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Abstract

Background

Movement behavior features such as time use estimates, average acceleration and inten-

sity gradient are crucial in understanding associations with cardiometabolic health. The aim

of this study was to 1) compare movement behavior features processed by commonly used

accelerometer metrics among adults (i.e. Euclidian Norm Minus One (ENMO), Mean Ampli-

tude Deviation (MAD) and counts per minute (CPM)), 2) investigate the impact of acceler-

ometer metrics on compliance with movement behavior guidelines, and 3) explore potential

variations in the association between movement behavior features and cardiometabolic var-

iables depending on the chosen metric.

Methods

This cross-sectional study collected movement behavior features (Actigraph GT3X+) and

cardiometabolic variables. Accelerometer data were analyzed by four metrics, i.e. ENMO,

MAD, and CPM vertical axis and CPM vector magnitude (GGIR). Intraclass correlations and

Bland–Altman plots identified metric differences for time use in single movement behaviors

(physical activity, sedentary behavior), average acceleration and intensity gradient. Regres-

sion models across the four metrics were used to explore differences in 24-hour movement

behaviors (24h-MBs; compositional variable) as for exploration of associations with cardio-

metabolic variables.
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Results

Movement behavior data from 213 Belgian adults (mean age 45.8±10.8 years, 68.5%

female) differed according to the metric used, with ENMO representing the most sedentary

movement behavior profile and CPM vector magnitude representing the most active profile.

Compliance rates for meeting integrated 24h-MBs guidelines varied from 0–25% depending

on the metric used. Furthermore, the strength and direction of associations between move-

ment behavior features and cardiometabolic variables (body mass index, waist circumfer-

ence, fat% and HbA1c) differed by the choice of metric.

Conclusion

The metric used during data processing markedly influenced cut-point dependent time use

estimates and cut-point independent average acceleration and intensity gradient, impacting

guideline compliance and associations with cardiometabolic variables. Consideration is nec-

essary when comparing findings from accelerometry studies to inform public health

guidelines.

Background

Physical activity (PA), sedentary behavior (SB), and sleep are behaviors that are intrinsically

part of an individual’s daily routine; collectively known as 24-hour movement behaviors (24h-

MBs) [1]. Studying their interrelatedness rather than considering them in isolation is associ-

ated with favorable health outcomes among adults [1]. By focusing on all behaviors conducted

in one day, the concept of combined movement behavior guidelines has emerged, including

recommendations to accumulate 150 to 300 minutes of moderate-to-vigorous PA (MVPA),

limit SB, and obtain seven to nine hours of sleep with consistent bed and wake-up times [2, 3].

Despite the clear benefits of adhering to the guidelines, compliance is low among adults

(approx. 7% of Canadian adults) and even worse in adults with chronic conditions such as obe-

sity [1, 4, 5].

To better understand 24h-MBs in adults, it is crucial to accurately measure these behaviors

by measurement tools such as tri-axial accelerometers (e.g. the Actigraph GT3X+) [6]. These

measurement tools are the preferred method for collecting 24h-MBs as they quantify accelera-

tions in orthogonal directions of a three dimensional space [6, 7]. There has been a shift from

analyzing accelerometer data using "activity counts per minute" generated by closed-source

proprietary accelerometer brand-specific algorithms (e.g. ActiLife software for Actigraph

accelerometers) toward analyzing raw gravitational acceleration data (m/s2) [8]. Raw accelera-

tion data allows for open-source data processing, such as the R package GGIR, which can be

used regardless of the type of accelerometer [8, 9]. Output from this open-source raw data

package can be classified as time spent in movement behaviors defined by cut-points to classify

activity intensities, as well as newer cut-point independent movement behavior features such

as average acceleration and intensity distribution of activity throughout a day. These cut-point

independent movement behavior features enhance comparability between studies [10, 11].

Nevertheless, working with raw data still requires the use of data reduction methods, also

called metrics, to separate the acceleration signal from the gravitation signal [8, 9]. Different

metrics exist and these can be distinguished based on the method for extracting the accelera-

tion signal [7, 8]. Commonly used data reduction metrics for processing raw accelerometer
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data in GGIR are the Euclidian Norm Minus One (ENMO) and Mean Amplitude Deviation

(MAD) as these analytic techniques are perceived as not too complex for users and they

have the ability of quantifying output in universal units instead of abstract scales [see S1

Table for more details] [8, 9, 12]. As the shift from using activity counts cut-points to clas-

sify activity intensities into raw accelerometer data processing is still evolving, a new metric

that replicates the closed-source Actilife software was developed in the GGIR package, i.e.

the “counts per minute” (CPM) metric [13]. This CPM metric has the ability to process data

of the vertical axis (VA) only or to work with the vector magnitude (VM) [See S1 Table]

[13]. The main advantage of this new metric in GGIR is the reduction of human errors.

