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Abstract

Background: Wearable activity trackers, including fitness bands and smartwatches, offer the potential for disease detection by
monitoring physiological parameters. However, their accuracy as specific disease diagnostic tools remains uncertain.

Objective: This systematic review and meta-analysis aims to evaluate whether wearable activity trackers can be used to detect
disease and medical events.

Methods: Ten electronic databases were searched for studies published from inception to April 1, 2023. Studies were eligible
if they used a wearable activity tracker to diagnose or detect a medical condition or event (eg, falls) in free-living conditions in
adults. Meta-analyses were performed to assess the overall area under the curve (%), accuracy (%), sensitivity (%), specificity
(%), and positive predictive value (%). Subgroup analyses were performed to assess device type (Fitbit, Oura ring, and mixed).
The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Diagnostic Test Accuracy Studies.

Results: A total of 28 studies were included, involving a total of 1,226,801 participants (age range 28.6-78.3). In total, 16 (57%)
studies used wearables for diagnosis of COVID-19, 5 (18%) studies for atrial fibrillation, 3 (11%) studies for arrhythmia or
abnormal pulse, 3 (11%) studies for falls, and 1 (4%) study for viral symptoms. The devices used were Fitbit (n=6), Apple watch
(n=6), Oura ring (n=3), a combination of devices (n=7), Empatica E4 (n=1), Dynaport MoveMonitor (n=2), Samsung Galaxy
Watch (n=1), and other or not specified (n=2). For COVID-19 detection, meta-analyses showed a pooled area under the curve
of 80.2% (95% CI 71.0%-89.3%), an accuracy of 87.5% (95% CI 81.6%-93.5%), a sensitivity of 79.5% (95% CI 67.7%-91.3%),
and specificity of 76.8% (95% CI 69.4%-84.1%). For atrial fibrillation detection, pooled positive predictive value was 87.4%
(95% CI 75.7%-99.1%), sensitivity was 94.2% (95% CI 88.7%-99.7%), and specificity was 95.3% (95% CI 91.8%-98.8%). For
fall detection, pooled sensitivity was 81.9% (95% CI 75.1%-88.1%) and specificity was 62.5% (95% CI 14.4%-100%).

Conclusions: Wearable activity trackers show promise in disease detection, with notable accuracy in identifying atrial fibrillation
and COVID-19. While these findings are encouraging, further research and improvements are required to enhance their diagnostic
precision and applicability.

Trial Registration: Prospero CRD42023407867; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=407867

(JMIR Mhealth Uhealth 2024;12:e56972) doi: 10.2196/56972
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Introduction

As health care budgets around the world continue to soar, the
need for cost-effective interventions that both reduce health
care costs and improve patient outcomes has never been more
urgent [1]. Early detection of medical conditions offers a
pathway to achieve these goals, enabling prompt intervention
during acute medical events or even pre-emptive action before
such events occur [2]. Wearable activity monitors are emerging
as a potential tool in this evolving landscape.

In recent years, wearable activity trackers have become
ubiquitous tools, widely adopted for tracking and enhancing
physical activity and other lifestyle behaviors, helping to
mitigate the risk of chronic diseases [3]. These devices measure
a plethora of activity metrics such as steps taken, distance
covered, energy expenditure, physical activity intensities, and
sleep patterns [4]. The scientific literature has witnessed a surge
in original studies and systematic reviews and meta-analyses,
focused on determining the reliability and validity of activity
trackers for measuring activity levels [5,6] and their
effectiveness in intervening in daily activity patterns and
downstream health outcomes [7-12]. These studies have shown
that interventions using consumer-based wearable activity
trackers can increase physical activity participation and lead to
significant improvements in health outcomes, across a range of
populations [7-12]. As wearable technology has progressed,
wearable activity trackers offer increasing potential to move
beyond activity metrics and aid in the early identification of
diseases and other medical events.

