
Predicting Inference Time and Energy Consumption
in Deep Learning Using MLPs

Chengjin Lyu, Mohsen Nourazar and Bart Goossens
TELIN-IPI, Ghent University – imec

St-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Abstract—With the rapid evolution of deep learning technolo-
gies, the efficient deployment of models in real-time and energy-
sensitive environments has become increasingly vital. Accurately
predicting how deep models consume resources ensures that these
models operate within the constraints of their intended scenarios.
This is particularly essential for applications such as Neural
Architecture Search (NAS), edge computing, and distributed
systems. Most current work focuses on predicting layer-wise infer-
ence time and energy consumption, but the summed predictions
often do not align with the actual runtime and energy cost.
This paper introduces a framework using two-stage Multi-Layer
Perceptrons (MLPs) to predict model-wise inference time and
energy consumption of deep neural networks. The first stage of
our approach involves layer-wise inference time and energy usage
predictions tailored to various types of neural network layers.
Building upon these initial outputs, the second-stage predictor em-
ploys another MLP to aggregate these layer-wise estimations into
a comprehensive prediction of the overall model’s performance.
We validate the effectiveness of the proposed method on two real
computing platforms. This framework can enhance the design
and deployment of deep learning architectures, by accurately
estimating model-wide inference time and energy consumption.

Index Terms—deep learning, model inference, time prediction,
energy consumption

I. INTRODUCTION

In recent years, deep learning has achieved notably high

performances in various tasks, such as image recognition [1],

medical diagnostics [2], and autonomous driving [3]. Usually,

these deep learning technologies rely on various Deep Neural

Networks (DNNs) with high computational demands. Real-

world scenarios with constrained computational resources such

as edge computing [4]–[6] and distributed neural network in-

ference [7]–[9] typically require that these DNNs be deployed

with a trade-off between high inference speed and low energy

consumption. To design more sustainable and efficient DNNs,

recent Neural Architecture Search (NAS) methods [10]–[12]

explicitly consider inference constraints (e.g., inference time

and energy consumption) as hard guides during the architecture

design phase.

In practice, measuring the inference time and energy con-

sumption of DNNs can be time-consuming and resource-

draining, especially when dealing with different hardware

setups and operational conditions [13]. These measurements

This research was realized within the context of the FARAD2SORT ICON
project, funded by Flanders Make, the strategic research Centre for the
Manufacturing Industry in Belgium. In addition, this work received funding
from the Flemish Government (Flanders AI Research Program).

require extensive testing across diverse devices and software

configurations, significantly delaying large-scale deployments.

Moreover, designing a DNN architecture on one kind of end

device using NAS methods could generate a vast amount of

candidate DNNs in the search stage, making it inefficient to

measure them physically. Therefore, it is essential to have

predictive approaches to help engineers simulate the DNNs’ in-

ference speed and energy efficiency, ensuring that their DNNs

run within the optimal bounds of restricted computational

resources [14].

There have been many studies [15]–[17] on predicting layer-

wise inference time, while it is known that the simple sum of

layer-wise predictions is not equivalent to the actual model-

wise inference performance. Furthermore, there is limited work

that focuses on the predictions of both inference time and

energy consumption. Addressing these two aspects together

highlights a significant opportunity for efficient design and

sustainable deployment of DNNs in resource-sensitive environ-

ments. Inspired by these observations, we propose a framework

to predict both time and energy consumption during the

inference phase for DNNs, leveraging two-stage Multi-Layer

Perceptrons (MLPs). The predictive model can be trained not

only on GPUs but also on a variety of emerging DNN hardware

accelerators, such as FPGAs, DPUs, and TPUs, which are

becoming increasingly diverse. The main contributions of this

work are summarized as follows:

• A predictive framework based on two-stage MLPs is

proposed to predict both inference time and energy con-

sumption for DNNs. It can provide valuable insights for

optimizing design and efficient deployment.

• The model-wise MLP predictor aggregates the layer-

wise MLP predictions to avoid the inaccuracy problem

associated with the direct sum of these predictions.

• The size of the trained MLP models is small, making them

effective for dynamic load balancing and edge deployment

applications.

• Experimental evaluation is conducted for several typical

neural networks on datasets collected from two computing

platforms. The results confirm the effectiveness of our

proposed framework.

