Low temperature epitaxial SiGe:P for gate-all-around n-channel metal-oxide-semiconductor devices $\mathbf{2}$

Yuta Fujimoto¹, Andriy Hikavyy^{2,3}, Clement Porret², Erik Rosseel², Gianluca Rengo², and Roger Loo^{2, 4}

¹ Sony Semiconductor Solutions, 4-14-1 Asahi-cho Atsugi-shi, Kanagawa, Japan $\mathbf{5}$

² Imec, Kapeldreef 75, Leuven, Belgium

 $\overline{7}$ ³ Currently at SOITEC, 691 Chem. de Pré Fontaine, 31890 Bernin, France

⁴ Ghent University, Department of Solid-State Sciences, Krijgslaan 281, building S1, 9000

Ghent, Belgium

E-mail: yuta.fujimoto@sony.com

This study investigates the viability of $Si_{1-x}Ge_x$: P (x ≤ 0.3) as a novel source/drain material for n-channel Metal-Oxide-Semiconductor for Gate-All-Around (GAA) transistor, addressing the challenges posed by the evolving semiconductor technology. Utilizing a reduced-pressure chemical vapor deposition system, undoped SiGe with low Ge contents were grown at temperatures $\leq 500^{\circ}$ C. The addition and optimization of phosphorous doping using phosphine results in improved surface morphology and increased active carrier concentration. The study compares Si_{1-x}Ge_x:P with different silicon precursors and temperatures, emphasizing the potential for maintaining high growth rates at lower temperatures when using Si₃H₈. Ti / Si_{1-x}Ge_x:P stacks reveal a promising reduction in contact resistivity with decreasing the Ge content, particularly when incorporating thin Si:P cap layers at the Ti / Si_{1-x}Ge_x:P interface. This comprehensive study highlights the potential of Si_{1-x}Ge_x:P as an alternative material for advanced GAA transistor technologies, offering improved mobility and meeting the thermal budget requirements.

1. Introduction

With the miniaturization and evolution of complementary metal oxide semiconductor (CMOS) devices, the specifications of processes and materials are regularly updated. New device concepts such as Gate-All-Around (GAA) transistors and Complementary Field-Effect Transistors (CFET) are considered for technologies below the 2 nm node ¹⁻⁴. The considered designs bring new challenges, in particular for source/drain (S/D) engineering.

Strained channels have been employed from the 90 nm node, and are still being utilized in FinFET, which has become mainstream from the 22 nm node ⁵⁻⁷⁾. Currently, SiGe:B (pMOS) and Si:P (nMOS) are utilized for S/D engineering, in order to apply compressive and tensile strain in the Si channel, respectively. Moreover, the active carrier concentrations achieved in these materials amount to ~ 1 \times 10²¹ cm⁻³ ⁸⁻¹²⁾. However, recent TCAD simulations have shown that SiGe:B and Si:P generate tensile and compressive strain in {110}-oriented GAA Si channels, respectively ¹³⁻¹⁴. Therefore, employing conventional S/D materials in GAA architectures is expected to lead to channel strain inversion and mobility degradation. Hence, to attain the correct strain signs, leading to improved mobilities, we propose to use $Si_{1-x}Ge_x$: P (x ≤ 0.3) for nMOS.

In addition, in sub 2 nm technology nodes, process temperatures below 500°C $^{1,2,15,16)}$ and contact resistivities (ρ_c) as low as $\leq 1 \times 10^{-9} \ \Omega cm^{2}$ $^{12)}$ are desirable. Consequently, it is imperative to reduce processing thermal budgets and achieve high active carrier concentrations in the S/D. To fulfill these requirements, Si₁- $_{x}Ge_{x}$: P (x ≤ 0.3) epitaxial growth was performed at temperatures $\leq 500^{\circ}C$ using higher order Si and Ge precursors. Low temperature processing typically enables the growth of Si:P with higher active doping concentrations ¹⁶⁻²⁰ and can meet the thermal budget requirements imposed by these advanced architectures. The epitaxial growth of $Si_{1-x}Ge_x$: P (x ≥ 0.3) has been discussed in Ref. 21,22. However, the active carrier concentration did not exceed ~ 1×10^{20} cm⁻³. The current study investigates the formation of Si_{1-x}Ge_x:P, with lower Ge concentrations ($x \le 0.3$). The epitaxial growth has been done on blanked Si

 $\mathbf{2}$

 $\mathbf{5}$

 $\overline{7}$

reviews (Oct. 2022)

wafers with (001) surface orientation. This work aims to assess the achievable maximum active doping concentration and the corresponding lowest contact resistivity, which is the first step in considering this material as a novel nMOS S/D for GAA. This paper is composed of three main sections dedicated to (1) undoped SiGe epi with low %Ge, (2) P doping in epitaxial SiGe:P, and (3) the evaluation of resulting contact resistivities.

8 2. Experimental methods

The deposition of all layers was executed on 300 mm p-type Si(100) wafers utilizing an Intrepid XPTM epitaxy tool, which is a reduced-pressure chemical vapor deposition system optimized for industrial applications. To enable Si_{1-x}Ge_x epitaxial growth on the blanket silicon wafers, an in-situ thermal treatment was performed in hydrogen (H₂) at 1050°C to eliminate native oxides formed on the surface. The experiments were conducted under a reduced pressure of 20 Torr, with H₂ as carrier gas and keeping the H₂ flow at several tens of standard liters per minute (slm). Disilane (Si₂H₆) and trisilane (Si₃H₈) were used as silicon precursors and combined with digermane (Ge_2H_6 , 1% in H_2) and phosphine (PH_3 , 15% in H₂) for the growth. This work follows initial developments published in Ref. 21, where similar growth chemistries have been considered. In the current work Si_{1-x}Ge_x:P with lower Ge concentrations are being studied. The growth temperature has been varied between 400 and 500°C. The purity of H_2 , Si_2H_6 , Si₃H₈, Ge₂H₆ and PH₃ gases are 99.9999%, >99,998%, >99.00%, >99.999 % and >99.999 %.

