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Abstract. Data privacy and sovereignty are open challenges in today’s
Web, which the Solid [*| ecosystem aims to meet by providing personal
online datastores (pods) where individuals can control access to their
data. Solid allows developers to deploy applications with access to data
stored in pods, subject to users’ permission. For the decentralised Web
to succeed, the problem of search over pods with varying access permis-
sions must be solved. The ESPRESSO framework takes the first step in
exploring such a search architecture, enabling large-scale keyword search
across Solid pods with varying access rights. This paper provides a com-
prehensive experimental evaluation of the performance and scalability
of decentralised keyword search across pods on the current ESPRESSO
prototype. The experiments specifically investigate how controllable ex-
perimental parameters influence search performance across a range of
decentralised settings. This includes examining the impact of different
text dataset sizes (0.5MB to 50MB per pod, divided into 1 to 10,000
files), different access control levels (10%, 25%, 50%, or 100% file ac-
cess), and a range of configurations for Solid servers and pods (from 1 to
100 pods across 1 to 50 servers). The experimental results confirm the
feasibility of deploying a decentralised search system to conduct keyword
search at scale in a decentralised environment.

Keywords: Web Re-decentralisation - Decentralised Search - Personal
Online Data Stores (pods) - Solid Framework.

1 Introduction

The current state of the Web witnesses user-generated data being kept within
centralised data silos, monopolised by a few large corporations [I]. This central-
isation of the Web poses significant risks to privacy and user autonomy [10] and
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slows down data-driven innovation. Indeed, this centralisation prevents a vast
amount of data from being available for search because certain types of data,
especially personal and sensitive information, are too confidential for public ac-
cess, limiting traditional search engines from indexing and making such data
available, thereby limiting the breadth of searchable content.Web users end up
with neither control over their data nor privacy [4], and developers have to build
more data silos of their own in order to reach enough users.

With the overarching objective of reinstating user control and data gover-
nance, a number of initiatives have emerged [4JI0JI7] that strive to decentralise
the World Wide Web, aiming to distribute the control and ownership of data
and the underlying infrastructure [4]. The decentralised paradigm aims to em-
power individuals to manage which third parties have access to their data and for
what purposes. Decentralisation aims to foster data-driven advancements such
as enhanced data sharing and synchronisation among different applications [7].
Most prominent amongst these innovations, and exemplifying the concept of
Web decentralisation, is the Solid technology suite EL which aims to empower
people with direct control of their data [I7]. This is facilitated by decoupling
data from applications and enabling users to curate their data within personal
online data repositories, referred to as pods, requiring third parties to get pod
owners’ consent to access their data.

Web decentralisation holds high potential for creating a more equitable and
transparent online environment [4]. However, there are significant challenges,
particularly in search and query processing over online decentralised data stores.
Most modern search engines only offer centralised search services, while the
current decentralised search utilities across Solid applications [12] and other
distributed, federated, or Linked data query processing systems [I9] do not yet
provide adequate solutions for distributed search over resources where different
users, applications and search entities can have different access rights [16J20]
(further details in Section [2)).

In response to this research gap, our previous works [16J20] have proposed a
vision and architecture of Efficient Search over Personal Repositories - Secure
and Sovereign (ESPRESSO ED ESPRESSO is a framework that aims to enable
large-scale search across Solid pods while respecting individuals’ data sovereignty
and differing access rights. The work in [I6l20] focused on the challenges and
design principles of a decentralised search system and provided an overview of
an architecture that aims to enable efficient decentralised Web search over Solid
pods. It also presented the implementation of the first ESPRESSO prototype
and preliminary proof-of-concept experiments.

In this paper, we aim to extend that work and provide a comprehensive ex-
perimental evaluation of the performance and scalability of decentralised search
across Solid pods. We present and discuss the results of testing and validating
the second prototype of the ESPRESSO system with larger datasets, a variety
of data distributions, and different Solid server and pod setups.