Data processing in ActiLife software requires manual processing of data to define wear and

nonwear times, where the GGIR package applies the same nonwear algorithm on each data

file [13]. Despite the popularity of working with accelerometer data, no gold standard exist

for the most appropriate activity intensity-based cut-point accompanied by a data reduction

metric. This lack of standardization affects the time spent in movement behavior and ham-

pers comparability between studies [14].

Previous studies have highlighted that there are differences in cut-point dependent PA

and SB durations depending on whether they are derived from raw accelerometer data or

“counts per minute” data [14, 15]. In contrast, literature shows comparable findings for cut-

point independent average acceleration and intensity gradient across the acceleration met-

rics ENMO and MAD [16]. Interestingly, although 24h-MBs are codependent, none of

these studies interpreting time spent engaged in behaviors used a compositional behavioral

approach but focused on one or more behaviors in isolation (e.g. PA, SB, sleep). Moreover,

no previous studies have compared three different movement behavior features (i.e. time

spent in a 24h period, overall activity volume, and overall activity intensity) between the

new CPM metric for VA and VM, the ENMO metric and the MAD metric with hip-worn

accelerometer data in adults.

Therefore, the objective of this study is threefold. First, we aimed to compare the movement

behavior features resulting from commonly used accelerometer processing metrics among

adults (i.e. ENMO, MAD, CPM VA and CPM VM). Second, we will investigate how these met-

rics affect the prevalence of meeting or not meeting the movement behavior guidelines for

adults. Third, we aimed to explore whether the associations between movement behavior fea-

tures and cardiometabolic variables differ according to the choice of metric. These aims can

provide valuable insights into how different metrics can impact cut-point dependent and cut-

point independent movement behaviors as well as how this affects predictions of health, which

can in turn help in interpreting and comparing data analyzed in other studies.

Methods

Participants and procedure

This cross-sectional study used a Belgian sample of adults aged 25 to 64 years who were

employed for at least 50% per week and had no physical (e.g. amputations, paralysis, recent

stroke), cognitive (e.g. dementia, psychological disorders) or major medical (e.g. chronic respi-

ratory diseases, heart failure) conditions that obstruct daily functioning. This study was

approved by the ethical committee of Ghent University Hospital, and all participants provided

written informed consent prior to the study (ONZ-2022_0013). Participants visited Ghent

University Hospital once between 18th of April 2022 and 28th of March 2023. The following

variables were measured during the study visit: 24h-MBs, cardiometabolic variables, and socio-

demographic variables.
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Accelerometer-derived movement behavior features

To assess 24h-MBs, a tri-axial Actigraph wGT3x+BT was used to objectively quantify accelera-

tions in orthogonal directions of a three-dimensional space [6]. Participants wore the acceler-

ometer during the day on their right hip and at night on their nondominant wrist [6]. The

durations of waking up and going to bed were recorded in a diary. When participants removed

the device for water-based activities (e.g. swimming) or for other reasons (e.g. contact sports),

the duration was recorded in the diary. The accelerometer was initialized via Actilife software

and was set up to measure at a frequency of 100 Hz with 60-second epochs [6].

Cardiometabolic variables

Fasting blood samples were collected to analyze glucose (mg/dL), HbA1c (mmol/mol), total

cholesterol (mg/dL), high-density lipoprotein (HDL) cholesterol (mg/dL), low-density lipo-

protein (LDL) cholesterol (mg/dL), and triglyceride (mg/dL) levels. The LDL-C (mg/dL) con-

centration was calculated as follows: LDL-C = total cholesterol–HDL-C–(triglycerides/5).

Participants were instructed to refrain from eating eight hours before the visit. Blood pressure

(BP), i.e. systolic BP (SBP) and diastolic BP (DBP), were measured twice (at an interval of one

minute) in mmHg via an oscillometric device (OMRON M6 Comfort) on the right arm after

10 minutes of rest while the participant was in a seated position. Additionally, a TANITA SC-

240MA scale was used to measure weight in kilograms (to the nearest 0.1 kg), body mass index

(BMI;) in kg/m2), and fat percentage (%). Height in meters (to the nearest 0.01 m) was mea-

sured by a Seca 213. Hip circumference and waist circumference (WC) were measured to the

nearest 0.1 cm. Both measurements were used to calculate the waist-to-hip ratio, i.e.

WHR = WC in cm/hip circumference in cm. All these variables were measured twice with the

participants barefoot while wearing light clothes. A mean score was calculated for each vari-

able. Finally, medication intake (names and class) was assessed using the Anatomical Thera-

peutic Chemical classification codes to classify medication as glucose-lowering medication,

lipid-lowering medication or BP-lowering medication.

Sociodemographic variables

Sociodemographic variables, including age, sex, educational level, smoking status, and pathol-

ogy, were collected via a self-report questionnaire. Educational level was classified as low (pri-

mary or secondary school degree), middle (college degree) or high (university degree).

