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Abstract—This paper proposes two approaches to signifi-
cantly improve the detection rate of abnormal heartbeats in
an Electrocardiogram (ECG) based deep learning heartbeat
classifier. We introduce an automated feature selection procedure
using the Kendall rank correlation coefficient to improve the
performance of already existing classifier models. Further, we
propose a methodology to cope with the class imbalance present
in many ECG and other medical datasets by using a weighted
loss function. The proposed methods demonstrate a significant
improvement in the detection of Supraventricular Ectopic Beat
(SVEB) and Ventricular Ectopic Beat (VEB) type heartbeats.
Boasting an impressive 20% increase in terms of recall for
the SVEB class when compared to state-of-the-art classifiers.
This advancement could lead to more reliable and efficient tools
for early arrhythmia detection, particularly beneficial in places
where professional medical care is not easily accessible.

Index Terms—Deep learning, Electrocardiogram, Arrhythmia
detection, Heartbeat classification, Feature selection, Neural net-
works

I. INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of
death globally. In 2019, an estimated 17.9 million people died
from CVD, which represented 32% of all global deaths [1].
A noteworthy fact is that over three-quarters of CVD deaths
occur in low- and middle-income countries. This can largely
be attributed to the fact that people in these countries have
less access to effective healthcare services. As a result, CVD
often gets detected late in the course of the disease. In these
countries, a scalable, cost-effective way of performing an
automated initial screening of heart conditions through ECG
could prove a life-saving solution. One method of building
these analysis tools could be by combining signal processing
techniques and deep learning. Deep learning has already
proven useful in early diagnosis of a variety of medical prob-
lems. Researchers have successfully applied neural networks to
detect and classify breast cancer based on Magnetic Resonance
Imagery (MRI) images [2]. Applying deep learning to gene
expression data has shown to be useful for the grading and
prediction of the survivability of brain tumors [3]. By com-
bining manually extracted medical features such as glucose
level, Body Mass Index (BMI), and insulin levels with deep
learning models researchers have also managed to automate
the detection of diabetes [4]. Using a deep Convolutional

Neural Network (CNN) on the data extracted by an Electroen-
cephalogram (EEG) the early diagnosis of Parkinson’s disease
is now also within the realm of possibilities [5]. Detecting
abnormal heartbeat types, which could be the indication of
a potential arrhythmia, is also feasible when applying neural
networks on the signals coming from an ECG [6].

Due to the significant promise for life-saving diagnostic
advancements deep learning has been widely applied for auto-
mated ECG classification. Driven in part by the accessibility
of numerous high-quality open source datasets like MIT-BIH
and PTB-XL [7], [8]. A critical issue in ECG classification
research is the use of global accuracy as the sole performance
metric. This approach fails to adequately represent the true
performance for ECG classifiers, given the inherent class
imbalance in datasets, where normal heartbeats significantly
outnumber abnormal ones. Such an imbalance can mask the
model’s performance in detecting rarer, yet clinically crucial,
abnormal heartbeats. Another prevalent issue is the common
practice in research papers of shuffling and splitting data into
training and validation sets without taking into consideration
the specific patients. This method often results in the inclusion
of ECG records from the same patients in both training
and validation datasets. Given the highly individual nature of
ECG signal morphology, this approach can lead to misleading
results, as it does not accurately assess the model’s ability to
generalize to new, unseen patient data [9]. Such practices in
dataset handling and performance evaluation can significantly
limit the clinical applicability and reliability of these deep
learning models.