The remainder of this paper is organized as follows. Section

II covers the background and motivation. Section III describes

the proposed method in detail. Section IV presents the experi-

ments and results. Section V concludes the paper and proposes



potential future work.

II. BACKGROUND AND MOTIVATION

In this section, we review the related research by dividing

it into two categories: layer-wise prediction and model-wise

prediction. Additionally, we outline the motivation for our

proposed work by identifying the gaps in current research and

discussing how our approach addresses these shortcomings.

A. Layer-Wise Prediction

Layer-wise prediction methods focus on predicting individ-

ual layers’ inference time and/or energy consumption within

a DNN. As for the entire DNN model’s estimation, these

methods utilize the sum of all predictions to represent it.

In the tasks of model acceleration and NAS, analytical

methods have been widely used to achieve the optimal speed-

accuracy trade-off. To estimate the layer-wise inference time,

the number of Floating Point Operations (FLOPS) is applied

in [15]. Similarly, the research in predicting the energy con-

sumption of DNNs in the inference stage also explores the

usage of FLOPS [18]. Lahmer et al. [19] propose an empirical

model based on the number of Multiply-Accumulate Opera-

tions (MAC) for predicting energy consumption within certain

layers. Moolchandani et al. [20] build an analytical model

for performance in distributed training of transformers. A

comprehensive study of the analytical models for performance

prediction on GPUs is given in [21]. This work focuses on

kernel-level prediction, where a kernel is a small unit of code

executed. In practice, each layer in the DNN is mapped to one

or more CUDA kernels, depending on the complexity and the

type of operations required. Thus, the kernel divisions across

devices might vary. In our work, we treat each layer as a basic

computation unit, making it adaptive to various heterogeneous

computing platforms.

However, the number of computational operations used

in these analytical methods does not correspond simply to

the actual energy consumption or inference time [22]. The

inference performance is influenced not only by computation

cost but also by many other factors. Specifically, the related

factors include the GPU clock speed, GPU resource utilization,

communication overheads, algorithmic optimizations, and the

efficiency of the DNN framework.

To achieve accurate predictions, many researchers focus

on modeling the layer parameters using learning-based ap-

proaches. NeuralPower [23] employs a learning-based poly-

nomial regression method to perform layer-wise predictions.

However, each layer type requires a careful selection of poly-

nomial terms, leading to limited flexibility and scalability. In

[22], linear regression models per layer type are constructed

to predict both inference time and energy consumption. A

recent work [17] adopts neural networks to perform layer-wise

inference time predictions for four types of DNN layers and

sum them up to get the model-wise inference time estimation

for better collaborative computing.

B. Model-Wise Prediction

The category of model-wise research accounts for factors

such as network topology, layer arrangement, and layer interde-

pendencies. Typically, complex techniques based on machine

learning or deep learning are employed to train model-wise

predictors. There is less research on predicting inference

performance at the model level compared to the extensive work

done on layer-wise prediction.

BRP-NAS [12] presents a model-wise predictor based on

Graph Convolutional Networks (GCNs), outperforming the

layer-wise prediction methods. This work confirms that an

accurate inference time predictor can improve the quality

of NAS significantly. Nevertheless, the graph-based method

heavily relies on the structures of DNNs in its training set.

Zhang et al. [24] presents a systematic inference time

prediction solution named nn-Meter by dividing the DNN

inference into kernels that represent the fusion of several

layers. These kernels are detected automatically from a dataset

with 14 layer types, and the random forests are used as kernel-

wise predictors. The summation of all kernel-wise predictions

forms the final predicted model inference time. This method

works on a kernel-by-kernel basis rather than a layer-by-layer

basis. As a result, the training procedure is more elaborate as

a large diversity of computation kernels and their parameters

need to be covered.

C. Motivation

In general, the layer-wise prediction methods are based on

the assumption that either inference time or energy consump-

tion of each layer in a DNN is independent of other layers.

However, a DNN’s complexity and runtime optimization make

the execution time on real hardware not strongly correlated to

the simple hierarchical addition. Thus, a summing operation

does not lead to an accurate inference performance prediction.

As mentioned above, the model-wise predictive approaches

show some promising results when considering the entire

model. However, these methods do not provide insights into

the performance of individual layers, and the generalization

ability is not guaranteed when the training data does not cover

a wide enough range of scenarios.