5 Solid is a set of specifications that can have several implementations, e.g., Digita
https://www.digita.ai/|and Bluesky https://blueskyweb.xyz/
S https://espressoproject.org
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The contributions of this paper are as follows: (1) Validating the viability
of the ESPRESSO architecture for undertaking scalable decentralised keyword-
based search operations over personal online data stores (pods) distributed across
several Solid servers. (2) Performance and scalability evaluation via comprehen-
sive experiments, specifying a set of controllable experimental parameters that
directly impact decentralised search performance. Specifically, we test the im-
pact of the number of solid servers, the number of pods they allocate, various
scales and distributions of datasets, the number of files the datasets are split
into, and varying percentages of access control permissions. (3) Extension of the
ESPRESSO system architecture, including optimisations in the keyword index-
ing structures and the search algorithm proposed in [I6]. (4) Identification of
open challenges of decentralised search over Solid pods.

2 Related Work

The decentralised search problem has been tackled from various perspectives and
research areas, including distributed databases (DBs), Peer-to-peer (P2P) search
and query routing, and SPARQL distributed querying and link-following. Signifi-
cant research in distributed DB systems has explored distributed search methods
for querying federated databases across various organisations with varying lev-
els of autonomy [I0]. Distributed indexing techniques have also been proposed
to support search across multiple databases [6]. However, most methods, ex-
cluding some prototypes like [II], presume access to query endpoints, indexes,
and result caching, which may not always be available in decentralised settings.
P2P data management systems and query routing have been studied for decen-
tralised search [I5]. Protocols like IPFS employ distributed hash tables (DHTS)
for keyword-based search [2]. Yet, these methods do not address varying access
controls over data resources, query endpoints, and distributed indexes. Last but
not least, decentralised SPARQL querying in Linked Data settings would re-
quire establishing and maintaining endpoint metadata relating to every search
entity, implementing access controls for selecting data resources, and enforcing
caching control constraints during SPARQL link-following [19J9]. Meeting these
prerequisites would result in significant increases in storage requirements, net-
work utilisation, and computational needs.

Hence, the methodologies essential for conducting data search operations
across decentralised Solid pods extend beyond the existing literature. This is
because access privileges to pod data can differ among diverse search entities,
and caching limitations might impose constraints on the dissemination of search
outcomes through the network [20]. Recent research focuses on querying RDF
data in Solid pods from a decentralised Knowledge Graphs (KGs) viewpoint,
using the Link Traversal Query Processing (LTQP) approach [T9)22], but still
lacks emphasis on access control [22] or decentralised indexing [19]. To this end,
the ESPRESSO project [I6J20] marks an initial step in enabling large-scale de-
centralised keyword search over Solid pods, prioritizing data sovereignty and
adherence to user access controls by using decentralised indexes over pod con-
tents. We focus initially on keyword-based search; a vital preliminary stage to
comprehend the demands and performance factors necessary for advanced struc-
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tured distributed queries (e.g. SPARQL) or decentralised keyword search over
structured /semi-structured data in personal datastores [5].

3 Preliminaries & ESPRESSO Framework

3.1 Solid Framework

As described in the Introduction, one of the most prominent decentralised tech-
nologies is Solid [I2I17]. The foundation of the Solid ecosystem comprises three
essential building blocks that enable authentication and access control to pods:

— LDP: Solid incorporates elements of the W3C Linked Data Platform (LDPE[)
recommendation to enable read/write access to pod-stored data resources
(e.g., text, RDF, etc.) with special provisions for managing Linked Data.

— WebIDs & Solid OIDC [ for identification and authentication. These
standards connect agents to decentralised identifiers containing information
such as trusted identity providers ( WebID specifications E[) This enables au-
thentication between resource and authorisation servers without pre-existing
trust relationships.

— Web Access Control |E| for regulating information sharing within the pod.
This is a decentralised, cross-domain solution that authorises requests using
Linked Data-expressed Access Control Lists (ACLs). It uses IRIs to identify
both agents and resources. The ACLs can be tailored for individual resources
or inherited from a parent container.

3.2 ESPRESSO Framework Overview
Figure shows the archi-
tecture lglf ESPRESSO along (¢ . - E| % EI
with the core components E ®
that enable decentralised key- PodA |

word search across Solid pods. B
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for the text files inside the  Fig 1: ESPRESSO framework architecture.
pod, which include informa-

tion about the files’ access control. Also, the Brewmaster indexing app maintains
relevant information about the addresses of these local indexes, plus metadata for
search optimisation and filtering, in a Metalndex file in a dedicated ESPRESSO

