

1 **Study of amino acid-derived 3-acyltetramic acids as herbicidal agents**

2 Simon Backx¹, Jelle Van Vooren^{1,2}, Jasper Geerts^{1,2}, Cédric Hyde^{1,2}, Owen Van Hecke^{1,2}, Hanne
3 Pappaert^{1,2}, Kevin Dewitte³, Maarten Ameye^{2,4}, Kris Audenaert², Willem Desmedt^{2,5}, Sven Mangelinckx¹

4

5

6 ¹ SynBioC research group, Department of Green Chemistry and Technology, Faculty of Bioscience
7 Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

8 ² Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience
9 Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium

10 ³ Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin
11 Vaerwyckweg 1, 9000 Ghent, Belgium

12 ⁴ Inagro, Ieperseweg 87, 8800 Roeselare, Belgium

13 ⁵ Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. van
14 Gansberghelaan 96, 9820 Merelbeke, Belgium

15

16 **Abstract**

17 The growing problem of herbicide resistance necessitates the development of novel herbicidal active
18 ingredients, together with other integrated weed management approaches. Natural products are a major
19 source of inspiration for novel actives. In previous research, we identified a 3-acyltetramic acid of microbial
20 origin that inhibited algal growth in marine biofilms at least in part through inhibition of photosystem II. In
21 this work, we demonstrate the herbicidal effect of this lead compound and construct multiple libraries to
22 test the impact of the different substituents of the central scaffold in order to study the structure-activity

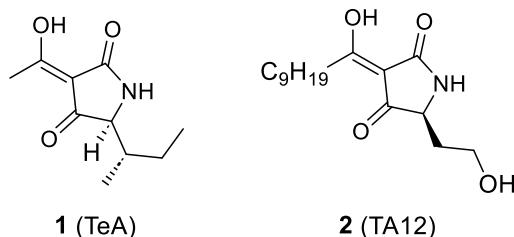
23 relationships. Amongst these analogues, the highest activities were found for medium to long chain acyl
24 groups and apolar secondary amino acid residues. Finally, we provide first insights into the herbicidal
25 mechanisms and present preliminary field-trial and ecotoxicological results for TA12-Pro, the most active
26 analog in our library. Together, this research shows the potential of 3-acyltetramic acids for herbicide
27 development.

28

29 **Keywords:**

30 herbicides, agrochemistry, tetramic acids, chemical synthesis

31


32

33

34 **Introduction**

35 Chemical herbicides continue to be a key pillar of integrated weed control programs, but require careful
36 resistance management to preserve their efficacy.¹ However, resistance management is increasingly
37 complicated by overreliance on a limited number of active substances due to the simultaneous phasing out
38 of existing actives on health and environmental grounds and a lack of new actives coming to market to
39 replace them.¹

40 Natural products are a crucial source of novel lead compounds for crop protection chemists, including for
41 herbicide development.² Tetramic acids are a large class of natural products produced predominantly by
42 fungi and bacteria that have received intense interest from medicinal and agrochemical researchers owing
43 to their wide range of bioactivities (including, but not limited to, antitumor, antibacterial, insecticidal,
44 phytotoxic and amoebicidal activities).³⁻⁷ Of particular relevance to herbicide researchers is the observation
45 that several micro-organisms produce 3-acyltetramic acids (3-ATAs) which act as potent inhibitors of
46 photosystem II. Two notable examples are the mycotoxin tenuazonic acid (TeA, **1**), produced by a wide
47 range of plant-pathogenic fungi including *Alternaria* spp., *Pyricularia oryzae* and *Aspergillus* spp.⁸, and 3-
48 (1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (TA12, **2**), produced by various marine
49 bacteria shown to inhibit algal growth (**Figure 1**).⁹

50 **1 (TeA)** **2 (TA12)**

51 **Figure 1:** Structures of tenuazonic acid (TeA, **1**) and TA12 (**2**).

52 Significant research effort has been spent on trying to turn compound **1** into a broad-spectrum post-
53 emergence herbicide, as discussed by Chen and Qiang.⁸ However, TeA **1** is a mycotoxin with an animal-
54 and human health risk at the herbicidal concentrations, which makes it unlikely to find acceptance.¹⁰

55 Moreover, the efficacy of compound **1** as a PSII inhibitor appears more modest than that of TA12 (**2**): its
56 half-inhibitory concentration in algae appears to be more than an order of magnitude higher than that of
57 compound **2**.⁹ For these reasons, we hypothesized that compound **2** might be a more promising lead
58 candidate for herbicide development than compound **1**. Furthermore, the limited body of literature
59 published on the biological activity of compound **2** and other medium- and long-chain 3-ATAs suggests
60 they might have an important role in microbial ecology in processes as diverse as bacterial-algal
61 competition in marine biofilms⁹ and bacterial defense against amoebal predation.^{6,7} Further insights into the
62 biological activity and efficient synthesis of long-chain 3-ATAs might thus prove useful for the wider field
63 of chemical ecology.

64 In this study, we build on the preliminary results obtained in algae with compound **2** and explore the
65 potential of 3-ATAs as scaffolds for novel herbicidal compounds. We present a readily accessible synthetic
66 methodology for 3-ATAs and use it to generate a novel library of 3-ATAs. The effect of the amino acid
67 moiety and length of the side chain on the phytotoxicity of these compounds is assessed systematically via
68 high-throughput multispectral imaging-based assays on leaf disks and whole seedlings. Moreover, we
69 provide first insights into the herbicidal mechanisms of 3-ATAs. Finally, a preliminary ecotoxicological
70 assessment and field evaluation of the most active analog were conducted to gain further insights into the
71 potential of 3-ATA as leads for herbicide development.

72

73 **Materials and methods**

74 Full details on the equipment, used reagents, plant experiments, synthesis of the starting products and
75 characterisation data of the final compounds can be found in the supporting information.

76

77 **Synthesis of TA12 (2)**

78 TA12 (2) ((S,Z)-3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione) was synthesized
79 according to the procedure described by Stock *et al.*⁹

80 **General procedure for the synthesis of tetramic acids 5-36**

81 The synthesis of the *N*-acylated amino acids **4** was adapted from Klapper *et al.*⁷ The corresponding oxo
82 ester **3** (6 mmol, 1 equiv.), DMAP (18 mmol, 3 equiv.) and the corresponding L-amino acid methyl ester
83 hydrochloride (7.2 mmol, 1.2 equiv.) were dissolved in 45 mL toluene and this mixture was stirred for 24
84 hours under reflux. To quench the reaction mixture, an equal volume of 1.2 mol L⁻¹ HCl was added. The
85 resulting phase was extracted three times with 50 mL EtOAc, the organic phases were combined and dried
86 over MgSO₄ and the solvent was removed *in vacuo*. These crude compounds **4** were all obtained as dark
87 oils and were used in subsequent reactions without further purification.

88 The synthesis of the tetramic acids **5-36** was adapted from Stock *et al.*⁹ The corresponding *N*-(3-
89 oxoalkanoyl)-L-amino acid methyl ester **4** (6 mmol, 1 equiv.) was dissolved in 10 mL dry methanol under
90 an argon atmosphere in a 50 mL dried flask. Subsequently, 14.4 mL of a 0.5 mol L⁻¹ solution of sodium
91 methoxide (7.2 mmol, 1.2 equiv.) in dry methanol was added and this mixture was stirred for 3 hours under
92 reflux conditions. After reaction, the mixture was poured into 10 mL of water and extracted with 10 mL of
93 diethyl ether. This organic phase was discarded and the aqueous phase was acidified with 2 mol L⁻¹ HCl
94 until a pH of 2 was reached. This aqueous phase was then extracted three times with 10 mL of diethyl ether.
95 The combined organic phases were dried over MgSO₄ and the solvent was removed *in vacuo*. The final
96 residue was then purified by automatic flash chromatography on reversed-phase silica gel (solvent A: water,
97 solvent B: acetonitrile, gradient: 30% B to 100% B).

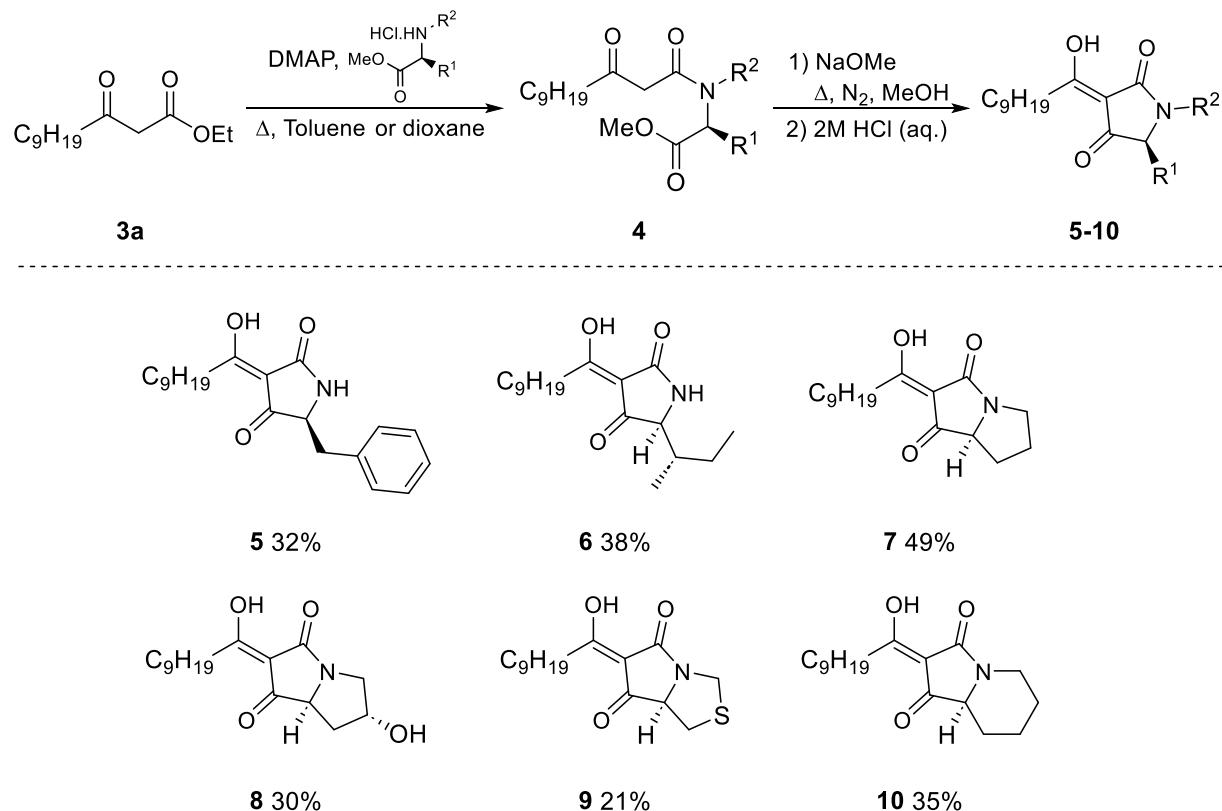
98

99

100 ***Chemical treatments***

101 All compounds used in this study were formulated with DMSO as a co-solvent and Tween 20 as a
102 surfactant. A concentrate was produced that consisted of 60% active product, 35% DMSO and 5% Tween
103 20 (by mass), which was heated at 60 °C for 10 minutes with vortex mixing to create a stable emulsion.¹¹
104 This concentrate was diluted with distilled water until the target concentration and vortexed vigorously
105 immediately prior to use. For leaf-disk assays, this dilute suspension was applied by adding two 5 µL
106 droplets on a leaf disk with a micropipette, whereas for spray assays with seedlings the solution was added
107 to an atomizer and seedlings were sprayed until run-off.¹² In all experiments, the blank formulation
108 (containing only DMSO, water and Tween 20) was included as a negative control, and the photosystem II-
109 inhibiting herbicide diuron (DCMU) was included as a positive control at a concentration of 10 mmol L⁻¹.
110 Full plant materials and experimental setups can be found in the supporting information.