Smoking status was classified as smoker, non-smoker or ex-smoker. Pathology was defined as

having a diagnosis of a chronic condition (i.e. type 2 diabetes mellitus).

Movement behavior feature analysis

Movement behavior features (i.e. mean time spent in the 24h-MBs, overall activity volume and

intensity) were derived from raw accelerometer signals using the open source R package GGIR

[9]. Accelerometer data were processed four times, i.e. for each metric separately, with a con-

sistent GGIR script: 1) the ENMO metric, 2) the MAD metric, 3) the CPM VA metric, and 4)

the CPM VM metric [See S1 Table] [12, 13]. The GGIR package uses an autocalibration algo-

rithm that checks and corrects for calibration errors in triaxial accelerometer signals [12]. Acti-

graph files (n = 1) with a postcalibration error greater than 0.01 g were excluded [12].

Nonwear time was defined as a period of 60 minutes during which less than 13 mg for at least

two out of three axes was noted or the range of accelerations accumulated to less than 50 mg
[9]. Additionally, all the time periods indicated in the diary where participants removed the

device were classified as nonwear time [6]. Accelerometer data were considered valid if the
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device provided data for at least four days (including a minimum of three weekdays and one

weekend day) with a minimum of 16 valid wear-time hours a day [17].

First, the ENMO metric (default metric in GGIR) was used to analyze the raw accelerome-

ter data. The ENMO is calculated from the resultant vector of the measured orthogonal accel-

eration (three raw acceleration signals), adjusted for gravity by subtracting one gravitational

unit and rounding to zero [8, 12, 18]. The cut-points of Hildebrand and colleagues [18] were

used, i.e. light PA (LPA) (47 mg), moderate PA (MPA) (69 mg) and vigorous PA (VPA) (260

mg). Second, as the ENMO metric often suffers from calibration errors being too sensitive, the

MAD metric (which works with average subtractions) seems to better account for offsetting

signal noise [12]. MAD describes the distance of data points around the mean [19, 20]. The

cut-points of Vaha Ypya and colleagues [19, 20] were used, i.e. LPA (22.5 mg), MPA (94 mg),
and VPA (396 mg). Third, the new “activity counts” metric, which replicates the Actilife pro-

cess based on the recently published paper, was used [13]. This metric works with CPM cut-

points for the VA, as in Troiano and colleagues [21], i.e. LPA (100 CPM), MPA (2020 CPM),

and VPA (5999 CPM), as well as for VM, by applying the cut-points of Sasaki and colleagues

[22, 23], i.e. LPA (200 CPM), MPA (2690 CPM) and VPA (6166 CPM). These cut-points are

epoch length specific and need to be corrected by a conversion factor before using within the

GGIR package. As recommended, cut-points were divided by the epoch length in the new

study divided by the epoch length in the original validation study, i.e., CPM*(5/60) [9]. All

behaviors were represented in minutes a day (min/day) and weighted to represent an average

day (i.e. ((weekdays*5)+weekend days*2))/7).

In addition to the mean time spent in different intensities of movement behaviors, the over-

all activity volume and intensity gradient were calculated [10]. The overall activity volume is

the average acceleration accumulated in a 24h day represented in mg. The intensity gradient

and intercept refer to the intensity distributed over a 24h day. This is represented by an inter-

cept and gradient (slope) of the linear regression between the log of daily intensity and the log

of time in that intensity. A smaller intensity gradient (more negative, steeper slope) reflects a

more sedentary profile [10]. Both are directly measured and independent from population-

specific intensity-based cut-point validation studies. The average acceleration and intensity

gradient are moderately correlated with each other, providing insights into the amount of

activity or the intensity of the activity performed during a 24h day [10].

Sleep was calculated by the GGIR package using the time needed to wake up and go to bed,

as reported in the sleep diary. In the case of invalid sleep diary data, the HDCZA algorithm

was used to detect sleep period. The HDCZA algorithm detects the sleep period by searching

for periods of time during which the z-angle does not change by more than 5 degrees for at

least 5 minutes [24].

Statistical analysis

Participant characteristics are presented as the means and standard deviations (± SDs) for con-

tinuous data and proportions (%) for categorical data.

First, the single movement analysis included a intraclass correlation coefficient (ICC) esti-

mates, including 95% confidence intervals (single rater, absolute agreement, two way random)

and Bland–Altman plots (mean difference (±SD), limits of agreements, mean absolute per-

centage error), to determine differences between the metrics for 1) time spent in individual

movement behaviors (single movement analysis), 2) average acceleration and 3) intensity gra-

dient [25]. Due to the use of the same processing technique for sleep (each metric applies the

same sleep algorithm) making this comparative analysis for sleep redundant. Additional distri-

bution plots of these movement behavior features are presented in S1 Fig.