Most successful studies made use of features that were
extracted from the ECG signal. By combining coefficients
from the Continuous Wavelet Transformation (CWT) with
features based on the distance between the subsequent peaks
in the signal, called the R-R interval, researchers have man-
aged to obtain a global classification accuracy of 86% [10].
Researchers further improved on this by extracting more
frequency domain information and simultaneously transform-
ing the ECG signal from a 1D time-series to a 2D image
through the use of the Short-Time Fourier Transform (STFT).
This allowed them to apply transfer learning on a ResNet
architecture that was pretrained for image classification. Using
this approach they managed to achieve a global accuracy of



90% [11]. Other researchers have transformed the ECG signal
to a Vectorcardiogram (VCG) and combined this with a feature
selection strategy to further increase the global accuracy to
92% [12]. Finally, Wang et al. used another type of 1D to
2D and frequency domain transformation based on the CWT,
they combined this with scalar features based on R-R intervals
and applied a CNN on this data to obtain an overall accuracy
of 97.5% [13]. This approach is to the best of our knowl-
edge currently the best-performing algorithm on the MIT-
BIH database. Due to the high class imbalance, with normal
heartbeats being significantly more prevalent than abnormal
ones, one should not focus too much on global accuracy. Since
the main purpose of automated ECG analysis is to detect
arrhythmias, the recall of the abnormal beats should be the
most important metric used to compare results. This number
indicates the percentage of abnormal beats correctly identified
as being normal. In terms of arrhythmia, 2 types of heartbeats
are of particular importance: the VEB and the SVEB. Table I
compares the recall performance of the previously mentioned
works with the algorithm that we propose in this paper.

TABLE I
RECALL VALUES FOR THE SVEB AND VEB HEARTBEAT TYPES.

SVEB VEB

Can Ye et al. [10] 60.8% 81.5%

Cao et al. [11] 9.0% 88.4%

Garcia et al. [12] 53.0% 87.3%

Wang et al. [13] 75.2% 95.7%

Our work 94.2% 96.8%

This paper builds further on the work done by Wang
et al.. To enable ease of comparison we used the same
training and validation data as well as applied the same pre-
processing methods as them. While they already propose a
good performing algorithm based on the combination of the
CWT and R-R interval features. The performance on beats
of the SVEB type still contained room for improvement,
with a recall of just 75%. To further enhance the overall
performance of the model, and specifically the performance
on the SVEB type of beats, we propose two enhancements.
Namely, adding more features through an automated feature
selection procedure, based on the Kendall rank correlation
coefficient, and using a weighted loss function instead of the
standard cross entropy loss [14]. This strategy of automated
feature calculation and selection has already proven to be
successful in other time-series classification problems [15].
This paper clearly shows the benefit of neural networks for the
automated analysis of ECG signals. This work could lay the
foundation for a wearable tool designed to perform continuous
heart monitoring. Giving people who do not have easy access
to expert cardiology care the potential to gain direct insights
into their health status.

The main contributions of this paper are as follows. First,
we propose an automated feature selection procedure for
time-series, through the use of the Kendall rank correlation

coefficient. Second, we propose a deep learning architecture
that uses CWT, RR features, and the new time series features
calculated through the Kendall rank correlation coefficient.
Third, we further improved the classification performance of
the proposed architecture through the use of a weighted loss
function, significantly increasing the recall of the abnormal
heartbeats. Fourth, we provide an extensive reporting of the
results obtained to gain insights into the behavior and trade-
offs of the proposed methodology. Finally, we will make
the model and the code used for generating the results in
this paper publicly accessible (https://github.com/timodw/ecg
classification ijcnn).

In the following section we provide an overview of the
proposed methodology. Section III extensively reports the
obtained results. In Section IV we provide further insight
into the obtained results. Finally, the paper is concluded in
Section V.

II. METHODOLOGY

We first describe a pipeline for calculating time series
features from the ECG signal and then present the deep
learning architecture used for the ECG classification.

A. Feature calculation and selection

We propose a pipeline for calculating time series features
from the ECG signal and automatically selecting the best-
suited features based on their Kendall rank correlation co-
efficient, as shown in Figure 2. Initially, we segmented the
30-minute-long ECG signal for each patient into windows
containing the data from a single heartbeat. Subsequently,
we utilized the tsfel Python library to calculate a wide
variety of time-series features on these windows [16]. Table
II gives an overview of the 4 categories of features extracted
by this library as well as some examples for each category.
The full list of features can be found in the documen-
tation of the tsfel library (https://tsfel.readthedocs.io/en/
latest/descriptions/feature list.html). These features were then
sorted according to their feature significance value obtained
by computing the Kendall Rank Correlation Coefficient τ and
is calculated as follows:

