete time step (1 s or 10 min). At each step the model 

calculates the battery power Pbattery(t) given the current values of the wind power, load power 

and state of charge (Pwind(t), Pload(t) and SoC(t) respectively). Knowing the battery power 

Pbattery(t) allows to calculate the next value of the state of charge SoC(t + 1) and therefore the 

simulation can proceed to the next step. The program runs repetitively until all values of the 

data inputs have been scanned. The rest of this section describes how the power flow model 

works given a single simulation step. The program is split into three major processes. 

Process 1: Initially, the battery power equals the difference between the wind power and load 

power Pwind(t)–Pload(t). The charging (discharging) process cannot start unless the available 

power surplus (deficit) is higher than a minimum power threshold (Condition 1). This threshold 

is imposed by the efficiency of the DC/AC converter, which is unacceptably low when the 

converter operates at power levels much lower than its rated specifications. After the power 

difference Pwind(t)–Pload(t) has been checked to be higher (in absolute value) than the power 

threshold of the DC/AC converter the program executes a second control. If the battery is 

charged (discharged) then its power must be slightly lower (higher) than the available surplus 

(deficit) of energy due to DC/AC conversion losses (Condition 2). Here, charging (discharging) 

results in multiplication (division) by the DC/AC efficiency. 

Process 2: This process works as a saturation block. It checks whether the power value 

calculated at the output of process 1 lies within an allowable range; If this is true then the 

value can pass through, otherwise the power is saturated by an upper and lower boundary. The 

saturation is applied in order to avoid operating the battery beyond its power capability. The 

factors affecting the value of the power limit are the battery capacity, the C rate limit and the 

SoC. Both the upper and lower limit are constantly updated at each simulation step since they 

are function of the SoC. 

Process 3: This process acts also as a saturation block. Here, the intention is to take into account 

the resolution scale of the simulation as well. Such limitation becomes particularly noticeable 

when the resolution is low (i.e. 10 min) and especially when a high C rate limit has been 

selected. The SoC must always remain within its specified upper and lower limits. If for instance 

the SoC is quite close to the upper limit and the resolution scale is 10 min, then the maximum 

amount of energy that can be delivered to the battery between the current and next simulation 

step is possibly lower than the energy allowed by the power capability criterion (process 2). 
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Figure 33: Power flow model: The entire model was implemented using basic Simulink blocks. The bottom part 
of the figure shows the interior of blocks 1, 2, 3 and 4. 
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4.2.2.3.1 Process 1 – DC/AC efficiency and minimum power threshold 

To define the minimum power threshold PDC/AC min, it is important to analyze the total efficiency 

of the energy storage system. The total efficiency can be calculated as follows:  ηtotal =  ηbattery  ∙  ηDC/AC 

where ηbattery is the round trip efficiency of the battery, ηDC/AC is the efficiency of the DC/AC 

converter and ηtotal is the total efficiency of the system. The round trip efficiency of the LFP 

battery presented in this study lies approximately in the range of 90–97 % depending on its 

internal resistance and the square of the current. The efficiency of the converter ηDC/AC , however, 

depends on two components: i) the conduction losses which are proportional to the square of 

current and ii) the switching losses which are fixed, independent from the current [83]. The 

presence of switching losses becomes noticeable especially when the power of the converter 

is much lower than its nominal value. In this case, the efficiency of the converter can be quite 

low. Consequently, operating the battery at such relatively low powers leads to higher energy 

losses compared to the amount of renewable energy yield that we attempt to save. Based on 

information received from Ref. [84] we decided to set the efficiency of the DC/AC converter 

ηDC/AC constant at 95 %. This is a good approximation considering that the load of the converter 

stays within 5–100 % of its nominal power. Below 5 %, the efficiency of the converter starts 

declining dramatically due to switching losses until it becomes zero. Therefore, the minimum 

power command of the battery PDC/AC min was set at 5 % of its maximum power Pbattery_max under 

the assumption that the nominal power of the converter is always equal to the power 

capability of the battery: | PDC/ AC min| =  0.05 ∙  Pbattery max 

 

4.2.2.3.2 Process 2 – Limitation imposed by power capability 

The power capability of the battery depends on voltage and current limitations. As 

recommended by manufacturers and based on literature reviews [80, 85], the voltage of 

LiFePO4 cells must not lie outside the range of 2.0–3.6 V in order to avoid accelerated 

degradation as well as safety issues. Furthermore, the (dis) charging current should preferably 

not exceed a maximum limit, also here in an attempt to extend as much as possible the lifetime 

of the battery. In general, higher C rates usually lead to accelerated capacity fade. However, 

depending on the application, the user can choose to operate the battery at high C rates if such 

option can increase the utilization of the energy storage system and as a result the return of 

investment. 
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In this research work, we considered four different current limitations: (i) 0.2 C, (ii) 0.5 C, (iii) 1 

C, (iv) 3 C in order to investigate to what extent the power capability of the battery can affect 

the simulation error. For a given C-rate, the power capability can be calculated by the following 

two equations:   Pbattery max =   (OCV + IC rate  ∙  R)  ∙  IC rate Pbattery min =  −(OCV − IC rate  ∙  R)  ∙  IC rate 

Where OCV is the open circuit voltage, IC rate is the current limit, R is the total internal resistance 

(R0 + Rp1 + Rp2) of the battery cell according to the optimized values of the RC equivalent model, 

Pbattery max and Pbattery min are the upper (charging) and lower (discharging) power limits 

respectively. It is worth mentioning that these equations refer to the steady state power 

capability of the cell. Temporarily, during the transient state the power capability is always a 

bit higher. Therefore, the use of the steady state value leads always to more conservative 

calculations, meaning that the capability of the cell is not overestimated. 

As can be seen from Equations 4-5, 4-6, the power capability of the battery cell is function of 

the SoC because it depends on the OCV. This function is illustrated in Figure 34 for the four 

different C rate limitations.24 As expected all functions are almost constant for any given (dis) 

charging C-rate because the OCV specifically of a LiFePO4 cell does not deviate considerably 

from its nominal value within the range of 10–90 % SoC. 

 

Figure 34: Power capability curves of a single LiFePO4 cell, considering different C rate limitations. The indexes 
for the charging and discharging curves are “Chg” and “Dis” respectively. 

                                                             
24 The power capability of a battery with a higher capacity is calculated easily by multiplying the power curves of a single cell 
with the equivalent number of cells needed in connection to reach the given capacity.  
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The choice to focus on the SoC interval 10–90 % is because we carried out the entire analysis 

considering a Depth of Discharge (DoD) 80 %. Compared to deep charging cycles of 100 % DoD, 

operating the battery at lower DoDs has been proven to be more appropriate for extending its 

lifetime [86]. Besides this, if instead the SoC was within the interval 0–10 % or 90–100 % then 

its power capability would possibly be subject to voltage limitations; the lower limit of 2 V 

within 0–10 % SoC during the discharging process and the upper limit of 3.6 V within 90–100 

% SoC during the charging process [87]. The presence of voltage limitations results in power 

capability reduction since the current cannot be kept constant at its maximum value in those 

regions. In summary, setting the DoD at 80 % is not only beneficial for the lifetime of the 

battery but it also allows faster (dis)charging cycles. 

4.2.2.3.3 Process 3 - Limitation imposed by resolution scale 

The upper and lower power limit in process 3 are constantly updated at each simulation step 

since they are function of the SoC. The following two equations were used to calculate the 

power limits, considering that the SoC lies in the range of 10–90 %: Pbattery max =   90 − SoC(t)100  ∙  CkWh  ∙  3600Tstep  Pbattery min =  10 − SoC(t)100  ∙  CkWh  ∙  3600Tstep  

where CkWh is the  battery capacity in kWh and Tstep is the time step (resolution scale) in seconds 

(1 s or 10 min). 

To give an indication of how process 3 can influence the simulation, we present as an example 

two cases in comparison. In both cases we assume identical conditions for the battery capacity, 

C rate limit, SoC, wind power and load power but a different time step.25 The objective is to 

calculate and compare the battery power at the output of process 3: 

 CkWh : 10 kWh 

 Crate : 3C 

 SoC(t): 80 % 

 Pwind(t) >> Pload(t), Pbattery max (Process 2) 

 Tstep: 1 s in case 1, 10 min in case 2 

 Find Pbattery(t) 

In this example, the wind power Pwind(t) is much higher than the load power Pload(t) and the 

charging power capability of the battery Pbattery max (Process 2). Furthermore, the SoC(t) has not yet 

                                                             
25 The efficiency of the battery and the DC/AC converter is not important in this example.  
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reached the upper limit (90 %). As a result, process 1 sends a command to charge the battery 

with the available surplus of powers Pwind(t)– Pload(t) (slightly lower due to DC/AC losses). 

Process 2 is saturated at the upper limit since the surplus of powers is higher than the charging 

power capability of the battery. At this point (output of process 2) the battery power is the 

same for both cases (1, 2) and it equals 31.9 kW according to the values of CkWh, C rate limit and 

SoC(t). The maximum battery power Pbattery max calculated by process 3 (Equation 4-7) is 3600 kW 

and 6 kW in case 1 and case 2 respectively. Consequently, the final battery power Pbattery(t) 

(output of process 3) is 31.9 kW in case 1 and only 6 kW in case 2. 

Certainly, although process 3 influences the simulation in case 2, it has no effect in case 1. The 

deviation between the final averaged power (6 kW) and the instantaneous power (31.9 kW) is 

undoubtedly significant. The aforementioned example shows that simulating the behavior of 

a high C rate battery at a resolution scale as low as 10 min can be difficult. As explained in the 

following section, the loss of information (absence of real-time measurements) during the 

averaging period can lead to inaccuracies that need to be further investigated. 

4.2.3 Definition of performance metrics 

The error between the low (10 min) and high (1 s) resolution simulation was evaluated using 

three key performance metrics: (i) total self-sufficiency, (ii) battery utilization and (iii) 

instantaneous self-sufficiency. Below follow the definitions of those metrics and the 

respective error measures. 

The total self-sufficiency shows to what extent the consumer is independent from the electric 

grid. It is the ratio of the total renewable energy consumed by the load, either directly from 

the wind turbine or indirectly from the battery, to the total load demand over the entire 

simulation period. The total self-sufficiency forms a key performance index for every 

renewable energy installation since it can be used to estimate the periodic (per month/year) 

revenue stream generated by the system. If additionally the capital and operating 

expenditures are given, then it is possible to calculate the return of investment (ROI) as well. 

We define total self-sufficiency as: 

Stot  =  Eload tot − Egrid totEload tot  ∙  100 

where Stot is the total self-sufficiency, Eload tot is the total load demand and Egrid tot is the total 

energy delivered to the load by the grid. 

The battery utilization can be measured using different metrics. Here, the number of equivalent 

cycles is used. This can be expressed as the ratio of the total energy discharged by the battery 
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storage system (over the entire simulation period) to the battery’s energy capacity. In contrast 
to the total self-sufficiency which is associated with the total revenue stream of the 

installation, this metric concerns specifically the profitability of the energy storage system. In 

general, it is desirable that the utilization be as high as possible. Given a certain time period, 

the ROI of the energy storage system becomes faster as the utilization increases. We define 

battery utilization as: 

Ubat  =  Edis totCkWh  

where Ubat is the battery utilization, Edis tot is the total energy discharged and CkWh is the battery 

capacity. 

The instantaneous self-sufficiency shows, as the total self-sufficiency does, to what extent the 

consumer is independent from the grid. However, in this case, the self-sufficiency is function 

of the time; it changes constantly as the simulation progresses because the time slot under 

consideration is temporary. Regarding the time slot duration, it was set at 10 min for both 

resolution scales. Choosing for a fixed duration enables us to draw the comparison we need by 

calculating the instantaneous self-sufficiency error. We define it such that, integrating the 

metric over the simulation period and dividing by the number of time slots returns the total 

self-sufficiency (Equation 4-9). The equation of the metric is as follows: 

Sinst(t) =  Eload inst(t)−Egrid inst(t)Eload tot  ∙ N ∙ 100   

where Sinst(t) is the instantaneous self-sufficiency, Eload inst(t) is the instantaneous load 

consumption, Egrid inst(t) is the instantaneous energy delivered to the load by the grid, Eload tot is 

the total load consumption and N is the total number of time slots. In this study, N is equal to 

8784. 26 

Knowing how each performance metric is defined it is now possible to proceed with the 

calculation of the errors. We note once more that, in this study, the focus lies particularly on 

the error of the metrics rather than the metric itself. To generate a case study, the simulation 

is executed twice, at 1 s and 10 min resolution and by keeping the other three variables (battery 

capacity, C rate limit, load ratio) constant. The real time measurements form the data inputs 

at 1 s resolution. The data inputs at 10 min resolution are constructed simply by averaging the 

real time measurements over the time slot duration (10 min). The equations of the errors are 

given below: 

                                                             
26 Dividing the simulation period (2 months or 61 days) by the time slot duration (600 s) we get the value of N.  
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ERtot =   Stot 10 min − Stot 1 sec ERbat =   Ubat 10 min − Ubat 1 secUbat 1 sec  ∙ 100 ERinst(t) =   Sisnt 10 min(t) − Sinst 1 sec(t) 

where ERtot is the total self-sufficiency error, ERbat is the battery utilization error and ER inst(t) is 

the instantaneous self-sufficiency error.  

4.3 RESULTS 

The performance of the simulation was evaluated in function of the four variables (Figure 33). 

The power flow model was executed multiple times using all possible combinations that can 

result from the following set of values: 

 Simulation step (resolution scale): 1, 600 s. 

 Battery capacity: 0, 10, 25, 50, 75 kWh. 

 C rate limit: 0.2 C, 0.5 C, 1 C, 3 C. 

 Load ratio: 1/20, 1/10, 1/6, 1/2. 