PLOS ONE 24-hour movement behaviors features, cardiometabolic health and guideline compliance

PLOS ONE | https://doi.org/10.1371/journal.pone.0309931 September 17, 2024 5 / 17

https://doi.org/10.1371/journal.pone.0309931


Compositional Data Analysis (CoDA) was used to account for the codependency of the

24h-MBs using the R packages compositions and codaredistlm [26, 27]. The 24h-MBs composi-

tions created by each accelerometer metric (consisting of sleep, SB, LPA, and MVPA) were

expressed as four sets of three isometric log-ratios (ILRs) [28]. Variation matrices were created

to explore the variance covariance of the 24h-MBs [see S2 Table] [28]. Linear mixed effects

models were used to explore differences between compositions. The dependent variables were

the ILRs, in long ‘stacked’ format with a dummy variable indicating whether they were ILR1,

ILR2 or ILR3. As described in Lim and colleagues [29], random slopes were added at the log

ratio level, grouped by participant ID, and repeated within participant ID (random intercept)

for each accelerometer metric composition. Fixed effect interactions between the metrics and

the dummy variable representing the ILR number were analyzed to test for differences

between the different accelerometer metrics (MANOVA F test). Full models included addi-

tional interactions to adjust for covariates.

Second, compliance with the 24h-MBs guidelines was calculated for each metric. Adults

were classified into one of the following categories: compliance with (1) no guidelines, (2) PA

guideline, (3) SB guideline, (4) sleep guideline, (5) PA+SB guidelines, (6) PA+sleep guidelines,

(7) SB+sleep guidelines, and (8) all three guidelines. Compliance with the guidelines was

defined as a sleep duration between 7 and 9 hours a day, sedentary time limited to 8 hours a

day and/or MVPA for 30 minutes a day [2, 30].

Third, linear regression models were fitted for each metric separately to explore associa-

tions between the 24h-MBs composition, average acceleration and intensity gradient as inde-

pendent variables and cardiometabolic variables as the dependent variable. The in-depth

analysis of these models are reported in the S1 File. Model assumptions of linearity, normality

of residuals, posterior predictive checks, influential observations, collinearity and homogeneity

of variance were evaluated using the performance package [31]. If the linear model did not

meet the assumptions, log-transformed cardiometabolic variables were used in the analysis.

The estimates, t-value, p-value and adjusted R2 were reported for associations between the

average acceleration and intensity gradient on the one hand and cardiovascular variables on

the other hand.

For the 24h-MBs composition the interpretation of the strength and directions of associa-

tions are plotted as time reallocations models. These predictions estimated the average differ-

ence in cardiometabolic health outcomes when time (e.g. -20 to +20 minutes) in one behavior

was proportionally exchanged with time in the remaining behaviors. To enhance the interpret-

ability of the time reallocation models, the log-transformed data were back-transformed to

their raw units prior to computing differences. The outcomes of the time reallocations are pre-

sented as the absolute differences between the estimated and the mean cardiometabolic vari-

able and the standardized effect size (ES), which is the absolute difference divided by the

standard deviation of the particular variable.

All models were adjusted for sex, age, educational level, smoking status, medication intake,

and pathology. Complete-case analysis was used in all models. All analyses were performed in

R version 4.1.1 [32]. A p value <0.05 was considered to indicate statistical significance.

Results

This study included data from 213 adults, 68.5% (n = 146) of whom were female, with a mean

age of 45.8 (SD = 10.8) years. Eighty-two adults (38.5%) were classified as normal weight (18–

24.99 kg/m2), 80 adults (37.6%) as overweight (25–29.99 kg/m2) and 51 adults (23.9%) as

obese (�30 kg/m2). Of the total sample of 213 adults, 22 adults were diagnosed with type 2 dia-

betes mellitus (10.3%). The mean wear time was 1424 min/day (SD = 38 min/day), and the
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mean number of valid days was 5.8 days (SD = 0.4). See Table 1 for additional participant

characteristics.

Comparison of movement behavior features

The single movement analysis exploring the time use of each behavior separately showed poor

agreement between the ENMO and any other metric for SB and LPA (ICC < 0.5, p<0.001).

Poor agreement was found between the CPM VM and MAD for LPA, as well as between the

CPM VA and MAD for MVPA (ICC < 0.5, p<0.001). Moderate to good agreement was found

between the CPM VA and the CPM VM for SB, LPA and MVPA (ICC 0.53–0.78, p<0.001).