Rapid technological advancements have significantly extended
the capabilities of contemporary consumer-grade wearable
activity trackers such as Fitbits and Apple Watches [13]. Modern
wearables incorporate sophisticated sensors capable of
monitoring a wide array of physiological parameters beyond
just movement including heart rate, blood oxygen levels, sleep
quality, and stress markers [14]. While this expanded
functionality holds promise for disease detection and monitoring,
the evidence supporting the use of consumer wearables for such
applications remains limited. For example, the systematic review
by Alban-Cadena et al [15] evaluated wearable sensors for
monitoring Parkinson disease–related gait impairments and
symptoms such as tremors, bradykinesia, and dyskinesia.
However, most included studies were very small (10-20
participants) and were conducted in controlled laboratory
environments using specialized setups such as multi-sensor
accelerometer arrays worn on the ankles and spine. While
offering the potential for home-based rehabilitation, the
generalizability of these findings to widely adopted,
consumer-oriented wearable trackers designed for real-world,
free-living conditions is unclear.

Other recent systematic reviews have evaluated the accuracy
of wearable tracking devices for detecting specific health
conditions such as arrhythmias [16], cardiovascular disease
[17,18], and COVID-19 [19]. However, these reviews have
notable limitations. Most included studies were conducted in
controlled laboratory settings, limiting the generalizability of
their findings to real-world, free-living conditions [16,17,19].

Additionally, these reviews focused narrowly on individual
clinical outcomes, preventing comparisons of wearables’
detection accuracy across different medical conditions and
events. For example, the narrative syntheses highlighted
wearables’ potential as complementary tools for detecting
cardiovascular conditions such as arrhythmias, atrial fibrillation,
myocardial infarction, and heart failure [16,17]. The
meta-analysis of Lee et al [18] of 26 studies found wearable
devices had a pooled sensitivity of 94.80% and specificity of
96.96% for atrial fibrillation detection. In contrast, Cheong et
al [19] reported lower diagnostic accuracy for COVID-19
detection, with area under the curve (AUC) values ranging from
75% to 94.4% and sensitivity and specificity ranging from
36.5% to 100% and 73% to 95.3%, respectively. Notably, all
but one review [18] used narrative synthesis approaches
[16,17,19], limiting their ability to quantify detection accuracy,
and preventing readers from comparing detection accuracy
across conditions reported in the respective reviews.

As wearable technology rapidly evolves, with frequent
introductions of new and more advanced devices, the scientific
evidence base for disease detection is growing, encompassing
a wider range of medical conditions and events. Consequently,
there is now sufficient data to warrant a comprehensive
systematic review with meta-analyses, allowing quantitative
comparisons of wearables’ detection accuracy across various
conditions in real-world settings.

Our systematic review and meta-analysis aim to fill this crucial
gap by comprehensively assessing the reliability and accuracy
of consumer-grade wearable activity trackers for detecting and
monitoring a wide range of medical conditions and events in
free-living, real-world settings. Unlike previous reviews that
relied on narrative synthesis approaches, our quantitative
meta-analyses will allow for robust comparisons of wearables’
diagnostic performance across diverse conditions and events.
By rigorously evaluating evidence from studies conducted in
real-world contexts, our review will provide evidence to guide
the responsible and effective implementation of wearable
technology for early detection and continuous health monitoring
by researchers, health care providers, policy makers, technology
companies, and other stakeholders. As consumer adoption of
wearables continues to rise rapidly worldwide, our
comprehensive synthesis will assist in harnessing their potential
while mitigating risks and ensuring appropriate use.

Methods

Protocol and Registration
The protocol for this systematic review was prospectively
registered on PROSPERO (ID CRD42023407867) and this
paper is reported according to PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) [20]
guidelines.