The value range of the battery capacity and the load ratio were chosen to make sense from a 

techno-economic point of view. Under the given data inputs, it is not worth exploring the 

simulation result at higher battery capacities and/or higher (lower) load ratios because the 

installation is badly dimensioned in those scenarios. With respect to the C rate limit, the 

maximum value was set at 3 C; charging the battery above this level would negatively affect 

its lifetime and therefore it is not recommended. 

4.3.1 Total self-sufficiency 

The total self-sufficiency error and the total self-sufficiency at 1 s resolution are illustrated in 

Figure 35. As expected, the most important factor affecting the self-sufficiency is the load ratio. 

The self-sufficiency lies in the range of 9.7–10.6 %, 23–28.4 %, 31.9–41.7 % and 44.5–63 % when 

the load ratio takes the values 1/2, 1/6, 1/10 and 1/20 respectively. For a given load ratio and C 

rate limit, the self-sufficiency always increases as the battery capacity becomes higher. 

Needless to say, the contribution of the battery in increasing the self-sufficiency becomes less 

significant as the load ratio increases; note the small improvement from 9.7 to 10.6 % when 

the load ratio is 1/2 (underdimensioned wind turbine) compared to the improvement from 44.5 

to 63 % when the load ratio is 1/20 (overdimensioned wind turbine). For a given load ratio and 

battery capacity, the self-sufficiency does not always increase with the C rate limit. Although 

the maximum self-sufficiency, indeed, is found always at 3 C when the battery capacity is 10 

or 25 kWh (irrespective of the load ratio), the maximum value is found at 1 C when the battery 
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capacity is 50 or 75 kWh. The explanation of this lies in the minimum power threshold of the 

DC/AC converter. As an example we note that at 3C and 75 kWh the minimum power threshold 

equals approximately 11.5 kW. As long as the renewable power surplus does not suffice to 

overcome this value, the charging process will never start, thus affecting the total self-

sufficiency negatively. 

 

Figure 35: Total self-sufficiency at 1 s resolution (red), total self-sufficiency error (black). 

4.3.2 Total self-sufficiency error 

The total self-sufficiency error ranges between 0.06 and 3.6 %. The error is always positive 

meaning that all simulations conducted at 10 min resolution lead to overestimations of the 

real self-sufficiency. As can be seen, the maximum value is reached when the load ratio is 1/20 

and the battery capacity is zero (C rate irrelevant). In most cases, the error declines with the 

increase of the load ratio. With respect to the battery capacity, similar conclusions as those 

discussed in the previous paragraph can be made, however, here the dependence follows the 

opposite direction. For a given load ratio and C rate limit, the self-sufficiency error always 

decreases as the battery capacity becomes higher. Regarding the C rate limit, in almost all 

cases, increasing the limit results in error reduction. Exception to the rule are the cases where 

the battery capacity is 50 or 75 kWh; an increase from 1 C to 3 C leads to a higher self-sufficiency 

error. 

The most important conclusion to note is that, the estimation of the total self-sufficiency 

becomes more accurate as the size (capacity) and power capability (C rate limit) of the battery 

storage system increases. Considering two cases in comparison, presented in Table 11 we see 

that although the self-sufficiency has increased from 44.5 to 58 %, the error has declined from 
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3.6 to 0.6 %. Apparently, the energy storage system acts in a similar way like a filter by 

absorbing the fast surplus (and deficit) variations. In other words, the loss of information due 

to the absence of real time measurements is compensated to some extent by the battery and 

therefore conducting the simulation at 10 min resolution cannot cause remarkable 

inaccuracies. 

Table 11: Comparison of performance metrics for two cases derived from Figure 35 

Variables/metrics Case A Case B 

Battery capacity (kWh) 0 50 

C rate limit N/A 3 C 

Load ratio 1/20 1/20 

Total self-sufficiency at 1s 
resolution 

44.5 % 58 % 

Total self-sufficiency error 3.6 % 0.6 % 

 

4.3.3 Battery utilization 

The battery utilization at 1 s resolution and the battery utilization error are illustrated in Figure 

36. The utilization ranges between 17 and 190 cycles. For a given battery capacity and C rate 

limit, the battery utilization does not depend monotonically on the load ratio. In most cases, 

the maximum is found when the load ratio is 1/20 or 1/10. As expected, the higher the battery 

capacity is, the lower the total number of cycles delivered. Furthermore, the utilization 

increases with the C rate limit except for the cases where the battery capacity is 50 or 75 kWh; 

at 3C the utilization is lower than its value at 1C. The maximum number of cycles (190) is 

located at the point [x,y,z]: 10, 3C, 1/10, whereas the minimum number of cycles (17) is located 

at [x,y,z]: 75, 0.2C, 1/2, where [x,y,z] are the battery capacity, C rate limit and load ratio 

respectively. 
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Figure 36: Battery utilization at 1 s resolution (red), battery utilization error (black). 

4.3.4 Battery utilization error 

Regarding the battery utilization error, this lies in the range of 7.5–44.7 %. The error is always 

negative meaning that all simulations conducted at 10 min resolution lead to 

underestimations of the real battery utilization. For a given battery capacity and C rate limit, 

the error is always maximized (in absolute value) when the load ratio is 1/2, despite the fact 

that the function is not monotonically increasing. The impact of the battery capacity is clear; 

the higher the battery capacity, the lower the error while keeping the other two variables 

constant. What is more, it is interesting to note that the C rate limit is by far the most decisive 

factor. The error increases always as the C rate becomes higher. Especially at high C rates (1 C, 

3 C) the deviation from the true value can be significant; note that the maximum error (44.7 

%) is located at the point [x,y,z]: 10, 3 C, 1/2. 

To better explain how the errors are caused note that, at 3 C a fully charged battery can go 

from 90 % SoC to 10 % SoC approximately in less than 20 min when the battery delivers its 

maximum power. When the average load (wind) power is much higher than the average wind 

(load) power over the 10 min period, the two profiles do not cross each other very often in real 

time, therefore the error is negligible. However, when the two average powers are closer to 

each other, it is highly probable that the wind and load profiles cross each other very often in 

real time, thus resulting in relatively larger errors. The battery can complete several (dis) 

charging micro-cycles during the 10 min period that cannot be ’detected’ through the low 

resolution data set. As the C rate increases, the size of those micro-cycles increases, or in other 

words the total not ’detected’ energy, allocated by the battery between the source and the 

load, increases. The major conclusion in this section is that, simulating the performance of fast 
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charging (high C rate) batteries in wind power systems using data sets with a resolution as 

low as 10 min can lead to significant inaccuracies, in particular with regard to the battery 

utilization. 

4.3.5 Instantaneous self-sufficiency error 

As already mentioned, the total self-sufficiency error varies between a mere 0.06–3.6 %. 

Nevertheless, the results reveal that the instantaneous error can be much higher. Figure 37 

presents the instantaneous self-sufficiency error on 8 June 2017, considering that the battery 

capacity is zero (C rate not applicable) and the load ratio is 1/6. Additionally, the figure 

illustrates the wind and load power profile on the same day. As can be seen, the instantaneous 

error varies between 0 and 52.5 %; this is considerably higher than the total (or average) error. 

It is also interesting to notice how the error changes depending on the instantaneous relation 

between the wind power and load power. It seems that the error is minimized when the load 

power is clearly bigger than the wind power or vice versa. Moreover, the error seems to 

increase when the two powers are comparable to each other. In order to express this 

dependence more effectively Figure 38 was created, explained in the following paragraph. 

 

Figure 37: Instantaneous self-sufficiency error on 8 June 2017 without battery storage (Capacity is zero, C rate 
irrelevant) and load ratio 1/6. 
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Figure 38: Bivariate probability mass function at 10 min resolution considering: (i) variable X: instantaneous 
ratio Pload/Pwind, (ii) variable Y: instantaneous self-sufficiency error, (iii) battery capacity is zero (C rate 

irrelevant), load ratio is 1/20. 

Figure 38  refers to the case study where the battery capacity is zero (C rate not applicable) 

and the load ratio is 1/20. Here, the relation between the load power and wind power is 

expressed as the ratio of the average (per 10 min) powers Pload/Pwind. The figure shows the 

bivariate probability mass distribution of the instantaneous self-sufficiency error against the 

instantaneous ratio Pload/Pwind. It can be concluded that there is a clear correlation between the 

two variables. The error increases as the ratio of the powers approaches the value 1. For most 

of the time during the simulation, the error is higher than 10 % when the ratio ranges between 

0.5 and 2. The reason why the error increases specifically in this range is that, the chance that 

the real time profiles will cross over each other becomes higher when the average powers are 

at the same level. In other words, the more equal the two average powers are, the worse the 

impact of not having real time information. In this case study, the maximum instantaneous 

self-sufficiency error is 140 % (not included in the figure) whereas the final total self-

sufficiency error is only 3.6 %. 

The fact that the total error is so low implies that the ratio Pload/Pwind is found usually outside 

the critical zone 0.5–2 where the instantaneous error increases considerably. Figure 39 shows 

the univariate probability mass distribution of the instantaneous ratio Pload/Pwind for the same 

case study addressed above (capacity is zero, load ratio is 1/20). The peak value (21 %) at the 
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right side of the figure represents the probability of the ratio being equal to or higher than 10. 

The results reveal that the probability of the ratio being within 0.5–2 is 29 %. The remaining 71 

% of the time the ratio lies outside the critical zone, thus positively affecting the total self-

sufficiency error. Needless to say, all results presented so far are strongly dependent on the 

given data inputs. In the present study, as can been seen in Figure 39, the load profile is quite 

consistent meaning that it maintains its pattern over the entire simulation period independent 

from the weather conditions. Possibly in another scenario, if the load consumption was 

influenced by the weather, the correlation between the load and wind power profile would be 

stronger and as a result the total self-sufficiency error could be higher. 

 

Figure 39: Univariate probability mass function at 10 min resolution considering: (i) variable X: instantaneous 
ratio Pload/Pwind, (ii) battery capacity is zero (C rate irrelevant), (iii) load ratio is 1/20. 

4.4 CONCLUSIONS 

In this section, we summarize the most important conclusions and interpretations following 

the results presented above. The study is finally closed making suggestions on how the 

research work can be further continued as well as discussing other ideas relevant to the topic. 

 The total self-sufficiency error was found positive in all cases, meaning that conducting 

the analysis at 10 min resolution leads always to overestimation of the true self-

sufficiency. The error ranges between 0.06 and 3.6 %. For a given load ratio, the error is 

always maximized when the battery capacity is zero, or in other words when the storage 
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system does not exist. Increasing the battery capacity results always in lower self-

sufficiency error. The reason why this happens has to do with the battery’s behavior acting 
like a filter. In reality, during the 10 min time slot, the battery absorbs the fast surplus and 

deficit variations that cannot be detected due to the loss of information. These variations 

are the primary cause of the error. Consequently, as the battery capacity increases and the 

real time (in seconds) varying component gradually disappears, the self-sufficiency 

calculated at 10 min becomes more accurate. 

 The battery utilization was found negative in all cases, meaning that the utilization is 

underestimated when the simulation is done at 10 min resolution. The error ranges 

between 7.5 and 44.7 %. It was concluded that the C rate limit is the most decisive factor 

influencing the error. For a given load ratio and battery capacity, the error always 

increases with the C rate limit. Especially at high C rates, the deviation from the truth can 

be significant; the utilization error lies in the range of 18.1–33.1 % and 20–44.7 % at 1C and 

3C respectively. The results reveal that simulating the performance of a fast charging 

battery in wind power systems can lead to remarkable inaccuracies when the resolution 

of the data inputs is as low as 10 min. 

 Even though the total self-sufficiency error in the worst case scenario is only 3.6 %, the 

instantaneous error can be much higher, sometimes even beyond 100 %. What is more, it 

was concluded that there is a clear correlation between the instantaneous self-sufficiency 

error and the instantaneous ratio Pload/Pwind. The error can rise dramatically especially when 

the ratio Pload/Pwind enters the critical zone of 0.5–2. The more equal the two powers are 

(averaged over 10 min), the higher the probability that the power profiles will cross over 

each other in real time and thus the higher the error. Nevertheless, in this research work, 

the ratio is usually outside the critical zone, therefore affecting positively the total (or 

average) self-sufficiency error. In another scenario, if for example the load was less 

consistent and dependent on the weather conditions, possibly the correlation between the 

load and the wind power profile would be stronger resulting in a higher total self-

sufficiency error. 

 The results of the present work can be interpreted also from an economic perspective. We 

note that, the total self-sufficiency is a measure for the total energy savings, where both 

the contributions of the wind turbine and the battery are taken into account. The battery 

utilization refers to the energy savings specifically made by the battery. If the user has 

not yet installed the wind turbine, the analysis will be done based on the total energy 

savings. In this case, the total self-sufficiency is used (error always positive), resulting in 

an overestimation of the revenue or a faster ROI. If however, the wind turbine is already 

present and the user considers to install the battery as an additional asset, the analysis 

will be done based on the energy savings delivered by the battery. In this case, the battery 
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utilization is used (error always negative), resulting in an underestimation of the revenue 

or a slower ROI. 

4.5 DISCUSSION 

This study forms one of the few attempts realized so far to emphasize the need for real time 

measurements in industrial wind power installations combined with battery storage systems. 

We showed that even at 10 min resolution (not exceeded by the great majority of published 

works), the results can be misleading. Researchers working with similar system topologies are 

recommended to check initially, even for a short time period, the real time performance of the 

load and the energy source before choosing the resolution scale of the dataset. At this point, 

it is worth mentioning that a number of recent works applied advanced algorithms to 

optimization problems in renewable energy storage systems, where the data resolution is 

hourly [88-92]. It would be interesting, for those studies, to investigate how the results would 

be affected when considering datasets of higher resolution. 