" https://wuw.w3.org/TR/1dp/

8 https://solidproject.org/TR/oidc

9 https://www.w3.org/2005/Incubator/webid/spec/identity/
10 https://solid.github.io/web-access-control-spec/
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Pod on the Solid server. More details about the pod index structure and how it
has evolved from the one in [I6] are given in Section
(2) User Interface — Barista serves as the user interface application that
facilitates end-user search operations. It takes as input a keyword-based query
and the user’s WebID, and subsequently presents the ranked search results to
the user.
(3) Overlay network: To propagate and route the user query across Solid
servers, the ESPRESSO system utilises an overlay network of federated database
nodes that connect the Solid servers, and returns aggregated search results re-
trieved from the Solid servers’ pods to the user. Naturally, only results to which
the searcher has access are returned. The current ESPRESSO system prototype
uses a custom build of the GaianDB |E| [3] overlay network. A user’s query can be
initiated from any of the GaianDB nodes (connected to the Solid servers) and is
automatically propagated to the other nodes in the network [3]. Thus, users can
access all relevant data distributed across pods in different Solid servers through
GaianDB nodes, according to their access rights.
(4) Pod Searching App — CoffeeFilter conducts local search operations on
the pods of every Solid server on which it is installed. Upon receiving a query
from the federated DB node, the CoffeeFilter Pod Searching App accesses the
Metalndex to retrieve the addresses of the local pod indexes. The CoffeeFilter
Pod Searching App then performs a search against the relevant pod indexes
and sends the results back to the federated DB node. The details of the search
operation process are described in Section [3.3]

The ESPRESSO Bundle —

file1.txt: (Fly flies far.) acl: (WeblD1.WebID2WebiD3 ) fm
of the above components file3.txt: (Far far fles the fly ) acl: (WebiD2, everyone ) I:E,_ndx:
(shown in Figure is avail-  [iezoe: Griwn)  acl: (webibs webion) T
able as an open-source soft- — Peefiesineryhpsdisererpoc) I:‘ W, o ()
; y.ndx: (Fit 1, F32)
ware suite [2 The Pod weblDTstraebich (oo £ 7o)
Indexer App (Brewmaster) — | webiD2strwebid:(F1 fie, 72 flezt)
. . webID3str.webid:

needs to get access to the indi- openaccess webid:( 72 fiean: )
vidual pod’s content from the index.sum: () _

. R Contents of the pod index
pod owners. Then’ lt can 1m- (https://server/pod/espressoindex/)

dex the text files. The Pod
Searching App (CoffeeFilter)
needs access to the resulting
indexes to search them.

Fig. 2: Pod index structure. On the left, are pod
files with corresponding ACLs. On the right, are
generated pod indexing files.

3.3 Indexing & Search over Pods

In the preliminary investigation of implementing an inverted index for pods’ tex-
tual data, we created a naive local index for a pod’s text files which is described in
[16]. The Search App must download this naive index for every query, lengthen-
ing search times and exposing data beyond the requirements of the query. Thus,
for this paper, we developed an enhanced indexing scheme that reduces index

' GaianDB: https://github.com/gaiandb/gaiandb
12 ESPRESSO Search System: https://github.com/espressogroup/ESPRESSO
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size and increases emphasis on privacy, considering different users’ and appli-
cations’ access rights [23]. It considers the Solid server-side search processing
limitations [7] and builds the indexing files to be accessed according to Solid
LDP principles via simple HTTP GET requests [19]. It pays more attention to
optimizing the size and the number of indexing files required for efficient search
while respecting users’ data sovereignty. Moreover, this approach prevents unnec-
essary data exposure beyond query necessities and access permissions, thereby
strengthening the privacy of the system. Below, we describe how the new in-
dexing scheme allows Solid applications and users to search accessible text data
across pods.

Pod Indezxing. Figure [2|shows how the Pod Indexing App (Brewmaster) creates
local indexes based on the new indexing scheme.

Picture a Solid server at the address https://server/ hosting a pod at the
address https://server/pod/. Pod Indexing App (Brewmaster) assigns each
file in the pod a short fileID according to a simple naming convention (e.g., F'1,
F2, F3,...) and creates an index directory espressoindex. This URL is stored in
the Metalndex in the server-level ESPRESSO Pod. In the pod index’s directory,
we organise the indexing files in subdirectories with a ¢rie-like structure (see [14])
for faster access.