Selection Criteria and Search Strategy
The inclusion criteria are summarized in Table S1 in Multimedia
Appendix 1. The inclusion criteria were developed using the
population, exposure, outcomes, and study type criteria as
follows: adult population (aged 18 years or older) in free-living
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conditions, that have not been recruited based on a specific
health condition or diagnosis; use of a wearable activity tracker
(eg, Fitbit, Apple Watch, or a research-grade accelerometer)
for the detection of any disease or medical event (eg, atrial
fibrillation, the onset of infectious disease, and falls). To be
eligible, the wearable activity tracker had to be able to detect
movement behavior (ie, include an accelerometer), but could
also include other types of sensors (eg, light sensor and
temperature sensor). The wearable activity tracker had to consist
of a single device worn on a single body location (eg, on the
wrist or chest, not across both); studies needed to assess the
actual diagnosis of a medical condition or occurrence of events
that had clinical relevance (eg, falls). Eligible studies are needed
to report an outcome related to diagnostic accuracy, such as
specificity or sensitivity of the device for early detection of
disease or medical events. Examples could include but were
not limited to, providing effect estimates of overall diagnostic
accuracy (%), sensitivity (%), and specificity (%) with 95%
CIs; and validation studies conducted under free-living
conditions that were reported in a peer-reviewed journal study
were included. This included secondary analyses conducted
within the context of observational studies, experimental studies,
or quasi-experimental studies. Both consumer-initiated studies,
where existing consumers who had purchased their own
wearables were invited to join a study, and researcher-initiated
studies, where researchers recruited participants and provided
them with wearables, were included, as they represent 2
complementary real-world contexts in which wearable devices
are often implemented for disease detection and monitoring.
Studies were included only if they evaluated wearable devices
provided by health care providers or researchers as part of a
formal monitoring program, and the detection of a specific
clinical event or disease was a prespecified outcome measure
of the study. Studies examining consumer-driven self-tracking
with personal wearables outside of a health care context were
excluded. The following were also excluded: studies involving
children or adolescents, studies examining symptoms within
people known to have a specific disease, wearable devices that
cannot track activity levels (eg, continuous glucose monitors),
studies evaluating an array of wearable sensors worn at multiple
body locations (eg, watch plus skin patch) or pedometers, studies
measuring the association between an exposure and an outcome
(eg, using odds ratios, relative risk, and hazard ratios), lab- or
hospital-based studies, and conference abstracts or dissertations.

Ten databases were searched (CINAHL, Cochrane Library,
Embase via OVID, MEDLINE via OVID, Emcare via OVID,
JMIR Publications, ProQuest Central, ProQuest Nursing and
Allied Health Source, PsycINFO, and Scopus) using subject
heading, keyword, and MeSH (Medical Subject Headings) term
searches for terms related to “wearable device” and “detection”
(see Table S2 in Multimedia Appendix 1 for the full search
strategy). We intentionally used broad search terms to ensure
a comprehensive capture of the evidence base, including all
types of medical conditions and events, without restricting our
search to predefined diagnostic or event outcomes. Database
searches were limited to peer-reviewed journal studies published
in English from inception to April 1, 2023.

Data Management and Extraction
Search results were imported into ASReview (version 2.0;
ASReview Community), an open-source software artificial
intelligence tool designed for screening studies for systematic
reviews. Title or abstract screening was conducted in ASReview
by paired independent reviewers (BS and DD, RC, TF, JB, IW,
KS, CS, AM, or EE). The software uses an active learning
algorithm that iteratively selects the most relevant studies for
inclusion based on the initial judgments made by the research
team. The screening was stopped when 100 consecutive
nonrelevant studies were screened. Following title or abstract
screening, results were then imported to EndNote X9 (Clarivate)
where duplicates were removed and then exported into
Covidence (Veritas Health Innovation) for full-text screening,
data extraction, and risk of bias scoring which was completed
in duplicate by paired independent reviewers (BS and DD, RC,
TF, JB, IW, KS, CS, AM, or EE), with disagreements resolved
by discussion.

Data were extracted in duplicate by paired independent
reviewers (BS and DD, RC, TF, JB, IW, KS, CS, AM, or EE)
using a standardized extraction form in Covidence. The risk of
bias in the included reviews was assessed by 2 independent
reviewers in duplicate using the Joanna Briggs Institute (JBI)
Critical Appraisal Checklist for Diagnostic Test Accuracy
Studies. Studies were rated out of nine for the following items:
(1) enrollment of consecutive or random sample, (2) the
avoidance of a case-control design, (3) inappropriate exclusions,
(4) the interpretation of index test results, (5) the prespecification
of thresholds, (6) reference standard classification, (7) the
interpretation of reference standard, (8) timing of tests, and (9)
analysis.