Regarding the more practical applications, this research work adds certainly value to project 

developers of RES, especially in the design phase of wind power systems combined with 

battery storage. The results show that the total self-sufficiency is slightly overestimated at 

10 min resolution. This means that, when the developer starts with a completely new design, 

where neither the wind turbine nor the battery preexist, he overestimates the total cost 

savings (or the revenue) of the system when using 10 min resolution; however the error is not 

significant (here, 3.6 % in worst case scenario). When the developer is only interested in the 

battery storage system, consider a preexisting wind turbine, he underestimates the total cost 

savings considerably. Even when the battery has a moderate C rate at 1C, which is very common 

for most new installations, the real revenue is 18.1–33.1 % more for this case study.27 Moreover, 

besides the revenue miscalculation, the utilization error reflects also to the expected lifetime 

of the battery, which is of utmost importance if the developer bears a warranty obligation. In 

general, the battery lifetime varies depending on the lithium-ion technology. In case of a 

battery with a poor lifetime (e.g., 70 % capacity fade after 1000–2000 cycles), if the battery is 

overutilized, the developer, being unaware of the battery utilization error, could falsely believe 

that the battery can survive the payback period of the investment whereas in reality it would 

have to be replaced sooner. Finally, another practical contribution of this study is the 

methodology itself. An analytic power flow model was developed in Matlab®. The power flow 

model can be generalized for other applications as well, regardless of the battery technology, 

                                                             
27 Here, we assume that the consumption energy tariff is fixed to translate energy savings into cost savings.  
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the DC/AC converter specifications and the resolution of the data inputs. All Simulink blocks 

and major mathematical formulas are presented in order to be easily reproduced. 

A next step to continue the present work can be to carry out the same analysis (same system 

and variables), but changing the data inputs. Needless to say, the primary obstacle we are 

faced with here, is the acquisition of high resolution data. Recording real-time data particularly 

in industrial sites for long time periods is not an easy task due to several technical issues (e.g., 

storage capacity of the measurement device, permissions to enter the factory, time availability, 

etc.). It is still however necessary to investigate a variety of case studies before constructing 

empirical theories with regard to error expectations when low resolution data is used. One of 

the goals of the present work was to focus on the instantaneous error and see how it is 

affected by the ratio of the instantaneous (10 min averaged) load and wind power. Due to the 

low correlation between the two power profiles, it was concluded that the total self-sufficiency 

error is low. A next step for future research can be to dive deeper into this aspect. A very strong 

milestone to reach is to establish a mathematical link between the load profile, local wind 

speed measurements and the error expectation. It is worth noting that so far all studies agree 

that the self-sufficiency and battery utilization are always overestimated and underestimated 

respectively, which means that we know in which direction to correct the error. Consequently, 

the main issue left to resolve is determining the error magnitude in function of the system 

topology and time resolution.  

In the next chapter, we will move our research scope to “peak shaving” which is another 
popular revenue stream for battery storage systems. The developed power flow model of this 

chapter will be used as input. Nevertheless, we will introduce some changes on the modelling 

technique of the DC/AC converter by integrating non-linearities in the efficiency curve which is 

very important for calculating accurately the energy losses of the battery storage system.    
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5 Peak shaving 

5.1 INTRODUCTION 

The increase of renewables goes hand in hand with technical challenges. The stochasticity of 

both PV and wind power systems causes the maintenance of grid stability to become more 

difficult [93, 94]. A major stakeholder impacted by the renewable energy transition is the 

distribution network operator. While end users are becoming increasingly more independent 

from the grid, the revenue constraint for the grid operator still remains [95]. Under the current 

tariff structure, which is primarily based on the energy-volume component, a ‘death spiral’ 
phenomenon is imminent [95, 96]. Nevertheless, the grid infrastructure costs are mainly 

dependent on the power capacity of the system. Yet, PV users have reportedly slightly lower 

peak power than non-PV users [97]. In other words, PV-users pay less than non-PV users even 

though both of them use the grid almost to the same extent [97]. To counteract such unfairness 

between different user groups and correctly attribute the costs to their origin, new tariff 

structures are being introduced that increase the weight factor for the peak demand 

component. This (peak demand pricing) will also apply for small user groups such as residential 

consumers who have been so far excluded from peak power measurements [98, 99]. 

Given these increased peak power costs, peak demand reduction (‘peak shaving’) has gained 
much attention in recent years. Peak shaving is not a new concept; industrial users with high 

peak demand already have been using diesel and gas generators to reduce electricity costs for 

a long time. Still, those conventional generation methods are expected to be replaced by 

‘green’ technologies, among which energy storage and in particular batteries are the primary 
candidate. 

Battery storage systems have been deployed in the past to provide different types of services, 

such as (i) increasing the self-sufficiency of PV/wind power installations [100-102], (ii) 

providing ancillary services to the grid operator [103-105], (iii) peak shaving [106-108], (iv) 

back-up generators and UPS [109, 110]. A common issue, arising particularly in (i), (ii) and (iii), 

is that due to the high cost of the storage system, battery storage investments are not yet 

economically feasible. However, we note that in the majority of those studies, the battery is 

deployed exclusively for one service. Therefore, to accelerate the return of investment, many 

suggest as a possible solution ‘hybridizing’ multiple services into a single application instead 

of providing each one separately [105, 111, 112]. Before studying how such a hybrid strategy can 

be applied, we should first identify the technical constraints of the services under 

consideration. In this study, we focus specifically on peak shaving and present some insights 
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that reflect its potential for hybridization. In the next paragraph, we review previous research 

works on peak shaving through battery storage. 

In [107], the authors present a sizing methodology for defining the optimal energy and power 

capacity of battery storage systems used for peak shaving. An economic feasibility study was 

conducted for two different technologies, lead acid and vanadium redox flow (VRF). A control 

strategy was proposed, but it assumed that the load profile is perfectly predictable in advance. 

In [106], the researchers applied peak shaving for residential end users. One of the main 

conclusions was that the utilization of the lithium-ion battery stays very low, lower than 165 

cycles per year. At such a low rate (here, the cycle lifetime is 3000 cycles) the system could be 

used for more than 20 years unless it exceeded its calendar lifetime. Finally, considering also 

its calendar lifetime, the battery would have to be replaced approximately after 10–15 years. 

Furthermore, the researchers suggested adding grid support services next to peak shaving in 

order to increase the utilization of the system. In [113], the researchers developed a model in 

Matlab/Simulink where a VRF battery is used to simultaneously provide frequency regulation 

and peak shaving. It was concluded that the battery storage system can successfully perform 

both services. However, the experiment was conducted only for a limited time period (30–140 

s), thus, in essence, without affecting the battery state of charge (SoC) and as a consequence, 

it was not possible to evaluate the reliability of the control system under unfavorable 

conditions. In [114], a fuzzy control algorithm was developed for peak shaving in university 

buildings. The algorithm was tested and compared to two different peak shaving techniques, 

namely the fixed-threshold and adaptive-threshold controller. The results showed that the 

proposed algorithm was the best of all. Although the researchers conducted several case 

studies (with 8 different load profiles), they did not provide sufficient information about the 

load forecasting method. In [108], a control algorithm is proposed for peak shaving in low-

voltage distribution networks based on day ahead aggregated load forecasts. The main novelty 

of that study is that the algorithm, considering also the inherent forecasting errors, relies 

solely on historic data; hence there is no need to intervene in real-time and readapt the dis-

charging process of the battery. Results from a case study show that peak reduction is achieved 

for 97 % of the time and that for 55 % of the time, the peak reduction is at least 10 %. In [109, 

110, 115, 116], peak shaving is addressed as a secondary application. Here, the primary service 

of the battery is to provide uninterruptible power supply (UPS) in data centers. The researchers 

argue that because of the significantly low probability of the peak occurrence (e.g., a Google 

data center exceeds 90 % of its power capacity only for 1 % of the time), it is possible to achieve 

peak reduction without impacting the reliability of the primary service. In [117], a battery sizing 

methodology and an optimal control algorithm is proposed for peak shaving in industrial and 

commercial customers. One of the main objectives was to determine an appropriate peak 
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shaving threshold. Three case studies were carried out, each one considering a different daily 

load profile. The results showed that adapting the peak shaving threshold in real-time leads 

to higher peak reduction than keeping a fixed threshold based only on a historic data analysis. 

A drawback of the study might be that when calculating the battery utilization, it is assumed 

that the battery is equally utilized every weekday of the year, thus omitting possible idle 

periods on days with low power consumption. In [118], a peak shaving algorithm was proposed 

for microgrid applications. In contrast to conventional approaches considering only the load 

consumption, here, the peak threshold applies also for the PV generation. The battery capacity 

is equally reserved for both positive (injection to the grid) and negative (absorption from the 

grid) peaks by setting the SoC during normal operation at 50 %. The algorithm was tested on a 

real-time microgrid, implemented in the lab. The researchers used predefined data (load/PV 

profiles) to carry out the experiment; however, they did suggest in future deploying predictive 

analytics to improve the reliability of the system. 

Conclusions and relation to present work 

Next,  we summarize important conclusions drawn from the literature review and explain how 

these are related to the present research work: 

 Value stacking is possible with peak shaving: There are indications from previous works 

that a battery storage system used in peak shaving applications is underutilized and 

consequently there is potential to combine peak shaving with other services to increase 

the economic profitability of the investment  [106, 109, 110, 113, 115, 116]. Nevertheless, the 

majority of such studies refer to unique use cases (i.e., peak shaving combined with UPS) 

[109, 110, 115, 116] while in other studies the data used to conduct the simulation is very 

limited to draw any meaningful conclusions [106, 113].  

 Present study: In this research work, we conducted simulations for 40 different users, 

3 years of historic load profiles at 15 min resolution. We quantify the battery 

utilization in terms of SoC active time and cycles. Our results validate previous 

findings that batteries in peak shaving applications are indeed underutilized and 

there is potential to consider additional revenue streams depending on the 

predictability of the load profile.  

 No concrete methodology on sizing the battery capacity: Previous research works have 

focused on the control strategy of the BESS suggesting the use of adaptive peak thresholds 

in order to maximize the profitability of the investment [107, 108, 114, 117]. Given the 

availability of  accurate load forecasts the user can increase the profits by dynamically 

adapting his peak threshold (e.g., day-ahead – setting a new threshold every day) instead 

of setting a fixed threshold over a long term horizon (e.g., year-ahead).  
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 Present study:  In this study, we follow the fixed threshold concept. We strongly 

believe that adaptive threshold strategies are not reliable in the context of peak 

shaving applications. A battery that is deployed for peak shaving must be prepared 

for worst case scenario’s (e.g., bad forecast); a single failure, missing a quarter peak, 
can result in losing the entire revenue on the long term (months – years)28. This study 

presents a methodology for sizing the battery capacity in fixed threshold applications.  

 Lack of data to draw generalizable conclusions: In general, there has not been a 

comprehensive study to derive broadly applicable conclusions primarily because of data 

limitations. The available data is often restricted in terms of time duration (typically no 

more than 2 – 3 months), and studies often focus on individual users, resulting in 

quantitative results that lack generalizability.  

 Present study: To the best of our knowledge, the present study is the first to consider 

such large dataset: 40 load profiles, each one with 3 full years of historic load power. 

Knowing the difficulties of finding qualitative data, we decided to make this dataset 

publicly available (see relevant publication). In our sensitivity analysis we summarize 

quantitative results for several key performance metrics such as the battery 

utilization, peak reduction and consumption increase in function of the installed 

battery capacity.  

 

Research core, key questions & contributions  

Figure 40 shows the topology of our system comprising the battery storage system, the load 

(enterprise user) and the grid. The grid serves as the only power supply since there are no 

renewable energy sources. In general, for peak shaving, the energy storage system should have 

high energy efficiency as well as high power capacity (C rate) [29]. For these reasons, we 

selected a Lithium-ion battery to carry out our analysis (See Table 12). The battery is exclusively 

used for peak shaving (no other services are considered); given a predefined peak threshold 

the battery is charged when the load power is lower than the threshold and vice versa it is 

discharged when the load power is higher than the threshold.  Next, we present the key 

research questions addressed in this work including the delivered contributions: 

 What is a suitable power flow model for peak shaving applications? 

In Section 5.2.2 we present the power flow model developed in Matlab Simulink. The model 

is based on the version introduced in Chapter 4. In this version (Chapter 5), we consider 

                                                             
28 DSOs applying peak demand tariffs typically define peaks in monthly or yearly resolutions.  
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non-linearity in the efficiency curve of the DC/AC converter which improves the model 

accuracy especially regarding the energy losses of the BESS.  

 How do I calculate the battery capacity (kWh) needed to achieve a certain peak power 

reduction? 

In Section 5.2.3 we present the algorithm (dichotomy method) used for sizing the battery 

capacity in peak shaving applications (fixed threshold). The algorithm is written in 

pseudocode; it can be used separately from the power flow model in other (than Matlab) 

programming environments.  

 How much is the peak reduction in function of the battery capacity? 

Section 5.3.1 presents the results of a comparative study for 40 low voltage enterprise 

profiles, showing the peak reduction, battery utilization and energy consumption increase 

in function of the battery capacity.  

 Can peak shaving be a profitable business case for enterprises in Flanders? 

This question is addressed in Section 5.3.2. It is shown that peak shaving can be 

economically interesting for several users in Flanders, Belgium given the real market data 

(e.g., electricity price,  battery quotations, DSO tariff tables) of that time.  

 What is the battery utilization, can we combine peak shaving with other services? 

This question is addressed in Section 5.3.1 where we summarize the results (in terms of 

cycles and SoC active time) for all 40 enterprise users. Furthermore, we elaborate on this 

topic in Section 5.5.   