Additionally, moderate to good agreement was found between the CPM VA and MAD for SB

and LPA (ICC 0.68–0.89, p<0.001) as well as between the CPM VM and MAD for SB and

MVPA (ICC 0.55–0.77, p<0.001). Finally, moderate to good agreement was found between

the ENMO and any other metric for MVPA (ICC 0.61–0.83, p<0.001). For the average accel-

eration and intensity gradient, poor agreement was found between all the metrics (ICC < 0.5,

p<0.001) except for the CPM VA versus MAD (ICC 0.70–0.84, p<0.001). Bland–Altman plots

revealed the greatest difference between ENMO and CPM VM, with wide limits of agreement

for SB (bias of +334 minutes) and LPA (bias of -325 minutes). The smallest limits of agreement

were found when comparing the CPM VA and MAD for SB and the CPM VA versus the CPM

VM for LPA (bias of -25 minutes and -52 minutes, respectively). Regarding MVPA, the widest

limits of agreement were found when comparing CPM VA with MAD (bias of -32 minutes),

and the smallest limits were found for CPM VM versus MAD (bias of -6 minutes). The average

acceleration and intensity gradient showed the widest limits of agreement for ENMO versus

CPM VM (bias of -44.5 mg for average acceleration and -0.6 for intensity gradient) and the

smallest for CPM VA versus MAD (bias of -2.4 mg for average acceleration and +0.1 for inten-

sity gradient) [S3 Table and Fig 1].

Considering the codependency of behaviors, the compositional analysis showed different

results according to the metrics. Significant differences were found between the four metrics

for the mean time spent on 24h-MBs (all p<0.001) [S4 Table]. Using ENMO resulted in 24h-

MBs compositions with the highest proportion of SB (59% for ENMO compared to 42% for

MAD, 40% for CPM VA and 35% for CPM VM). Regarding LPA, the CPM VM had the high-

est percentage of time spent in the LPA (25% for the CPM VM compared to 2% for the

ENMO, 17% for the MAD 22% for CPM VA). Finally, the highest proportion of MVPA in a

24h-MBs composition was found for MAD (5%), whereas lower proportions were found for

ENMO (3%), CPM VA (2%) and CPM VM (4%) [see Table 1].

Comparison of guideline compliance

All accelerometer measurements reported low compliance rates for the integrated guidelines

(i.e. complying with three guidelines), ranging from 0 to 6%, except for the CPM VM metric,

for which 25% of the adults complied with the three guidelines. With any of the guidelines,

15% of adults were classified as noncompliers according to the ENMO and CPM VA, whereas

2 to 4% of adults were classified as noncompliers according to the MAD and CPM VM

[S5 Table].

Comparison of associations between movement behavior features and

cardiometabolic variables

The time spent on 24h-MBs was significantly associated with BMI and HbA1c when ENMO

was used (BMI: F = 3.23, p = 0.02; HbA1c: F = 2.80, p = 0.04). Additionally, 24h-MBs composi-

tions were significantly associated with WC when using ENMO or MAD (F = 3.11, p = 0.03;
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Table 1. Sociodemographic, cardiometabolic and movement behavior characteristics of the total sample.

Total sample (n = 213)

Sex = female (n (%)) 146 (68.5)

Age (mean (SD)) 45.8 (10.8)

Education (n (%))

Low 51 (24.3)

Middle 90 (42.9)

High 69 (32.9)

Missing (n (%)) 3 (1.4)
Smoking (n (%))

Ex-smoker 33 (15.6)

non-smoker 164 (77.7)

Current smoker 14 (6.6)

Missing (n (%)) 2 (0.9)
BMI—kg/m2 (mean (SD)) 27.3 (5.5)

BMI category (n (%))

Normal weight 82 (38.5%)

Overweight 80 (37.6%)

Obesity 51 (23.9%)

WHR (mean (SD)) 0.9 (0.1)

WC—cm (mean (SD)) 94.8 (14.9)

Fat % (mean (SD)) 31.7 (9.2)

Missing (n (%)) 22 (10.3)
SBP—mmHG (mean (SD)) 122.1 (15.2)

DBP—mmHG (mean (SD)) 79.8 (9.5)

Glucose lowering medication = yes (n (%)) 22 (10.3)

Lipid lowering medication = yes (n (%)) 32 (15.0)

Blood pressure lowering medication = yes (n (%)) 38 (17.8)

HbA1c - mmol/mol (mean (SD)) 36.6 (6.3)

Missing (n (%)) 12 (5.6)
Glucose—mg/dL (mean (SD)) 89.2 (19.3)

Missing (n (%)) 6 (2.8)
Total cholesterol—mg/dL (mean (SD)) 189 (34.7)

Missing (n (%)) 3 (1.4)
HDL-Cholesterol—mg/dL (mean (SD)) 57.6 (12.8)

Missing (n (%)) 3 (1.4)
LDL-Cholesterol—mg/dL (mean (SD)) 111.7 (30.5)

Missing (n (%)) 3 (1.4)
Triglycerides—mg/dL (mean (SD)) 101.8 (78.1)

Missing (n (%)) 3 (1.4)
ENMO metric

Sleep* (min/day—%) 512 (36%)

SB* (min/day—%) 854 (59%)

LPA* (min/day—%) 34 (2%)

MVPA* (min/day—%) 40 (3%)

Average acceleration (mg) (mean (SD)) 18.66 (5.74)

Intensity gradient (mean (SD)) -2.22 (0.28)

Intensity intercept (mean (SD)) 12.34 (0.95)