High-Resolution X-ray Diffraction (HRXRD) and Reflectivity (XRR) measurements were conducted using a JVX7300LM instrument to determine apparent Ge contents and layer thicknesses. The total Ge and P chemical concentrations were quantified through Secondary Ion Mass Spectrometry (SIMS). Active carrier concentrations were evaluated by Micro-Hall Effect measurements (MHE) on a CAPRES CIPTech® M300 tool. Note that all values assume a Hall scattering factor (HSF) of 1. Top view Scanning Electron

reviews (Oct. 2022)

 $\mathbf{5}$

1 Microscopy (SEM) and cross-section Transmission Electron Microscopy (TEM) 2 were used to investigate the sample morphologies and material crystallinity. 3 The Multi-Ring Circular Transmission Line Method (MR-CTLM) was used for 4 ρ_c evaluation of blanket Ti / (Si:P) / Si_{1-x}Ge_x:P stacks ^{12, 23}.

3. Results and discussion

7 3.1 Low temperature growth of undoped SiGe with low Ge

8 content

First, undoped SiGe process conditions were developed to achieve Si_{1-x}Ge_x growth with $x \leq 30\%$. Previous growth studies presented in Ref. 24 were used as a starting point. Figure 1 shows the dependence of Ge contents and growth rates for SiGe layers grown at different temperatures on the Si₂H₆/Ge₂H₆ flow ratio. The Ge content decreases with increasing process temperature, along with the typical trend of decreasing Ge content with increasing Si_2H_6/Ge_2H_6 flow ratio ²⁵⁾. The growth rate increases with decreasing Si_2H_6/Ge_2H_6 flow ratio, indicating that the decomposition of Ge_2H_6 is the main parameter governing the growth kinetics. As an example, growing $Si_{1-x}Ge_x$ (x ≤ 0.3) with a Si_2H_6/Ge_2H_6 flow ratio of 333.3 yields an increased growth rate from 0.3 nm/min to 4.4 nm/min with increasing temperature from 400°C to 500°C.

Growth rates in the range of a few Å nm/min are not sufficient for industrial applications. Higher growth rates, in the range of a at least a few nm/min, are necessary. For this reason, a growth temperature of 500°C was selected, in combination with a Si_2H_6/Ge_2H_6 flow ratio of 333.3 since these settings provide sufficiently high growth rates while keeping the overall thermal budget compatible with the researched devices.

Fig. 1. Apparent Ge contents and growth rate determined from HRXRD as a
function of the Si₂H₆/Ge₂H₆ flow ratio at constant Ge₂H₆ flow for undoped SiGe
grown at 400°C or 500°C.

Figure 2 displays surface inspection results for Si_{1-x}Ge_x grown with different Si_2H_6/Ge_2H_6 flow ratios. No defects are observed when growing $Si_{0.60}Ge_{0.40}$ at 400°C with a Si₂H₆/Ge₂H₆ flow ratio of 100 (Figure 2(a)). However, defects are observed when using a larger Si_2H_6/Ge_2H_6 flow ratio of 333.3, at the same growth temperature of 400°C (Figure 2(b)) and at a higher growth temperature of 500°C (Figure 2(c)). Defects observed in Figure 2(b) appear smaller compared to those in Figure 2(c) due to the reduced film thickness. These defects are expected to enlarge with increasing film thickness. Still, comparing Figures 2(a) and 2(b), one can observe that Ge-rich layers $(Si_2H_6/Ge_2H_6 \text{ flow ratios} < 100)$ exhibit no defectivity for the same thickness. However, layers containing a lower Ge content (flow ratios \leq 333.3) are covered by many defects, for both temperatures evaluated in this work.

 $\mathbf{5}$

Fig. 2. Top view SEM images of SiGe layer surfaces for samples grown with (a)
a Si₂H₆/Ge₂H₆ flow ratio of 100 and at 400°C, (b) a Si₂H₆/Ge₂H₆ flow ratio of
333.3 and at 400°C, and (c) a Si₂H₆/Ge₂H₆ flow ratio 333.3 and at 500°C.
Deposition times were the same for all layers.

The TEM cross-section image of such a defect is shown in Figure 3. Defects have a conical shape and contain 2 different regions ascribed to polycrystalline and amorphous phases. The growth rate of the nucleated polycrystalline and amorphous phases is higher than that of the mono-crystalline phase. Such characteristics remind results presented in earlier literature reports. It has e.g., been suggested that such particles may be formed by contamination of available surface sites ²⁴⁾. However, it appeared that some particles are generated during the growth process and are not formed at the SiGe:P / Si substrate interface. Aubin et al. ²⁶⁾ previously reported on the observation of similar defects when using excessive Si₂H₆ flow rates. The formation of these defects was ascribed to the insufficient surface diffusion of the reacting molecules. Similar phenomena were also observed for Si (or SiGe) epitaxy using Si_2H_6 (and GeH_4) at 20 Torr and low temperature ²⁷⁾, suggesting again gas phase nucleation and low adatom mobility as parameters generating defectivity.

reviews (Oct. 2022)

Fig. 3. Bright field cross-section TEM of the $Si_{0.85}Ge_{0.15}$ layer shown in Fig. 2(c) and grown with a Si_2H_6/Ge_2H_6 flow ratio of 333.3 with a focus on a defect. The inset circled in blue corresponds to a zoomed-in image taken at the base of the defect.

7 3.2 Maximizing active P doping in epitaxial $Si_{1-x}Ge_x$: P with

8 low Ge contents.