 

Figure 40: System topology 
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Table 12: LFP Cell Characteristics, according to [79] 

Characteristics Specifications 

Chemistry LiFePO4 

Battery capacity 2.28 Ah (7.52 W h) 

Nominal voltage 3.3 V 

Operating voltage 2.5 to 3.6 V 

Operating temperature −30 °C to +60 °C 

Cell weight 70 g 
 

The rest of the chapter is structured as follows. In Section 5.2, the data of the study are 

presented (Section 5.2.1). Then, we proceed with the methodology; the power flow model is 

explained (Section 5.2.2) and the dichotomy method is proposed as an optimization algorithm 

for sizing the battery capacity (Section 5.2.3). Section 5.2 closes with the definition of 

performance metrics (Section 5.2.4). Next, Section 5.3 shows the results of the simulation 

(Section 5.3.1) and explains how to interpret those from an economic perspective (Section 

5.3.2). Finally, Section 5.4 and 5.5 summarize the most important conclusions and makes 

suggestions for future research objectives. 

5.2 METHODOLOGY 

5.2.1 Data 

We received 40 load profiles from the Flemish distribution grid operator (Fluvius) Each profile 

is the active power (in kW) of an enterprise for the 3-year period between 1 January 2014, 

00:00 and 31 December 2016, 23:45. All enterprises are low-voltage users with peak demand 

pricing and a connection capacity above 56 kVA and lower than 1 MVA. The data was logged 

through automatic measurement reading (AMR) devices with a time resolution of 15 min. The 

mean power of the users varied between 1.92 and 53.75 kW (Figure 41 a). The peak-to-mean 

power ratio was between 1.5 and 40; however, for 90 % of the users, the ratio is lower than 10 

(Figure 41 b).  
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Figure 41: Boxplots, 40 load profiles: (a) Mean power (left), (b) Ratio: Peak-to-mean power (right). 

5.2.2 Power flow model 

The simulation model, built in Matlab/Simulink is shown in Figure 43. Here, it is worth noting 

that a part of the present model used for peak shaving was based on the model described in 

[2]. Therefore, in this study, we will only detail the new model components, which are blocks 1 

and 5 (See Figure 43). For the remaining blocks 2, 3 and 4, we provide a generic description, 

but for more information, the reader is referred to [2]. For the development of the model, we 

relied heavily on a real test-setup—microgrid emulator29 comprising: (i) a low-voltage grid 

(250 kVA power source), (ii) a 90 kVA DC/AC converter, (iii) a 20 kWh LiFePO4 battery, (iv) a 30-

kW programmable load. The behavior of each component and the interaction between them 

was studied analytically and converted into simulation models using information from test 

measurements, scientific papers and commercial datasheets. 

To begin with, the model has three variables: (i) the time resolution of the load profile, (ii) the 

battery capacity (kWh) and (iii) its C rate. Furthermore, it receives two data inputs: (i) the load 

profile and (ii) a power threshold. The load profile is simply a time series of the active power 

in kW at 15 min resolution. The power threshold is a constant specifying the ‘desired’ maximum 
power. This value must be lower than the peak power but also higher than the mean power. 

Given the time step (resolution) and the 3-year period, in total, there are 105216 simulation 

steps (1096 days × 96 quarters/day). At each step, the model reads the load power of that 

moment and the current State-of-Charge (SoC). Then, it undergoes three sequential processes 

(1, 2 and 3) to calculate the battery power Pbat (inverter’s DC side), the inverter power Pinv 

                                                             
29 The microgrid emulator makes part of the laboratory infrastructure of EELab/Lemcko, an expertise center of Ghent 
University, specialized in Renewable Energy System applications. 
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(inverter’s AC side) and the power of the grid Pgrid. Next, after updating the State-of-Charge 

(SoC) of the battery, it proceeds to the next simulation step and hence, the simulation 

progresses. Figure 42 shows the DC/AC conversion efficiency of the inverter in charging mode. 

Additionally, all the equations that were used to calculate the inverter power P inv and battery 

power Pbat in charging and discharging mode are given below: Pbat = f(x)  ∙  Pinv PbatPnom = f(x)  ∙  PinvPnom PbatPnom = f(x)  ∙  x = g(x) PinvPnom =  g−1 ( PbatPnom)  Pbat =  Pinvf(x) PbatPnom =  PinvPnom  ∙  1f(x) PbatPnom = xf(x) = h(x) PinvPnom = h−1  ( PbatPnom) 

 

Figure 42: DC/AC efficiency, Y = f(x) 

With respect to the sequential processes, process 1 performs the power conversion from AC to 

DC compensating for the efficiency losses (AC to DC). Process 2 applies two saturation 
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constraints to the battery power: one for the given C rate and one for the given time resolution. 

Finally, process 3 performs the reverse conversion from DC to AC considering the inverse (DC 

to AC) efficiency losses. In the following paragraph, we describe with more detail those 

processes. 

Process 1—AC/DC power conversion (Figure 43, block 1): Initially, we set the inverter power 

equal to the difference PThreshold− Pload. In case of a power surplus (positive difference), the 

inverter is in charging mode to restore the battery’s energy capacity, otherwise, in case of a 
power deficit (negative difference), the inverter is in discharging mode to shave the peak. After 

setting the inverter power, next, we calculated the battery power compensating for the 

efficiency losses. In charging mode, the battery power is always lower than the inverter power 

(See Equation 5-1) and vice versa in discharging mode the battery power is always higher than 

the inverter power (See Equation 5-5).  

Process 2—Power saturation constraints (Figure 43, block 2, 3, 4): Here, we impose two 

constraints to the battery power. First (block 2), the battery power can never exceed its power 

capacity as specified by its C rate limit and the SoC level. For this battery technology, the 

recommended C rate is 1. How we calculate exactly the power from the C rate limit, has been 

explained in [2]. (As an approximation, we can state that the power capacity is equal to the 

battery’s nominal voltage times the C rate, times its energy capacity in Ah: Pbat max=Unom· Crate· 

CAh). Second (block 3), we must take into account also the time resolution of our data (15 min). 

This constraint comes into effect when the SoC level is very close either to its upper or lower 

limit (90 % and 10 % respectively) (10–90 % is the recommended by the manufacturer SoC 

range to maximize the lifetime of the battery). Since our simulation is executed in discrete 

steps of 15 min, we need to consider how much energy is left inside the battery and saturate 

its power accordingly (see [2]). Afterwards, at the output of the second constraint, the battery 

power was finally defined and hence the SoC can be updated (block 4). 

Process 3—DC/AC power conversion (Figure 43, block 5): Knowing the final value of the battery 

power, it is then possible to calculate the final value of the inverter power. At this point, the 

DC/AC efficiency function f(x) needs to be inverted. In charging mode, we make use of Equation 

5-4 (function g-1) and in discharging mode Equation 5-8 (function h-1). As a result, we finally 

know both the load power Pload and the inverter power Pinv . Therefore, we can also calculate 

the power of the grid Pgrid (Pgrid = Pload+Pinv) and proceed to the next simulation step. 
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Figure 43: Power flow model for peak shaving designed in Matlab/Simulink. 
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5.2.3 Dichotomy method 

As already mentioned in Section 5.2.2, the Simulink model receives both the battery capacity 

(as variable) and a peak threshold (as data input). To find out whether or not that threshold 

will be met, all we have to do is run the simulation and check the maximum load power 

Max(Pload). On the one hand, if the threshold is too low, the system will be unreliable (Max(Pload) 

> PThreshold) due to insufficient battery capacity, whereas, on the other hand, if the threshold is 

too high (Max(Pload) ≤ PThreshold) the system will be reliable but the battery is overdimensioned. 

Consequently, for each load profile and a given battery capacity, there is only one threshold 

that minimizes the load power (See Figure 44). To find the solution for our optimization 

problem we deployed the ‘dichotomy method’. In the next paragraph, follows a short 
description of the algorithm. 

 

Figure 44: Flow chart—Dichotomy method: (a) Pseudocode (left), (b) Midpoint evolution (right). 

Dichotomy method (Figure 44): 

1. Initialize the lower and upper threshold limit at a = Pmean and b = Pmax, respectively. 

2. Enter dichotomy loop: Calculate the midpoint at c = (a + b)/2 and set the peak threshold 

equal to that value. 

3. Run the Simulink model. 
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4. Check the maximum load power. If the load power exceeds the threshold update the lower 

limit at a = c. Otherwise, update the upper limit at b = c and store that value as the current 

solution. 

5. Check convergence criterion. If the distance between the current and previous midpoint is 

lower than a constant, exit the loop, otherwise, go to step 2 and recalculate the new 

midpoint. 

5.2.4 Definition of performance metrics 

Before continuing with the presentation of the simulation results, first, we need to give the 

definitions of our performance metrics, based on which we evaluated the peak shaving 

potential of the users. In our approach, we would rather associate the word ‘potential’ explicitly 
to energetic assessments. The extent to which these can be translated into economic terms 

(e.g., revenues, expenses, ROIs) depends certainly on the tariff structure under consideration 

as well as the cost for the battery storage system. Although, as shown in Section 5.3, we do 

provide some insights specifically for Belgium, preferably, each reader ought to make his own 

reflections. 

Peak reduction (%): It is the percentual difference between the initial peak power and the final 

peak power after peak shaving: 

Apeak red =  Pmax i − Pmax fPmax i  ∙ 100 

where Apeak red is the peak reduction, Pmax I is the initial peak power, Pmax f is the final peak power 

after peak shaving.  

Peak reduction-to-capacity: It is the difference between the initial peak power and the final 

peak power after peak shaving divided by the battery capacity. This metric can serve us as a 

rough estimation of the profitability of the installation if we can express the revenue and costs 

linearly proportional to the peak reduction and battery capacity respectively. 

Rpeak red−to−cap =  Pmax i − Pmax fCkWh   
where Rpeak red−to−cap is the ratio peak reduction-to-capacity, Pmax I is the initial peak power, Pmax f 

is the final peak power after peak shaving, CkWh is the battery capacity.  

SoC active time (%): It is the average percentage of time per year that the battery is deployed 

for peak shaving. This metric can be very useful, especially when our intention is to combine 

peak shaving with other services (e.g., increasing the self-sufficiency of PV, ancillary services, 

Time-of-Use (ToU) prices). 
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SoCact time = ∑ OnOff𝑖1096 ∙ 96
i=1  ∙  1001096 ∙ 96  

OnOff𝑖 = {1, |Pbat i| > 00, Pbat i = 0  

where SoCact time is the SoC active time, Pbat is the battery power at quarter i, i is the quarter index 

of the simulation, 1096 × 96 is the total number of quarters within the 3 years period (1st 

January 2014–31st December 2016). 

Battery utilization (cycles/year): It is the average total energy discharged by the battery within 

a year divided by the battery capacity. This metric can be used to assess how fast the battery 

reaches the end of its lifetime. Particularly for peak shaving applications, it is desirable that 

the battery be utilized as low as possible since our cost savings are exclusively dependent on 

the power component (cost in function of kW). Conversely, when the aim is to increase the self-

sufficiency of the installation (PV or wind), the battery utilization should be as high as possible, 

since our cost savings are mainly dependent on the energy component (cost in function of 

kWh). 

Ubattery =  Edis totCkWh  ∙ 3 

where Ubattery is the battery utilization, Edis tot is the total discharged energy (kWh) within the 3 

years period, CkWh is the battery capacity. 

Consumption increase (%): It is the percentage of energy consumption increase due to 

efficiency losses of the battery storage system. In addition to the initial capital expenditures 

for the battery, the additional energy consumption should be taken into account as operating 

cost. 

𝐴𝑖𝑛𝑐𝑟 =  𝐸load f − 𝐸load i𝐸load i  ∙ 100 

where Aincr is the consumption increase, Eload f and Eload I is the total energy consumed within the 

3-year period after and before peak shaving, respectively. 

5.3 RESULTS 

As mentioned in Section 5.2, the power flow model receives three variables: battery capacity, C 

rate, and time step. For each load profile in our dataset, we carried out multiple simulations by 

varying only the battery capacity, whereas both the time step and the C rate were set at 

constant values. The peak threshold was calculated using the dichotomy method after defining 

the battery capacity. 
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The time step was set at 15 min which is the time resolution of the dataset. The C rate was set 

at 1 C; higher values are not recommended for the chosen battery technology because this 

would negatively impact its lifetime. Furthermore, based on our experience, for most 

applications, 1 C is sufficiently high to meet a given peak threshold. In general, the extent to 

which we can reduce the peak power depends on the battery’s energy capacity rather than its 
power capacity. Nevertheless, we do suggest for future research to investigate the impact of 

the C rate as well, but in this study, it will not be addressed. Regarding the battery capacity, 

since we deal with several users, in order to maintain a common reference of comparison 

between the users, we normalized the battery capacity by dividing it by the mean power of the 

user. Finally, the ratio battery capacity-to-mean power was varied within 0.1–10. 

5.3.1 Energetic assessments 

The simulation results are presented in Figure 45 and Figure 46. Knowing that our dataset 

consists of 40 users, it would be ineffective to illustrate 40 individual plots into the same 

figure. Instead, we selected five quantile elements at which the cumulative probability 

becomes 5 %, 25 %, 50 %, 75 % and 95 %. This gives us a better view of the statistical distribution 

of each performance metric. 

 

Figure 45: Simulation results: (a) Peak reduction-to-capacity (left), (b) peak reduction (right). 
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Figure 46: Simulation results: (a) SoC active time (left), (b) Battery utilization (middle), (c) Consumption increase 
(right). 