We propose a predictive framework based on two-stage

MLPs to address these challenges. The first stage is layer-

wise prediction using MLPs to model layer parameters, without

requiring expert expertise to build complex mathematical mod-

els. The second-stage MLPs refine and aggregate these pre-

dictions from layer levels by capturing nonlinear relationships

among various layers. The final output is an accurate model-

wise estimation, and the predictions for individual layers are

also available. In this way, this method can be used to guide

not only the search of neural networks in NAS but also the

splitting of DNNs in distributed inference. As this method is

based on neural networks, it can be easily adapted to new

GPU architectures and edge devices while maintaining high

accuracy.



Input layer Output layer

Hidden layers

Fig. 1. A simple MLP with two hidden layers.

III. PROPOSED METHOD

This section introduces a two-stage predictive framework

based on MLPs to predict inference time and energy con-

sumption, as well as the creation of a benchmark dataset. The

following pivotal insight guides our work: although various

DNNs deployed on diverse devices normally could have a

wide range of inference time and energy consumption, it is

still feasible to predict these two key values of inference on

the targeted device using the DNN parameters [22]. To this

end, we first estimate the layer-wise inference time and energy

consumption using MLPs. Then, another MLP serves as a

model-wise predictor to accumulate the layer-wise predictions.

This two-stage predictive framework fully utilizes MLP’s capa-

bility of learning nonlinearities within sampled data to perform

accurate prediction.

A. Multi-Layer Perception

The multi-layer perception has been one of the simplest and

most common neural networks for a long time in the world. It

maps inputs to outputs through a feed-forward manner and gets

trained via the back-propagation mechanism to reduce output

errors. An MLP has one input layer, one output layer, and at

least one hidden layer between them. The nodes in an MLP

are called neurons, and each neuron conducts a weighted sum

of its input connections. Typically, every neuron in the hidden

layers is followed by a non-linear activation function, allowing

MLP to capture the non-linear relationships between inputs and

outputs.

A simple MLP with two hidden layers is shown in Fig. 1.

This MLP has two neurons in the input layer, representing

that the input data has two features. The output layer contains

only one neuron, which means there is only one output for

each input data. Each hidden layer consists of three neurons

in this simple MLP, while there is strict no restriction on the

configuration of hidden layers. In practice, MLPs with multiple

hidden layers belong to a classic type of DNNs, capable of

handling complex computational tasks. Specifically, all the

MLPs used in this work are configured with three hidden

layers.

B. Dataset Collection

To cover the representative layer types that might be used

in a DNN model, we create a large dataset with 36 different

kinds of layers in this work. The collected dataset includes

not only Conv, FC and pooling layers that are popular in

smaller datasets but also various widely used activation and

normalization layers. To the best of our knowledge, this is the

first dataset consisting of such a wide range of DNN layer types

to perform inference time and energy consumption prediction.

To train an accurate predictor, it is vital to have correct

measurements of inference time and energy cost as ground

truths. However, it is relatively difficult to get an accurate

layer-wise measurement. For inference time, PyTorch provides

tools for profiling the layer-wise runtime for both CUDA and

CPU operations, while neither of their accumulated values over

all layers of a DNN model matches the actual model-wise

inference time. This may be attributed to the complex sources

impacting the inference time, including CUDA/CPU opera-

tions, memory accesses, communication costs, and profiling

overheads. Even though, these two measurements reflect the

core CUDA and CPU operational time and can be beneficial

to understand the running of a DNN on a target device.

To customize a profiler, a common practice is to insert a

hook to each layer to measure the layer-wise inference time

(i.e., to capture the execution time of multiple computational

kernels within one layer), but it introduces additional profiling

overhead to the overall measurement. Thus, both PyTorch and

custom layer-wise measurements do not correspond well to the

real model inference time.

In this work, we introduce a novel profiling method that

measures layer-wise inference time with high accuracy. This

profiler executes the DNN model incrementally from the first

layer to the last, recording cumulative execution time at each

step. The profiler derives the inference time for each layer by

slicing these cumulative measurements. This ensures that the

sum of all layer times matches the actual runtime of the entire

model, addressing the limitations of existing profiling tech-

niques. Although this design minimizes overhead compared

to PyTorch profilers and the custom hook-based method, it

may involve some noise among layers due to memory caching

effects and processing unit stalling. Thus, we include the three

measurements mentioned above in our dataset as auxiliary

attributes and use them in our proposed predictor to predict

the model-wise inference time.