For each keyword, e.g., ‘fly’, in the indexed text files, the Pod Indexing App
(Brewmaster) creates a corresponding file in the index directory at the address
https://server/pod/espressoindex/f/1/y.ndx. This file contains the fileIDs
of each file containing the word ‘fly’ and the number of times it appears in each.
For each WebID that has read access to some of the indexed files e.g., WebID1,
the Pod Indexing App creates a webID1str.webid file listing the short fileIDs
with their full names (e.g. filel.txt). Publicly accessible files are listed, by
fileID and filename, in the file openaccess.webid. Last, information required
for updating the pod index is compiled into a file index.sum. The improved
indexing scheme speeds up retrieval of index files by generating small, inverted
micro-indexes for each keyword in text files; and enables access control with a
list of WebIDs authorised to access files containing each keyword.

Search on Pods Indezes. Suppose the Pod Searching App (CoffeeFilter) receives
a search request for the word ‘fly’ coming from some WebID. First, it gets the
Metalndex from the ESPRESSO Pod and obtains the list of all the podindex
URLs. Then, for each URL, it combines the .ndz and .webid data, returning a list
of relevant URLs accessible to the search party’s WebID, with the corresponding
keyword frequencies. Finally, the Pod Searching App combines the results for all
the pods on the server. The results are sent back to the overlay network.

4 Experiments

This section experimentally evaluates the performance and scalability of decen-
tralised keyword search in ESPRESSO over Solid pods. The goal is to assess the
viability of the decentralised search in our ESPRESSO prototype by exploring
its performance under typical conditions. In particular, we investigate a range of



Decentralised Search over Personal Online Datastores 7

factors characterizing data distribution across Solid servers, such as the number
of servers, the number of pods, the number and size of the files, and how many
of those files the search party has access to.

4.1 Experimental Environment & Setup

Environment: Our experimentation, advancing beyond prior research which
used a single Solid server [1822], opted for an initial cluster of 50 virtual ma-
chines (VMs) to simulate a multi-organisation environment, such as a network
of general health practitioners or other professionals in a metropolitan area,
each using a Solid pod server where each of their clients can securely store their
data in individual pods. This setup not only facilitates multi-server scenarios
but also aids in empowering query propagation and routing among multiple
Solid servers. Each of those VMs is equipped with the Red Hat Enterprise Linux
8.7 operating system and runs on 2.4GHz processors and it has 8GB of RAM.
Additionally, each VM possesses a high-speed storage drive with a capacity of
125GB; and runs a single instance of Community Solid Server (V.6.0) with a file-
based storage backend. The VMs are physically allocated from the data centre
at Southampton University. The CoffeeFilter Pod Searching App leverages the
Node-js Azios library for performing search requests over Solid Servers. We also
used a custom build of GaianDB version 2.1.8 (i.e. extended with our Solid-to-
GaianDB connector). The Solid-to-GaianDB connector uses Logical Tables [3]
to create an abstract federation layer within the GaianDB network, integrating
data from different Solid servers.

Dataset: We conducted our keyword search over a machine translation work-
shop dataset |E| [21]. The dataset mainly comprises text from the News Crawl
Corpus |E| and we extracted the text in English only, amounting to 14GB of
textual source data.

For each experiment, we used the following procedure E

1. Data preparation: To determine the impact of data size, we selected data
samples of various sizes. To do this, we developed a simple Data-splitter
script that extracts a dataset of a specified size (in MBs) and splits it into
a specified number of files.

2. Keyword selection: For each experiment, we chose one frequently occur-
ring word (present in ~ 20% of the files), one word occurring with moderate
frequency (~ 2%), and one rare word (~ 0.2%).

3. Logical data distribution: We created a local logical structure that de-
scribed the list of Solid servers and pods subject to each experiment, with
records indicating the destination of each data file and indexing files on those
pods.

4. Access control: To simulate access control information typical of real Solid
servers, we created 5000 unique WebIDs. For each text file in the pods, we
granted access to a random sample of 10 of these WebIDs. We also created

13 https://statmt.org/wmt11/translation-task.html
4 https://data.statmt.org/news-crawl/
15 More details on experiments setup can be found in our mentioned github repo.
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four special WebIDs and granted them access to specified percentages (10%,
25%, 50%, or 100%) of files per pod.

5. Indexing: We created the pod indexes according to the new indexing scheme.
The files and indexes for each pod are zipped and stored in a directory cor-
responding to the Solid server.