From both Figure 45a, Figure 45b, it can be concluded that the peak reduction increase 

decreases with the battery capacity (second derivative of the function in Figure 45b is 

negative) or in other words: as the battery capacity increases, peak shaving becomes more 

difficult. For a battery capacity 2 times the mean power (e.g., a user with 30 kW mean power 

installs a 60 kWh battery) seventy percent of the users between Q5 and Q75 achieve peak 

reduction in the range 0.26–1.5 times their mean power (Figure 45a). The same group of users 

achieves peak reduction up to 6–27 % of their peak power (Figure 45b). For a battery capacity 

of 10 times the mean power (e.g., a user with 30 kW mean power installs a 300 kWh battery) 

the peak reduction for that group (Q5–Q75) varies within 0.4–2.8 times their mean power 

(Figure 45a) and 20–44 % of their peak power (Figure 45b). 

Regarding the SoC active time (Figure 46a), it increases with the battery capacity. The reason 

is that as the battery capacity increases, the peak threshold is reduced and consequently, the 

battery is used more frequently. An important conclusion to note is that, for most users, the 

SoC active time remains very low, even for large battery capacities. Seventy percent of the 

users between Q5 and Q75 with a battery capacity 10 times the mean power deploy their 

battery in the range of 0–20 %, or in other words the battery stays idle for at least 80 % of the 

time during the year. This fact in itself opens up new research opportunities. 

If peak shaving does occur rarely, then we could possibly hybridize our energy management 

system including other services as well (e.g., ancillary services, increasing the self-sufficiency 

of renewable energy installations). Figure 46b provide another indication that the battery is 

underutilized, here, however in terms of lifetime expectancy. Over the entire battery capacity 
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dimension, for ninety-five percent of the users (Q0–Q95), the battery does not deliver more 

than 80 cycles per year. This number is considerably lower compared to the cycle lifetime of 

nowadays’ state-of-the-art Lithium-ion technologies (above 5000 cycles) [29]. At such low 

utilization rates, the battery can endure several years of use (more than a decade). Finally, it 

will be due to another reason why the battery was decommissioned such as a maintenance 

issue or simply because the battery has reached the end of its calendar lifetime. 30 

The consumption increase is shown in Figure 46c. It is worth noting once more that the battery 

technology in the present study exhibits a very high energy efficiency. Undoubtedly, if other 

technologies were used (e.g., lead acid, flow batteries), the consumption increase would be 

higher. As can be seen from the figure, obviously, the higher the battery capacity, the higher 

the absolute energy losses. One reason why this happens is due to the increase of the battery 

utilization (see Figure 46b) and another reason is because both the battery and the dc/ac 

converter become bigger in size. Consider, for instance, a user with 30 kW mean power and a 

battery capacity of 300 kWh (capacity-to-mean power is 10). Only the converter losses to 

(dis)charge the battery at 1 C are approximately 15 kW (at 95% dc/ac efficiency). If the battery 

capacity was 30 kWh (capacity-to-mean power is 1), those losses would be significantly lower 

(1.5 kW). 

5.3.2 Economic evaluations 

Let us now consider a case study of how to interpret those results from an economic 

perspective. Table 13 lists the parameters used for our economic analysis: 

 The electricity price is an average for Belgium energy invoices in the considered capacity 

connection range. The electricity price lies in the range of 0.2–0.25 €/kWh [119]. Here, it 

must be noted that our analysis is exclusively applicable for end users with fixed 

electricity prices during the year; there is no Time-of-Use (ToU) dependency (e.g., day/night 

tariff, dynamic pricing schemes). 31 

 Regarding the peak shaving compensation, for the DSO in Belgium, peak demand is defined 

as the highest 15 min load power measured by the user’s AMR meter over the last 12 
months. The compensation ranges approximately within 87.6–131 €/kW per year 

                                                             
30 The capacity fade effect of Lithium-ion batteries is both time-dependent (calendar lifetime) and cycle-number dependent 
(cycle lifetime). Regardless of its utilization, after a certain time period the battery loses a part of its initial capacity. Usually, 
the End of Life (EoL) of a battery is defined when its initial capacity is reduced by 20 %, in many critical applications (e.g., EVs) 
this is the time when the battery needs to be either decommissioned or repurposed for another application. 
31 In case of ToU dependency, the control strategy of the battery is different. Peak demand pricing coexists with ToU pricing 
and therefore, we need to solve the economic optimization problem first. 
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depending on the geographical location. By dividing by the total number of hours per year 

(8760 h), this equals 0.01–0.015 €/kW/h. 32 

 With respect to the battery storage system, we consider capital expenditures at 500 €/kWh 
(per kWh of energy capacity). The consumption increase can be approximated as linear 

function of the battery capacity (See Figure 46c) at 0.4 %/capacity-to-mean power. The 

battery cycle lifetime is estimated at 5000 cycles (at 80 % EoL) considering normal 

operating conditions: (i) Ambient temperature 25 °C, (ii) SoC within 10–90 %, (iii) 

(dis)charge current at 1C. Given that our battery utilization is very low (80 cycles/year 

worst case), we will consider only calendar aging at 2 % capacity loss per year. To calculate 

the battery’s cycle lifetime and calendar aging, under those conditions (25 °C, 10–90 % 

SoC, 1C) we received information from the manufacturer. For those interested in analytic 

methods to calculate the battery cycle lifetime and calendar aging, we refer to noteworthy 

research works [120, 121]. The payback period of our investment is 10 years and we do not 

consider any option to resell the battery; after this period the battery is recycled. 

Table 13: Peak Shaving, Parameters for Economic Feasibility. 

Parameters Values 

Payback period 10 Years 

Peak shaving compensation 0.01–0.015 €/kWh 

Battery capex 500 €/kWh 

Consumption increase rate 0.4 %/capacity-to-mean power 

Electricity price 0.20–0.25 €/kWh 

Battery capacity fade 2 % per year 

 

In order for the system to be profitable, the total peak shaving compensation has to be higher 

than the total cost (incl. battery and losses) over the payback period; this condition is 

expressed in Equation 5-15. Next, as shown in Equation 5-16, the peak reduction-to-capacity 

ratio can be expressed in function of all economic parameters. Finally, by replacing with the 

values of Table 13, it can be concluded that the ratio needs to be higher than 0.43–0.67 

(Equation 5-16). 

                                                             
32 These values have been defined using a cost simulation tool from the distribution grid operator. The values apply exclusively 
to those users connected to the low-voltage grid with peak demand pricing. 
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Rev ∙ 8760 ∙ ROI ∙  ∆Ppeak >  CkWh  ∙  (Costbat +  Ratecons incr  ∙  Pelect  ∙ 8760 ∙ ROI) ∆PpeakCkWh >  Costbat + Ratecons incr  ∙  Pelect ∙ 8760 ∙ ROIRev ∙ 8760 ∙ ROI  ∆PpeakCkWh > 0.43 − 0.67 

where ΔPpeak is the peak reduction, ROI is the return of investment (payback period), Rev is the 

peak compensation (revenue), CkWh is the battery capacity, Costbat is the battery capex, Ratecons 

incr is the rate of consumption increase and Pelect is the electricity price. 

Over the 10-year period, the total capacity loss of the battery will be 20 %. Consequently, to 

ensure that the peak threshold will always be met, we have to oversize the battery capacity. 

Finally, the results of the economic feasibility study are illustrated in Figure 47. Figure 47 can 

be made easily from Figure 45a (see Section 5.3.1) by adding a 20 % margin to the minimum 

battery capacity requirement. The color at each point [x,y] represents the total number of users 

whose peak reduction-to-capacity exceeds the y value (similarly to the quantile plots of Figure 

45a). The yellow and green dashed lines represent the profitability thresholds 0.43 and 0.67, 

respectively (see Equation 5-16). As can be seen, there are several positive use cases; of course 

the number of positive cases depends on the battery size. To give an example, when the ratio 

capacity/mean power equals 2, there are 15–20 users exceeding the value 0.43 (lower 

profitability threshold), whereas when the ratio capacity/mean power becomes 10, there are 

only 0–5 users exceeding that value (0.43). With that being said, we do now have an estimation 

of the profitability margins for the Belgian use cases. 

 

Figure 47: Peak shaving—results of economic feasibility study. At each point [x, y], the color represents the total 
number of users whose peak reduction-to-capacity exceeds the y value. The yellow and green dashed lines 

represent the profitability thresholds 0.43 
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Here, it is worth noting that the battery capex at 500 €/kWh is very realistic for the time being 
and it is expected to decline further in the coming years [122]. 33 As a general conclusion, we 

can note that given the current electricity prices (fixed, no ToU dependency) and capital 

expenditures, particularly for Belgium, peak shaving through battery storage seems to be 

interesting from an economic perspective for several low-voltage enterprises.  

5.4 CONCLUSIONS 

To summarize briefly what has been done, a model was developed in Matlab/Simulink for peak 

shaving. The dichotomy method was proposed as an optimization algorithm to find the 

minimum threshold above which we are 100 % certain that the peak will never be exceeded. 

The model was tested for 40 low-voltage users with peak demand charge derived from the 

Belgian grid operator. We introduced five performance metrics to evaluate the simulation 

results. Furthermore, we gave an example how to interpret the results from economic 

perspective and explored the profitability of the application in Belgium. Below is a summary 

of the most important conclusions resulting from our analysis: 

 The SoC active time is limited for almost all cases. Even with an over-dimensioned battery 

(capacity-to-mean power is 10), for seventy-five percent of the users (Q0–Q75), the 

battery remains idle for at least 80 % for the time. Consequently, peak shaving could 

possibly be hybridized with other services (e.g., increasing PV self-sufficiency, ancillary 

services) in order to accelerate the return of investment of the battery storage system. 

(By adding more revenue streams (stacked services) the payback period of the investment 

can be reduced.) 

 The battery utilization is very low, up to 80 cycles per year in worst case. This number is 

significantly lower compared to the cycle lifetime of nowadays’ lithium-ion batteries. In 

other words, peak shaving does not impact negatively the battery in terms of cycle 

degradation. The battery can serve 10 years of peak shaving provided that capacity is 

appropriately sized to compensate for the unavoidable calendar degradation (here 2 %).    

 The consumption increase gets higher with the battery capacity. It lies in the range 0 % to 

5 % and does not substantially impact the operating cost of the system. 

 From an economic perspective, peak shaving is interesting as a business case for several 

low-voltage users located in Flanders, Belgium under the real market data (electricity 

prices, DSO tariff tables and battery quotations) of that time. 

                                                             
33 To define the battery capex we consulted manufacturers and received offers. 
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5.5 DISCUSSION 

One of our main conclusions is that the battery utilization (SoC active time and number of 

cycles) is very low for almost all users. Consequently, there seems to be enough potential to 

let our battery provide additional services during those inactive periods in order to accelerate 

the payback period of our investment. Which services can be combined and how efficiently this 

can be done is certainly a topic to be addressed by future research works. 

As an initial step, we suggest studying the predictability of the load profile. In our study, we 

consider the battery to be available for peak shaving 100 % of the time; therefore, there is no 

need to know in advance when the peak occurs. However, in hybrid applications, time must be 

allocated appropriately and as a result load prediction plays an important role. To better 

explain this argument, let us consider two different load profiles derived from our dataset, 

user A and B (Figure 48 and Figure 49 respectively). Although the battery utilization is in both 

cases very low (peak occurs rarely), user A is by far more predictable than the user B. For user 

A, the peak occurrence is dependent on the day, the time of use and the temperature, whereas 

for user B, there seem to be no clear explanatory variables. Consequently, user B cannot know 

how to allocate his inactive time to other services; hence, the battery remains underutilized 

solely reserved for peak shaving. Closing this paragraph, we note that, so far, most research 

works on battery storage have addressed only single applications. In our view, the concept of 

hybridization will gain more attention in the coming years as users gradually acquire more 

incentives to interact with the grid. Next, in the final chapter of the thesis, we present a case 

study for value stacking where we combine peak shaving with dynamic pricing arbitrage under 

forecasting uncertainty.   

 

Figure 48: Thermal image, predictable load profile 
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Figure 49: Thermal image, unpredictable load profile 
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6 Day-ahead pricing arbitrage & peak shaving 

6.1 INTRODUCTION 

In layman’s terms, pricing arbitrage is the practice of buying low and selling high. In the context 
of electricity market this can refer to different things depending on the end user perspective. 

As mentioned in Chapter 2, we distinguish three main categories of pricing arbitrage for battery 

storage: (i) day-ahead, (ii) intraday, (iii) imbalance.  Furthermore, we concluded that from those 

categories, in particular, day-ahead arbitrage through dynamic pricing retail contracts offers 

the biggest potential for widespread adoption from a prosumer’s perspective.  

Moreover, in Chapter 5, we developed a methodology for dimensioning the battery storage 

system in peak shaving applications. We also carried a techno-economic study on 40 enterprise 

users and proved that peak shaving can be a lucrative investment choice for some of those 

users. What is more, we showed that in most cases, the battery storage system stays idle for 

most of the time – underutilized. This fact makes peak shaving very interesting in value 

stacking applications. Nevertheless, the forecasting uncertainty of the load and power source 

imposes challenges to the application developer. Before further elaborating on our work, we 

will give in the next paragraph a brief overview of previous studies found on literature with 

respect to pricing arbitrage. Afterwards, we will introduce our problem statement and explain 

which are the main contributions delivered by this work.   

The problem of pricing arbitrage optimization through battery storage has been addressed in 

the past by the research community. Different optimization techniques have been proposed, 

each one with its advantages and disadvantages. In the simplest case study, the battery 

storage can be modelled as a linear model. Both the electricity prices and the load profile are 

assumed deterministic; the user has perfect insight what the load profile will be over the next 

day. In such case, the optimization objective can be solved with linear programming [123, 124]. 