Data Synthesis and Analysis
For each meta-analysis, data were combined at the study level.
Separate meta-analyses were performed for (1) COVID-19
detection, (2) atrial fibrillation or arrhythmia detection, and (3)
fall detection. Outcomes of interest were analyzed and data were
pooled using sensitivity (%), specificity (%), AUC (%), accuracy
(%), and positive predictive value (PPV), with 95% CIs as the
effects measures. Sensitivity (%) denotes the percentage of
individuals with the disease or condition correctly identified by
the test, while specificity (%) represents the percentage of those
without the disease or condition correctly identified as negative.
The AUC (%) quantifies the test’s overall diagnostic accuracy,
ranging from 0% to 100%, with higher values indicating better
performance. Accuracy (%) reflects the proportion of all tests
accurately classified, and PPV (%) indicates the likelihood that
a positive test result correlates with the disease or condition
being tested for. If 95% CIs were not reported in a study, they
were calculated based on available data, using recommended
formulas [21]. Publication bias was evaluated using funnel plots
of effect sizes and standard errors and evaluating for
asymmetries or missing sections within the plot, for
meta-analyses that involved more than 10 studies. The Cochran

Q test was used to assess statistical heterogeneity and the I2

statistic was used to quantify the proportion of the overall
outcome attributed to variability. The following cut-off values

for the I2 statistic were used: 0% to 29%=no heterogeneity; 30%
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to 49%=moderate heterogeneity; 50% to 74%=substantial
heterogeneity; and 75% to 100%=considerable heterogeneity
[22]. Subgroup analyses were undertaken to evaluate device
type (Fitbit, Apple watch, Oura ring, and others) for outcomes
that had at least 2 studies in each subgroup. Sensitivity analyses
for the meta-analysis were performed by removing the study
with the lowest sensitivity, specificity, AUC, accuracy, or PPV.
All meta-analyses were performed using Stata/MP (version 16;
StataCorp).

The overall level of evidence was graded using the Oxford
Centre for Evidence-Based Medicine 2011 Levels of Evidence,
as follows: grade A: consistent level 1 studies (ie, individual
randomized controlled trials); B: consistent level 2 (ie, individual
cohort studies) or 3 studies (ie, individual case-control studies)
or extrapolations from level 1 studies; C: level 4 studies (ie,
case series) or extrapolations from level 2 or 3 studies; or D:
level 5 (ie, expert opinion without explicit critical appraisal)
evidence or inconsistent or inconclusive studies of any level
[23]. Each outcome of interest was assigned a “Grade of
Recommendation” based on meeting these criteria.

Deviations From the Registered Protocol
We planned to use the Effective Public Health Practice Project
Quality Assessment Tool to assess study quality and risk of
bias. However, during data extraction and quality assessment,
we opted to use the JBI Critical Appraisal Checklist for
Diagnostic Test for Accuracy Studies, as this instrument was
more relevant to the included studies. Further, we were unable
to conduct subgroup analyses for the type of wearable for atrial

fibrillation and fall detection, due to an insufficient number of
studies.

Results

Overview
Of the 21,429 records identified following the database search,
28 were eligible (see Figure 1 for PRISMA flowchart including
reasons for exclusions; see Table S3 in Multimedia Appendix
1 for a complete list of full texts that were excluded during the
final stage of screening, with reasons). An overview of all
included study’s characteristics is shown in Table S4 in
Multimedia Appendix 1. There was a total of 1,226,801
participants (median sample size 264, IQR 96-8338; range
29-455,699). Median participant age was 47.3 (IQR 36.6-66),
between 28.6 and 78.3, years and 21 (75%) studies involved
female and male participants (gender was not reported in 7
(25%) studies). A total of 16 (57%) studies evaluated
COVID-19, 5 (18%) studies evaluated atrial fibrillation, 3 (11%)
studies assessed a broad range of cardiac arrhythmias, 3 (11%)
studies assessed falls, and 1 (3.6%) study assessed viral
symptoms. The devices used in the studies were Fitbit (n=6),
Apple Watch (n=6), Oura ring (n=3), a combination of various
devices (ie, studies that used a combination of the Apple Watch,
Fitbit, Garmin, and other devices; n=7), Empatica E4 (n=1),
Dynaport MoveMonitor (n=2), Samsung Galaxy Watch (n=1),
and other or not specified (n=2). The median score for the JBI
Critical Appraisal Checklist for Diagnostic Test Accuracy
Studies was 6 (IQR 5-7; range 1-9) out of 9 (Table S5 in
Multimedia Appendix 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