6. Solid pods and Metalndexes creation We created the specified pods on
the specified servers and put Metalndexes in the ESPRESSO Pod created
on each server (see Fig. |1)).

7. Data and index deployment: The zip files are uploaded to the corre-
sponding VMs hosting the servers and unzipped into pods according to the
logical structure described above.

8. Executing the search: In each experiment, we executed search queries
for the three chosen keywords. We ran each query five times, excluding the
initial run to mitigate any warm-up bias, and then calculated the average of
the remaining four run times.

Experiments & Evaluation We measured the latency of query searches by
response time, in milliseconds. Specifically, we logged the time between sending
the initial query to the overlay network and getting all the results back from all
the Solid servers.

4.2 Experimental Parameters

We outline the experimental setup and configuration parameters that define the
characteristics of our experimental environment and influence the performance
of the system. The parameter values were chosen to represent typical real-world
scenarios and were subject to the technical limitations of the experiment envi-
ronment. For example, in the majority of our experiments the dataset sizes per
pod allow for using approximate 5K B-files which is the median file size found
in typical user collections [§]. Some upper limits are due to disk space limits for
holding both data and the indexing files (see details in Section @

— Data Size per Pod (D): Increasing the total size of the experimental data
(in text files) within each pod can increase the number and size of indexing
files, which in turn may impact the overall system performance. To assess
this impact, we varied the total data size per pod.

— Number of Files per Pod (F'): Within each user pod, splitting the data
into a larger number of individual files may increase the size of the index-
ing files, which can also impact overall system performance. To assess this
impact, we varied the number of files per pod.

— Number of Pods per Server (P): The more user pods on each server,
the more HTTP GET requests are generated during keyword-based search
operations, directly impacting search performance. To assess this impact, we
varied the number of pods per server.

— Number of Servers (5): the number of Solid servers has an impact on
the scalability of overlay routing and data federation across the GaianDB
federated network. To assess this impact, we varied the numbers of Solid
servers deployed in conjunction with GaianDB federated nodes.
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— Access Percentage (A%): percentage of files accessible to the search party.
One of the most important features of Solid is access control. To assess the
impact of access control on search performance, we varied the percentages
of files accessible to the search parties.

We conducted two sets of
experiments. In the first set
of experiments, we aim to
see how individually chang-
ing, tuning, or scaling these
parameters impacts the over-
all performance and scalabil-
ity potential of the search pro-
cess in the ESPRESSO sys-
tem. The parameter values for

Data per Pod

Files per Pod

Pods per Server

Number of Servers

Access %

Experiment # |E5-E8,E2| |E9-E1 1 ,E2| |E2,E1 3-E1 5| |E1 6-E18,E1 5|

Fig. 3: Parameter values for the first set of ex-

the first set of experiments
are presented in Fig. The
first branch shows the first group of the first set of experiments (E1-E4), which
aims to evaluate the impact of changing the Data Size per Pod (D) (1MB, 5MB,
10MB, or 20MB) while keeping the other parameters fixed. In the second group
of experiments (E2 and E5-E8), we evaluate the impact of changing the number
of Files (F') per pod (1, 10, 50, 100, and 1000 files), while fixing the other param-
eters as shown in the second branch of the tree. The third group of experiments
(E2 and E9-E11) evaluates the impact of changing the number of Pods (P) per
Server (1, 10, 50, and 100 pods) while fixing the other parameters. The third
group (E2 and E13-E15) evaluates the impact of changing the number of Solid
Servers (S) (1, 10, 25, and 50 servers). The fourth group (E15 and E16-E18)
checks the impact of changing the search party’s Access Percentage (A%) to
files in the pods (10%, 25%, 50%, and 100%)@
With the second set of
experiments, we aim to in- m
Total Number of Files m

vestigate the impact of data
distribution on search perfor-

Pods per Server nIm
Number of Servers n

periments.

Total Dataset Size

mance. To do this, we kept
the total amount of data and
number of files constant while
changing the other parame-

Files per Pod

ters. The parameter values
chosen for the second set of
experiments are presented in
Fig. @ In the first group of
the second set of experiments

Experiment #

E20-E24

Fig. 4: Parameters for the second set of experi-
ments.