Linear programming has the advantage of finding a solution to the problem very fast. Linear 

programming is interesting in cases where advanced solvers cannot be considered due to time 

limitations e.g., conducting multiple day-ahead optimizations to estimate the annual cost of 

the system. Nevertheless, the trade-off here is that very often we oversimplify the problem. In 

most cases, the power flow model cannot be linearized and due to the inherent forecasting 

uncertainty of various system variables (e.g., load, power source, prices) linear programming 

is not suitable. Dynamic programming is another category of optimization algorithms that can 

be used to tackle the problem of pricing arbitrage in non-linear environments under 

forecasting uncertainty. Here, the problem usually is formulated as a finite Markov Decision 

Process (MDP). The optimization horizon is split into a set of discrete time steps [00:00, 01:00, 
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.., 23:00, 24:00]. At each time step, the battery controller takes a decision to (dis)charge the 

battery based on the current state input (e.g., St = (St_load, St_pv, St_soc). The MDP is solved 

through recursive backward induction starting from the last time step t, then calculating the 

value function (accumulated expected reward) at t-1 then moving to t-1 etc. Dynamic 

programming algorithms can be divided in two categories depending on the sampling 

technique used for exploring the state space: (i) discretised sampling, (ii) continuous sampling. 

In (i), the state space is discrete and therefore there is a finite total number of states [125, 126]. 

Consequently, in (i) the value function can be accurately calculated through full exploration of 

the state space. To calculate the value function a table is used; at each state we store the 

respective cumulative reward separately. The disadvantage of discretised sampling is that it 

fails to scale up efficiently in complex problems with large multidimensional states. In (ii), the 

state space is continuous, thus there is an infinite number of states to be explored and the use 

of tables is not feasible. In such situations, most research works follow a value function 

approximation technique [127-132]. A model is trained to fit the state-action space against the 

cumulative reward. Although such techniques typically result in suboptimal solutions, the 

model can still be very representative given sufficient sampling and a good function 

approximator.  

In this study, we consider forecasting uncertainty for the load and power source forecast. 

Furthermore, both the load and power source profiles are modelled as continuous variables. 

Consequently, our problem falls under the category of dynamic programming with continuous 

sampling on the state space. Based on our literature review and after experimenting with 

different techniques we concluded to focus on Reinforcement Learning (RL) algorithms and in 

particular the Deep Q Network (DQN) architecture. Next, we summarize relevant previous 

works on the DQN architecture for applications in pricing arbitrage problems through battery 

storage.  

In general, we note as a conclusion that there is not a fixed environment setting (e.g., system 

topology, optimization horizon, uncertainty on data inputs) to draw clear comparisons 

between the different studies. Regarding the system topology we distinguish two types of 

studies: (i) single end user systems [129, 130, 133], (ii) microgrids – community level systems 

[131, 134]. With respect to the algorithm used, over the time different variants have been 

introduced (e.g., Dueling DQN, Double DQN, Categorical DQN, Noisy Net DQN, Multistep DQN and 

Replay DQN) to mitigate the shortcomings of the standard DQN architecture [129, 130, 134]. In 

[129], a BESS was used for reducing the electricity bill in a datacenter with dynamic pricing 

contract. The researchers investigated different variants of the DQN architecture: (i) DQN, (ii) 

DQN dueling, (iii) Double DQN, (iv) Replay DQN.  Experiments showed that Replay DQN 
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outperformed all other algorithms in terms of total annual revenue in different case studies 

having as input electricity prices from USA and Beijing. In [131], a BESS is installed at community 

level to reduce the total operating cost of a microgrid in grid-connected and island mode. The 

researchers argue that Double DQN is a better choice compared to the standard DQN 

architecture especially in very noisy environments with multidimensional state spaces; by 

decoupling the action selection from the action evaluation in separate networks, Double DQN 

is less prone to the phenomenon known as maximization bias which results in overestimating 

the Q values. In [130], the researchers propose a Noisy Net DQN algorithm for solving the 

pricing arbitrage problem based on wholesale electricity prices in UK. Here, the forecasting 

uncertainty is exclusively on the electricity price. A combined Convolutional Neural Net (CNN) 

and Long Short Term Memory (LSTM) is used to forecast the electricity price. No load or power 

sources are considered. The study puts in comparison different algorithms: (i) Mixed Integer 

Linear Programming (MILP), (ii) standard DQN, (iii) Dueling DQN and (iv) proposed Noisy Net 

DQN. It is concluded that Noisy Net DQN outperforms all other algorithms. In [134], a BESS is 

used to reduce the total operating cost of a microgrid including PV and wind power sources. 

The researchers propose the Rainbow algorithm integrating characteristics from other popular 

DQN variants  (i.e., standard DQN, Dueling DQN, Double DQN, Categorical DQN, Noisy Net DQN, 

Multistep DQN and Replay DQN). They consider forecasting uncertainty on the electricity price 

and load. The results showed that the proposed algorithm clearly outperforms all other 

variants mentioned above.  

Regarding the time resolution of the Markov Decision Process (MDP), most studies typically 

consider hourly time steps [130, 131, 133, 134]; every hour the agent takes a single action given 

the latest input from the state space (e.g., price, SoC, load and/or power source yield). The time 

resolution is the same with that of the electricity price based on the day ahead market; in most 

countries the price is cleared at hourly resolution. In all studies, the action space is modelled 

as a discrete set of (dis)charging power commands (e.g., full power charge, full power 

discharge, idle). The battery controller will follow a constant power reference during the hour. 

The number of actions varies within 3 – 9 depending on how the battery’s power capacity is 
discretized (e.g., a five action space reflects to [–Pmax, –0.5Pmax, 0, +0.5Pmax, +Pmax]). On the reward 

function, the basic approach is considering only the energy cost (e.g., Price x PBESS x 1h). Another 

approach, like in the context of microgrid applications, is including also a penalty term to 

prevent the battery from reaching critical SoC levels [131]. Finally, a more advanced version of 

the reward function would require also modelling the battery cycle degradation as a cost [130]. 
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Conclusions and relation to present work 

Next,  we summarize important conclusions drawn from the literature review and explain how 

these are related to the present research work: 

 There is no best algorithm: From our literature review we conclude that there is no clear 

consensus which algorithm is best suitable in the context of pricing arbitrage applications. 

The choice depends a lot not only on the specific environment settings but also on the 

individual preferences of those conducting the study..  

 Present study: In the present study, we use the standard DQN architecture to solve a 

problem that has not been addressed by previous works. As shown, the proposed 

algorithm succeeds in solving the optimization problem given sufficient exploration 

of the state space and low forecasting uncertainty on the load and power source 

profiles.  

 Peak shaving is out of scope: None of the studies mentioned above addressed peak shaving. 

All studies have treated pricing arbitrage as a single application. The methodologies 

presented so far do not suffice to provide a solution to our problem.  

 Present study: To the best of our knowledge, this is one of the very few (if not the 

first) to consider peak shaving combined with pricing arbitrage. Compared to previous 

works on the DQN architecture, here, the presence of a peak threshold constraint 

necessitates a different design approach regarding the reward function, state and 

action space.  

 The MDP is directly coupled to the power flow simulation: A major issue, never noted before 

by previous works, is that the power flow simulation is directly coupled to the MDP. Since 

both the MDP and the power flow simulation have the same time resolution there is 

always a trade-off to be made; sacrificing accuracy of the power flow model to achieve a 

more efficient learning process. Another problem is that the algorithm is not suitable in 

the context of “value stacking” combining pricing arbitrage with other applications (here 

peak shaving). Analytic explanation is given in Section 6.2.1 (see Action space).  

 Present study: In this study, we construct the state and action space in such way that 

allows us to decouple the MDP from the power flow simulation. By abstracting the 

action space in control strategy decisions (instead of constant (dis)charging power 

commands) we maintain an hourly step for the MDP while the power flow simulation 

works at 15 min. This practice is a fundamental requirement for deploying the 

algorithm in a real time peak shaving application.  
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Research core, key questions & contributions  

The system topology is shown in Figure 50. Behind the meter the user has a battery, the load 

and a renewable energy power source (usually PV). The user has a meter (e.g., digital meter or 

AMR) recording his energy offtake and injection at 15 minutes resolution. Every year, the user 

pays a fee to the DSO based on his peak demand; this is the highest 15 minute offtake (kW) 

measured by the meter over the past 12 months. To avoid high costs imposed by the DSO, the 

user has deployed a battery for peak shaving. The battery has to be discharged whenever the 

user’s load exceeds a certain peak threshold. Furthermore, the user has a dynamic pricing 
contract with an energy supplier following the Belpex index. This means that each hour of the 

day (8760 hours per year) the user has a different electricity price for his offtake and injection. 

At each hour, the user pays his energy supplier if he offtakes energy from the grid or he is paid 

by the energy supplier if he injects energy to the grid. Every day (D-1), the energy supplier 

publishes the electricity prices (i.e. 24 prices for offtake, 24 prices for injection) for the next 

day (D). The user has installed the battery to take advantage from two revenue streams: (i) 

pricing arbitrage, (ii) peak shaving. The problem statement is expressed as: How do I 

(dis)charge the battery during the day to maximize the total daily profit without violating the 

peak threshold constraint ? 

Next, we present the key research questions addressed in this work including the delivered 

contributions:  

 Which algorithm can be used to solve the combined problem of pricing arbitrage with peak 

shaving?  

In Section 6.2 we present the methodology used to solve the optimization problem. The 

proposed algorithm is based on the standard DQN architecture trained through backward 

induction.  

 Is there a solution to the trade-off: efficient training vs power flow model accuracy ? 

A novel design approach (see Section 6.2 ) is presented showing how to decouple the MDP 

from the power flow simulation. This allows to achieve an efficient learning process while 

not sacrificing the accuracy of the power flow model 

 How do I construct the reward function ?  

This is addressed in Section 6.2. The reward function comprises three components: (i) 

energy cost, (ii) battery degradation cost and (iii) peak punishment. 

 How does the algorithm perform under different scenarios of forecasting uncertainty ? 

In Section 6.3, we present the results from a sensitivity analysis on the forecasting 

uncertainty of the combined load and power source (here PV) forecast. 
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 Are there any suggestions to improve the reliability of the system under bad forecast days 

? 

This question is addressed in Section 6.3 and 6.4.     

 

Figure 50: System topology 

The rest of the chapter is organized as follows: Section 6.2 presents the methodology. Next, 

section 6.3 provides results from a sensitivity analysis considering different scenarios of 

forecasting uncertainty (PV and load). Finally section 6.4 summarizes important conclusions 

and key notes to be addressed in future works.  

6.2 METHODOLOGY 

6.2.1 Introduction to Markov Decision Process (MDP)  

To begin with, our optimization objective is applied over a time horizon of 24 hours from (day 

D, 00:00 h) until (day D+1, 00:00 h). We divide our time horizon in 24 time steps as [00:00, 

01:00, 02:00, .., 23.00]. At each time step, the battery controller has to choose among a set of 

actions (e.g., charge to 100 % SoC, discharge to 50 % SoC, turn off) given its current SoC and the 

latest forecast for the load and power source profile. Our problem can be expressed as a finite 

Markov decision process (MDP). An MDP is a tuple (S, A, Pa, Ra) where: 

 S is a set of states called the state space, 

 A is a set of actions called the action space 

 Pa(s, s´) = Pr(St+1 = s´ | St = s,  At = a) is the probability that action a in state s at time step t will lead to state s´at time step t+1.  

 Ra(s, s´) is the expected immediate reward received after transitioning from state s to 

state s´ due to action a.   
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A policy function π is a mapping from state space (S) to action space (A). The objective is to 

choose a policy 𝜋 that will maximize the cumulative reward received over the time horizon of 

the process (24 hours in our case): 

E [∑ γt RAt  (St, St+1)24
t=0 ] 

6-1 

where  

 γ is a discount factor typically 0 < γ < 1 

 At = π(St) the action chosen by the policy at time step t and state St 

State space 

Figure 51 illustrates the MDP. We assume that we have at our disposal two stochastic 

forecasting models: (i) one for the load and (ii) one for the power source (PV) profile. The 

forecast data is available the day before the start of the optimization horizon. The forecast 

horizon is 24 hours ahead at 15 min resolution. Consequently, there are totally 96 forecasted 

quarters, 4 quarters per time step of the MDP. The forecasted output is expressed as follows: Pforecast =  Pload_i −  Ppv_i 6-2 

where 

 Pload_i is the continuous random variable of the load power (kW) at quarter qi. The load 

power is sampled according to fqi , the probability density function of the load power at 

quarter qi.  
 Ppv_i is the continuous random variable of the PV power (kW) at quarter 𝑞𝑖 . The load 

power is sampled according to gqi , the probability density function of the pv power at 

quarter qi. 
 i is the quarter index ranging within [0,1, . . ,95].  

At each time step t the state is a five dimensional continuous variable: St = (SoCt, qt−1,m=0, qt−1 ,m=1, qt−1,m=2, qt−1,m=3) 6-3 

 where 

 SoCt is the state of charge of the battery 0 < SoCt < 100 at the start of the time slot [t, t + 1]  

 qt−1,m is the real power measurement of Pload − Ppv in quarter m of time step t − 1. 
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 m is the quarter index [0, 1, 2, 3] per time step  

 

Figure 51: MDP in day-ahead optimization 

Action space 

Regarding the action space, at each time step t we consider a set of discrete actions (a0,a1, . . , am). Here, we keep our approach as generic as possible. As mentioned in the 

introduction section, a major issue of all previous studies is that the MDP is coupled to the 

power flow simulation; the action space is mapped directly to constant (dis)charging power 

commands. This approach results in two problems. First, the algorithm is exclusively applicable 

to pricing arbitrage application. Second, there is always a trade-off to be made; sacrificing the 

power flow model accuracy against improving the learning efficiency during the training the 

algorithm. We address those problems in the next two paragraphs respectively.  