To measure the energy consumption, we assume that the

power consumption of a GPU executing the inference of a

single neural network layer is approximately constant during

the inference following the work [19]. This assumption is due

to the uniform workload distribution across GPU cores and

fixed computational requirements of a certain layer. We profile

the power usage in PyTorch using the NVIDIA Management

Library (NVML) to monitor the layer-wise power in watts. For

the nth layer of a DNN, we compute the layer-wise energy



consumption En as:

En = Pn · Tn, (1)

where Tn is the layer inference time and Pn is the power value.

As illustrated in [19], the energy consumption of sequential

neural network layers equals the sum of their energy consump-

tion. Thus, the total energy cost of the whole DNN model is

defined as the sum of all layer-wise energy consumption:

Etotal =

N∑

n=1

En. (2)

Similar to inference time measurement, we compute three

auxiliary energy consumption values. In this way, we collect

both model runtime and energy consumption during the test

phase for each DNN model in our dataset.

C. Two-Stage Predictor

In this work, both time and energy predictors share the same

design of MLPs. The first part of our framework is to predict

inference time and energy consumption for each type of layer

in DNNs. To predict over a large scope of data, we select MLPs

to extract the complex relationships between the parameters of

a layer and its measured runtime and energy cost.

For each layer in a DNN, a 16-dimensional feature is

constructed based on its layer parameters, as shown in Fig. 2a.

This feature vector includes layer type information, input

shape, output shape, and layer configurations. The layer type is

set as an integer ranging from 0 to 29, and the other parameters

also vary accordingly. For convolutional layers, the features

from input and output shapes contain channels, widths, heights,

and batch size, while the key layer configurations are defined

by kernel size, stride, padding, and dilation. For each of the

other layer types, we extract the features by parsing the layer

parameters to fit into the 16-dimensional vectors.

To enhance the predictor’s learning ability, we configure an

MLP with four outputs in a multi-task learning manner, where

one main output is assisted with three auxiliary outputs. For

each layer’s predictions, three auxiliary outputs are related to

CUDA operations, CPU operations, and layer running with

overhead. For each k-th output, where k ∈ {1, 2, 3, 4}, the

loss Lk is computed using Mean Absolute Error (MAE) as

follows:

Lk =
1

Ns

Ns∑

i=1

|yk,i − ŷk,i|, (3)

where Ns represents the number of samples in a training batch,

yk,i and ŷk,i denotes the ground truth value and predicted

value, respectively. The overall loss function Ltotal combines

the four individual losses Lk, weighted by their respective

coefficients λk:

Ltotal =

4∑

k=1

λkLk. (4)

In the experiments, we set all the weights λk to 1. This

configuration leverages the auxiliary outputs to encourage the

Layer type Input/Output shapes Layer configurations

(a) feature vector for a layer-wise predictor

Layer-wise
feature vector

Previous
layer type

Accumulated value

Layer-wise
predictions

…

(b) feature vector for a model-wise predictor

Fig. 2. Example of feature vectors used in the proposed two-stage prediction
process. (a) In the first stage, predictions are made using layer-wise feature
vectors that include layer types, input/output shapes, and layer configurations.
(b) In the second stage, the model-wise predictor incorporates not only these
layer-wise feature vectors but also the outputs from the first stage, accumulated
main output values, and the types of previous layers.

predictor to learn more generalized features and capture the

complex patterns within the data. By focusing on shared rep-

resentations across tasks, the model is encouraged to generalize

beyond the training data, enhancing its ability to perform well

on unseen data.

Furthermore, we proceed to perform the model-wise predic-

tion using another MLP by aggregating all the outputs from the

layer level. As shown in Fig. 2b, the feature vector constructed

for layer-wise prediction is concatenated with the layer-wise

predictions, an accumulated value of the main outputs, and an

integer indicating the previous layer type, resulting in a 22-

dimensional input feature vector for the model-wise predictor.

The accumulated value is calculated as the summation of the

main predicted values over all previous layers. The ground

truth corresponding to this input feature vector is the cumula-

tive measurement from the first layer to the current layer.

With this unique design, the second-stage MLP predictor is

capable of refining and aggregating the layer-wise predictions

instead of simply summing them. In the test stage, the predictor

processes the input data layer by layer in a series, and the

predicted value of the last layer in a DNN is seen as the

model-wise prediction. Additionally, it is very handy to get the

inference time and energy consumption prediction for a certain

combination of layers because the predicted cumulative values

are available. Thus, our framework can be integrated to guide

the DNN deployment in distributed systems.