τ =
nc − nd(

n
2

) .

where nc denotes the count of concordant pairs, nd denotes
the count of discordant pairs, and n is the total number of
pairs. Concordant pairs (αi, βi) and (αj , βj) satisfy either
αi > αj ∧ βi > βj or αi < αj ∧ βi < βj ; otherwise they are
discordant. This is illustrated in Figure 1. In this paper, class
labels are numerically encoded (0 for normal, 1 for SVEB,
and 2 for VEB), with Y representing these numerical labels.
Xk denotes the feature values for the k-th feature of the i-th



Fig. 1. Concordant and discordant pairs with respect to the pair (αi, βi).

window. Concordant and discordant counts for each feature
are computed as follows:

Concordanti,k = ((Xi,k < Xj,k) ∧ (Yi < Yj))

∨((Xi,k > Xj,k) ∧ (Yi > Yj))

Discordanti,k = ((Xi,k < Xj,k) ∧ (Yi > Yj))

∨((Xi,k > Xj,k) ∧ (Yi < Yj))

This calculation ultimately provides us with 2 values. The
first is the Kendall τ value, indicating the correlation of the
feature to the classification labels. A value of 0 indicates
no correlation, 1 indicates full correlation, and −1 indicates
full negative correlation. The second is the statistical p-value
indicating the statistical significance of this τ value. To select
the most relevant features, we initially ranked all features
by their p-value and then used the absolute value of τ as
a tie-breaker. In the end, we only used the top 5 features as
obtained by this procedure in our model, as preliminary results
showed no improvement in performance when more features
were added. Table III lists these 5 features and their Kendall
τ value.

TABLE II
CATEGORIES OF FEATURES EXTRACTED BY THE TSFEL PYTHON

LIBRARY.

Statistical Mean, median, standard deviation, variance,. . .

Temporal Autocorrelation, energy, zero-crossing rate,. . .

Spectral Spectral entropy, spectral centroid, spectral roll-off,. . .

Wavelet Wavelet energy, wavelet entropy,. . .

Fig. 2. Graphical overview of the feature selection pipeline. Features are
calculated on the ECG windows, the top 5 features are then selected according
to their Kendall rank correlation coefficient.

TABLE III
TOP 5 FEATURES AS OBTAINED BY THEIR KENDALL RANK CORRELATION

COEFFICIENT

Feature τ

Kurtosis −0.2969

Area under the curve 0.2454

Average power 0.2043

Absolute energy 0.2043

Autocorrelation 0.2043

B. Proposed deep learning architecture

Figure 3 shows the proposed deep learning architecture that
uses the 5 features calculated in the previous step, along with
R-R features and the CWT. We concatenated the 5 features
with the 4 R-R interval features: next R-R distance, previous
R-R distance, the average of the previous 10 R-R distances,
and the ratio between the next and the previous R-R distances.
These 9 features were passed through a Deep Neural Network
(DNN) with 2 hidden layers of 128 neurons each to obtain 64
output features. These features are then concatenated with the
64 features coming from the CNN head. The CNN architecture
is the same as proposed by Wang et al..

This CNN takes the CWT transformed ECG signal as an
input and calculates 64 features. The CWT is a type of time-
frequency domain transformation. It uses the same base idea
as the STFT but makes it more adjustable through scale and
translation parameters. Given a signal x(t), the CWT is defined
as

Ca(b) =
1√
a

∫ ∞

−∞
x(t) · ϕ

(
t− b

a

)
dt.

where a and b represent scale and translation parameters,
respectively and ϕ(t) is the wavelet function used. The wavelet
function ϕ(t) used in this paper is represented as follows.