Regarding the first problem, by mapping the action space directly to (dis)charging power 

commands we restrict the generalizability of the algorithm for other than pricing arbitrage 

applications. In the context of “value stacking”, we need to combine different applications 
together; each application has its own controller. A controller that works at hourly resolution 

(a fixed power command during the entire hour) may suffice for a pricing arbitrage application 

but it is undoubtedly not suitable for a peak shaving application. For peak shaving applications, 
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the controller needs to output commands in real time (sec – min) during the hourly quarter (15 

min). To check whether or not the peak threshold is exceeded, the controller calculates 

continuously the running average of the load power within the hourly quarter. In other words, 

the power commands are calculated in real time, therefore there is no way to pre-determine 

these in a day-ahead optimization. In another example, if ancillary services (e.g., aFRR) were 

considered, the control of the battery is even more stochastic; the power commands are not 

only calculated in real time but they are also specified by the TSO; the battery owner has no 

control of the system during the time slot of the reserved capacity.    

With respect to the second problem, on the one hand, for a given optimization horizon (usually 

24 – 48 h in pricing arbitrage problems) the learning process becomes less efficient as we 

increase the resolution of the MDP (number of time steps increases to reach terminal state); 

for instance given a 24 h horizon, a 15 min resolution (96 time steps) is more difficult to train 

compared to 1 h (24 time steps). On the other hand, as explained in Chapter 4, the accuracy of 

the power flow simulation gets worse as we decrease the time resolution; we argued that 

power flow simulations at hourly resolutions (the great majority of DQN studies reviewed 

above) can result in significant errors in the context of renewable energy applications. 

To tackle the above problems, we need a different design approach. In this study, the action 

space is mapped to a discrete set of control strategies. By abstracting the action space to 

control strategies (instead of using fixed power commands) we decouple the MDP from the 

power flow simulation. Consequently, this practice enables us  to deploy the bess for different 

(other than pricing arbitrage) applications and also maintain a decent accuracy on the power 

flow simulation (15 min resolution). The environment for our reinforcement learning algorithm 

is the power flow model developed in Chapter 5. We define five actions as mentioned in Table 

14. Every hour the agent takes a single control strategy decision; this is fixed during the 60 min 

time slot from t to t+1. We recall  that the time resolution of the power flow simulation is 15 

min and consequently, the same decision applies for all 4 quarters (qm=0, qm=1, qm=2, qm=3,) of the 

hour. The purpose of actions a0 and a4 is mainly to facilitate the pricing arbitrage application. 

Moreover, we need another action, a3, for recovering the SoC to its initial value (SoCt=0= SoCt=24 . 

We assume that the SoC at the start of the day is 50 %. Furthermore, we need a1 to facilitate 

the peak shaving application. Finally, we define action a2 for turning off the BESS to eliminate 

the energy losses in situations where the battery stays idle doing nothing.  
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Table 14: Action space 

Action 
id 

Name Description 

a0 Discharge 
to 10 % SoC 

The controller will discharge the battery during the hour as fast as 
possible (constrained by the C-rate) until the SoC reaches 10 %.   

a1 Peak 
threshold 

The controller charges (discharges) the battery in function of the 
power deficit (surplus) PBESS = PThreshold – (Pload – Ppv) . Here, charging 
corresponds to the positive sign (PBESS > 0) and discharging to 
negative (PBESS < 0).  

a2 Turn off The BESS is turned off. This is useful for eliminating the energy losses 
present when the BESS is in idle state.  

a3 (Dis)charge 
to 50 % SoC  

The controller will charge or discharge the battery during the hour as 
fast as possible (constrained by the C-rate and the peak threshold) 
until the SoC reaches 50 %.  

a4 Charge to 
90 % SoC 

The controller will charge the battery during the hour as fast as 
possible (constrained by the C-rate and the peak threshold) until the 
SoC reaches 90 %. 

 

Regarding the reward, at each time step t the following equations apply: Rt = Et + Pt + Dt 6-4 Et =  0.25 ∙ ∑ (Pnet t,minj ∙ Prtinj − (CDSOoff +Prtoff) ∙ Pnet t,moff )m=3
m=0  

6-5 

Pt = −(max(Pnet t,m=0off , . , Pnet t,m=3off , Ppeak thres) − Ppeak thres) ∙ Cpunish 6-6 Dt = −CBESS ∙ min(SoCt+1 − SoCt, 0)  6-7 

where 

 Et is the cost (remuneration) paid to (by) the energy supplier for the energy offtake 

(injection). This term also includes the cost paid to the DSO for the energy offtake 

 Pt is the punishment accounted for exceeding the peak threshold if peak shaving is 

applicable. The cost is proportional to the power surplus. 

 Dt is the cost accounted for the battery cycle degradation. This is a linear function of the 

battery Depth of Discharge (DoD). For more advanced degradation models, we refer to 

[126].  
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 Pnet t,moff (inj)
 is the power of the grid at quarter m i.e. the real power measurement recorded 

by the meter. This is equal to Pinv t,m + Pload t,m − Ppv t,m where Pinv t,m is the power 

of the inverter output at the AC side of the battery storage system. When the power is 

positive (negative) the meter records an energy offtake (injection).     

 Prtoff (inj)
 is the electricity price applied by the energy supplier for the energy offtake 

(injection).    

6.2.2 Solution – Deep Q network 

At the core of the optimization objective we have the Bellman equation. The goal is to solve 

this equation for each time step t of the MDP.  At each time step t, knowing our current state 

St (i.e. historic 15 min power measurements during the (hourly) time slot [t-1, t] and SoC at time 

step t), we select a certain action At (i.e. control strategy) and end up in a random state St+1 (15 

min power measurements during the (hourly) time slot [t, t+1] and SoC at time step t+1). Q(St, At) = E[Rt(St, At, St+1) +  γ ∙ maxAQ(St+1, At+1)]  6-8 

where 

 Q(St, At) is the state-action value function at time step 𝑡. This is the expected cumulative 

reward given state St and action At. 

 γ is a discount factor within 0 < γ < 1 

 Rt(St, At, St+1) is reward received after taking action At and transitioning from St to St+1 .  

The Bellman equation can be solved recursively through backward induction. We start from the 

terminal time step and move one step backward [t24, t23, . . , t0] until we reach the start of 

the MDP. The value function Q(St, At) can be approximated by an artificial neural network as 

shown in Figure 52. The neural network used in this study is a feed forward network. For each 

time step we use a different network. Each neural network receives as input the five 

dimensional (continuous) state variable and outputs the Q value per action. Once the network 

has been trained sufficiently over the state-action space, the calculation of the term maxAQ(St+1, At+1) is straightforward; given the state input St+1 the network returns a Q 

tuple  (Qa0,, Qa1,, . . , Qam) by action and we take the max of it. Next, in Table 15 we present 

the pseudocode of the day-ahead optimization algorithm written in Python. 
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Table 15: Pseudocode of Day-Ahead optimization problem 

# Initialize variables and properties 
bess = Bess(efficiency=0.9, Sinv=100, capacity=50, crate=1) # initialize bess 
actionSpace = {0 : 'Charge to 90%', 1 : 'Discharge to 0%', 2 : 'Turn Off', 3: ‘Peak shaving’} # set action space 
actionSize = len(actionSpace) 
date = '2024-02-05'  # select date 
reward = Reward(getElectricityPrices(date), bess) # initialize reward 
forecast = Forecast(date) # get forecast as an array (24 hours x 4 quarters per hour) of tuples (mean, std) 
Nsamples = 10000 # set how many state samples to collect per time step 
nets = emptyArray(24) # initialize empty array of neural nets, one for each time step 
timesteps = [t for t in range(23, -1, -1)] # build a list of 24 steps [23, 22, .., 1, 0] 
 
# Optimize 
for t in timesteps: 

# Collect samples from state space at t and t+1 
St = {'soc': None, 'Q_m0': None, 'Q_m1': None, 'Q_m2': None, 'Q_m3': None} # initialize state dictionary at t 
St_plus1 = {'soc': None, 'Q_m0': None, 'Q_m1': None, 'Q_m2': None, 'Q_m3': None} # initialize state dictionary at 
t+1 
St['soc']= collectSamples(Nsamples, 'uniform', [0, 100])  
for S, j enumerate([St, St_plus1]): # loop over the state dictionaries 

for m in range(4): # loop over the quarter index 
state='Qm_'+m 
(mean, std) = forecast[t-j][m] 
s =collectSamples(Nsamples, 'normal', mean, std) # returns a vector of (Nsamples x 1) 
samples  
samples = concatenate([s]*actionSize, axis = 1) # makes actionSize copies, one for each 
action  
S[state]= reshape(samples, (-1, 1)) # reshape to vector and update state dictionary 

 
# collect rewards, calculate SoCt+1 and update state dictionary at t+1 
Rt=emptyArray(Nsamples * actionSize) 
St_plus1['soc'] = emptyArray(Nsamples * actionSize) 
for i in range(len(Rt)): 

(r, SoC_plus1) =reward.calculateReward(St, St_plus1, actionSpace) 
Rt[i] = r  
St_plus1['soc'][i] = SoC_plus1 

 
# Initialize neural net 
If t==23:   # if this is the last time step 

net = neuralNet()  # initialize an empty neural net 
QTarget = Rt # build q values targets 

else: 
net = copy(nets[t+1]) # initialize neural net by copying parameters from previous net 
QTarget = Rt + nets[t+1].getMaxQ(St_plus1) # build q value targets 

 
# Start training  
net.train(St, QTarget) # train network to minimize the Mean Square Error 
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Figure 52: Feed Forward Neural Network 

6.3 RESULTS 

In this section, we put the algorithm to the test. We conduct a sensitivity analysis investigating 

the impact of the forecasting uncertainty on the performance of the model. Let us first 

introduce the reader to the environment settings of our experiment. We have an enterprise 

user located in Flanders, Belgium connected to the low voltage grid. The user has a dynamic 

pricing contract with an energy supplier. The user is interested to deploy a battery storage 

system for pricing arbitrage and peak shaving. In Figure 53, we give an example how the user’s 
load profile looks like over a weekly time period at 15 min resolution.    

The power profile is mainly a function of two variables: (i) day of the week, (ii) time of use 

within the day. It has a peak usually early in the morning between 05:00 and 10:00 a.m. The 

highest annual peak is 28 kW. The user has installed a battery energy storage system (BESS) in 

order to reduce his peak demand to 20 kW. The specifications of the battery storage system 

are displayed in Table 16. 34 The BESS has been dimensioned for peak shaving using the 

methodology developed in Chapter 5.   

 

                                                             
34 See chapter 5 for analytic information regarding the battery cell properties and DC/AC efficiency curve. 
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Figure 53: Weekly load profile 

Table 16: BESS specifications 

Characteristics Specifications 

Chemistry LiFePO4 

Battery capacity 25 kWh 

C-rate 1 

DC/AC converter power 25 kVA 

Cycles 8000 at 80 % DoD 

CAPEX 5000 € 

 

Regarding the reward function (see Equations 6-4 , 6-5, 6-6, 6-7) CDSOoff is 0.008 €/kWh. This 

constant has been calculated based on the electricity tariff structure of Flanders as of 2023, 

given the location and type of connection of the user. We set the peak punishment constant Cpunish at 1 €/kW. In general, the peak punishment constant must be big enough so that the 

peak punishment term Pt can persist the reward against the energy compensation term Et at 

all times. A very high value however would impact negatively the training of the function 

approximator and therefore it should be avoided. All experiments were done considering the 

same date 2023-07-03. We selected this date because it has a good potential for the pricing 

arbitrage application due to the high variability of the day-ahead price. Finally the degradation 
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constant CBESS was set at 0.0078 € / %. To calculate this constant we simply divide the cost 

of the system (capex) by the equivalent number of battery cycles (8000 x 0.8 / 100). With 

respect to the neural network, at each time step we initialize a feed forward network (see 

Figure 52 ) with 3 layers where each layer has 50 neurons. All neurons are relu (rectified linear 

unit) functions. The optimization method used for the training of the neural network is Adam 

[135]. We employ random mini-batch training at 5 % of the training samples and we use MSE 

(Mean Square Error) as the loss function. All experiments are programmed in Python 3.8. 

Pytorch is used for the implementation and training of the neural networks. 

Scenario A – Deterministic load, no PV: In this scenario we assume that we have perfect insight 

of the load profile over the optimization horizon. We know what the load will be for each and 

every quarter of the next day. This assumption does not apply in most use cases due to the 

inherent stochasticity of the load. Nevertheless, there are still use cases where the load can be 

predicted accurately e.g., many factories that plan their production process in advance exhibit 

high correlations on the day of the week and time of use within the day. What is more, we 

assume that there is no PV yield on this date. Note that the dimensioning of the BESS for peak 

shaving is done without consideration of the PV yield in order to account for worst case 

scenarios. Scenario A serves as a benchmark because it provides the best solution. Figure 54 

illustrates the optimization output. The electricity price curve (axis 3 | Belpex) presents two 

pairs of valley–peaks. The SoC trajectory is illustrated with the blue curve (axis 2 | Bess SoC). 

The battery is charged during the valleys and it is discharged when peaks occur. The green 

curve (axis1 | Pnet with bess) indicates the grid power. As shown, the peak threshold constraint 

is never violated.    

Scenario B – Probabilistic load, no PV: In this scenario we consider a real forecasting model of 

the load. To build the forecasting model, we trained an artificial neural network35 on historic 

data from 2020 – 2023. Also in scenario B, we consider no PV yield. Scenario B serves as real 

use case; no perfect insight of the load is available. The performance of the algorithm is subject 

to the accuracy of the forecasting model. Figure 55 illustrates the optimization output. The 

power forecast (Pload – Ppv) is given by the three quantile curves (Q25, Q50, Q75) while the power 

target is given by the dashed red curve (axis 1 | Pnet no bess). Also here, the peak threshold is 

always respected (see green curve). However, due to the forecasting uncertainty the battery 

controller decides to give priority to the peak shaving application during the second valley of 

the price curve (10:00 – 18:00).  