There was sufficient data in the included studies to conduct
meta-analyses for the following clinimetrics: (1) COVID-19
detection (accuracy, %; sensitivity, %; AUC, %; and specificity,

%), (2) atrial fibrillation detection (PPV, %; sensitivity, %; and
specificity, %), and (3) falls detection (sensitivity, %; and
specificity, %).
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Meta-Analysis Results

COVID-19 Detection
Meta-analysis results of AUC, accuracy, sensitivity, and
specificity for COVID-19 detection are shown in Figure 2.
Meta-analyses of 9 studies showed a pooled AUC of 80.15%
(95% CI 71.03%-89.27%) and 5 studies had a pooled accuracy
of 87.54% (95% CI 81.57%-93.51%). Pooled sensitivity from
8 studies was 79.53% (95% CI 67.73%-91.33%), and 7 studies
showed a pooled specificity of 76.79% (95% CI
69.44%-84.13%).

Subgroup analysis for device type for sensitivity and specificity
are shown in Figures S6 and S7 in Multimedia Appendix 1,

respectively. A summary of sensitivity and specificity for the
different devices is shown in Figure 3. Overall, the Fitbit had
a sensitivity and specificity of 75.39% and 90.60%, respectively,
the Oura ring had a sensitivity and specificity of 80.47% and
72.60%, respectively, and combined devices had a sensitivity
and specificity of 82.69% and 74.62%, respectively.

The results of sensitivity analyses are shown in Figure S3 in
Multimedia Appendix 1. Following the removal of the
worst-performing study, AUC was 84.10%, accuracy was
88.65%, sensitivity was 85.62%, and specificity was 78.57%.

Grade of recommendation: (B) consistent level 2 studies
supporting the use of wearable activity trackers for the detection
of COVID-19.

Figure 2. Meta-analysis of accuracy, sensitivity, AUC, and specificity of wearable activity trackers for detection of COVID-19. AUC: area under the
curve.
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Figure 3. Overview of sensitivity and specificity for the different devices for COVID-19 detection.

Atrial Fibrillation Detection
Pooled analyses of PPV, sensitivity, and specificity for atrial
fibrillation detection are shown in Figure 4. Meta-analysis of 4
studies showed a combined PPV of 87.43% (95% CI
75.74%-99.12%). Pooled sensitivity was 94.22% (95% CI
88.68%-99.77%; 4 studies) and pooled specificity was 95.28%
(95% CI 91.80%-98.77%; 4 studies).

The results of sensitivity analyses are shown in Figure S4 in
Multimedia Appendix 1. Following the removal of the
worst-performing study, PPV was 93.64%, sensitivity was
97.28%, and specificity was 95.55%.

Grade of recommendation: (B) consistent level 2 studies
supporting the use of wearable activity trackers for the detection
of atrial fibrillation.
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Figure 4. Meta-analysis of PPV, sensitivity, and specificity of wearable activity trackers for detection of AF and AR. AF: atrial fibrillation; AR:
arrhythmia; PPV: positive predictive value.

Falls Detection
Meta-analysis results of sensitivity and specificity for fall
detection are shown in Figure 5. Meta-analyses of 2 studies
showed a specificity of 62.54% (95% CI 14.43%-100%) and a
sensitivity of 81.89% (95% CI 75.07%-88.17%). There was an

insufficient number of studies for subgroup analyses of device
type and sensitivity analyses for fall detection.