ϕ(t) =
2√
3 4
√
π
exp

(
− t2

2

)(
1− t2

)



The scale parameter can also easily be transformed to its
corresponding frequency by

f =
fc · fs

a

here fc indicates the center frequency of the used wavelet and
fs is the sampling frequency of the original signal. By iterating
over the different time steps while varying the scale parameter,
and thus the frequency, one can use this transformation to
obtain a 2D scalogram in the time-frequency domain of the
original signal. This paper uses the same wavelet as Wang
et al., it closely matches the shape of ECG waveform and is
already widely used in ECG signal analysis.

The 128 features in total from both heads are then passed
through a final DNN containing 3 hidden layers with 256, 64,
and 32 neurons respectively. The final output of the classifier
model is 3. Table IV lists all layers with their corresponding
parameters of the model used. Instead of using the ReLU
activation function, we opted to use the Leaky ReLU activation
function with a negative slope of 0.2. This was done to address
the dying ReLU problem [17] where neurons become inactive
and only output zero, thus blocking gradients from flowing
back.

Finally, we changed the loss function from a simple Cross
Entropy Loss to a Weighted Cross Entropy Loss function to
combat the class imbalance that is present in the MIT-BIH
database, and most ECG datasets. Over 80% of the heartbeats
in the dataset are the normal type, and only 6.6% and 2.5%
are of the VEB and SVEB type respectively. So samples
that represent a minority class should carry more weight for
optimizing the model’s weights in comparison to samples
from the majority class. In the Weighted Cross Entropy loss
function, each term of the regular Cross Entropy loss is
weighted according to the occurrence frequency of the true
class. This ensures that classes that occur less in the training
data carry more weight in the loss function, thus making the
model focus more on predicting these samples correctly. The
mathematical formulation of this loss function is as follows:

loss = −
C∑

c=1

wc · yc · log
exp(xc)∑C
i=1 exp(xi)

.

where C is the number of classes in the training dataset, wc is
the weight associated to class c, yc is either 0 if c is different
from the true class of the sample and 1 if c is equal to the true
class of the sample, xi is the i-th value of the output neurons
of the classifier. The value of the class weights is calculated
as follows:

wc =
N∑N

i=1 1 · {yi = c}
.

where N is the total number of samples in the dataset. yi is
the class of the i-th sample in the dataset. For this paper, the
weights were calculated using the occurrences of each class in
the training dataset. This resulted in weights of 0.37, 18.00,
4.44 for the normal type, SVEB, and VEB respectively.

Fig. 3. Overview of the architecture used in this paper. The outputs of both
heads are concatenated and fed through a final classifier neural network to
obtain the predicted type of heartbeat.

III. RESULTS

We use the results of Wang et al. as a baseline for comparing
against our results. To make a fair comparison we split the data
into the same training and validation dataset, where the split
was made on a per-patient basis, so no data from patients
that were present in the training dataset was present in the
validation data. This was done to ensure that the results we
obtained were reflective of the generalization capabilities of
the proposed approach toward data from new patients. Figure
4 plots the results from the reference paper as a confusion
matrix, we compiled this confusion matrix based on the
confusion matrix given in the original paper. The normal class
is indicated by the letter N, SVEB is represented by S and
VEB is shown as a V. We see that both the N and V classes
show good classification accuracy, the S class however shows a
different result. Only 75% of the S class instances are correctly
classified, 18% is misinterpreted as being a normal heartbeat,
and just under 7% is interpreted as being a V-type heartbeat.
The main metric of importance was the recall value of the
abnormal beats, as the correct detection of abnormal heartbeats
is significantly more important than the correct detection of



TABLE IV
MODEL ARCHITECTURE

Layer Type Parameters

Beat Head

2D Convolutional Input channels: 1, output channels: 16, kernel size: 7

Batch normalization –

LeakyReLU Slope: 0.2

Max pooling Size: 5

2D Convolutional Input channels: 16, output channels: 32, kernel size: 3

Batch normalization –

LeakyReLU Slope: 0.2

Max pooling Size: 3

2D Convolutional Input channels: 32, out channels: 64, kernel size: 3

Batch normalization –

LeakyReLU Slope: 0.2

Adaptive max pooling Output size: 1x1

Flatten –

Feature Head

Dense Input size: 9, output size: 128

LeakyReLU Slope: 0.2

Dense Input size: 128, output size: 128

LeakyReLU Slope: 0.2

Linear Input size: 128, output size: 64

LeakyReLU Slope: 0.2

Classifier

Dense Input size: 128, output size: 256

LeakyReLU Slope: 0.2

Dense Input size: 256, output size: 64

LeakyReLU Slope: 0.2

Dense Input size: 64, output size: 32

LeakyReLU Slope: 0.2

Dense Input size: 32, output size: 3

TABLE V
OVERVIEW OF THE HYPERPARAMETERS USED DURING TRAINING.