It has been reported that the active carrier concentration in $\mathrm{Si}_{1\text{-}x}\mathrm{Ge}_x$: P with x = 40-50% saturates at approximately 1×10^{20} cm^{-3 21}. To employ this material as a S/D layer, achieving higher active carrier concentrations is imperative. P doping was implemented using process conditions providing sufficiently high growth rates and for Ge contents below 30%. Conditions developed for undoped SiGe and using a Si_2H_6/Ge_2H_6 flow ratio of 333.3 and a growth temperature of 500°C were selected. As shown in Figure 4, the surface morphology significantly improves with increasing PH₃ flow rate, with the disappearance of the observed surface defects. Interestingly, a similar trend was observed in Ref. 28, where originally observed defects disappeared when B_2H_6 was added to the Si_2H_6 + GeH₄ growth chemistry at 450°C. This phenomenon can therefore be attributed

to the promotion of hydrogen desorption from the growth surface thanks to the
introduction of PH₃. The presence of phosphorus from PH₃ weakens the Si-H
and Ge-H bonds, making it easier for hydrogen to desorb from the surface ²⁹⁾.
This enhances the decomposition of Si₂H₆ as well as SiH₄ molecules, which
exhibit low reactivity.

Fig. 4. Top view SEM images showing the morphology of SiGe and SiGe:P films
grown with PH₃ flows of (a) 0 a.u., (b) 0.3 a.u., (c) 1 a.u., and (d) 3 a.u.. The
Si₂H₆/Ge₂H₆ flow ratio was fixed to 333.3 at 500°C.

Figure 5(a) shows the active carrier concentration $([P]_{active})$ as estimated from MHE measurements, the total P concentration $([P]_{total})$ as measured by SIMS, the apparent Ge content as extracted from HRXRD, and the real Ge content as measured by SIMS, all as a function of PH_3 flow. In the low PH_3 flow region (PH_3 flow from 0.3 to 1 a.u.), the Ge concentration decreases rapidly with increasing the PH_3 flow. This dependence is consistent with the one observed in Ref. 21, 25, 28 and suggests a competitive interaction between PH_3 and Ge_2H_6 . For PH_3 flows above 1 a.u., the reduction in Ge concentration shows a saturation. This behavior is not yet understood and needs to be studied in more detail.

Increasing the PH_3 flow leads to an increase in active carrier concentration, which reaches a maximum of ~ 2.4×10^{20} cm⁻³. Subsequently, the active carrier concentration saturates at higher PH_3 flows. This dependence is similar to the one observed in ²¹. For PH_3 flows above 1 a.u., $[P]_{total}$ no longer coincides with $[P]_{active}$, suggesting that the P atoms are not fully active but may be present in the layer paired with vacancy defects ⁹. Such a large number of substitutional

reviews (Oct. 2022)

dopants also affects the strain present in the layer similar to the strain variation as reported for Si[:]P⁹⁾. This explains the difference in Ge contents as extracted $\mathbf{2}$ from HRXRD and SIMS. The simultaneous decrease in apparent and total Ge contents in the region up to PH_3 flow = 1 a.u. is therefore, due to the competition between PH_3 and Ge_2H_6 adsorption, and not to strain compensation effects ^{21,} $\mathbf{5}$ ³⁰⁾. On the other hand, the decrease in apparent Ge content for a PH₃ flow above 1 a.u., can be partly due to lattice shrinkage caused by P incorporation ³⁰. This is further illustrated by the Ge content as measured by SIMS, which does not further decrease with increasing PH_3 flow. Nevertheless, further research is needed to understand this mechanism.

Figure 5(b) shows the dependence of the growth rate on PH_3 flow. Growth rates were measured by XRR. The growth rate increased with increasing PH₃ flow rate. A comparable trend was observed for SiGe:B and SiGe:Ga, with these behaviors being ascribed to the increased desorption of surface hydrogen atoms due to interactions with dopants and the creation of active sites that facilitate an effective deposition process ^{31, 32)}. The saturation of [P]_{active} and growth rate with increasing PH₃ flow was observed to be similar to one observed for SiP with Si_2H_6 grown at 550°C ³³⁾. The stage at which the growth rate plateaus are reached likely coincides with the formation of electrically inactive Si₃P₄, P₃V, or P_4V clusters as the separation between $[P]_{total}$ and $[P]_{active}$ increases ³³⁾.

Fig. 5. (a) $[P]_{total}$, $[P]_{active}$, apparent and real Ge contents as a function of the PH₃ flow for layers grown with Si₂H₆/Ge₂H₆ = 333.3 at 500°C. (b) Corresponding growth rate as a function of PH₃ flow.

3.3 Comparison of Si_{1-x}Ge_x:P growth with Si₂H₆ and Si₃H₈

It has been demonstrated that lower growth temperatures may result in the growth of epilayers with higher active carrier concentrations ³⁴⁾. On the other hand, the decrease in temperature usually leads to a significant reduction in growth rate. A method to maintain acceptable growth rates while using a lower growth temperature involves the use of higher-order precursors such as Si₃H₈ $^{35\cdot41)}$. In this section, the properties of $\rm Si_{1\cdot x}Ge_x:P$ layers grown with $\rm Si_2H_6$ and $Si_{3}H_{8}$ will be compared. In addition, the impact of the growth temperature ranging from 450°C to 500°C has been investigated. To ensure a fair comparison, all other SiGe growth conditions were maintained the same.

Figure 6 shows surface morphologies of SiGe:P grown with Si₃H₈ at 450°C and 500°C. As observed previously, defects observed at low PH₃ flows (0.5 a.u. in Figure. 6(a) and (e)), disappear with increasing the PH₃ flow. This is similar to results previously obtained for SiGe:P growth with Si₂H₆ and presented in Figure 4. However, it should be noted that film thicknesses are here lower for

 $\mathbf{2}$

 $\mathbf{5}$

 1 results shown in Figure 4.