Grade of recommendation: (D) inconsistent or inconclusive
studies of any level for the use of wearable activity trackers to
predict falls.
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Figure 5. Meta-analyses of sensitivity and specificity of wearable activity trackers for detection for fall detection.

Discussion

Principal Findings
In this study, we set out to systematically review and
meta-analyze the current evidence regarding wearable activity
trackers’ ability to detect medical conditions and events under
free-living conditions. To date, the majority of studies have
focused on the detection of COVID-19, with a smaller number
of studies focused on cardiac conditions and falls. For
COVID-19 detection, the devices generally demonstrated good
sensitivity and specificity. The most promising results were
found for the detection of atrial fibrillation, for which the
wearables showed high sensitivity and specificity. Whereas, for
fall detection, the present findings devices showed moderate
sensitivity but lower specificity. These findings indicate that
while these devices are becoming more dependable for
monitoring specific health conditions, their performance varies
depending on the condition being detected.

The current body of evidence on the diagnostic potential of
wearable activity trackers is notably skewed toward COVID-19
detection, a focus that is understandable given the pandemic’s
global impact and the consequent urgent need for monitoring
solutions. Researching the feasibility of detecting COVID-19
through wearables holds appeal due to the availability of widely
used reference standards. Rapid and polymerase chain reaction
tests, widely used, allow for easy self-reporting of COVID-19
diagnoses by many individuals. In contrast, accessing a reliable
gold standard for other health outcomes poses significant
challenges. However, what was surprising to note is the limited
number of studies exploring these trackers for other health
conditions, especially given that numerous wearables advertise

features such as sleep apnea detection—a topic noticeably absent
in our findings. Our extensive database search identified only
a handful of studies each related to cardiac issues and falls. This
gap in the literature is striking considering the wide array of
health conditions that could theoretically be monitored using
wearable technology, given their ability to capture data related
to heart rate, movement, skin temperature, and more. Such
capabilities would suggest that a broad spectrum of medical
conditions could be measured, spanning cardiovascular and
respiratory conditions to neurological and psychological
disorders. It is important to note that we intentionally focused
on the accuracy of data collected in free-living conditions (with
a view to understanding current-day diagnostic capabilities).
We note numerous laboratory-based studies that were excluded
(eg, [24] and [25]) suggesting that a wider range of diagnostic
outcomes may become available in the future. Furthermore,
many studies were excluded because they focused on monitoring
symptoms in people with a known diagnosis (eg, seizures in
people with epilepsy [26], and freezing gait in Parkinson disease
[27]) which was outside the scope of this study, but highlights
wearable activity trackers’ potential for medical condition
monitoring.

This study revealed that wearable activity trackers demonstrate
moderate to high sensitivity and specificity for COVID-19
detection. It is interesting to compare our results with those for
other COVID-19 screening tests. A systematic review by Mistry
et al [28] on lateral flow devices (LFD) tests (also known as
rapid antigen tests) evaluated 24 papers across 8 different LFD
brands, covering over 26,000 test results. Their findings
indicated that sensitivity ranged from 37.7% to 99.2% and
specificity ranged from 92.4% to 100% [28]. Comparatively,
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this study’s pooled sensitivity for wearable-detected COVID-19
was 79.5% (range 51.3%-100%), which is in line with the LFD
results. However, our specificity of 76.8% (range 63%-90.6%)
was slightly lower. According to UK government guidelines,
the benchmarks for COVID-19 workplace screening are ≥68%
for sensitivity and ≥97% for specificity [29]. This suggests that
while wearable activity monitor detection meets the sensitivity
criterion, it falls short on specificity.