In this work, the MLPs used for layer-wise prediction have

16 input neurons, 4 output neurons, and 3 hidden layers. The

model-wise predictor is an MLP with 22 input neurons, 1

output neuron, and 3 hidden layers. The implementation details

of MLPs can be found in Section IV.



TABLE I
DATA COLLECTION PLATFORMS

Platform GPU CPU Framework

2080Ti RTX 2080 Ti Intel Core i7-9800X PyTorch 2.2
3080Ti RTX 3080 Ti AMD Ryzen 9 7950X PyTorch 2.2

IV. EXPERIMENTS

In this section, we describe the dataset used in our experi-

ments, the evaluation metric, and the implementation details.

The experimental results for both inference time and energy

consumption predictions are presented and discussed.

A. Dataset

Two platforms with different setups of CPUs and GPUs are

used to get the measurements in our dataset, as listed in Table I.

Based on these two platforms, 90 variants of typical DNN

models are loaded for inference with random inputs with sizes

ranging from 224×224 to 780×780. Moreover, 300 synthetic

models are generated by randomly connecting the feasible

layers to enhance the dataset. Specifically, the inference time

and energy consumption refer to the corresponding values of

a DNN model evaluated on the target platform with one input.

When profiling the DNNs, we collect a measurement as the

average of 100 inference runs.

In a real-world scenario, a robust predictor is supposed to be

able to perform predictions for unseen DNN models. Here we

refer to an unseen model as one whose family is not included

in the training set, but all its layer types are available to support

the training. Thus, the network structure of an unseen model

is not learned during the training stage. To this end, we leave

out a set of DNNs as a test set and exclude those models from

our predictors’ training phase. Thus, the predictor is tested

to validate if it can predict accurately for unseen models.

Table II summarizes the DNN model families in our test

set, including GoogLeNets [25], Inceptions [26], ShuffleNets

[27], and MnasNets [10], MobileNets [28], and EfficientNets

[29], where each model family may contain various variants.

For instance, the family of EfficientNets is a collection of

11 different variants from two versions of EfficientNets. It

is interesting to see that the inference time of MnasNets on

2080Ti platform remains almost constant (between 6.4 and

6.5 milliseconds) while the energy consumption on the same

platform varies from 284.7 to 839.0 millijoules. This confirms

that the energy cost prediction is a non-trivial task and not

directly related to the inference time. Moreover, the MnasNets’

maximal inference time on the 3080Ti platform is more than

three times greater than the minimal value (4.7 versus 1.4

milliseconds), representing the heterogeneous designs among

hardware platforms. It is worth noting that NAS techniques are

employed to boost the DNN design in MnasNets, MobileNets,

and EfficientNets, while the first three belong to the traditional

hand-crafted DNNs. In short, the collected dataset covers a

wide spectrum of inference time and energy consumption from

diverse DNNs.

TABLE II
MEASURED INFERENCE TIME AND ENERGY CONSUMPTION ON TEST SET

Models
2080Ti 3080Ti

Time (ms) Energy (mJ) Time (ms) Energy (mJ)

GoogLeNets 8.4 - 8.5 445.8 - 915.0 2.1 - 4.0 329.7 - 820.6
Inceptions 14.2 - 14.8 816.3 - 1948.4 3.4 - 8.2 588.4 - 2003.2

ShuffleNets 7.9 - 8.2 372.6 - 684.1 1.9 - 2.7 229.7 - 486.4
MnasNets 6.4 - 6.5 284.7 - 839.0 1.4 - 4.7 169.4 - 964.6

MobileNets 6.7 - 8.2 303.7 - 745.9 1.5 - 3.6 187.4 - 724.6
EfficientNets 10.4 - 44.6 538.2 - 4262.6 2.5 - 24.1 373.7 - 5899.7

B. Evaluation Metric

Mean Absolute Percentage Error (MAPE) is utilized as an

evaluation metric. A lower MAPE value means that the pre-

dicted values are closer to the ground truths. MAPE expresses

the predicting error as a percentage, making it intuitive to

understand the average errors across different scales. For our

experiments, this scale invariance of a metric is essential due

to the large scope of the dataset.