Suits shown in Figure -

Fig. 6. Top view SEM images showing the morphology of SiGe:P films grown with PH₃ flows of (a) 0.5 a.u., (b) 1 a.u., (c) 2 a.u., (d) 7 a.u. with Si_3H_8/Ge_2H_6 at 450°C, and (e) 0.5 a.u., (f) 1 a.u., (g) 2 a.u., and (h) 7 a.u. with Si_3H_8/Ge_2H_6 at 500°C

Figure 7(a) shows that layers grown with Si_3H_8 exhibit, for a given growth temperature, higher growth rates compared to those grown with Si₂H₆ which is in agreement with literature ^{24),41)41)}. Si growth using a higher order precursor presents a much more complex growth mechanism than the classical precursors like silane, providing uncommon Arrhenius plots ^{24),25),38),40)}. Gouyé et al.³⁸⁾ proposed descriptions for the decomposition of a higher order Si molecules ending with the direct formation of a Si atom from their gas phase, with SiH₄ molecules as gas by-products. Byeon et al. ⁴¹⁾ proposed two competing reaction schemes providing either Si_2H_6 or SiH_4 as by-products. Alternatively, a specific surface reaction mechanism from Si₃H₈ on H passivated substrates has been proposed by Caymax et al. 39 . In this model, Si_3H_8 permits the removal of H passivation atoms to open free sites on the growing surface and allowing SiH₃ ligands to bind to it while Si_2H_6 is formed as a by-product. For Si_3H_8 , it is

At 450°C, the SiGe growth rate using Si_3H_8 is approximately 4 nm/min and it does not show a clear dependency on the PH₃ flow. Although the reduction in growth rate due to the decrease in temperature is noticeable, the precursor therefore still provides an acceptable growth rate. The measured apparent Ge contents as extracted from XRD, are higher for layers grown with Si₃H₈ at 450°C, while they are lower for layers grown with Si₃H₈ at 500°C, compared to layers grown with Si_2H_6 at 500°C, as shown in Figure 7(b). The experimentally observed difference in Ge incorporation for Si₃H₈ vs Si₂H₆ at 500°C is in line with previous studies on epitaxial growth of undoped Si_{1-x}Ge_x using Si₃H₈/GeH₄ vs SiH_4/GeH_4 ³⁶⁾. In this work, the difference in Ge incorporation has been assigned to a more efficient Si deposition in case Si₃H₈ is used.

Fig. 7. (a) Growth rates and (b) apparent Ge contents as a function of PH_3 flow for layers grown with $Si_2H_6 + Ge_2H_6$ at 500°C, $Si_3H_8 + Ge_2H_6$ at 500°C and 450°C.

 $\mathbf{2}$

 reviews (Oct. 2022)

The Si_2H_6 and Si_3H_8 flow rates were fixed with Si_2H_6 /Ge₂H₆ and Si_3H_8 /Ge₂H₆ ratios of 333.3.

 $[P]_{active}$ and $[P]_{total}$ as a function of PH_3 flow rate are shown in Figure 8. For layers grown with Si_3H_8 , $[P]_{active}$ saturate at similar values compared to layers $\mathbf{5}$ grown with Si_2H_6 , with a maximum $[P]_{active}$ around ~ 3×10^{20} cm⁻³. The reduction in growth temperature did therefore not significantly enhance [P]_{active}. However, for this set of growth conditions, there might be a PH_3 flow where $[P]_{active}$ shows a maximum, while the layers grown at 500°C show a small but steady increase in $[P]_{active}$ up to the highest PH_3 flow used in this study. On the other hand, the saturation of [P]_{total} seems to vary depending on the choice of the epitaxial growth conditions. Si_3H_8 decomposes more easily than Si_2H_6 and more silicon atoms are supplied to the growth surface. Growing SiGe P at 450°C with Si₃H₈ tends to enable higher [P]_{total} saturation levels compared to layers grown at 500°C. Comparable [P]_{active} are obtained for the lowest temperature growth with a higher apparent Ge content. This might be beneficial if SiGe:P is considered as lateral stressor grown against nanosheet side walls.

18 On the other hand, $[P]_{total}$ saturation appears to vary with epi conditions. 19 Si₃H₈ decomposes more readily than Si₂H₆, supplying more silicon atoms to the 20 growth surface and simultaneously incorporating more PH₃ into the layer. At 21 450°C, using Si₃H₈; leads to higher $[P]_{total}$ than Si₂H₆.

reviews (Oct. 2022)

Template for JJAP Regular Papers, STAP Articles, and

Fig. 8. $[P]_{total}$ and $[P]_{active}$ as a function of the PH₃ flow for Si₂H₆ + Ge₂H₆ at 500°C, Si₃H₈ + Ge₂H₆ at 450°C and Si₃H₈ + Ge₂H₆ at 450°C. Si₂H₆ / Ge₂H₆ and Si₃H₈ / Ge₂H₆ ratios were equal to 333.3.

At the end of this section, Table 1 lists the Si_{1-x}Ge_x: P composition, the growth temperature, [P]_{active}, [P]_{total} and used precursors obtained in this work and other references. [P]_{active} indicates the highest active concentration reported in each case. For reports where no $[P]_{active}$ are given, the highest $[P]_{total}$ is shown. As can be observed, P concentrations are limited to $1-3 \times 10^{20}$ cm⁻³ for layers grown in the reported conditions. Achieving $[P]_{active}$ levels approaching 1×10^{21} cm⁻³ in Si₁-_xGe_x:P therefore seems challenging. For this reason, additional Si:P capping is considered to improve the contact performance.