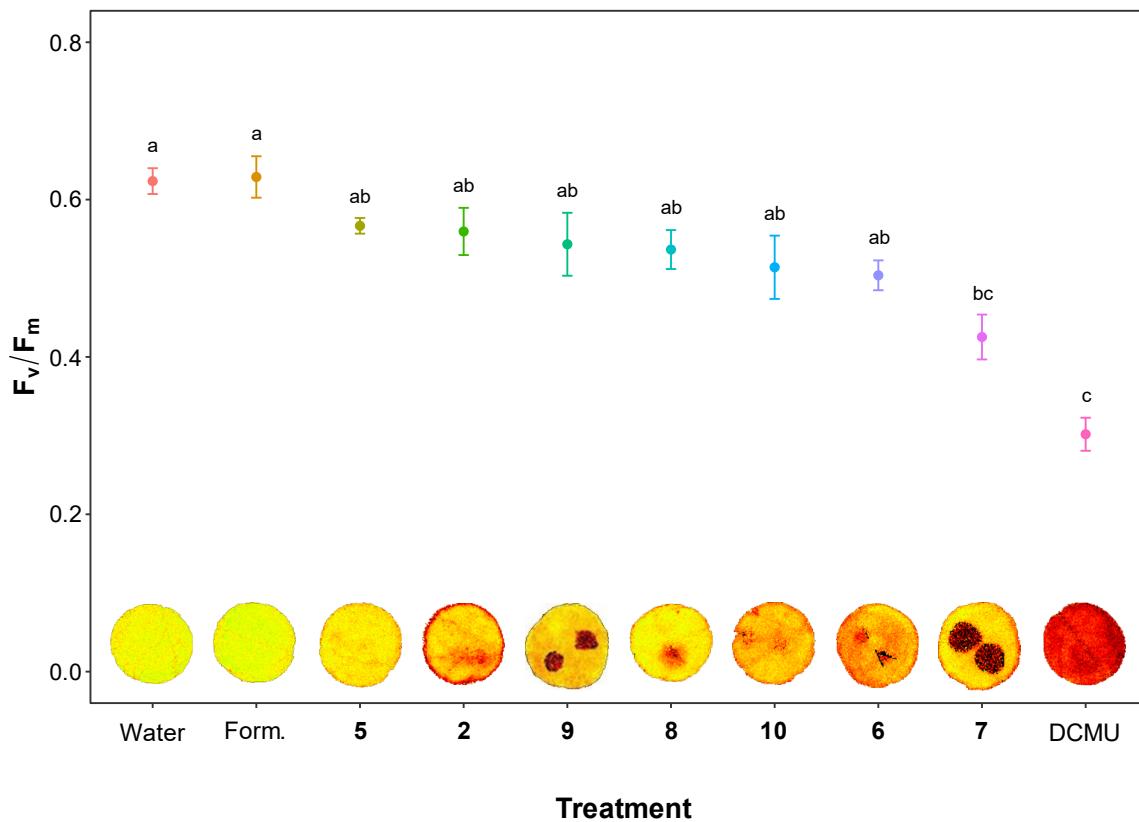
111 ***Assessment of toxicity using the PathoViewer system***


112 F_v/F_m of leaf disks or seedlings was measured using the PathoViewer multispectral imaging system
113 described in previous work,^{13,14} and images were processed using the CropReporter software (v. 5.4.6-64b,
114 PhenoVation). Herbicidal activity was assessed by measuring F_v/F_m , the maximum quantum efficiency of
115 photosystem II (PSII).¹⁵ This parameter is a reliable quantitative proxy for stress in leaf tissues due to its
116 robust correlation to the severity of biotic and abiotic stresses,¹⁵ including herbicide damage.¹⁶ F_v/F_m was
117 measured after a fifteen-minute dark adaptation period. In between treatments, leaf disks or seedlings were
118 incubated in a growth chamber (21 °C, 14/10 hours light/dark, 120 µmol m⁻² s⁻¹ at canopy level). F_v/F_m
119 values were then analyzed by ANOVA followed by Tukey's Honest Significant Difference Test for pairwise
120 comparisons; homoscedasticity and normality assumptions were verified using diagnostic plots. For binary
121 variables (mortality), Fisher's exact test was used. All statistical analyses were conducted in R (v. 4.3.0).

122

123 **Results and discussion**

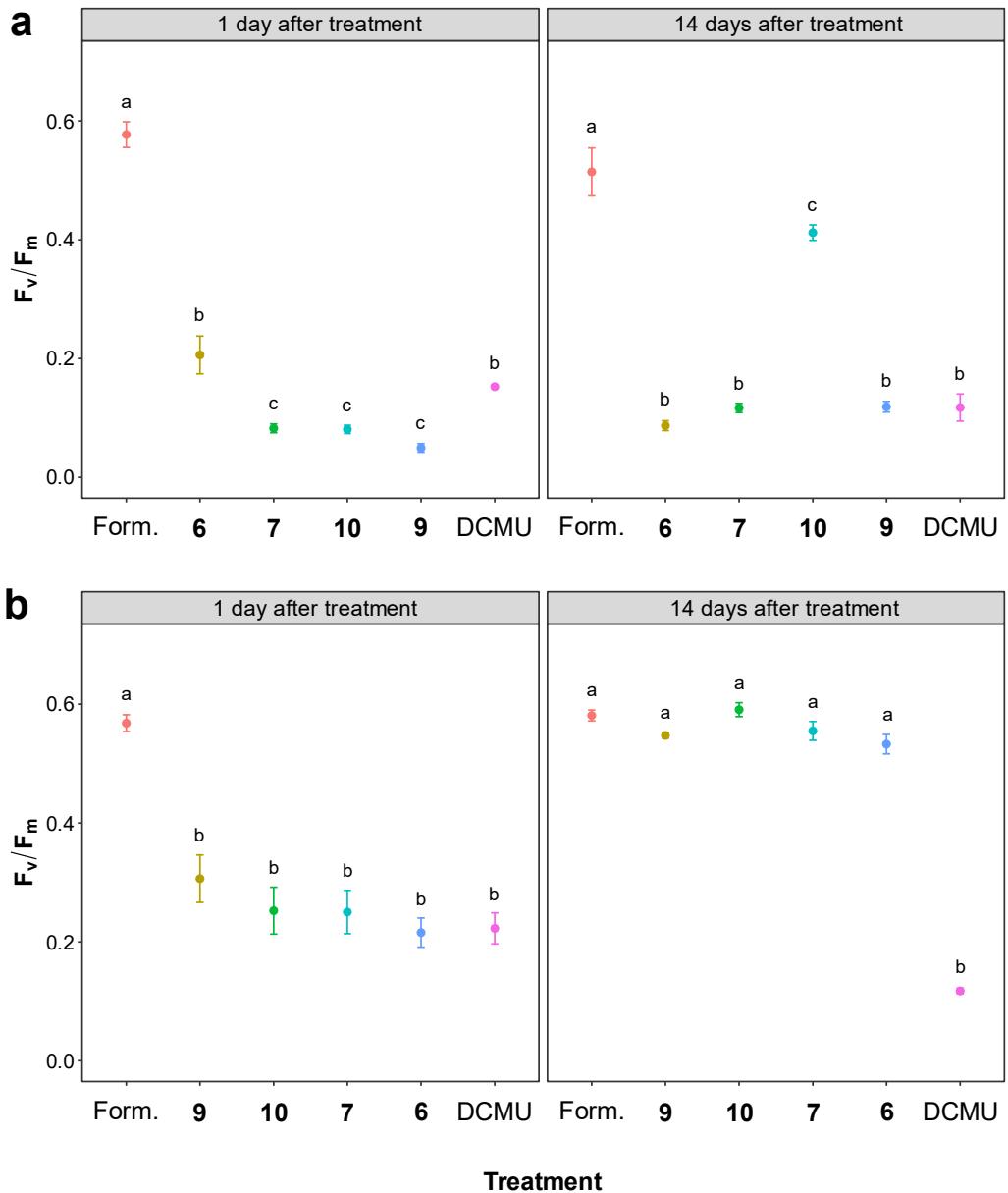
124 *3-Acyltetramic acids show non-systemic phytotoxicity in an in vitro bioassay*


125 To assess the potential of 3-ATAs as herbicidal agents, our starting point is the homoserine lactone-derived
126 TA12 (**2**), the target structure of our previous research in algae.⁹ The well-established synthetic
127 methodology described there for the synthesis of *N*-acyl homoserine lactones and their derived tetramic
128 acids¹⁷⁻¹⁹ was adapted in this study to ensure compatibility with a larger set of target products. Following
129 previous efforts by Stallforth and coworkers,⁷ we started our synthetic methodology from the corresponding
130 ethyl β -ketoesters **3**, which yield the desired β -keto amides **4** after heating under reflux in the presence of
131 amino acid esters and 4-(dimethylamino)pyridine (DMAP). Subsequent Lacey-Dieckmann rearrangement
132 with sodium methoxide in methanol then yields the target tetramic acids (**5-10**).^{9,17,20} As an initial screening,
133 we synthesized six TA12-analogues with different amino acid (AA) moieties: the primary AAs L-
134 phenylalanine (**5**) and L-isoleucine (**6**) and the secondary AAs L-proline (**7**), L-hydroxyproline (**8**), L-
135 cysteine-derived thiaproline (**9**) and L-pipecolic acid (**10**). These proposed analogues could all be
136 synthesized swiftly in moderate to good yields via this two-step process (Scheme 1, full details in the
137 Supplementary information). Of these six analogues, only the L-phenylalanine²¹ and L-proline⁶ analogues
138 were described previously.