(E20-E24), we distribute the same amount of Total Dataset Size (50MB) among
different numbers of pods (1, 5, 10, 50, and 100).

16 Some groups share experiments, e.g. E2, because they fit multiples series of chosen

parameter values.
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In the second group of experiments (E25-E29) we fix the Data per Pod
(D) size (5MB) and the total number of pods (50), but distribute the pods
across different numbers of servers (1, 5, 10, 25 and 50 servers). In the third
group (E30-E34) we keep the number of pods per Server (P) constant (10 pods)
while changing the number of servers. In the fourth group (E35, E36) we model
the non-uniform distributions of data: in E35 files are distributed among pods
according to a power law distribution, so the number of files per pod ranges from
200 to approximately 11,000. In experiment E36 servers are distributed among
pods according to a power law distribution, so the number of pods per server
ranges from 2 to 17).

Due to space limits, we keep tables of experiments exact parameter values in
our mentioned GitHub repository.

5 Experimental Results and Discussion

In this section, we present and discuss the results of the experiments E As
evident in the results of the first set of experiments (Figure , the keyword’s
frequency had a notable impact on the search run times in all the experiments.
Specifically, the more frequent the keyword, the longer it takes to retrieve the
search results. In most cases, searching for the frequently occurring word, takes
longer than for the word occurring with moderate frequency, which takes longer
than for the rare word. This is because more frequent keywords lead to larger and
more numerous search results that need to be retrieved from the Solid pod(s).

The Data Size per Pod (D) parameter did not have much impact on the
performance (see Figure [5| (a)). The retrieval of index files took approximately
the same time in all the experiments. The indexing scheme proposed in this
paper (Section makes the performance of keyword search independent of
the data size in the pod, as it creates indexing files for each unique word in the
indexed files. However, even though the Data Size per Pod (D) would impact the
number of indexing files for each pod, our trie-like index structure (Section
keeps the number of files in each sub-directory sufficiently low.

The Number of Files per Pod (F') parameter exhibits a marked influence
on search performance above a threshold of 100 files per pod, as illustrated in
Figure 5| (b). The notable increase above this threshold can be attributed to the
larger volume of search results, requiring more time to retrieve. Additionally,
the size of the keyword indexing files (.ndx) increases with the number of files
within a pod, further contributing to longer search response times.

The search performance is most influenced by the Number of Pods per
Server (P) parameter. This critical impact stems from the limitations of the
current Pod Searching App (CoffeeFilter), which lacks support for parallel pro-
cessing, as detailed in the Limitations and Challenges Section [f] Due to this
constraint, the CoffeeFilter App searches through the pods on a server sequen-
tially. As a result, as shown in Figure [5| (¢), search time increases linearly with
the number of pods per server.

The Number of Servers (S) parameter markedly influences search per-
formance in two ways: (1) it brings a greater volume of search results, where

17 Full experiments & results can be seen in our repo: https://shorturl.at/bgX38
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Fig.5: The search results of the first set of experiments. Search Time in ms.

the CoffeeFilter Pod Searching App gathers data from many Solid servers, each
hosting many pods. Additionally, (2) the routing, propagation of queries, and ag-
gregation of results across the GaianDB overlay network also impact the overall
search response time. Indeed, as illustrated in Figure [5[ (d), there is a propor-
tional increase in both search and routing time as the number of Solid servers
increases. We also observe that as the number of servers in the network in-
creases, the search app’s performance can be influenced by the slowest server in
the overlay network when fetching data from that server’s Solid pods.
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Fig. 6: The results of the second set of experiments. Search Time in ms.

The Access Percentage (A%) parameter affects performance in a similar
way to keyword frequency. In essence, search is faster when fewer files are perti-
nent. As shown in Figure [5| (e), the search system retrieves results more slowly
when the user has greater access to files within the Solid pods. Besides this
performance observation in Figure [5| (e), it is also important to mention that
the decentralised search in ESPRESSO is indeed able to preserve the privacy of
users’ personal data when accessed by different users/applications with varying
access rights.