C. Implementation Details

All the MLPs used in this work contain three hidden layers,

with 256, 512, and 512 neurons, respectively. At the training

stage, we randomly shuffle all the layer-wise training data

to prevent the predictor from overfitting and enhance the

generalization ability. ReLu is used as a non-linear activation

function. A predictor is trained with a batch size of 512 for

400 epochs using AdamW optimizer to minimize the L1 loss

function. We set the learning rate to 0.001 for layer-wise MLPs

and 0.01 for model-wise MLPs. An MLP trained in this work

contains around 0.4 million parameters and 0.8 million FLOPS,

making it suitable for deployment on resource-constrained

devices.

D. Experimental Results

Here, we present the experimental results for predicting

inference time and energy consumption on two platforms

for various DNNs using our two-stage predictive framework.

Furthermore, we compare our results with the direct sum

of layer-wise predictions to evaluate the effectiveness of the

proposed method.

For convenience, we named our method as MLP-MLP and

the direct sum as MLP-SUM, respectively. As illustrated in

Table III, our MLP-MLP method outperforms MLP-SUM on

both 2080Ti and 3080Ti platforms in terms of inference time

prediction. We observe similar results for energy consumption

prediction in Table IV, where MLP-MLP delivers better pre-

dictions compared to MLP-SUM.

This confirms that the usage of second-stage MLPs can

aggregate layer-wise predictions into model-wise estimations

smoothly. It is also interesting to see that the prediction errors

for the NAS-based DNNs (i.e., MnasNets, MobileNets, and

EfficientNets) are smaller overall than the hand-crafted ones.

This is possibly due to less unnecessary complexities in these

DNNs fully or partially designed by NAS. On the other hand,



TABLE III
MAPE OF INFERENCE TIME PREDICTIONS

Models
2080Ti 3080Ti

MLP-SUM MLP-MLP MLP-SUM MLP-MLP

GoogLeNets 21.68% 19.05% 43.12% 28.15%
Inceptions 23.20% 25.53% 38.73% 30.28%

ShuffleNets 24.70% 6.90% 73.56% 15.10%
MnasNets 18.17% 5.02% 38.22% 14.62%

MobileNets 18.23% 2.16% 50.89% 8.02%
EfficientNets 17.61% 9.62% 46.22% 14.75%

All 19.37% 8.52% 51.67% 15.40%

TABLE IV
MAPE OF ENERGY CONSUMPTION PREDICTIONS

Models
2080Ti 3080Ti

MLP-SUM MLP-MLP MLP-SUM MLP-MLP

GoogLeNets 18.17% 10.23% 39.33% 24.53%
Inceptions 30.45% 13.13% 35.45% 24.32%

ShuffleNets 14.56% 13.77% 62.56% 39.81%
MnasNets 4.80% 13.50% 25.52% 17.63%

MobileNets 18.51% 5.49% 43.07% 10.17%
EfficientNets 14.51% 10.12% 38.32% 15.21%

All 14.02% 11.32% 42.24% 22.72%

this means a good predictor can also be integrated into the

NAS to precisely guide the design.

V. CONCLUSION

In this paper, we introduce a predictive framework utilizing

MLPs to estimate both inference time and energy consumption

for DNNs. This framework features a novel two-stage MLP

design that aggregates and refines layer-wise predictions. We

validate the effectiveness of the proposed method through

experiments conducted on datasets collected on two computing

platforms covering the representative DNN layer types. By

accurately predicting inference time and energy consump-

tion, researchers can optimize the balance between model

performance and efficiency, enhancing both the design and

deployment of deep neural networks for sustainable artificial

intelligence. In the future, we will continue to improve our

predictive framework and investigate its potential across more

hardware platforms, particularly edge devices with limited

computational resources.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2016, pp. 770–778.

[2] R. Aggarwal, V. Sounderajah, G. Martin, D. S. Ting, A. Karthike-
salingam, D. King, H. Ashrafian, and A. Darzi, “Diagnostic accuracy
of deep learning in medical imaging: A systematic review and meta-
analysis,” NPJ Digital Medicine, vol. 4, no. 1, p. 65, 2021.

[3] D. Katare, D. Perino, J. Nurmi, M. Warnier, M. Janssen, and A. Y.
Ding, “A survey on approximate edge ai for energy efficient autonomous
driving services,” IEEE Communications Surveys & Tutorials, vol. 25,
pp. 2714–2754, 2023.

[4] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[5] J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Communications Magazine,
vol. 58, no. 12, pp. 20–26, 2020.