140 Scheme 1: Two-step synthesis for analogues **5–10** starting from ethyl 3-oxododecanoate **3a**.

141 These compounds **5-10** were evaluated for phytotoxicity by applying two 5 μ L droplets of a 10 mmol L⁻¹
142 ¹ compound solution to tomato leaf disks in 24-well plates and monitoring changes in F_v/F_m (**Figure 2**). A
143 concentration of 10 mmol L⁻¹ was chosen as a reference concentration for further analysis because it was
144 the lowest concentration that reliably resulted in complete loss of photosynthesis at application sites in the
145 leaf disk assay for at least some of the tested compounds. F_v/F_m is a reliable measure of photosynthetic
146 efficiency and thus indirectly of the health and integrity of leaf tissues with proven utility in screening
147 herbicidal compounds.^{15,16} Out of the seven tested AA moieties, only one compound (**5**) did not significantly
148 reduce F_v/F_m at the droplet application site. The other six showed considerable variation in the magnitude
149 of their effect on F_v/F_m , with only the L-proline analog TA12-Pro **7** showing sufficiently high activity to
150 significantly reduce the F_v/F_m of the leaf disk as a whole (-32%, $p = .0019$). The effect of the 3-ATAs stands
151 in contrast to the positive control treatment, the PSII-inhibiting herbicide diuron (DCMU), which achieved
152 a uniform reduction in F_v/F_m throughout the leaf disk (**Figure 2**). Our data also confirms that the formulation

153 used for the 3-ATAs and DCMU is itself non-phytotoxic, as no changes in F_v/F_m were observed compared
154 to a water control (+1%, $p = 1.00$).


155

156 **Figure 2:** Effect of 3-ATAs 2 and 5-10 on F_v/F_m in tomato leaf disks 96 hours after application. Two 5 μ L droplets of a 10 mmol L^{-1} compound solution were applied to each 1.1 cm diameter tomato (*Solanum lycopersicum* 'Moneymaker') leaf disk floating in distilled water. A representative F_v/F_m image of a leaf disk is shown for each treatment (color scale: yellow corresponds to highest F_v/F_m values, orange to intermediate values and red-black indicate to low or very low values). The abbreviation 'Form.' is used to indicate formulation control (i.e. without active ingredient). Error bars indicate mean \pm SEM, $N = 4$. Treatments with different letters differ significantly according to Tukey's Honest Significant Difference test ($p < .05$).

162

163 *The in vitro phytotoxicity of 3-ATAs translates to herbicidal activity against agronomically important weed*
164 *species*

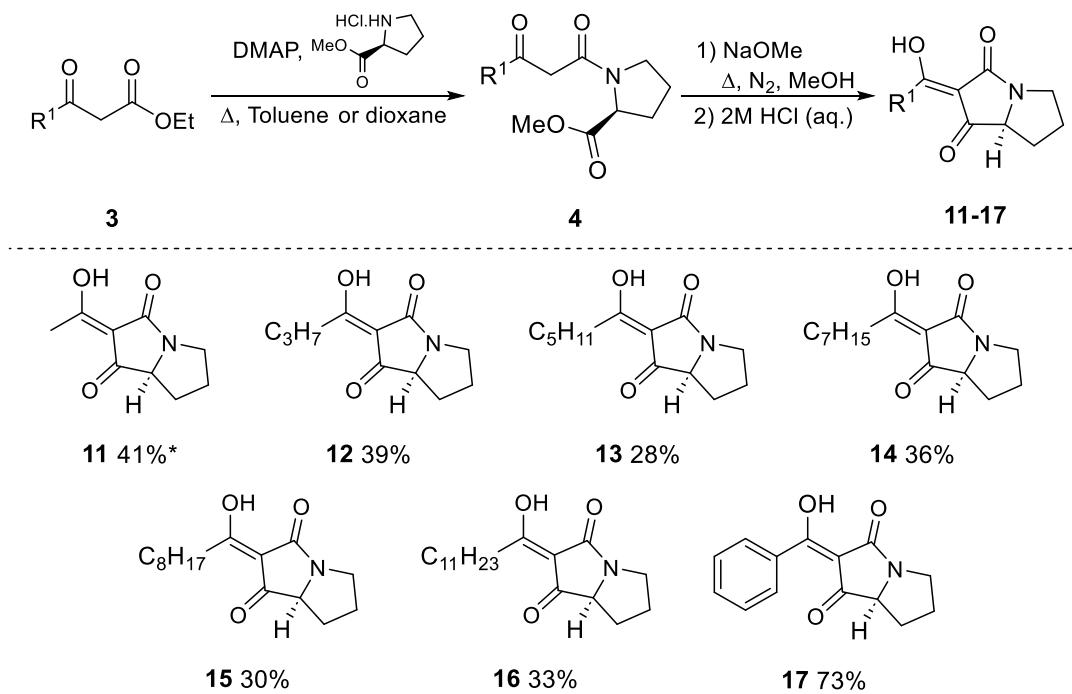
165 To validate the herbicidal effect of the 3-ATAs in intact seedlings of an agronomically relevant weed, the
166 four 3-ATAs that showed the greatest activity in the leaf disk assay (compounds **6**, **9**, **10** and TA12-Pro **7**)
167 were sprayed on seedlings of the broadleaf weed *Amaranthus retroflexus* L. at a concentration of 10 mmol
168 L⁻¹ (**Figure 3a**). Twenty-four hours after application, seedlings treated with each of the four 3-ATAs
169 showed an F_v/F_m value similar to or lower than that of DCMU-treated seedlings, indicating complete death
170 of treated tissues. To assess possible regrowth, seedlings were monitored for a further fourteen days.
171 Seedlings treated with the pipecolic acid derivative **10** showed regrowth, whereas those treated with DCMU
172 or the three other tested 3-ATAs did not.

173

174 **Figure 3: Effect of 3-ATAs 6-7 and 9-10 on F_v/F_m of intact seedlings of Amaranthus retroflexus (a) and Echinochloa crus-galli (b)**
175 *one and fourteen days after treatment. Seedlings were sprayed until run-off with a 10 mmol L⁻¹ compound solution using an*
176 *atomizer. The abbreviation 'Form.' is used to indicate formulation control (i.e. without active ingredient). Error bars indicate*
177 *mean ± SEM, N = 4. Treatments with different letters differ significantly according to Tukey's Honest Significant Difference test*
178 *(p < .05).*

179

180 The same assay was conducted with the monocot weed *Echinochloa crus-galli* L. P. Beauv. (**Figure 3b**).
181 All four 3-ATAs achieved the same reduction in F_v/F_m as DCMU one day after treatment, but fourteen days
182 after treatment all 3-ATA-treated seedlings showed regrowth whereas DCMU-treated seedlings did not.
183 This observation is consistent with a non-systemic contact effect, as the meristem of grasses is located close
184 to the ground in a protective sheath and is thus hard to destroy with contact products. Increasing compound
185 concentration from 10 mmol L⁻¹ to 50 mmol L⁻¹ and even 100 mmol L⁻¹ did not prevent regrowth in *E. crus-*
186 *galli* (data not shown). Together, these results confirm the contact herbicide activity of 3-ATAs suggested
187 by our *in vitro* assay.


188 Intrigued by these results, we wanted to continue our investigation of this scaffold and evaluate the
189 importance of the acyl side chain (position 3 in the pyrrolidine ring) and the AA residue (positions 1 and 5)
190 in this scaffold. Subsequently, we investigated the importance of the exocyclic enolic proton and the light
191 dependence of our activity, in order to have a more complete view on the activity of our products. Finally,
192 we address the practical application of our products with a field trial and a preliminary ecotoxicological
193 assessment.

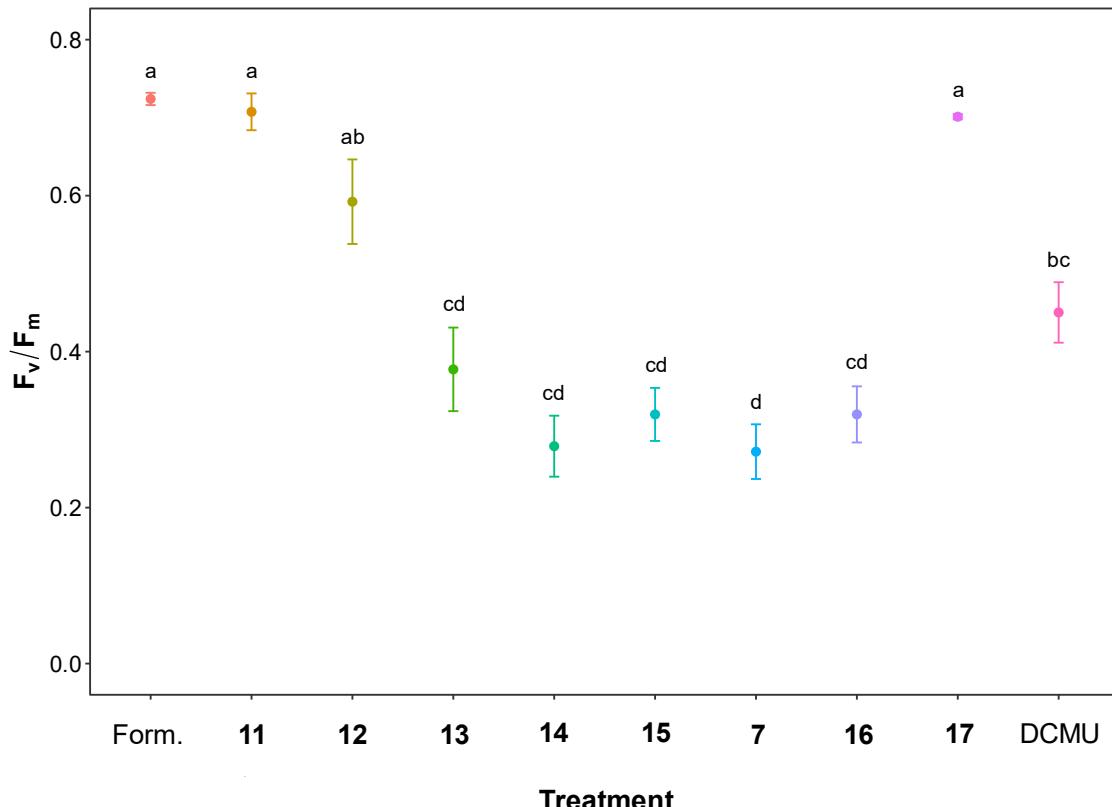
194

195 *The acyl side chain significantly affects the herbicidal activity of 3-ATAs*