Intensity R2 (mean (SD)) 0.89 (0.07)

(Continued)
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F = 2.75, p = 0.04, respectively). All 24h-MBs compositions, except for CPM VA, were signifi-

cantly associated with fat% (ENMO F = 3.20, p = 0.02; MAD F = 2.68, p = 0.05; CPM VM

F = 3.27, p = 0.02). For average acceleration, only MAD had a significant negative association

with BMI (t = -2.52, p = 0.01) and fat% (t = -2.03, p = 0.04), and a positive association with

WC (t = 3.68, p<0.001). The intensity gradient was negatively associated with BMI for ENMO

(t = -1.98, p = 0.05), MAD (t = -2.72, p<0.01) and CMP VA (t = -2.48, p = 0.01), as well as with

WC for MAD (t = -2.27, p = 0.02). However, the intensity gradient was positively associated

with BMI (t = 2.53, p = 0.01) and WC (t = 2.5, p = 0.01) for CPM VM. See S1 File for more in-

depth analysis of these linear models.

Table 1. (Continued)

Total sample (n = 213)

MAD metric

Sleep* (min/day—%) 516 (36%)

SB* (min/day—%) 608 (42%)

LPA* (min/day—%) 250 (17%)

MVPA* (min/day—%) 66 (5%)

Average acceleration (mg) (mean (SD)) 31.15 (9.29)

Intensity gradient (mean (SD)) -1.89 (0.22)

Intensity intercept (mean (SD)) 11.50 (0.84)

Intensity R2 (mean (SD)) 0.87 (0.07)

CPM VA metric

Sleep* (min/day—%) 516 (36%)

SB* (min/day—%) 581 (40%)

LPA* (min/day—%) 309 (22%)

MVPA* (min/day—%) 34 (2%)

Average acceleration (mg) (mean (SD)) 28.96 (10.43)

Intensity gradient (mean (SD)) -1.76 (0.19)

Intensity intercept (mean (SD)) 10.89 (0.80)

Intensity R2 (mean (SD)) 0.88 (0.07)

CPM VM metric

Sleep* (min/day—%) 517 (36%)

SB* (min/day—%) 498 (35%)

LPA* (min/day—%) 364 (25%)

MVPA* (min/day—%) 61 (4%)

Average acceleration (mg) (mean (SD)) 63.58 (18.12)

Intensity gradient (mean (SD)) -1.56 (0.12)

Intensity intercept (mean (SD)) 10.56 (0.62)

Intensity R2 (mean (SD)) 0.83 (0.06)

* Time spent in movement behaviors is part of a composition where variation matrices are plotted as traditional

variance–covariance [S2 Table]. SB: time spent in sedentary behavior, LPA: time spent in light physical activity,

MVPA: time spent in moderate to vigorous physical activity, mg: milligravitational unit, Average acceleration: proxy

of total volume of PA. The intensity gradient and intercept refer to the intensity distributed over a 24h day. This is

represented by the intercept and gradient (slope) of the linear regression between the log of daily intensity and the

log of time in that intensity. Intensity R2: R2 of the intensity gradient regression line. BMI: body mass index, WHR:

waist-to-hip ratio, WC: waist circumference, SBP: systolic blood pressure, DBP: diastolic blood pressure, HDL: high-

density lipid, LDL: low-density lipid. The Intensity-based cut-points thresholds for each metric are as follows: ENMO

Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA Troiano et al. (2008), and CPM VM Sasaki

et al. (2011).

https://doi.org/10.1371/journal.pone.0309931.t001
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Fig 1. Bland–Altman plots presenting the time use of single movement behaviors (SB, LPA, MVPA), average acceleration and intensity gradient

according to four metrics (ENMO, MAD, CPM VA, CPM VM). a) SB (min/day), b) LPA (min/day), c) MVPA (min/day), d) Average acceleration (mg), d)

Intensity gradient. The average measurements presented on the x-axis refer to the average of metric A and metric B, i.e. from left to right, ENMO versus MAD,

ENMO versus CPM VA, ENMO versus CPM VM, CPM VA versus MAD, CPM VA versus CPM VM, and CPM VM versus MAD. Black line: average

difference/bias between metrics; red lines: upper and lower limits of agreement. The Intensity-based cut-points thresholds for each metric are as follows:

ENMO Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA Troiano et al. (2008), and CPM VM Sasaki et al. (2011).

https://doi.org/10.1371/journal.pone.0309931.g001
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Discussion

This study revealed that the duration of daily movement behaviors, prevalence of guideline

compliance and relationship between movement behaviors and cardiometabolic variables dif-

fered depending on the metric used to analyze accelerometry data.