 $\mathbf{2}$

 $\mathbf{5}$

7 8	1	Table 1.	Characteri	stics of several	Si _{1-x} Ge _x :P	layers prep	ared in this	s work and
9	2	reported in literature						
10 11		Ref.	Si. Co	Temperature(°C)	[P] (cm ⁻³)	[P] (cm ⁻³)	Si precursor	Ge precursor

Ref.	$\mathrm{Si}_{1\text{-}x}\mathrm{Ge}_x$	Temperature(°C)	[P] _{active} (cm ⁻³)	[P] _{total} (cm ⁻³)	Si precursor	Ge precursor
Ref. 12	Si:P	< 500	1.0×10^{21}	1.5×10^{21}	$\mathrm{Si}_{2}\mathrm{H}_{6}$	1
This work	${\rm Si}_{_{0.89}}{\rm Ge}_{_{0.11}}{:}{\rm P}$	500	$2.4\! imes\!10^{20}$	$6.0 imes 10^{20}$	$\mathrm{Si}_{_{2}}\mathrm{H}_{_{6}}$	$\mathrm{Ge}_{2}\mathrm{H}_{6}$
This work	$\mathrm{Si}_{_{0.82}}\mathrm{Ge}_{_{0.18}}\!\!:\!\mathrm{P}$	450	$3.0 imes 10^{20}$	$6.0 imes 10^{20}$	$\mathrm{Si}_{_{3}}\mathrm{H}_{_{8}}$	$\mathrm{Ge}_{_{2}}\mathrm{H}_{_{6}}$
Ref. 21	${\rm Si}_{_{0.70}}{\rm Ge}_{_{0.30}}$:P	400	$1.0 imes 10^{20}$	NA	$\mathrm{Si}_{2}\mathrm{H}_{6}$	$\mathrm{Ge}_{_{2}}\mathrm{H}_{_{6}}$
Ref. 21	${\rm Si}_{_{0.60}}{\rm Ge}_{_{0.40}}$:P	400	$8.0 imes 10^{19}$	$2.5 imes 10^{20}$	$\mathrm{Si}_{2}\mathrm{H}_{6}$	$\mathrm{Ge}_{_{2}}\mathrm{H}_{_{6}}$
Ref. 21	${\rm Si}_{_{0.50}}{\rm Ge}_{_{0.50}}{:}{\rm P}$	400	$6.0 imes 10^{19}$	$9.0 imes 10^{19}$	$\mathrm{Si}_{2}\mathrm{H}_{6}$	$\mathrm{Ge}_{_{2}}\mathrm{H}_{_{6}}$
Ref. 22	$\mathrm{Si}_{_{0.56}}\mathrm{Ge}_{_{0.44}}\!\!:\!\mathrm{P}$	650	$1.0\! imes\!10^{20}$	NA	$\rm SiH_2Cl_2$	${ m GeH}_4$
Ref. 35	$\mathrm{Si}_{_{0.56}}\mathrm{Ge}_{_{0.44}}\!\!:\!\mathrm{P}$	600	NA	$2.0\! imes\!10^{20}$	$\rm Si_{2}H_{6}$	$\mathrm{Ge}_{2}\mathrm{H}_{6}$
Ref. 35	${\rm Si}_{_{0.43}}{\rm Ge}_{_{0.57}}{:}{\rm P}$	500	NA	$2.0 imes 10^{20}$	$\rm Si_{2}H_{6}$	$\mathrm{Ge}_{2}\mathrm{H}_{6}$

 $\mathbf{5}$

3.4 Specific resistivity of Ti (/ Si:P) / Si_{1-x}Ge_x:P contact stacks

The previous sections describe the properties of epitaxial SiGe: P films grown on unpatterned Si(001) surfaces. Lateral S/D growth against the side walls of nanosheet channels is expected to provide the opposite stress sign in the channel in comparison to the more common bottom-up S/D growth ¹³⁻¹⁴. The current section will focus on the performance of contact stacks based on SiGe:P and extracted from the CTLM routine. The objective is to assess the potential of SiGe:P as a candidate for the next generation S/D material and to compare the contact properties to those obtained for epitaxial SiP grown at low temperature 12)

 $Si_{1-x}Ge_x$: P (x ≥ 0.3) layers were grown using the same conditions as those reported in Ref. 21. For these layers, $[P]_{active}$ up to 1×10^{20} cm⁻³ have been measured The Si_{0.9}Ge_{0.1}:P layer has been grown with Si₂H₆/Ge₂H₆ at 500°C using a PH₃ flow of 2 a.u. (Fig. 5(a)). The Si_{0.82}Ge_{0.18}: P layer has been grown with Si₃H₈/Ge₂H₆ at 450°C and a PH₃ flow of 2 a.u. (Fig. 8). Finally, a Si[:]P reference layer was used, with $[P]_{act}$ as high as 1×10^{21} cm⁻³ and grown with the same

reviews (Oct. 2022)

Template for JJAP Regular Papers, STAP Articles, and

1 growth conditions as reported in Ref. 12.

The CTLM extracted epilayer resistivities are reported in Figure 9(a). The $\mathbf{2}$ resistivity is lowest for the Ti / 40 nm Si:P sample and is deteriorated with increasing Ge content in Si_{1-x}Ge_x:P in Ti / 40 nm Si_{1-x}Ge_x:P stacks. This trend correlates with the [P]_{active} for each epi layers. Figure 9(b) shows the $\mathbf{5}$ corresponding contact resistivities. Low temperature SiP can yield [P]_{active} as high as 1×10^{21} cm⁻³ and contact resistivities as low as ~ $2 \times 10^{-9} \Omega$ cm². For the $\overline{7}$ Ti / 40 nm Si_{1-x}Ge_x:P contacts, ρ_c increases with increasing the Ge content. The lowest extracted ρ_c is ~ 2×10⁻⁸ Ω cm² for Si_{0.89}Ge_{0.11}:P, which is 10x higher than for Ti / 40 nm Si[:]P.