196 To evaluate the role of side chain length in herbicidal activity, the most active AA moiety (L-proline, **7**)
197 was selected and analogs with acyl side chain lengths varying from two (**11**) to twelve (**16**) carbon atoms
198 were evaluated for herbicidal activity. In addition, an analog with an odd chain length (**15**) and a benzoyl
199 group instead of an acyl group (**17**) were also included. With the exception of the compound with the
200 shortest chain length, **11**, these compounds could all be synthesized in moderate to good yields via the
201 methodology described in Scheme 1 (see compounds **12-17**, Scheme 2). The only exception was compound
202 **11**, for which 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one was used instead of ethyl acetoacetate, yielding the

203 target product in a 48% yield over two steps. Most of these analogues have been described previously in
 204 the work of Stallforth and colleagues, with the exception of compounds **15**, **16** and **17**.⁶

205


206 *Scheme 2: Synthesis of acyl chain analogues **11-17** of TA12-Pro 7. *2,2,6-trimethyl-4H-1,3-dioxin-4-one was used as starting*

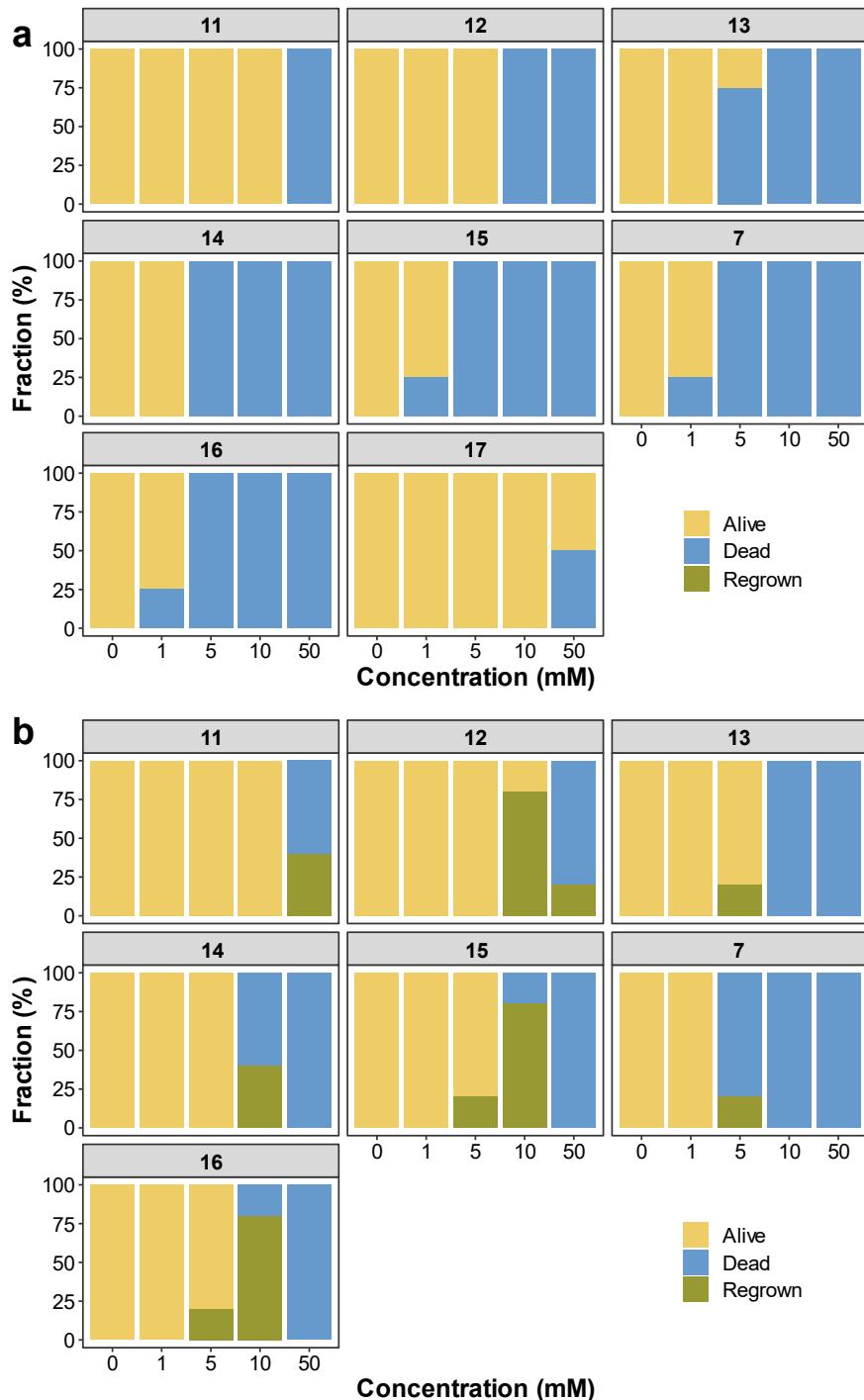
207 product instead of ethyl acetoacetate.

208 Our data show a clear increase in herbicidal efficacy with increasing acyl chain length against an
 209 additional agronomically important monocot weed *Alopecurus myosuroides* Huds. (**Figure 4**): treatment
 210 with 10 mmol L⁻¹ of compounds **11** and **12** does not significantly reduce F_v/F_m (-2% and -18% respectively,
 211 p = 1.00 and p = .28), whereas side chains of six carbon atoms (**13**) or more achieve reductions comparable
 212 to or greater than DCMU at the same concentration. Compound **15**, the only analog with an odd side chain
 213 length, shows a statistically identical performance to compounds **14** and **7** (-56% for **15** vs. -61% and -
 214 62% for **14** and TA12-Pro **7**), which shows that there is no clear difference between odd- and even-
 215 numbered side chains. On the other hand, replacement of the acyl side chain with a benzoyl group leads to
 216 complete loss of activity (-3% for compound **17** vs. formulation control, p = 1.00). Importantly, while
 217 several 3-ATAs could kill directly affected foliage at 10 mmol L⁻¹, all treated seedlings showed regrowth

218 within one to two weeks even at 50 mmol L⁻¹ (data not shown). This further confirms that the 3-ATAs show
219 only contact activity, with no evidence for systemic translocation.

220

221


222 **Figure 4:** Effect of L-proline-derived tetramic acids with varying side chains on seedlings of *Alopecurus myosuroides*. F_v/F_m was
223 measured 72 hours after spraying until run-off with a 10 mmol L⁻¹ solution. The abbreviation 'Form.' is used to indicate formulation
224 control (i.e. without active ingredient). Error bars indicate mean \pm SEM, $N = 4$. Treatments with different letters differ significantly
225 according to Tukey's Honest Significant Difference test ($p < .05$).

226 To further explore the role of the side chain length, spray experiments were also conducted in two
227 broadleaf weeds, *Amaranthus retroflexus* L. and *Stellaria media* L. Vill. (**Figure 5**). In these experiments
228 seedlings were spray-treated with 1-50 mmol L⁻¹ solutions of proline-derived tetramic acids and then
229 monitored for fourteen days. At the end of this period, seedlings were classified into one of three possible
230 classes: dead (directly exposed foliage died and no regrowth was observed after fourteen days), regrown

231 (directly exposed foliage had died completely but new foliage emerged within fourteen days) or unaffected
232 (directly exposed foliage showed no symptoms or mild phytotoxicity only).

233 The importance of the acyl group is again clearly visible. In *A. retroflexus* (**Figure 5a**), the shortest side
234 chain length, compound **11**, only caused significant mortality at 50 mmol L⁻¹ (Fisher's exact test: p = 0.029).
235 For compound **12**, 10 mmol L⁻¹ suffices to cause 100% mortality, and for acyl chain lengths of six carbon
236 atoms (compound **13**) or above, 5 mmol L⁻¹ is sufficient. At chain lengths of nine carbon atoms (compound
237 **15**) or longer, some mortality is seen even at 1 mmol L⁻¹, but this is not statistically significant.

238 The same pattern of increasing efficacy with longer side chains is visible in *S. media* (**Figure 5b**), although
239 here regrowth occurs at intermediate concentrations. Interestingly, the *S. media* experiment suggests that
240 increasing the length of the acyl side chain beyond ten carbon atoms (compound **7**) may not further enhance
241 activity: TA12-Pro **7** causes significant mortality at 5 mmol L⁻¹ (Fisher's exact test: p = .048), whereas
242 compounds **15** and **16** at 5 mmol L⁻¹ do not.

243

244 *Figure 5: Effect of varying side chain length on the herbicidal activity of proline-derived tetrameric acids 7 and 11-17 against*
 245 *Amaranthus retroflexus (a) and Stellaria media (b). Seedlings were scored fourteen days after application as unaffected (directly*
 246 *exposed foliage survived with no or minor phytotoxicity, new growth visible), regrown (directly exposed foliage died but new*
 247 *growth emerged) or dead (directly exposed foliage died and no regrowth observed). N = 5.*

248 *Pre-emergent herbicidal activity of TA12-Pro 7*

249 After establishing the contact herbicidal activity of TA12-Pro 7, we also investigated whether 7, like
 250 DCMU, is effective as a pre-emergent herbicide against *Amaranthus retroflexus* (**Table 1**). A concentration
 251 of 5 mmol L⁻¹ significantly delays emergence (0% emergence after five days, versus 20% in the blank
 252 control) but does not prevent emergence entirely (20% emergence after twelve days, versus 33% in the
 253 blank control). The highest tested concentration, 10 mmol L⁻¹, did however completely prevent emergence
 254 (0% after twelve days). DCMU showed considerably lower activity in this assay, with 15% emergence after
 255 12 days even at 10 mmol L⁻¹ most likely because our substrate is very rich in organic matter, which greatly
 256 reduces the efficacy of DCMU as a pre-emergent herbicide.²²

257 *Table 1: Efficacy of TA12-Pro 7 as a pre-emergence herbicide against *Amaranthus retroflexus*. Immediately after sowing in 60 mL*
 258 *pots containing 50 mL of potting soil, seeds were covered with a further 10 ml of potting soil into which TA12-Pro 7, DCMU or*
 259 *blank formulation were mixed to the target concentration. Emergence was then recorded at five, eight or twelve days after sowing*
 260 *(das). Emergence values shown are mean \pm SEM, N = 4 (four pots with ten seeds each). Within each time point, treatments with*
 261 *different letters differ significantly according to Tukey's Honest Significant Difference test (p < .05).*