The most promising results were observed for the detection of
atrial fibrillation, with figures that compare favorably to other
clinical tests. For example, the sensitivity and specificity of a
12-lead electrocardiogram for detecting atrial fibrillation have
previously been shown to range between 93% and 97% [30,31],
which appears similar to our sensitivity and specificity of 94.2%
and 95.3%, respectively. Over the course of 2022-2023, major
brands, such as Fitbit [32], Apple Watch [33], Garmin [34], and
Samsung [35], received approval from the US Food and Drug
Administration for their atrial fibrillation detection features.
The relatively higher accuracy in identifying cardiac arrhythmias
as compared to COVID-19 is perhaps expected, given that
cardiac functions can be deduced from wearables’ optical
heart-rate sensors. In contrast, COVID-19 detection usually
requires intricate algorithms that amalgamate multiple data
points [36,37].

While wearable activity trackers demonstrated effectiveness in
detecting cardiac arrhythmia and COVID-19, our meta-analysis
revealed that their accuracy in detecting falls was only moderate.
The devices were generally effective in identifying actual falls,
with a sensitivity of 81.9%. However, they also generated a
significant number of false positives, as evidenced by a lower
specificity of 62.5%. This aligns with existing literature on the
subject [38,39]. It is crucial to note that our review specifically
focused on the performance of these devices in real-world
conditions among the general population. Most existing studies
on fall detection with wearables have been conducted in
controlled laboratory settings using simulated falls, where
accuracy has generally been higher [38,39]. The false positives
in fall detection are likely due to the devices relying on
accelerometry data, which can misinterpret other rapid
downward movements as falls. Further research is needed to
refine the algorithms used in these devices to improve their
performance in fall detection. Future studies might incorporate
additional metrics, such as rapid changes in heart rate or galvanic
skin response, which may accompany a fall, to enhance
accuracy.

This study offers several significant strengths, including being
the first systematic review and meta-analysis focused on the
real-world accuracy of wearable activity trackers in detecting
medical conditions and events. The review analyzed a robust
data set from 28 studies, involving over 1 million participants,
enabling a comprehensive meta-analysis of various outcomes.
Instead of limiting our focus to specific diagnostic outcomes,
we examined a broad range of medical conditions. Our search
strategy was exceptionally thorough, encompassing 10 databases
and reviewing over 21,000 studies to capture a wide array of
diagnostic outcomes. Methodologically, we adhered to the
PRISMA 2020 guidelines, which included conducting sensitivity

and subgroup analyses, as well as evaluating the certainty of
the evidence.

Study limitations must be acknowledged. There was
considerable heterogeneity in the designs of included studies,
such as their reference standards, diagnostic tests, and sample
characteristics. Given the size of the current evidence, there
were too few studies to conduct separate subgroup analyses
based on specific device models or software versions. Our
review included both researcher-initiated and consumer-initiated
studies to provide a comprehensive assessment of wearable
activity trackers in real-world settings. Researcher-initiated
studies typically involved smaller sample sizes and controlled
participant recruitment, while consumer-initiated studies often
had larger sample sizes and reflected more naturalistic use
patterns. While this combination enhances the generalizability
of our findings, it also introduces heterogeneity. We
acknowledge this as a limitation and suggest that future research
should consider these differences when interpreting results.
Additionally, our review only identified studies in the domains
of COVID-19, cardiovascular conditions, and falls as eligible.
While laboratory-based studies are being conducted for event
detection in other health domains (such as stress and respiratory
conditions), our focus was intentionally on studies conducted
in free-living conditions. This approach offers insights into the
wearables’ event detection capabilities in real-world settings,
as opposed to artificial (eg, laboratory) conditions.

Clinical Implications
The use of wearable activity trackers for detecting medical
events is an emerging field with both significant promise and
challenges. Wearable activity trackers demonstrate comparable
ability to detect COVID-19 and atrial fibrillation compared with
other clinical tests such as lateral flow tests and
electrocardiograms. However, wearables offer the additional
advantage of continuous, real-time monitoring for conditions
requiring constant surveillance. As such, they may empower
patients to take a more proactive role in their health care by
giving them immediate feedback and data about their condition.
They may also contribute to improved surveillance and resource
planning for health care systems, which could be particularly
useful in times of epidemics or pandemics.