The results of the second set of experiments (Figure @, exploring different
distributions for the same data, again show that the parameter with the most
impact on the search performance is the Number of Pods (P) on the same Solid
server (Fig. [6] (a,b)). Search is fastest when all of the data is in the same pod
(Fig.[6] (a)), confirming the intuition that data centralisation would lead to faster
search. Fig. [6] (b) also shows that, for a large number of pods (e.g. 50), having
them all on the same Solid server (e.g., P=50 and S=1) leads to noticeably
longer search times than splitting the same number of pods over many servers
(e.g., P=1 and S=50). With a constant number of pods per server, the search
time grows slightly with the number of servers, but the amount of data in each
pod has almost no effect (Fig. [6] (c)). The non-uniform distributions of data
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(E35, E36), again, produce intuitive results: it makes almost no difference how
we distribute data across pods (Fig. [f] (b)), but when we distribute the pods
across the servers, search time scales with the largest number of pods on one

server (Fig.[6] (c)).
6 Limitations & Challenges Ahead

There are some challenges to overcome and improvements to the ESPRESSO
system to be made.

Parallel processing: First, the current implementation of the Pod Search-
ing App (CoffeeFilter) does not support parallel HTTP GET requests to the
indexing files in the pods because Community Solid Server (CSS) currently does
not support multi-threading on our VM hardware specifications. Therefore, after
obtaining the pod index addresses from the Metalndex, the individual indexing
file requests sent for keyword searches are processed sequentially across pods
in the server - taking longer for combinations of multiple servers with multiple
pods each. Enabling multi-threading on the servers and allowing CoffeeFilter to
search pods in parallel should improve performance.

Routing and query propagation: Queries are currently propagated through
the GaianDB overlay network by the default GaianDB query flooding propaga-
tion technique [3]. We believe that implementing more efficient routing algo-
rithms and query propagation techniques over the GaianDB federated network
will further enhance the search performance in ESPRESSO. Designing and main-
taining additional metadata can also improve performance by reducing the stress
on the overlay network and routing the queries directly to the relevant federated
nodes.

Solid Servers Deployment and Latency In this paper, the experimen-
tal setup did not diversify the physical locations of deployed VMs, potentially
affecting network latency results. The future investigations will aim to simulate
a more realistic network environment by distributing VMs across various cloud
datacenters or with different cloud providers.

Index size: Due to the index structure, which contains many small files ow-
ing to a high number of rare words (as observed in experiments E15-18 where
about 90% of words occur in less than 0.002% of files), the index, although
around 80-100% of the data size, occupies substantial disk space in the backend
file system. This issue can be addressed by modifying the file system partitioning
or enhancing the index structure. An ideal new index structure should be more
compact while preserving the current structure’s exposure-limiting characteris-
tics. Additionally, our current indexing technique only tracks word frequency
within documents, and adopting more sophisticated relevance measures can en-
hance the quality of ranked search results.

Search sophistication: Finally, an additional challenge is providing not
only keyword search functionality but also allowing for more sophisticated searches:
more than one word per query, NLP search operations, and structured queries
(e.g. SPARQL) on the distributed data. This will require investigating new in-
dexing structures for RDF data stored in Solid pods [19] as well as investigat-
ing adequate mechanisms for considering RDF data access control [22] to fit
within our ESPRESSO bundle. Empowering the ESPRESSO framework with
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such potentials will make it possible to do like-for-like comparisons with existing
decentralised search systems such as [I9] and [22].

7 Conclusion & Future Work

ESPRESSO offers search capabilities for personal online data repositories, while
respecting users’ access control preferences and safeguarding their data sovereignty.
The system’s design reduces exposure of irrelevant data in response to search
queries. Our experiments affirm that ESPRESSO represents a practical and scal-
able solution for keyword searches, making it well-suited for a range of real-world
scenarios. Furthermore, the results underscore its potential value in applications
dealing with substantial volumes of sensitive data subject to stringent access
control policies, such as medical data. This contrasts with traditional meth-
ods, which often require data centralisation or centralised indexing, increasing
the risk of data breaches and unauthorised third-party exposure. In our future
work, we plan to address the current performance and scalability challenges of the
ESPRESSO system and further explore its real-world applicability in domains
benefiting from decentralised, privacy-focused search and recommendation so-
lutions [I3]. This includes conducting extensive benchmarking experiments to
compare centralized search baselines with ESPRESSO’s decentralized approach,
alongside considerations of real-world network delays. ESPRESSO holds promise
for various applications, such as contact tracing where users’ location data is
securely stored in their pods. This approach ensures privacy while enabling no-
tifications for users sharing locations with those testing positive for diseases like
COVID-19.
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