The insertion of a thin Si:P layer with a high [P]_{active} in between Si_{1-x}Ge_x:P and Ti leads to a significant reduction in ρ_c . Specifically, the ρ_c of Ti / 10 nm Si:P / 40 nm $Si_{0.89}Ge_{0.11}$: P is measured to be ~ $4 \times 10^{-9} \Omega cm^2$. The ρ_c of Ti / thin Si: P / Si_1- $_x$ Ge_x:P is slightly higher than that of Ti / Si:P and the ρ_c systematically increases with increasing the Ge contents, albeit more gradual than for Ti / Si_{1-x}Ge_x:P. A possible consideration is that altering the Ge content in the SiGe:P layer could affect the lattice mismatch between thin Si:P / SiGe:P, potentially affecting Si:P layer relaxation. This increase in ρ_c is however not fully understood and may possibly be caused by other effects. As shown in Figure 10, the surface of thin 10 nm Si[:]P / 40 nm Si_{0.5}Ge_{0.5}:P exhibits a clear cross-hatch pattern (Figure 10(b)), indicative for partial strain relaxation. On the other hand, thin 10 nm Si:P / 40 nm $Si_{0.6}Ge_{0.4}$:P displayed a smooth surface (Figure 10(a)). In other words, increasing the Ge content in Si_{1-x}Ge_x:P potentially impacts the contact resistivity due to the induced defectivity caused by the layer relaxation. However, since thin Si[:]P / SiGe[:]P with low Ge content did not undergo relaxation, detailed analysis is required to fully understand and clarify these aspects.

Ti / thin Si:P / SiGe:P proves to be a promising approach to mitigate ρ_c penalties while benefiting from correct channel strain. In addition, in transistors, it is essential to also consider S/D resistivity. Nevertheless, this approach may carry significant importance as a mean to enhance mobility by

1 combining S/D epitaxial stress while achieving low ρ_c .

Fig. 9. (a) Resistivity as a function of Ge content for Ti / 40 nm Si_{1-x}Ge_x:P and Ti
/ 40 nm Si:P contact stacks. (b) Specific resistivity of Ti / 40 nm Si_{1-x}Ge_x:P, Ti /
40 nm Si:P, and Ti / 10 nm Si:P / 40 nm Si_{1-x}Ge_x:P contact stacks as a function
of Ge content in Si_{1-x}Ge_x:P.

Fig. 10. Top view SEM images showing the morphology of (a) 10 nm Si:P / 40 nm
Si_{0.6}Ge_{0.4}:P and (b) 10 nm Si:P / 40 nm Si_{0.5}Ge_{0.5}:P.

 $\mathbf{2}$

4. Conclusions

This study presents a comprehensive exploration of Si_{1-x}Ge_x:P as a new nMOS source/drain (S/D) material for gate-all-around (GAA) transistors in advanced technology nodes beyond 2 nm. The motivation for this work stems from the concern that conventional nMOS S/D materials such as Si:P may cause strain inversion and mobility degradation in modern GAA architectures. This study hence focuses on maximizing active P doping in epitaxial Si_{1-x}Ge_x:P with low Ge contents and evaluating the resulting contact properties.

Highly crystalline $Si_{1-x}Ge_x$: P with active carrier concentrations reaching ~ $3.0 imes 10^{20} {
m ~cm^{-3}}$ was demonstrated, surpassing the limitations observed in previous studies. The optimization of phosphine (PH₃) partial pressure during the growth process plays a crucial role in improving surface morphology and enhancing active carrier concentration. Additionally, switching from Si₂H₆ to $Si_{3}H_{8}$ as silicon precursor confirms higher growth rates, together with advantages in achieving higher active carrier concentrations at lower growth temperatures. Replacing Si[:]P with Si_{1-x}Ge_x[:]P nevertheless causes some contact performance degradation. However, the incorporation of a thin SiP layer between the Ti contact and the Si_{1-x}Ge_x:P S/D allows to mitigate this effect. Replacing Si[:]P by SiGe[:]P S/D in nMOS GAA requires to consider the balance between losses in contact performance vs on current improvement thanks to mobility enhancement. Moreover, if SiGe:P can be expected to be a promising S/D epi for GAA devices, it should be remembered that the S/D must be grown selectively. Given the considered precursor and low temperature process, cyclic deposition/etching routines would be needed. In addition, S/D growth would occur from (110) GAA channel sidewalls rather than on Si(100). This would then require more complex S/D epi optimization. A follow up of this work could also extend the study of low temperature SiGe: P using Si₂H₆ in combination with the more conventional GeH_4 , and PH_3 .

In summary, Si_{1-x}Ge_x:P, with its favorable growth characteristics, relatively
 high active carrier concentrations and low contact resistivity, emerges as a

 $\mathbf{5}$

Template for JJAP Regular Papers, STAP Articles, and

reviews (Oct. 2022)

promising candidate for nMOS S/D material for GAA architectures to address
the evolving demands of sub 2 nm technology nodes. This research opens
avenues for further exploration and development in the field of next-generation
S/D epitaxial research.

6 Acknowledgments

7 The imec core CMOS program members, the European Commission, local 8 authorities, and the imec pilot line are acknowledged for their support.

References

11 1) E. Capogreco, L. Witters, H. Arimura, F. Sebaai, C. Porret, A. Hikavyy, R. Loo, A. P.
 Milenin, G. Eneman, P. Favia, H. Bender, K. Wostyn, E. Dentoni Litta, A. Schulze, C.
 Vrancken, A. Opdebeeck, J. Mitard, R. Langer, F. Holsteyns, N. Waldron, K. Barla, V.
 De Heyn, D. Mocuta, and N. Collaert, IEEE Transactions on Electron Devices 65 (11),
 5145 (2018)

16 2) G. Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu,
M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen,

- 18 K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang,
- 19 L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang,
- 20 W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C.
- 21 Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H.
- 22 Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, and
- S.M. Jang, 2019 International Electron Devices Meeting (IEDM), 879 (2019)
- 24 3) S. Subramanian, M. Hosseini, T. Chiarella, S. Sarkar, P. Schuddinck, B.T. Chan, D.
- 25 Radisic, G. Mannaert, A. Hikavyy, E. Rosseel, F. Sebaai, A. Peter, T. Hopf, P. Morin, S.
- 26 Wang, K. Devriendt, D. Batuk, G. T. Martinez, A. Veloso, E. Dentoni Litta, S. Baudot,
- Y. K. Siew, X. Zhou, B. Briggs, E. Capogreco, J. Hung, R. Koret, A. Spessot, J.
- Ryckaert, S. Demuynck, N. Horiguchi, and J. Boemmels, 2020 IEEE Symposium on
- ⁶⁶ 29 VLSI Technology, 1 (2020)
- ⁵⁸ 30 4) H. Mertens, R. Ritzenthaler, A. Chasin, T. Schram, E. Kunnen, A. Hikavyy, L.-Å.
- Ragnarsson, H. Dekkers, T. Hopf, K. Wostyn, K. Devriendt, S. A. Chew, M. S. Kim, Y.