Differences between metrics were found in determining movement behavior features,

including cut-point-related times spent in single movement behaviors and cut-point-indepen-

dent features such as average acceleration and intensity gradient. The ENMO metric produced

the most sedentary time-use profile, average acceleration and intensity gradient, while the

CPM VM metric produced the most active time-use profile. CPM VA and MAD demonstrated

moderate to good agreement for all the features (time spent in SB and LPA, average accelera-

tion, intensity gradient), except for time spent in MVPA. When considering the codependency

of behaviors, all the 24h-MBs compositions were significantly different depending on the met-

ric used. Thus, the choice of reduction metric to process accelerometry data can lead to differ-

ent results and conclusions. As indicated by previous research in children and adults,

differences found in time-use estimates are attributable to intensity-based cut-points accompa-

nied by the metric [14, 15, 33–35]. Our study showed that cut-point independent features (i.e.

average acceleration and intensity gradient) can also exhibit poor agreement between most

metrics. Despite the main advantage of comparability across cohorts and accelerometers, cau-

tion is warranted when comparing them across metrics (ENMO, MAD, CPM VA, CPM VM)

[10]. As our study did not attempt to validate one method above another, we are unable to

make recommendations about metric selection. Nevertheless, in our study, the ENMO metric

(Hildebrand and colleagues cut-point [18]) led the most disparate, and perhaps unrealistic,

estimates of SB and LPA. Future research is necessary to further explore the most appropriate

metric and cut-point for hip-worn data.

The discrepancies in estimates of time spent in movement behaviors, as measured by vari-

ous metrics, have direct implications for estimates of compliance with the 24h-MBs guidelines.

This observation aligns with existing research emphasizing the influence of the chosen cut-

point on the prevalence of compliance [14, 34]. Previous research has reported a 7% full com-

pliance rate among adults using CPM cut-points, where people who complied with all three

guidelines had more favorable health parameters, such as BMI, WC, triglycerides, insulin, and

glucose levels [1, 36]. Movement behavior guidelines are considered comprehensible for the

general population, but in research, we must be aware of the rigidity of such guidelines and the

potential consequences of categorizing individuals based on minute deviations. Cut-point

dependent time-use estimates are features that are easily interpretable in compliance with the

established guidelines, however, the cut-point independent average acceleration and intensity

gradients are not. Therefore, recent research has attempted to improve the interpretability and

ease of use of these features [37]. Rowlands et al. (2021) proposed a preliminary minimal clini-

cally detectable difference recommendation of 1 mg (comparable with 5 minutes of brisk walk-

ing) in daily average acceleration for wrist-worn data to gain health benefits among inactive

adults [38]. Nevertheless, additional research is needed to confirm these results [38]. More-

over, Schwendinger et al. (2023) developed reference values and percentile curves for wrist-

worn accelerometer data to use average acceleration and intensity gradient estimates in healthy

adults [11]. Since accelerations are known to differ depending on the wear location (e.g. hip

versus wrist) [11, 15, 39], the results of this study could not be compared with these percentile

curves. Future research should look into developing similar percentile curves for hip-worn

accelerometry. Despite the absence of reference values for hip-worn accelerometer data, the

strength of the correlation between average acceleration and intensity, as well as the duration

of LPA or MVPA, provides additional insights into health associations related to both the
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quantity and intensity of activity [10, 37]. The independence of the intensity gradient com-

pared to cut-point dependent time use at different intensities has previously been reported,

evidenced by a smaller magnitude of correlation between the intensity gradient and LPA and

MVPA compared to a higher correlation between intensity gradient and average acceleration

[10, 40]. Moreover, both the intensity gradient and average acceleration were more strongly

associated with MVPA than with LPA, indicating a better capture of higher intensities [10, 40].

While the general trends in associations between 24h-MBs composition and cardiometa-

bolic health were similar across all metrics, the strength of associations and type of behavior

involved in the associations varied depending on the metric used. The ENMO metric showed

the most associations with different cardiometabolic health variables (BMI, WC, HbA1c and

fat%), whereas MAD was only associated with WC and fat% and CPM VM was only associated

with fat%. Other research has shown significant associations for BMI, WC and fat% when

MAD and CPM VA were used [41–43]. Additionally, the behavior within the total composi-

tion (sleep, SB, LPA, MVPA) that was significantly associated with a cardiometabolic health

variable differed depending on the metric used. In general, MVPA predicted the strongest

health improvements, and these predictions were most consistent across metrics, except for

some inconsistent results for fat%. These results are comparable with a recent review highlight-

ing the greatest health effects when reallocating time toward MVPA, where evidence for reallo-

cating time into LPA as well as out or into sleep is more inconclusive [44]. In this study, the

composition retrieved from the ENMO metric seemed to have unrealistic results regarding

time spent in LPA and SB which in turn might affect the associations. Furthermore, differences

between metrics were found for associations with cut-point independent features (average

acceleration and intensity). All the metrics showed significant associations with the intensity

gradient and BMI, but the directions of association were different. As studies reporting the

association between these newer cut-point independent movement behavior features and car-

diometabolic health are limited [45, 46], this paper emphasizes the potential impact of the

selected metrics when comparing results with other research.