Treatment	Concentration (mmol L ⁻¹)	Emergence		Emergence		Emergence	
		5 das (%)	8 das (%)	12 das (%)	12 das (%)	12 das (%)	12 das (%)
Blank	0	20.0 \pm 4.1	a	30.0 \pm 4.1	a	32.5 \pm 2.5	a
7	1	15.0 \pm 2.9	ab	20.0 \pm 4.1	ab	25.0 \pm 4.1	ab
DCMU	1	12.5 \pm 2.5	abc	25.0 \pm 6.5	a	25.0 \pm 6.1	a
7	5	0.0 \pm 0.0	c	20.0 \pm 7.1	ab	20.0 \pm 7.1	ab
DCMU	5	10.0 \pm 5.8	abc	22.5 \pm 7.5	a	22.5 \pm 7.5	ab
7	10	0.0 \pm 0.0	c	0.0 \pm 0.0	b	0.0 \pm 0.0	b
DCMU	10	2.5 \pm 2.5	bc	15.0 \pm 2.9	ab	15.0 \pm 2.9	ab

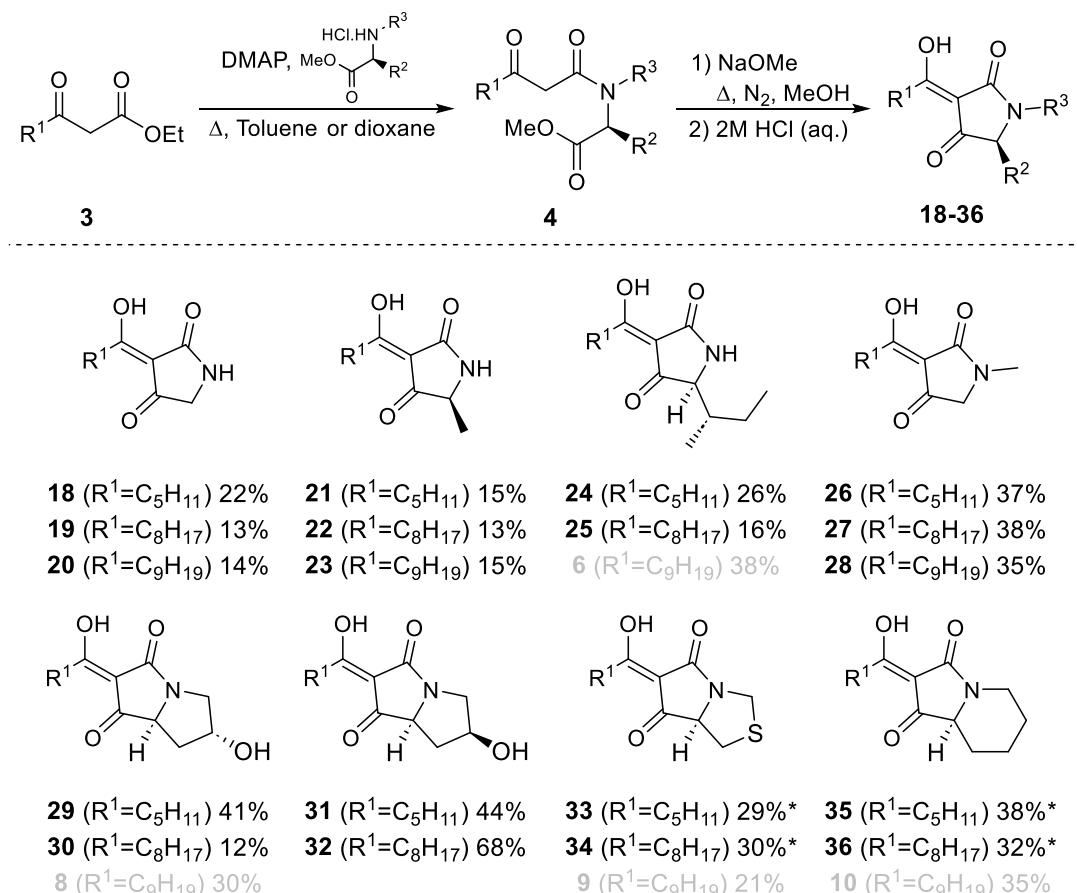
262

263

264 Additional herbicidal selectivity assessment of TA12-Pro 7

265 Selectivity is an important property of herbicides. Although the data shown previously in this manuscript
266 do not indicate that TA12-Pro 7 is a selective herbicide, the effect of 7 on six additional crop species
267 belonging to different plant families was evaluated in a small-scale spray test: sunflower (*Helianthus*
268 *annuus* 'SY Bacardi'; Asteraceae), bean (*Phaseolus vulgaris* 'Sigma'; Fabaceae), tomato (*Solanum*
269 *lycopersicum* 'Marmande'; Solanaceae), carrot (*Daucus carota* 'Evora'; Apiaceae), maize (*Zea mays* 'SY
270 Fermin; Poaceae) and wheat (*Triticum aestivum* 'SY Admiration'; Poaceae). Seedlings were sprayed once
271 in the three-leaf stage and monitored for fourteen days.

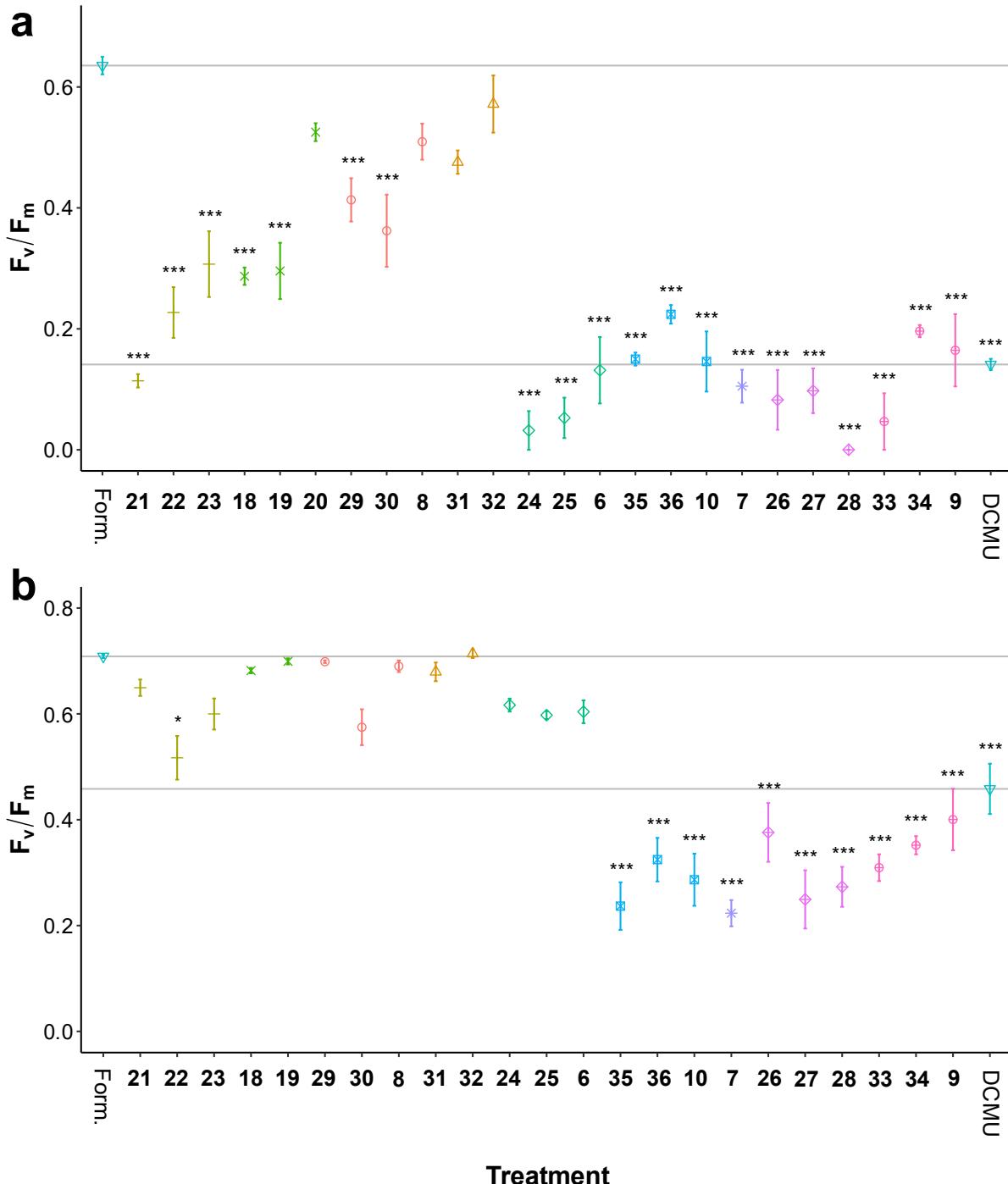
272 As shown in **Table 2**, the positive control treatment (10 mmol L⁻¹ DCMU) caused 100% mortality in
273 almost all tested species. TA12-Pro 7 at the same concentration caused injury to all directly treated foliage,
274 but plant mortality was lower: 75% in sunflower and carrot, and 0% in bean, tomato, wheat and maize. The
275 regrowth shown by wheat and maize is in line with our results concerning the gramineous weeds *E. crus-*
276 *galli* and *A. myosuroides*. The relatively high mortality seen in sunflower and carrot similarly agrees with
277 our observations on the dicot weeds *A. retroflexus* and *S. media*. Bean and tomato phenotypically behaved
278 more akin to what was observed in graminoids: they showed (near-) total death of the directly exposed
279 foliage but did show signs of regrowth. These results show that there are differences in the relative
280 susceptibility of plant species to TA12-Pro 7, but that it is still clearly a non-selective herbicide.


281

282 **Table 2:** Selectivity of TA12-Pro 7 towards a panel of economically important crop species: sunflower (*Helianthus annuus*), bean
 283 (*Phaseolus vulgaris*), tomato (*Solanum lycopersicum*), carrot (*Daucus carota*), maize (*Zea mays*) and wheat (*Triticum aestivum*).
 284 The percentage of injured and dead seedlings is shown two weeks after spraying with a formulation control or a 10 mmol L⁻¹
 285 solution of DCMU or TA12-Pro 7. 'Injured' refers to visible necrosis or death of directly exposed tissues but without plant death.
 286 *N* = 4.