Certain wearable device features excel at detecting specific
medical events. For COVID-19, devices combining heart rate
monitors, skin temperature sensors, and accelerometers proved
effective by detecting deviations from an individual’s baseline
across multiple physiological parameters. In contrast, for atrial
fibrillation detection, Food and Drug Administration-approved
devices relied on optical heart rate sensors providing
photoplethysmography data, capable of identifying irregular
heart rhythms characteristic of arrhythmias. Fall detection
primarily uses accelerometer data, with wrist-worn placement
crucial for sensing sudden deceleration and impact forces.
However, false positives persist due to nonfall rapid movements.
Looking ahead, integrating multiple sensors can enhance
accuracy across various medical conditions. Yet, fundamental
sensor limitations may remain. Aligning device capabilities
with specific use cases and recognizing sensor shortcomings

JMIR Mhealth Uhealth 2024 | vol. 12 | e56972 | p. 9https://mhealth.jmir.org/2024/1/e56972
(page number not for citation purposes)

Singh et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


will inform future research and benchmarking efforts amid
evolving technology.

As consumer wearables gradually morph from being lifestyle
tools to over-the-counter medical instruments, they present a
range of challenges, including concerns about data privacy and
security, which will require stringent protective measures.
Furthermore, as wearable devices become increasingly
sophisticated in detecting medical conditions, such as atrial
fibrillation, they offer both benefits and pitfalls. On the positive
side, these devices have the potential to identify asymptomatic
atrial fibrillation episodes. This is enormously beneficial, since
currently, stroke is the first manifestation in at least 25% of
atrial fibrillation-related stroke cases [40]. Early detection could
therefore lead to timely intervention and stroke prevention.
However, health care professionals have reported an uptick in
patient consultations triggered by atrial fibrillation alerts from
wearables, resulting in a surge of medical tests, such as
electrocardiograms, to confirm diagnoses [41]. While some
clinicians see this as an advancement in patient-initiated health
care, others question the necessity of such screening, particularly
in patient subgroups where atrial fibrillation may have a
relatively benign prognosis [42]. Moreover, the use of wearables
can generate both false positives and negatives, potentially
causing unnecessary anxiety, diagnostic tests, and treatments,
or giving users a false sense of security.

Future Research
Our review reveals that the current peer-reviewed evidence base
concerning the event detection capabilities of consumer wearable
activity trackers in free-living conditions is limited to
COVID-19, cardiac function, and falls. This was somewhat
surprising, given the potential of these devices to diagnose
numerous other conditions. Our findings indicate a significant
gap in the current literature, which was not apparent in previous
reviews that typically focused on specific conditions and did

not highlight the lack of studies across a broader range of
conditions. Considering the diverse array of sensors incorporated
in modern wearable activity trackers, these devices offer
considerable potential for detecting and monitoring medical
events across an extensive spectrum of health conditions into
the future. This may include respiratory conditions, neurological
disorders, mental health, stress and fatigue, and even
environmental and allergic reactions. This will require research
across the product design continuum, from algorithm training
to laboratory testing and free-living testing. This will be made
all the more challenging by the rapid pace at which new devices
and models are released into the market. In the future, our
meta-analysis could be updated to provide insight into the
accuracy of such diagnostics by condition, device, and
population.

Conclusions
This study provides a comprehensive overview of the current
state of evidence regarding the diagnostic capabilities of
consumer wearable activity trackers in real-world settings. While
the devices show promise in detecting conditions, such as
COVID-19 and atrial fibrillation, with moderate to high
sensitivity and specificity, their performance in detecting falls
is moderate, highlighting the need for further refinement of
detection algorithms. The existing literature is notably skewed
toward COVID-19, leaving a significant gap in our
understanding of how these devices can be used for a broader
range of health issues. This gap, which was not apparent in
previous reviews, underscores the necessity for future research
to expand the scope of conditions studied. As wearable
technology continues to evolve, it is crucial to address the
challenges posed by false positives and negatives, data privacy,
and security concerns. This will ensure that the rapid
advancements in this field can be matched by robust scientific
validation, enabling these devices to realize their full potential
as tools for health care monitoring and intervention.
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