Learning rate 10−4

Epochs 200

Batch Size 4096

L2 regularization None

LR scheduling None

Checkpoint Best validation loss

normal heartbeats. The recall is defined as follows:

Recall =
TP

TP + FN

With TP being the instances that got classified correctly and
FN being the incorrectly classified instances.

Figure 5 shows the confusion matrix obtained by the first
configuration proposed in this paper. Adding the top 5 tsfel
features as ranked by their Kendall rank correlation coefficient.
This shows a 10% increase in terms of recall for the S-
type heartbeats, with now around 12% of the instances being

Fig. 4. Confusion matrix visualizing the classification results of Wang et al.
[13].



misinterpreted for a normal heartbeat and just under 3% that
is classified as a V-type heartbeat. One thing of notice for this
configuration is the lower accuracy for the normal heartbeats,
and thus more normal beats are being interpreted as abnormal
beats.

Fig. 5. Confusion matrix visualizing the classification results of our approach
combined with 5 time-series features.

Finally, we trained the previous model with a weighted
cross entropy loss function. The results for this configuration
are given in Figure 6. This approach further enhances the
classification accuracy of the S type by another 10%. However,
almost 7% of the normal heartbeats now get misinterpreted as
an S-type heartbeat. Leading to a lower precision and f1-score.

Fig. 6. Confusion matrix visualizing the classification results of our approach
combined with 5 time-series features and trained using weighted cross entropy.

Table VI shows the extensive numerical results for our work
as well as other published research. Here we observe that both
of our proposed improvements show a significant increase over
the baseline in terms of the balanced accuracy, which is the

mean of the recall over all classes. If we look purely at the
recall of the abnormal type of heartbeats, S and V, we see that
adding extra features, combined with a weighted loss function,
shows the best results. This configuration also has the highest
precision on the normal type of heartbeats.

IV. DISCUSSION

By just adding 5 extra features in addition to the 4 R-R
interval features we managed to increase the recall on the
SVEB type heartbeats by 10%. This is in contrast to many
other publications, which struggle to get the recall on these
types of beats above 70%. The VEB recall also increased
slightly. However, our recall on the normal heartbeats is re-
duced by around 2%, with now 2% of normal heartbeats being
classified as being of the SVEB type. Indicating that the model
has become more sensitive to the SVEB class, preferring this
class over the normal beats to obtain a higher recall on the
abnormal beats, at the cost of a lower recall on the normal
beats. This is preferable in the case of arrhythmia detection
as it is preferable to have a higher recall on potentially life-
threatening arrhythmias [18].

By adding class weights to the Cross Entropy loss function
we managed to make the model focus more on the harder
samples when optimizing the weights. Due to the low oc-
currence rate of the SVEB type beat in the training data,
these types of beats carried the most weight when the loss
values were computed. This shows in the results from this
configuration, with now just over 94% of the SVEB beats
being predicted correctly, almost another 10% increase over
the first configuration and a 20% increase when comparing
it against the baseline model. However, this performance
increase on the SVEB type of beats came at a cost. Now
just under 7% of the normal heartbeats get classified as being
SVEB. When applying this in a clinical setting, this would
mean 7% of all normal beats would incorrectly be attributed
to be an indication of cardiac arrhythmia. This number of
false positives is not ideal, this indicates that around 1 in 14
cases where the heartbeat is normal it would get classified as
being abnormal and thus triggering a ”false alarm”. A high
number of false positives or so-called ”false alarms” could
potentially result in alarm fatigue when applied in a clinical
setting [19]. In the case of arrhythmia detection, a potentially
missed arrhythmia event is significantly worse than triggering
a false alarm. To this end, obtaining a high recall of abnormal
heartbeats should be the highest priority when designing beat
classification algorithms.