	Formulation		TA12-Pro 7		DCMU	
	Injured (%)	Dead (%)	Injured (%)	Dead (%)	Injured (%)	Dead (%)
<i>H. annuus</i>	0	0	25	75	0	100
<i>P. vulgaris</i>	0	0	100	0	0	100
<i>S. lycopersicum</i>	0	0	100	0	0	100
<i>D. carota</i>	0	0	25	75	0	100
<i>Z. mays</i>	0	0	100	0	0	100
<i>T. aestivum</i>	0	0	100	0	25	75

287
 288 *Screening of additional 3-ATA analogs for SAR investigation*
 289 To expand the SAR analysis, a second library of 3-ATAs containing eight different AA moieties was
 290 synthesized. For the sake of comparison some previously tested ones were again included, whereas several
 291 new ones were also introduced. The final set consisted of derivatives of glycine, sarcosine, L-alanine, L-
 292 isoleucine, L-pipecolic acid, L-proline, L-thiaproline, (R)-hydroxyproline and (S)-hydroxyproline, each
 293 synthesized with acyl chain lengths of 6, 9 and 10 carbon atoms (comparable with compounds **13**, **15** and
 294 TA12-Pro **7**). Derivatives with these chain lengths showed good efficacy in the initial spraying experiments
 295 with the L-proline-derived 3-ATAs and were thus chosen for this expanded screening. By varying both side
 296 chain length and AA moiety in the same experiment, we could evaluate whether the pattern seen with the
 297 L-proline-derived 3-ATAs holds generally or varies between AA moieties. The novel compounds could all
 298 be synthesized straightforwardly via the same methodology, yielding the targeted 3-ATAs **18-36** (see


299 Scheme 3). It is interesting to note, however, that some of the reactions performed with secondary amino
300 acids thiaproline and pipecolic acid yielded the target tetramic acid already in the first reaction step, thus
301 making the Lacey-Dieckmann rearrangement with sodium methoxide obsolete. To the best of our
302 knowledge, this type of reactivity has not yet been described in literature and thus should be investigated
303 further to explain why this does not take place with e.g. L-proline or sarcosine. Of these analogues,
304 compounds **18**²³, **20**²³, **23**²⁴, **26**²⁵ and **28**²⁵ have been described in literature before.

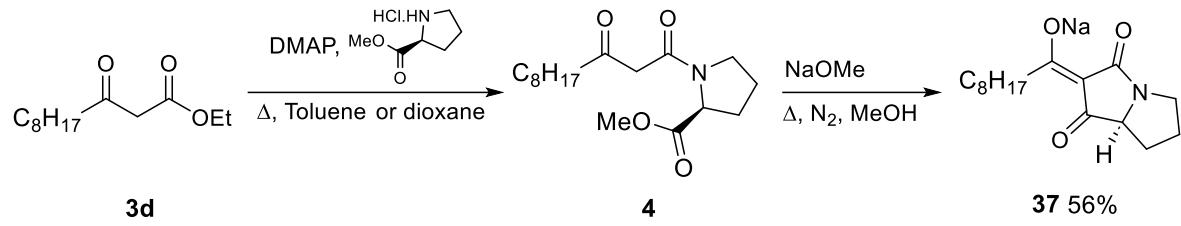
306 *Scheme 3: Synthesis of 3-ATAs 18-36 with different amino acid moieties and acyl chain lengths of 6, 9 and 10 carbon atoms. The*
 307 *compounds in gray were already synthesized in Scheme 1 but are again included in this library. *Reaction showed conversion to*
 308 *the tetrameric acid already in the first step.*

309 Against *A. retroflexus*, all tested 3-ATAs achieved a significant reduction in F_v/F_m at a concentration of
 310 10 mmol L⁻¹, except for the (S)-hydroxyproline analogs **31** and **32** (**Figure 6a**). The glycine (**18-20**), L-
 311 alanine (**21-23**) and (R)-hydroxyproline analogs (**29**, **30** and **8**) also showed limited efficacy. All other

312 tested amino acid derivatives – L-proline (**7**), L-thiaproline (**33**, **34** and **9**), sarcosine (**26-28**) and L-
313 pipecolic acid (**35**, **36** and **10**) - achieved a reduction in F_v/F_m that was statistically identical both to each
314 other and to DCMU. A similar division in two activity classes is even more clearly visible with *A.*
315 *myosuroides*, where derivatives of glycine (**18**, **19**), L-alanine (**21-23**) and both (R)- and (S)-hydroxyproline
316 (**8** and **29-32**) do not show statistically significant activity, whereas the other AA moieties all perform at
317 least on par with DCMU (**Figure 6b**). These results indicate that the use of a secondary amino acid is
318 necessary for a good activity, since sarcosine derivatives perform on par with the proline-derived tetramic
319 acids. Contrastingly, a hydroxyl group on the proline-ring leads to a decrease in activity, even though the
320 thiazolidine moiety in L-thiaproline-derivatives is tolerated for good activity. This leads us to believe that
321 the additional hydroxyl group changes the overall polarity or conformation of the molecule, thereby
322 decreasing the activity of the compound.

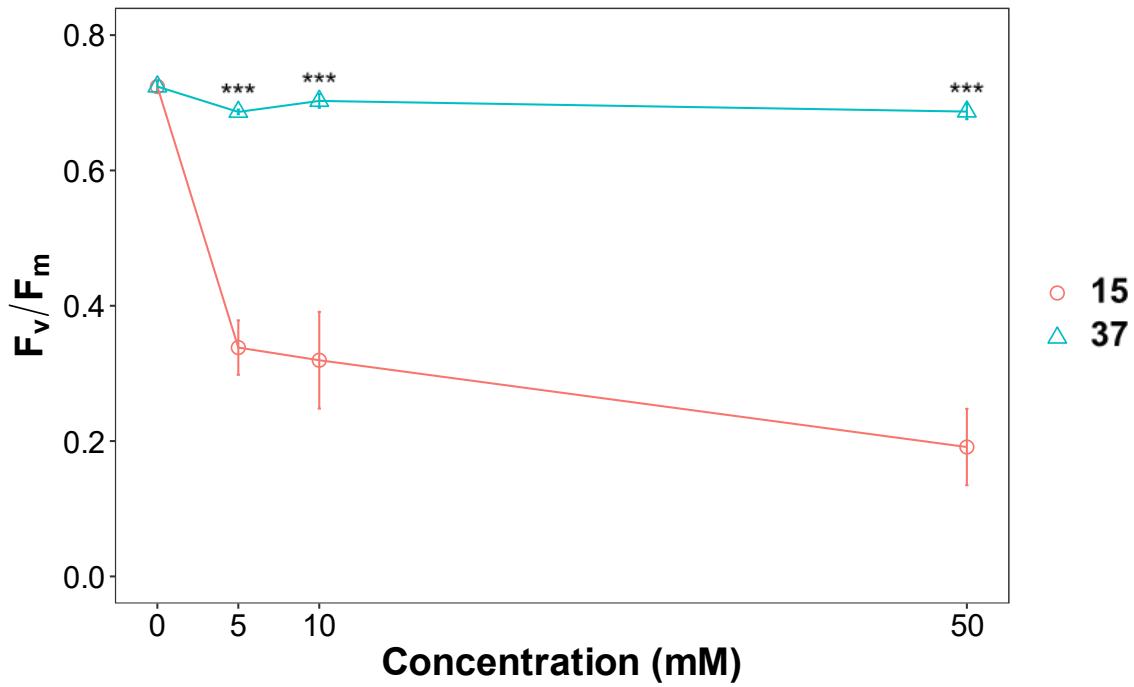
323

324 **Figure 6:** Effect of 3-ATAs **6-10** and **18-36** with varying amino acid moieties and side chain lengths on seedlings of Amaranthus
325 retroflexus (a) and Alopecurus myosuroides (b). F_v/F_m was measured 72 hours after spraying until run-off with a 10 mmol L^{-1}
326 solution. Error bars indicate mean \pm SEM, $N = 4$. Asterisks indicate significant difference from the formulation control (indicated
327 with 'Form.') according to Tukey's Honest Significant Difference test (*: $p < .05$); **: $p < .01$; ***: $p < .001$). The upper and


328 lower horizontal gray lines correspond to the mean of the formulation negative control and DCMU positive control respectively
329 as an aid to the reader. Compounds with the same amino acid moiety share the same color and symbol.

330 Regarding the length of the acyl side chain, our data show no differences between 6, 9 and 10 carbon
331 atoms in the acyl chains across all tested compounds (C6 vs. C9: -21%, p = .68; C6 vs. C10: -10%, p = .97,
332 C9 vs. C10: +14%, p = .90), although for some individual amino acid derivatives differences between chain
333 lengths were observed. This indicates there might be amino acid-specific interactions with side chain length,
334 but given the relatively small panel of compounds and sample sized used in this study further research is
335 needed to confirm whether this is indeed the case.