AUTHOR SUBMITTED MANUSCRIPT - JJAP-105960.R3

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
12 13	
14	
15	
16	
16 17	
18	
19	
20	
20 21 22 23	
ו∠ 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
32	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

1		Kikuchi, E. Rosseel, G. Mannaert, S. Kubicek, S. Demuynck, A. Dangol, N. Bosman, J.
2		Geypen, P. Carolan, H. Bender, K. Barla, N. Horiguchi, and D. Mocuta, 2016 IEEE
3		Symposium on VLSI Technology, 158 (2016)
4	5)	S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T.
5		Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B.
6		Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar,
7		R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, and M. Bohr, IEEE Transactions on Electron
8		Devices, 51 (11), 1790 (2004)
9	6)	E. Parton and P. Verheyen, III-Vs Review, 19 (3), 28 (2006)
10	7)	C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V.
11		Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P.
12		Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J.
13		Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker,
14		L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J.
15		Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki,
16		and K. Mistry, 2012 VLSI Technology Digest of Technical Papers, 131 (2012)
17	8)	H. Wu, O. Gluschenkov, G. Tsutsui, C. Niu, K. Brew, C. Durfee, C. Prindle, V.
18		Kamineni, S. Mochizuki, C. Lavoie, E. Nowak, Z. Liu, J. Yang, S. Choi, J. Demarest, L.
19		Yu, A. Carr, W. Wang, J. Strane, S. Tsai, Y. Liang, H. Amanapu, I. Saraf, K. Ryan, F.
20		Lie, W. Kleemeier, K. Choi, N. Cave, T. Yamashita, A. Knorr, D. Gupta, B. Haran, D.
21		Guo, H. Bu, and M. Khare, 2018 International Electron Devices Meeting (IEDM), 35
22		(2018)
23	9)	E. Rosseel, S. Dhayalan, A. Hikavyy, R. Loo, H.B. Profijt, D. Kohen, S. Kubicek, T.
24		Chiarella, H. Yu, N. Horiguchi, D. Mocuta, K. Barla, Y. Thean, G. Bartlett, J. Margetis,
25		N. Bhargava, and J. Tolle, ECS Transactions, 75 (8), 347 (2016)
26	10)	H. Mertens, R. Ritzenthaler, A. Hikavyy, M. S. Kim, Z. Tao, K. Wostyn, S. A. Chew, A.
27		De Keersgieter, G. Mannaert, E. Rosseel, T. Schram, K. Devriendt, D. Tsvetanova, H.
28		Dekkers, S. Demuynck, A. Chasin, E. Van Besien, A. Dangol, S. Godny, B. Douhard, N.
29		Bosman, O. Richard, J. Geypen, H. Bender, K. Barla, D. Mocuta, N. Horiguchi, and A.V-
30		Y Thean, 2015 IEEE Symposium on VLSI Technology, 142 (2015)

3111) K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, J. Kuss, D. Shahrjerdi, L. F. Edge, A.

reviews (Oct. 2022)

Kimball, S. Kanakasabapathy, K. Xiu, S. Schmitz, A. Reznicek, T. Adam, H. He, N. $\mathbf{2}$ Loubet, S. Holmes, S. Mehta, D. Yang, A. Upham, S.-C. Seo, J. L. Herman, R. Johnson, Y. Zhu, P. Jamison, B. S. Haran, Z. Zhu, L. H. Vanamurth, S. Fan, D. Horak, H. Bu, P. J. Oldiges, D. K. Sadana, P. Kozlowski, D. McHerron, J. O'Neill, and B. Doris, 2009 IEEE International Electron Devices Meeting (IEDM), 1 (2009) $\mathbf{5}$ 612) C. Porret, J.-L. Everaert, M. Schaekers, L.-A. Ragnarsson, A. Hikavyy, E. Rosseel, G. Rengo, R. Loo, R. Khazaka, M. Givens, X. Piao, S. Mertens, N. Heylen, H. Mertens, C. Toledo de Carvalho Cavalcante, G. Sterck, S. Brus, A. Nalin Mehta, M. Korytov, D. Batuk, P. Favia, R. Langer, G. Pourtois, J. Swerts, E. Dentoni Litta, and N. Horiguchi, 2022 International Electron Devices Meeting (IEDM), 34 (2022) 1113) G. Eneman, A. Veloso, P. Favia, A. Hikavyy, C. Porret, H. Arimura, A. D. Keersgieter, G. Pourtois, R. Loo, A. Spessot, P. Matagne, J. Ryckaert, and N. Horiguchi, IEEE Electron Device Lett., 38, 5 (2017) 1414) G. Eneman, A. Veloso, P. Favia, A. Hikavyy, C. Porret, H. Arimura, A. D. Keersgieter, G. Pourtois, R. Loo, A. Spessot, P. Matagne, J. Ryckaert, and N. Horiguchi, ECS Trans, 98 (5), 253 (2020) 1715) A.Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. T. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B.-Y. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, and N. Horiguchi, 2020 IEEE Symposium on VLSI Technology, 1 (2020) 2216) J. Kanyandekwe, M. Bauer, T. Marion, L. Saidi, J. Pin, J. Bisserier, J. Richy, N. Gauthier, P. Dezest, L. Brunet, V. Lapras, T. Dewolf, S. Thomas and J.M. Hartmann, ECS Trans., 109 (4), 121 (2022) 2517) R. Khazaka, L. Lima, E. Rosseel, A. Hikavyy, V. Costa, and Q. Xie, Electrochemical Society Meeting Abstracts prime2020. The Electrochemical Society, Inc., 1734 (2020). 2718) E. Rosseel, C. Porret, A. Hikavyy, R. Loo, M. Tirrito, B. Douhard, O. Richard, N. Horiguchi, and R. Khazaka, ECS Trans., 98 (5), 37 (2020) 2919) H. Yu, M. Schaekers, E. Rosseel, A. Peter, J.-G. Lee, W.-B. Song, S. Demuynck, T. Chiarella, L-Å. Ragnarsson, S. Kubicek, J. Everaert, N. Horiguchi, K. Barla, D. Kim, N. Collaert, A. V. –Y. Thean, and K. De Meyer, ECS Trans, 64 (6), 959 (2014)