V. CONCLUSION AND FUTURE WORK

The goal of this study was to improve the performance
of automated ECG analysis by improving the accuracy of
an ECG based heartbeat classifier. We started by getting the
baseline results from a model developed by Wang et al. on the
popular MIT-BIH heartbeat database. This was, to the best of
our knowledge, the best-performing classifier on the MIT-BIH
database. However, this approach, as many other published
research, still struggles with the SVEB type of heartbeats,



TABLE VI
DETAILED COMPARISON OF THE CLASSIFICATION RESULTS OF RELATED PAPERS AND OUR 2 PROPOSED IMPROVEMENTS.

N S V

Balanced
accuracy

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

Can Ye et
al. [10]

72.8% 98.0% 94.6% 96.3% 52.3% 60.8% 56.2% 81.5% 63.1% 71.1%

Cao et al.
[11]

64.2% 95.3% 95.1% 95.2% 13.0% 9.0% 10.6% 68.2% 88.4% 77.0%

Garcia et
al. [12]

81.1% 98.0% 94.0% 96.0% 53.0% 62.0% 57.1% 59.4% 87.3% 70.7%

Wang et
al. [13]

90.1% 81.9% 99.5% 89.9% 99.0% 75.2% 85.5% 93.3% 95.7% 94.5%

5 features 93.2% ±
1.0

99.3% ±
0.1

97.7% ±
0.7

98.5% ±
0.4

64.2% ±
7.3

85.5% ±
3.0

73.0% ±
4.8

94.9% ±
0.8

96.3% ±
0.6

95.6% ±
0.7

5 features
and
weighted
loss

94.5% ±
0.4

99.7% ±
0.1

92.4% ±
1.0

95.9% ±
0.5

36.0% ±
3.2

94.2% ±
1.1

52.0% ±
3.2

90.2% ±
2.4

96.8% ±
0.9

93.4% ±
1.6

only achieving a 75% recall on this type of beat. By adding
automatically extracted features and an extra feature head to
the deep learning we managed to obtain an SVEB recall of
85%. By changing the loss function used during training to
a weighted Cross Entropy loss function we further managed
to increase the recall performance on the SVEB beats to
94%. This increase in recall on the SVEB class came at the
cost of the recall on normal beats, going down from 99% to
92%. In a clinical setting, when this algorithm would be used
for detecting arrhythmias, the number of missed arrhythmias
is of more importance than the number of people without
arrhythmia who get falsely flagged as having an arrhythmia.
As this paper achieved an almost 20% increase in recall on
the SVEB type and a 1% increase in the recall of the VEB
type of heartbeat, we significantly outperform other published
research that was evaluated on the MIT-BIH dataset. This deep
learning classifier enables real-world applications by providing
remote arrhythmia detection capabilities to patients who lack
direct access to cardiologists, thereby democratizing access to
essential diagnostic insights into cardiac health.

Future work should focus on further increasing the recall
of the abnormal type of heartbeats while keeping the number
of normal beats that get misinterpreted as being abnormal
within an acceptable range. This can be accomplished in a
variety of manners. The architecture of the model can be
extended or changed from a CNN based model to a Recurrent
Neural Network (RNN) based one, or even a Transformer
based model. More advanced features could also be added,
by not only using the CWT as an input but other different
transformations as well, such as the STFT or the Gramian
Angular Field (GAF). As the R-R interval features already
incorporate some more long-term information next to just the
local heartbeat, extra features extracted from the surrounding
beats could also be integrated into the model. Next to architec-
tural improvements efforts should also be made to combine the
MIT-BIH dataset with other publicly available datasets such

as INCART and PTB-XL. These datasets could extend the
training data available to the model but could also be used to
evaluate the generalizability of the developed models.
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