336

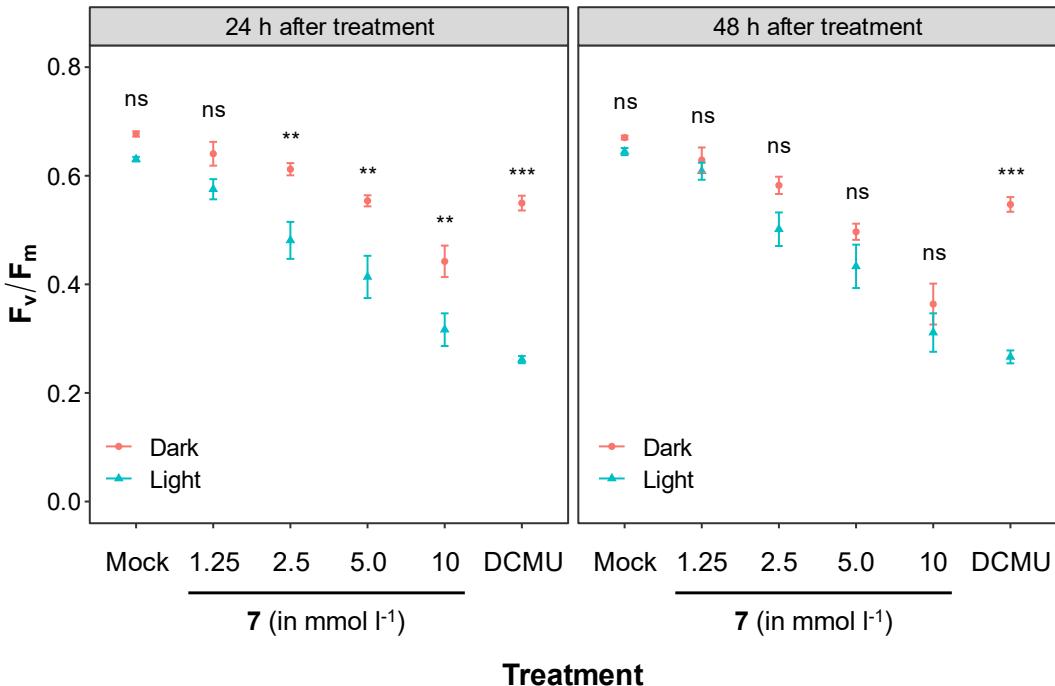

337 *The acidic proton of 3-ATAs is required for activity*

338 The most important part of the studied structures is the ‘triketone’ or β,β' -dioxoamide moiety. It is less
339 straightforward to synthesize analogues of this functional group, although during a replication of the
340 synthesis of compound **15**, we managed to isolate a small amount of the corresponding sodium salt by
341 purifying one of the waste fractions. We confirmed the structure via the NMR-characterization and
342 physicochemical behavior of the molecule, as this salt is readily soluble in water, in sharp contrast to its
343 corresponding acid, compound **15**. Of course, by omitting the neutralization step in the aforementioned
344 procedure, this novel sodium salt **37** could be isolated in a 56% yield. This seemed a suitable product to
345 investigate the role of the acidic proton of 3-ATAs in their herbicidal activity. When applied against *A.*
346 *retroflexus*, the salt shows a complete loss of phytotoxicity (**Figure 7**), thereby confirming the crucial role
347 of the acidic proton. This crucial role is also confirmed in a study by the Stallforth group, who have shown
348 that a methylated compound **14** shows no amoebicidal nor antiproliferative activity, in contrast to
349 compound **14** itself.⁷ Therefore, their results also confirm the necessity of this acidic proton for the
350 bioactivity of these structures.

351

352 *Scheme 4: Adapted synthesis for the isolation of the sodium salt 37.*

353


Figure 7: Loss of herbicidal activity against *A. retroflexus* of sodium salt 37 compared to the corresponding acid 15. F_v/F_m was measured 72 hours after spraying until run-off. Error bars indicate mean \pm SEM, $N = 4$. Asterisks indicate significant difference from the formulation control according to Tukey's Honest Significant Difference test (*: $p < .0001$).**

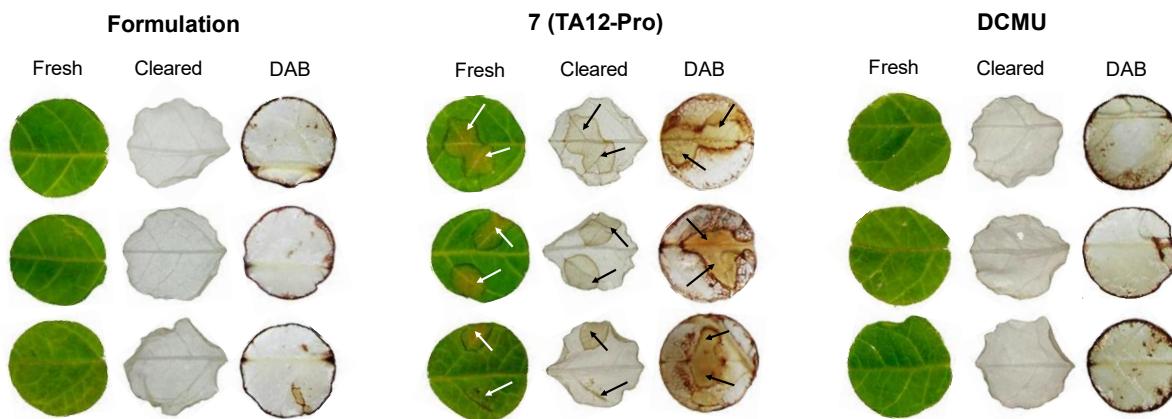
357

358 Leaf disk assays indicate that the herbicidal activity of TA12-Pro **7** is at least partially explained by light-
359 independent cell lysis

360 While a thorough evaluation of the mechanism of action of 3-ATAs falls outside the scope of this study,
361 we were intrigued by previous observations in algae showing that TA12 (**2**) induced cell lysis in addition
362 to PSII inhibition, an activity not displayed by DCMU.⁹ Additionally, previous reports of the Stallforth
363 group have identified TA12-Pro **7** as part of a set of 3-ATAs that are produced by a *Pseudomonas*
364 *fluorescens* strain as amoebicides.⁶ In follow-up research, the same authors also found that these 3-ATAs
365 induce cell death in three strains of Gram-positive bacteria, likely through protonophore activity.⁷ Since
366 these results point towards possibly cellular toxicity through means other than PSII inhibition, we attempted
367 to assess whether PSII activity is indeed the principal or even only herbicidal mechanism of 3-ATAs in
368 plants through a series of *in vitro* leaf disk assays.

369 First, we tested the light dependence of the herbicidal activity of TA12-Pro **7**: tomato leaf disks were
370 exposed to either **7** or DCMU and subsequently incubated either in complete darkness or under ambient
371 light conditions. After 24 hours and 48 hours, the F_v/F_m of these leaf disks was measured. Since this requires
372 exposing leaf disks to a brief but intense light pulse, separate batches of leaf disks were used at 24 and 48
373 hours. Our data show that the effect of DCMU was greatly diminished by dark incubation (**Figure 8**), likely
374 because far fewer ROS are formed upon PSII inhibition when plants are not exposed to light. Treatment
375 with TA12-Pro **7**, meanwhile, showed a smaller reduction in F_v/F_m after 24 hours of exposure in the dark
376 compared to light incubation but dropped to the same F_v/F_m after 48 hours both in the dark and light
377 incubation.

378


379 **Figure 8:** Differential effect of TA12-Pro 7 and DCMU on F_v/F_m in light- and dark-incubated *Solanum lycopersicum* leaf disks.
 380 Error bars indicate mean \pm SEM. $N = 4$. Asterisks indicate significant difference between light and dark incubation according to
 381 Tukey's Honest Significant Difference test (ns: $p > .05$; *: $p < .05$; **: $p < .01$; ***: $p < .001$).

382

383 We observed that leaf disks exposed to TA12-Pro 7 begin to show intense brown discoloration within 48
 384 hours after exposure, whereas no discoloration is visible in DCMU-treated leaf disks – a phenomenon
 385 previously observed in leaves exposed to tenuazonic acid and which was found to co-localize with areas of
 386 cell lysis.⁸ This brown coloration persists even when the leaf disks are cleared in hot ethanol, which
 387 excludes the possibility that the brown coloration is caused by chlorophyll degradation or pigmentation
 388 (**Figure 9**).

389 Staining TA12-Pro- or DCMU-treated leaf disks with 3,3'-diaminobenzidine (DAB), a common stain to
 390 visualize hydrogen peroxide accumulation,²⁶ reveals another marked difference between TA12-Pro 7 and
 391 DCMU. Whereas DCMU-treated leaf disks show faint, sporadically scattered staining throughout the leaf
 392 disk, TA12-Pro-treated leaf disks show highly intense staining in and around the discolored areas that form

393 at and around the droplet application sites. Interestingly, the most intense brown staining occurs
394 immediately outside the discolored area rather than inside it (**Figure 9**). Again, H₂O₂ accumulation was
395 also previously observed in leaves exposed to tenuazonic acid, but not DCMU, and found to correspond
396 with areas of cell lysis.⁸ Together, these results show that TA12-Pro **7** causes both inhibition of
397 photosynthesis and cell lysis, and our dark incubation experiments indicate that cell lysis alone is sufficient
398 to cause cell death.

399
400 **Figure 9:** Representative images of *Solanum lycopersicum* leaf disks sampled 72 hours after exposure to a formulation control, 10
401 mmol L⁻¹ of TA12-Pro **7** or 10 mmol L⁻¹ of DCMU. Pictures are shown of freshly collected leaf disks (left), cleared leaf disks
402 (center) and leaf disks stained with 3,3'-diaminobenzidine (DAB) and then cleared. Arrows indicate the discolored sites observed
403 at TA12-Pro **7** application sites. Images of fresh and cleared leaf disks were taken from the same batch of disks, the DAB-stained
404 disks came from a separate batch.

405
406 *Validation of TA12-Pro **7** in field conditions*
407 As a final validation of the efficacy of 3-ATAs, the efficacy of TA12-Pro **7** was evaluated in a field trial. A
408 36 m² false seed bed was prepared in an arable field at the Bottelare experimental farm (Merelbeke,
409 Belgium) to achieve a uniform weed stand, the center of which was divided into 1.5 m² subplots. On the
410 day of the trial, the individual plants present in a randomly selected 40 x 40 cm square in each subplot were

411 surveyed to get an insight into the precise composition of the weed population of the trial field. There was
412 little variation in species composition between subplots; across all plots the weed population consisted of
413 68% *Galinsoga* sp., 22% *Coronopus* sp., 8% *Spergula arvensis* and 2% minor species (*Viola arvensis*,
414 *Chenopodium album*, *Lamium purpureum*, *Echinochloa crus-galli*, *Polygonum aviculare*, *Persicaria*
415 *maculosa*, *Stellaria media*, *Cirsium arvense*, *Senecio* sp.). Four subplots were used per treatment. The
416 commercial herbicide Beloukha® (Certis-Belchim, active ingredient: pelargonic acid) applied according to
417 label instructions was used as a positive control, whereas untreated and formulation-only checks were used
418 as negative controls. TA12-Pro 7 was applied as 10 and 100 mmol L⁻¹ spraying solutions with a backpack
419 sprayer at a rate of 300 L ha⁻¹, corresponding to dose rates of 0.88 kg ha⁻¹ (3 mol ha⁻¹) and 8.8 kg ha⁻¹ (30
420 mol ha⁻¹) respectively. RGB images were taken using drone-mounted cameras (**Figure 10**), after which the
421 percentage of pixels showing living vegetation was calculated. Our results show that, in contrast to indoor
422 growth chamber experiments, a 10 mmol L⁻¹ TA12-Pro 7 solution is not effective at killing weeds in open
423 field conditions. However, a 100 mmol L⁻¹ solution achieved equivalent weed control as Beloukha® despite
424 a significantly lower active ingredient concentration (**Table 3**): 30 mol ha⁻¹ versus 69 mol ha⁻¹. Neither
425 product showed appreciable residual efficacy, as significant regrowth had already occurred within seven
426 days after treatment. Although these results are promising, the small scale of the trial and the
427 overwhelmingly broadleaved resident weed population (> 99.5%) mean that further trials at different sites
428 with more diverse weed populations and optimisation of the formulation of the active ingredient are
429 required to better understand the potential and limitations of 3-ATAs as herbicides.