AUTHOR SUBMITTED MANUSCRIPT - JJAP-105960.R3

120) E. Rosseel, H. Benjamin Profijt, A. Hikavyy, J. Tolle, S. Kubicek, G. Mannaert, C. $\mathbf{2}$ L'abbe, K. Wostyn, N. Horiguchi, T. Clarysse, B. Parmentier, S. Dhayalan, H. Bender, J. W. Maes, S. Mehta, and R. Loo, ECS Trans., 64 (6), 977 (2014) 421) A. Hikavyy, C. Porret, A. Vohra, M. Ayyad, B. Douhard, and R. Loo, ECS Trans., 98 (5), $\mathbf{5}$ 43 (2020) 622) J. M. Hartmann, M. Py, J.P. Barnes, B. Prévitali, P. Batude, and T. Billon, Journal of Crystal Growth, 327 (1), 68 (2011) 823) H. Yu, M. Schaekers, T. Schram, E. Rosseel, K. Martens, S. Demuynck, N. Horiguchi, K. Barla, N. Collaert, K. De Meyer, and A. Thean, IEEE Electron Device Lett., 36 (6), 600 (2015)1124) A. Hikavyy, I. Zyulkov, H. Mertens, L. Witters, R. Loo, and N. Horiguchi, Mater. Sci. Semicond. Process., 70 (1), 24 (2017) 1325) J. M. Hartmann, J. Aubin, and J. P. Barnes, ECS Transactions, 75 (8), 281 (2016) 1426) S. K. Dhayalan, R. Loo, A. Hikavyy, E. Rosseel, H. Bender, O. Richard, and W. Vandervorst, Journal of Crystal Growth 426, 75 (2015) 1627) J. Aubin, J.M. Hartmann, and V. Benevent, Thin Solid Films 602, 36 (2016) 1728) J. Aubin, J. M. Hartmann, M. Veillerot, Z. Essa, and B. Sermage, Semicond. Sci. Technol. 30 115006 (2015) 1929) J. Vizoso, F. Martín, J. Suñé, and M. Nafría, Appl. Phys. Lett. 70, 3287 (1997) 2030) K.D. Weeks, S.G. Thomas, P. Dholabhai, and J. Adams., Thin Solid Films 520, 3158 (2012). 2231) G. Rengo, C. Porret, A. Hikavyy, G. Coenen, M. Ayyad, R. Morris, S. Pollastri, D. Souza, D. Grandjean, R. Loo, and A. Vantomme, ECS Transactions 109 (4), 249 (2022) 2432) A. Hikavyy, C. Porret, R. Loo, M. Mencarelli, P. Favia, M. Ayyad, B. Briggs, R. Langer, and N. Horiguchi, ECS Trans. 104 (4), 139 (2021) 2633) J.M. Hartmann and J. Kanyandekwe, Journal of Crystal Growth 582, 126543 (2022) 27 34) N.D. Nguyen, R. Loo, and M. Caymax, Applied Surface Science 254 (19), 6072 (2008) 2835) S. Wirths, D. Buca, A.T. Tiedemann, P. Bernardy, B. Holländer, T. Stoica, G. Mussler, U. Breuer, and S. Mantl, Solid-State Electronics 83, 2 (2013) 3036) S. Takeuchi, N. D. Nguyen, J. Goosens, M. Caymax, and R. Loo, Thin Solid Film 518, 18 (2010)

reviews (Oct. 2022)

3		
4 5		
6		
7 8	137)	J. G. Martin, H. E. O'Neal, and M. A. Ring, International journal of chemical kinetics 22
9	2	(6), 613 (1990)
10 11	338)	A. Gouyé, O. Kermarrec, A. Halimaoui, Y. Campidelli, D. Rouchon, M. Burdin, P.
12 13	4	Holliger, and D. Bensahel, Journal of Crystal Growth 311, 3522 (2009)
14	539)	M. Caymax, F. Leys, J. Mitard, K. Martens, L. Yang, G. Pourtois, W. Vandervorst, M.
15 16	6	Meuris, and R. Loo, Journal of The Electrochemical Society 156 (12), H979 (2009)
17 18	740)	B. Vincent, R. Loo, W. Vandervorst, G. Brammertz, and M. Caymax, Journal of Crystal
19	8	Growth 312, 2671 (2010)
20 21		DS. Byeon, Y. Choi, C. Cho, D. Yoon, K. Lee, S. Baik, and DH. Ko, Journal of the
22 23	10	Korean Physical Society 78, 712 (2021)
24	11	
25 26	11	
27		
28 29		
30		
31 32		
33		
34		
35 36		
37		
38		
39 40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53 54		
54 55		
56		
57 58		
58 59		
60		