This is the first study comparing average acceleration and intensity gradients derived from

different metrics among an adult population (n = 213). Additionally, this is the first study com-

paring the new CPM metric developed by GGIR developers to replicate the Actilife process

[13]. Perfect reproducibility across the four metrics was ensured by the use of the GGIR pack-

age, which allows for consistent data reduction features, i.e. autocalibration, sleep algorithm,

and nonwear detection methods. For each metric a commonly used cut-point was chosen to

classify activity intensities. Although commonly used cut-points were selected, other cut-points

are available, which are all based on a specific validation protocol in a specific sample. Using

other cut-points might provide other results. Future research should focus on newer Machine

Learning Techniques to classify movement behavior patterns, which can align accelerometer

data with for example heart rate variability to accurately classify activities [47]. Next, adults were

categorized as noncompliant with SB guidelines if they exceeded the threshold of 8 hours per

day, as per the Canadian Society of Exercise Physiology guidelines. However, the use of the spe-

cific threshold has been criticised as it is largely underpinned by cross-sectional evidence [2].

Therefore guideline compliance in this paper should be interpreted with caution. Finally, only

hip-worn data for the waking day were used in this study, which hinders comparison with stud-

ies using wrist-worn data due to differences in acceleration based on body location [15].

Conclusion

Depending on the chosen metric, differences were found for cut-points dependent (time use

estimates) and cut-point independent (average acceleration and intensity gradient) movement
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behavior features. The ENMO metric classified adults with the most sedentary behavior pro-

files as CPM VM metric had the highest activity profiles, both with implications for guideline

compliance prevalence and associations with cardiometabolic variables. However, classifica-

tion of SB and LPA seemed the least realistic when the ENMO metric was used. Researchers

should be aware of the implications of metric choice in data processing for data interpretation

and comparability across studies.

Supporting information

S1 Fig. Distribution plots of movement behavior features. SB: sedentary behavior, LPA:

light physical activity, MVPA: moderate to vigorous physical activity, ENMO: Euclidian Norm

Minus One, MAD: Mean Amplitude Deviation, CPM VA: Counts Per minute Vertical Axis,

CPM VM: Counts Per Minute Vector Magnitude.

(PDF)

S1 Table. Table with accelerometer data processing metrics used to analyze movement

behavior features.

(DOCX)

S2 Table. Variation matrix representing the codependency between the 24h-MBs among

adults. SB: sedentary behavior, LPA: light physical activity, MVPA: moderate to vigorous

physical activity; a variation value close to zero indicates that two behaviors are highly propor-

tional, i.e. codependent, which means that as one behavior varies, the other behavior similarly

increases or decreases. The intensity-based cut-points thresholds for each metric are as follows:

ENMO Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA Troiano et al.

(2008), and CPM VM Sasaki et al. (2011).

(XLSX)

S3 Table. Intraclass correlations and mean differences between different metrics regarding

single movement time use, average acceleration and intensity gradient. ICC (95% CI):

intraclass correlation coefficient (95% confidence interval), MD: mean difference between two

metrics, SD: standard deviation of the mean difference, LOA: limit of agreement, MAPE:

mean absolute percentage error. The intensity-based cut-points thresholds for each metric are

as follows: ENMO Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA

Troiano et al. (2008), and CPM VM Sasaki et al. (2011).

(XLSX)

S4 Table. Significant differences in 24h-MBs composition according to four metrics

(ENMO, MAD, CPM VA, and CPM VM). Linear mixed models were used to take into

account the compositional data represented by isometric log ratios per composition stacked

within the participant The intensity-based cut-points thresholds for each metric are as follows:

ENMO Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA Troiano et al.

(2008), and CPM VM Sasaki et al. (2011).

(XLSX)

S5 Table. Compliance with 24h-MBs guidelines according to four metrics (ENMO, MAD,

CPM VA, CPM VM). SB: sedentary behavior, LPA: light physical activity, MVPA: moderate

to vigorous physical activity. The Intensity-based cut-points thresholds for each metric are as

follows: ENMO Hildebrand et al. (2014), MAD Vaha Ypya et al. (2018, 2023), CPM VA

Troiano et al. (2008), and CPM VM Sasaki et al. (2011).

(XLSX)
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S1 File. Associations between time use features and cardiometabolic variables. This docu-

ment contains a more in-depth analysis to explore the impact of the metric on the associations

between the cut-point dependent movement behaviors features (time use estimates in SB,

LPA, MVPA) and the cut-point independent movement behaviors (average acceleration,

intensity gradient) on one hand and the cardiometabolic variables on the other hand.

(DOCX)

S2 File. Configuration file for data processing in GGIR regarding ENMO. The same config-

uration was replicated for MAD, Counts Per Minute Vetrical Axis, Counts Per Minute Vector

Magnitude. See S1 Table for different specifications in GGIR regarding each metric.

(CSV)
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