                                                             
35 We trained a feed forward network with 2 layers of 40 neurons (sigmoid functions), Adam optimizer and MSE as the loss 
function  
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Scenario C – Probabilistic load and PV: In this scenario, we consider also the power profile 

generated by the PV installation. The PV source can generate up to 10 kW of peak power over 

the year. We developed a forecasting model for the PV power profile based on historic data 

and weather forecast of the next day. We employ the same model architecture both for the 

load and PV forecast based on artificial neural networks. The optimization output is given in 

Figure 56. Compared to scenario B, we clearly see that the presence of PV has decreased the 

grid power profile. In other words, having PV in general reduces the risk of exceeding the peak 

threshold and therefore the amount of energy allocated for the pricing arbitrage application 

is bigger. Nevertheless, having PV has the disadvantage that we need to develop an additional 

forecasting model and unavoidably the total forecasting uncertainty is higher compared to 

scenario B. 

Scenario D – Probabilistic load and PV, bad forecast: In scenario D, we maintain the same 

topology as in scenario C (load and PV). However, we assume that for some reason the forecast 

models failed to deliver an accurate prediction. This can be due to several reasons e.g., fast 

intermittent clouds creating power spikes in sub-hourly resolution, errors on calendar plan 

inputs impacting the load forecast. As can be seen in Figure 57, this time the algorithm failed 

to respect the peak threshold. Our forecast underestimated the grid power offtake. Scenario D 

can have catastrophic effects on our value stacking application; missing the peak on a single 

day would punish the total cost over an annual time period. The question is how big is the 

likelihood of having such bad forecasts ? The only way to guarantee 100 % that the peak 

threshold is respected all the time is to put a circuit breaker behind the meter (e.g., a number 

of non-critical loads are automatically disconnected whenever the peak threshold is 

exceeded). This could be acceptable depending on the user and provided that the occurrence 

of such bad days is very rare. Here, we note once more (see Chapter 5) the DSO in Flanders, 

Belgium calculates the user’s peak power as the highest hourly-quarter (15 min) offtake power 

(kW) over the past 12 months. This peak demand cost is expressed in €/kW/year (e.g., 87 – 130 

€/kW/year, see Chapter 5 → Section 5.3.2). To give an idea how a bad forecast day impacts our 

revenue, considering a peak demand cost at 100 €/kW/year, in this example, we missed the 
peak approximately by 3 kW (20 → 23 kW) which reflects to 300 €/year. To compensate this 
amount from pricing arbitrage with our 25 kWh battery, considering a very optimistic Belpex 

valley-peak at 0.1 €/kWh per day,  it would take at least 120 days (1 full discharging cycle per 
day 36). It is obvious that the revenue stream from peak shaving (yearly cycle) is much higher 

                                                             
36 120 days = 300 €25 kWh ∙ 0.1 €kWh∙day  ,  at 100 % DoD, ignoring efficiency losses. 
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than the revenue stream from pricing arbitrage (daily cycle) and consequently peak shaving 

must be prioritized when co-optimizing those two together.          

Scenario E – Probabilistic load, increased forecasting uncertainty: In the last scenario, we give 

an example of a load forecast with increased uncertainty. In this case there is no PV. This is a 

virtual forecast profile created from the real target sampling from a ‘normal’ distribution 
where the tuple (mean, std) corresponds to (Pload – Ppv , 10 kW). Figure 58 shows the output of 

the optimization algorithm. As can be seen, the battery controller prioritizes peak shaving 

against pricing arbitrage and the peak threshold is never violated. Scenario E is interesting 

from the point of view that in situations with high uncertainty the battery controller, under the 

proposed algorithm, will always prioritize peak shaving. As we overestimate the grid power, 

relatively to the peak threshold, the chance to allocate the battery capacity for peak shaving 

grows also. As conclusion, we note that in situations where the user is not sure what the load 

(and PV) power will be, it is suggested to adjust in a way the forecast to overestimate the 

power profile and consequently prioritize the peak shaving application. Nevertheless, in any 

case, with or without a good forecast, the circuit breaker must always have the last word to 

guarantee 100 % compliance with the peak threshold.  

 

 

Figure 54: Scenario A - optimization output 
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Figure 55: Scenario B – optimization output 

.  

 

Figure 56: Scenario C – optimization output 
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Figure 57: Scenario D – optimization output 

 

Figure 58: Scenario E –  optimization output 
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6.4 CONCLUSIONS  

In this research work, we developed an algorithm for solving the day-ahead problem co-

optimizing pricing arbitrage and peak shaving through battery storage systems. The algorithm 

can be applied for enterprise users with dynamic pricing contracts. The algorithm is based on 

the standard DQN architecture which is suitable for solving MDPs having a continuous state 

space and a discrete action space. We tested the algorithm in different scenarios by changing 

the system topology (no PV, with PV) and varying the forecasting uncertainty (deterministic, 

probabilistic). The algorithm finds the optimal solution in deterministic environments. 

Furthermore, it finds a suboptimal solution in a probabilistic environment provided that the 

load (and PV) forecast are sufficiently accurate as not to violate the peak threshold constraint. 

What is more, we showed that in occasions where the forecast is not good, co-optimizing peak 

shaving with pricing arbitrage could fail and lead to catastrophic effects for the total annual 

cost of the system. Inevitably, the use of a circuit breaker is recommended to guarantee 100 % 

no violation of the peak threshold constraint. Finally, we explained how to adjust the 

forecasting profile as a safeguard to prioritize the peak shaving application in occasions where 

there is high uncertainty on the load (and/or PV) forecast.      



130 
 

7 Final thoughts, discussion for future work  

This PhD thesis is a contribution to the ongoing research field of battery storage systems in 

stationary applications. At the beginning of this PhD, back in 2018, the ultimate goal was to 

develop a master Energy Management System (EMS) that would allow the BESS to operate in 

value stacking mode by co-optimizing several revenue streams from applications such as 

ancillary services, PV self-sufficiency, peak shaving, pricing arbitrage etc. We started with a 

review of the electricity market landscape in Belgium and we showed how these market 

mechanisms open up opportunities for batteries to deliver value to end users such as 

enterprises and households. We evaluated the potential of each possible application taking 

into account different factors. Is it a special non-reproducible application or can it generalized 

to multiple use cases ? What is the current regulatory framework under consideration, how 

stable is it and where are we heading to ? How does the revenue formula work e.g., electricity 

tariff structure, auction trading platform ? We opted to leave ancillary services out of scope 

given the ongoing transition phase to integrate the balancing reserves at pan-European level 

but also due to its limited market size. We decided to explore the value of battery storage on 

three applications: (i) increasing the self-sufficiency of renewable energy installations, (ii) 

peak shaving and (iii) pricing arbitrage. In Chapter 3, we investigated how the battery increases 

the self-sufficiency in a hybrid PV -wind plant powering a hydrogen electrolyzer. From there, 

we decided to further explore the impact of time resolution in Chapter 4 where we introduced 

the first version of our BESS power flow model. Afterwards, in Chapter 5, we moved our focus 

on peak shaving where we analyzed the techno-economic potential of peak shaving on 40 

enterprise users; there we introduced the dichotomy method for dimensioning the BESS and 

we also upgraded the power flow model by integrating non-linearity in the dc/ac efficiency 

curve. An important conclusion was that the BESS is underutilized in most cases indicating that 

peak shaving can be combined with another application. Finally in Chapter 6, we proposed and 

tested an optimization algorithm for peak shaving and pricing arbitrage considering 

forecasting uncertainty on the load and PV forecast. We tested different scenarios by changing 

the system topology and by varying the forecasting accuracy of the model.  

After having explored in depth the battery storage landscape, we conclude that the 

development of a multi-objective EMS is quite a challenging task especially when the different 

applications are served concurrently. First of all, one would argue that the electricity market 

in general is constantly in transition. A BESS is not like a PV or a wind installation that once it 

is commissioned it injects power to the grid for the next 20 years. To serve a customer on the 

long term, the EMS of a BESS must be sufficiently flexible to adapt to new regulatory conditions, 

market prices and changes inside the end user’s infrastructure. The more applications we 
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consider, the higher the maintenance effort we exert. Another issue to consider is the need for 

accurate power forecasts. When we first started with this thesis, we were in a sense 

preoccupied that forecasting would not be a problem; big data and deep learning were taking 

over the research world and given the latest breakthroughs on that field we believed that 

sooner or later this would apply in the energy sector as well. We were wrong in this assumption. 

The main challenge in electric power forecasts has nothing to do with the algorithm under 

consideration. It is the quality of the data inputs. A simple parametric regression model would 

beat the most advanced deep learning model if the first has a much better dataset input. 

Unfortunately, the acquisition of such datasets is quite a difficult task if not infeasible. In the 

great majority of use cases, the data input of the forecaster is retrieved from the  energy meter 

(AMR or digital meter) possibly combined with a weather forecast. Unless the user has a crystal 

clear correlation in function of datetime indexes (e.g., day of the week, hour of the day, month 

of year) there is inevitably a non-negligible stochasticity in his power profile.  

One of the priorities in our research work was to consider whenever possible real market data 

in our case studies. We developed a full electricity invoice model applicable in Flanders, 

Belgium and updated it according to the latest evolutions. As already mentioned, an important 

cost component of the electricity invoice in retail markets is imposed by the DSO for using the 

distribution grid infrastructure. At this point it is worth mentioning, starting from 2024, the 

DSO in Flanders (Fluvius) is planning to integrate a new time-of-use (ToU) factor in his tariff 

structure. As the number of wind and PV installations increases, the distribution grid becomes 

more prone to congestion issues that exhibit ToU characteristics. The highest peaks on the 

distribution grid occur due to large power offtakes during the winter for a few hours in the 

evening. So far, the distribution grid tariffs are mainly offtake-based rather than injection-

based. Nevertheless, studies show, that in the future, high peaks can happen also due to power 

injection especially during the summer in the midday, primarily caused by PV. It would be 

interesting for future research in the field to investigate the impact of ToU on BESS 

applications, especially with respect to pricing arbitrage. Another important evolution 

introduced by Fluvius is the upcoming flex market for managing local congestion issues [136]. 

Although generally speaking the hosting capacity of the grid is still large enough to support 

the ongoing electrification the DSO has expressed its concerns especially after 2030. To avoid 

expensive infrastructure upgrades the DSO is willing to engage into bilateral or multilateral 

agreements with flex providers. Similarly to the balancing market mechanism, users with 

flexible assets such as EVs and batteries can make a contract with the DSO to sell their power 

capacity for specific time slots during the day. It would be interesting to address this topic also 

in future research works; how does it work and what does it mean for a BESS operating in value 

stacking mode ?  
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As the electricity market evolves with the increased penetration of renewables, our planning 

is shifted closer to real time. The day-ahead market is an important pillar for pricing arbitrage. 

What is more, the procurement of balancing reserves occurs through daily auctions. The load 

and power source profiles exhibit periodicities of daily cycles. With respect to multi-objective 

BESS EMS, all the above indicate that a day-ahead planning is becoming the norm. Our 

recommendation for future research in the field of multi-objective EMS is to approach the 

problem in daily segments. In a first phase, the user has to decide which applications will be 

considered for the next day. Here, the user allocates the BESS resource based on a priority 

ranking from the most to the least critical application. For instance when combining peak 

shaving with any other application, peak shaving has the highest priority; violating the peak 

threshold on a single sub-hourly quarter would affect the total annual electricity cost. In 

another example, combining ancillary services with the self-sufficiency of PV, the ancillary 

services have the highest priority; the BSP is obliged to follow the Elia activation signal as 

specified in the BSP contract and any serious deviation from is subject to fines. In a second 

phase, after selecting the applications, the EMS would conduct intra-day optimizations 

following the latest forecasts and unforeseen events.     
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8 Annex – FlexLab 

Over the past 2 years (2022–2024) this PhD has been the foundation towards the development 

of what we call “FlexLab” (Flexible Laboratory), a SaaS (Software as a Service) web application 

for electricity end users. FlexLab comes with a suite of energy tools designed for the non-

expert user providing insights in different areas of interest. At this moment, FlexLab consists 

of seven main tool categories:  

1. Visualize: A dashboard for visualizing the user’s datasets and prices from the Belgian 
electricity market including day-ahead, forward and balancing market of Elia. 

2. Meter miner: A natural language chat-GPT powered bot that runs queries on the user data 

retrieved from his digital meter.  

3. Generators: A tool for generating synthetic load and PV profiles.  

4. Forecast: A tool that trains power forecasting models based on artificial neural networks, 

weather forecast and historic measurements. 

5. Alerts: A tool that generates alerts on selected by the user signals (e.g., market prices, 

power profiles) and informs when critical thresholds have been violated. 

6. Invoice: An electricity invoice model, currently applies only in Flanders, Belgium. The user 

can specify his offtake and/or injection, type of connection and energy supply contract 

then getting an estimation of the total bill in annual, monthly and sub-hourly (15 min) 

resolution. 

7. Optimize: A suite of optimization modules for BESS. Currently two modules are included: 

(i) a peak shaving sizing tool, (ii) day-ahead pricing arbitrage under peak threshold 

constraints  

The entire programming stack has been built using open source tools (Python, JavaScript and 

HTML). The cloud architecture was implemented in Microsoft Azure. At this moment, FlexLab is 

in valorization phase. Different stakeholders (e.g., consultants, energy suppliers, research 

fellows) have expressed interest for our web application. So far, the feedback we received is 

very positive and gives validation to its conceptualization. In the future, there are plans to 

upgrade the application adding new tools including flexible assets such as electric vehicles 

and heat pumps. We also plan to integrate a REST framework to allow further compatibility 

with third party hardware devices. Closing this section, we give some illustrations how the web 

application looks like.  
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