[6] M. Yuan, L. Zhang, F. He, X. Tong, M.-H. Song, Z. Xu, and X.-Y. Li,
“Infi: End-to-end learning to filter input for resource-efficiency in mobile-
centric inference,” IEEE Transactions on Mobile Computing, vol. 23, pp.
3523–3538, 2024.

[7] A. Thomas, Y. Guo, Y. Kim, B. Aksanli, A. Kumar, and T. S. Rosing,
“Hierarchical and distributed machine learning inference beyond the
edge,” in Proceedings of the International Conference on Networking,
Sensing and Control. IEEE, 2019, pp. 18–23.

[8] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet of
things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8099–8110,
2020.

[9] K. Liu, C. Liu, G. Yan, V. C. S. Lee, and J. Cao, “Accelerating
dnn inference with reliability guarantee in vehicular edge computing,”
IEEE/ACM Transactions on Networking, vol. 31, no. 6, pp. 3238–3253,
2023.

[10] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2019, pp. 2820–2828.

[11] X. Dong, L. Liu, K. Musial, and B. Gabrys, “NATS-Bench: Benchmark-
ing nas algorithms for architecture topology and size,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2021.

[12] Ł. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim, and N. D.
Lane, “Brp-nas: prediction-based nas using gcns,” in Proceedings of
the International Conference on Neural Information Processing Systems,
2020, pp. 10 480–10 490.

[13] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf infer-
ence benchmark,” in Proceedings of the Annual International Symposium
on Computer Architecture. IEEE, 2020, pp. 446–459.

[14] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2017, pp. 5687–5695.

[15] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco, “Dis-
tributed inference acceleration with adaptive dnn partitioning and of-
floading,” in Proceedings of the IEEE Conference on Computer Com-
munications, IEEE. IEEE, 2020, pp. 854–863.

[16] O. M. Alqahtani and L. M. Ramaswamy, “A layer decomposition
approach to inference time prediction of deep learning architectures,” in
Proceedings of the IEEE International Conference on Machine Learning
and Applications. IEEE, 2022, pp. 855–859.

[17] G. Liu, F. Dai, X. Xu, X. Fu, W. Dou, N. Kumar, and M. Bilal, “An
adaptive dnn inference acceleration framework with end–edge–cloud
collaborative computing,” Future Generation Computer Systems, vol.
140, pp. 422–435, 2023.

[18] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Delight: Adding
energy dimension to deep neural networks,” in Proceedings of the
International Symposium on Low Power Electronics and Design. ACM,
2016, pp. 112–117.

[19] S. Lahmer, A. Khoshsirat, M. Rossi, and A. Zanella, “Energy con-
sumption of neural networks on NVIDIA edge boards: an empirical
model,” in Proceedings of the International Symposium on Modeling
and Optimization in Mobile, Ad hoc, and Wireless Networks, 2022, pp.
365–371.

[20] D. Moolchandani, J. Kundu, F. Ruelens, P. Vrancx, T. Evenblij, and
M. Perumkunnil, “Amped: An analytical model for performance in
distributed training of transformers,” in Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
2023, pp. 306–315.

[21] J. Lemeire, J. G. Cornelis, and E. Konstantinidis, “Analysis of the
analytical performance models for gpus and extracting the underlying
pipeline model,” Journal of Parallel and Distributed Computing, vol.
173, pp. 32–47, 2023.

[22] D. Velasco-Montero, J. Fernández-Berni, R. Carmona-Galán, and
Á. Rodrı́guez-Vázquez, “Previous: A methodology for prediction of
visual inference performance on iot devices,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 9227–9240, 2020.



[23] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “Neuralpower:
Predict and deploy energy-efficient convolutional neural networks,” in
Proceedings of the Asian Conference on Machine Learning. PMLR,
2017, pp. 622–637.

[24] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
“nn-meter: Towards accurate latency prediction of deep-learning model
inference on diverse edge devices,” in Proceedings of the Annual
International Conference on Mobile Systems, Applications, and Services.
ACM, 2021, pp. 81–93.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2015, pp. 1–9.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2016, pp. 2818–2826.

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 116–131.

[28] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE International Conference on Computer Vision.
IEEE, 2019, pp. 1314–1324.

[29] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” in Proceedings of the International Conference
on Machine Learning. PMLR, 2019, pp. 6105–6114.