430

431 **Table 3:** Efficacy of TA12-Pro 7 at weed control in field conditions. Weed reduction is defined as the reduction in the fraction of
 432 green pixels in areal RGB images taken four and seven days after application compared to the moment of herbicide application. N
 433 = 4 (four 1.5 m^2 subplots used per treatment). Treatments with different letters differ significantly according to Tukey's Honest
 434 Significant Difference test ($p < .05$). Pelargonic acid was used in the form of the commercial herbicide Beloukha® (Certis-Belchim,
 435 680 g L⁻¹ EC).

Treatment	% weed reduction after		% weed reduction after	
	4 days (\pm SEM)	7 days (\pm SEM)	4 days (\pm SEM)	7 days (\pm SEM)
Untreated	0 \pm 0	a	0 \pm 0	a
Formulation control	0 \pm 0	a	0 \pm 0	a
Pelargonic acid 10.9 kg ha ⁻¹ (69 mol ha ⁻¹)	81 \pm 14	b	43 \pm 5	b
TA12-Pro 7 0.88 kg ha ⁻¹ (3 mol ha ⁻¹)	3 \pm 1	a	3 \pm 1	a
TA12-Pro 7 8.8 kg ha ⁻¹ (30 mol ha ⁻¹)	88 \pm 3	b	48 \pm 2	b

436

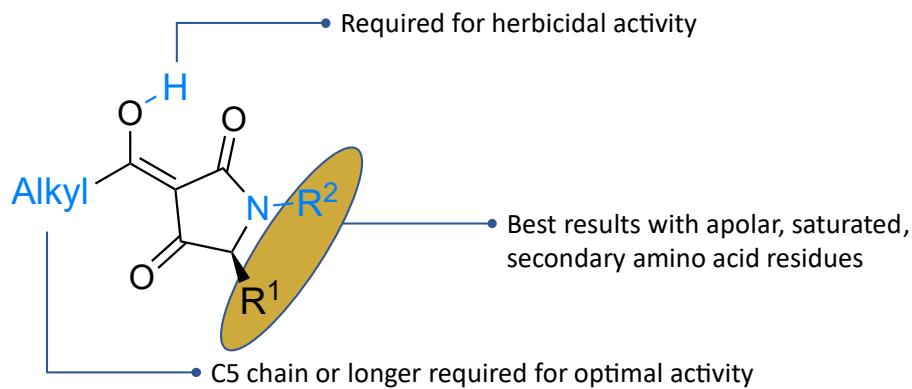
437

438 **Figure 10:** Efficacy of TA12-Pro 7 in field conditions. Photograph was taken with a drone-mounted RGB camera four days after
439 treatment. Abbreviations: PA = pelargonic acid (Beloukha®, Certis-Belchim, 10.9 kg ha⁻¹), TA12-Pro 10 = 10 mmol L⁻¹ spraying
440 solution TA12-Pro 7 (0.88 kg ha⁻¹), TA12-Pro 100 = 100 mmol L⁻¹ spraying solution TA12-Pro 7 (8.8 kg ha⁻¹). Each subplot has a
441 1.5 m² surface area.

442

443 *Preliminary ecotoxicological assessment of TA12-Pro 7*

444 As a first step towards understanding the ecotoxicological potential of TA12-Pro **7**, a preliminary
445 assessment of the acute toxicity and biodegradability of TA12-Pro **7** in freshwater settings was conducted.
446 Acute toxicity tests were performed with the indicator organisms *Raphidocelis subcapitata* (a green algae,
447 formerly known as *Pseudokirchneriella subcapitata*), *Daphnia magna* (a daphnid) and *Lemna minor* (an
448 aquatic plant). In addition, biodegradation by freshwater microbes was also evaluated. All tests were
449 conducted as prescribed in the respective OECD guidelines.²⁷⁻²⁹


450 EC₅₀ values for *R. subcapitata* and *L. minor* were calculated as 7.15 and 1.83 mg L⁻¹ respectively. For *D.*
451 *magna*, the EC₅₀ value lies between 1 and 10 mg L⁻¹ but could not be precisely quantified due to a lack of
452 intermediate concentrations in the assay. Based on these EC₅₀ values, European Union Regulation (EC) No
453 1272/2008 would not define TA12-Pro **7** as acutely toxic to any of the three tested indicator organisms.³⁰
454 Biodegradation of TA12-Pro **7** after four weeks was 40%, which is defined as *inherently* but not *readily*
455 biodegradable under OECD guidelines.³¹

456

457 *Structure-activity relationships of 3-ATAs*

458 We demonstrated a flexible and readily accessible methodology for the synthesis of 3-ATAs and used it to
459 synthesize libraries of analogues to enable thorough exploration of the herbicidal activity of this scaffold.
460 First, we established that the algicidal activity of TA12 (**2**) could be transferred to herbicidal activity
461 through an *in vitro* leaf disk assay and spray tests with agronomically important weed species.
462 Subsequently, we showed that the presence of a medium or long chain acyl group (more than six carbon
463 atoms in the acyl chain) greatly enhances activity relative to shorter side chains. For the amino acid moiety,
464 apolar secondary amino acid derivatives showed higher activity than other tested amino acid moieties.
465 Study of the isolated sodium salt **37** allowed us to show that the presence of the acidic proton of the β,β' -
466 dioxoamide moiety is essential for the herbicidal activity of the 3-ATA (**Figure 11**). With regards to the

467 evaluated weeds, high mortality was achieved against broadleaf seedlings (*A. retroflexus* and *S. media*), but
468 gramineous weeds (*E. crus-galli* and *A. myosuroides*) invariably showed regrowth. Herbicidal activity of
469 TA12-Pro 7 was also demonstrated against broadleaf weeds in field conditions. Finally, a preliminary
470 assessment of the ecotoxicology revealed that TA12-Pro 7, with promising herbicidal activity, is not acutely
471 toxic for the evaluated organisms and can be classified as inherently biodegradable.

472

473 **Figure 11:** Summary of the structure-activity relationships of the demonstrated 3-ATAs in this study.

474 Preliminary mechanistic studies furthermore showed that, in contrast to treatments with DCMU, 3-ATAs
475 retain activity in the absence of light and induce brown discoloration and strong hydrogen peroxide
476 accumulation in exposed tissues. Together, this points towards cell lysis as an additional mode of action in
477 addition to the previously demonstrated photosystem II inhibition.

478 Together, our research sheds new light on the chemistry and phytotoxicity of amino acid-derived 3-
479 acyltetramic acids and shows the potential of this scaffold for herbicide development. Further research will
480 be required, however, to further enhance its activity, to elucidate its mechanism(s) of action and to
481 understand its (eco)toxicological properties and environmental fate.

482

483 **Supporting Information**

484 The Supporting Information contains materials and methods for the chemical synthesis and biological
485 evaluation and ^1H , ^{13}C NMR, IR and MS spectra used for the characterization of the final compounds, as
486 well as the raw data underlying the graphs and tables shown in this manuscript.

487

488 **Acknowledgement**

489 The authors acknowledge the financial support from the Hercules Foundation of the Flemish Government
490 for the multispectral imaging platform (Project Number AUGE/15/17) and the financial support from the
491 Industrial Research Fund (DETACH, F2021/IOF-ConcepTT/060).

492

493 **References**

494 (1) Riemens, M.; Sønderskov, M.; Moonen, A. C.; Storkey, J.; Kudsk, P. An Integrated Weed
495 Management Framework: A Pan-European Perspective. *European Journal of Agronomy* **2022**, *133*,
496 126443. <https://doi.org/10.1016/J.EJA.2021.126443>.

497 (2) Duke, S. O.; Dayan, F. E. The Search for New Herbicide Mechanisms of Action: Is There a ‘Holy
498 Grail’? *Pest Manag Sci* **2022**, *78* (4), 1303–1313. <https://doi.org/10.1002/PS.6726>.

499 (3) Mo, X.; Li, Q.; Ju, J. Naturally Occurring Tetramic Acid Products: Isolation, Structure Elucidation
500 and Biological Activity. *RSC Adv* **2014**, *4* (92), 50566–50593.
501 <https://doi.org/10.1039/C4RA09047K>.

502 (4) Lümmen, P.; Khajehali, J.; Luther, K.; Van Leeuwen, T. The Cyclic Keto-Enol Insecticide
503 Spirotetramat Inhibits Insect and Spider Mite Acetyl-CoA Carboxylases by Interfering with the
504 Carboxyltransferase Partial Reaction. *Insect Biochem Mol Biol* **2014**, *55*, 1–8.
505 <https://doi.org/10.1016/J.IBMB.2014.09.010>.

506 (5) Salimova, D.; Dalinova, A.; Dubovik, V.; Senderskiy, I.; Stepanycheva, E.; Tomilova, O.; Hu, Q.;
507 Berestetskiy, A. Entomotoxic Activity of the Extracts from the Fungus, Alternaria Tenuissima and
508 Its Major Metabolite, Tenuazonic Acid. *Journal of Fungi* **2021**, *Vol. 7, Page 774* **2021**, *7* (9), 774.
509 <https://doi.org/10.3390/JOF7090774>.

510 (6) Klapper, M.; Götze, S.; Barnett, R.; Willing, K.; Stallforth, P. Bacterial Alkaloids Prevent Amoebal
511 Predation. *Angewandte Chemie International Edition* **2016**, *55* (31), 8944–8947.
512 <https://doi.org/10.1002/anie.201603312>.

513 (7) Klapper, M.; Paschold, A.; Zhang, S.; Weigel, C.; Dahse, H.-M.; Götze, S.; Pace, S.; König, S.; Rao,
514 Z.; Reimer, L.; Werz, O.; Stallforth, P. Bioactivity and Mode of Action of Bacterial Tetramic Acids.
515 *ACS Chem Biol* **2019**, *14* (8), 1693–1697. <https://doi.org/10.1021/acschembio.9b00388>.

516 (8) Chen, S.; Qiang, S. Recent Advances in Tenuazonic Acid as a Potential Herbicide. *Pestic Biochem*
517 *Physiol* **2017**, *143*, 252–257. <https://doi.org/10.1016/J.PESTBP.2017.01.003>.

518 (9) Stock, F.; Syrpas, M.; Graff Van Creveld, S.; Backx, S.; Blommaert, L.; Dow, L.; Stock, W.;
519 Ruysbergh, E.; Lepetit, B.; Bailleul, B.; Sabbe, K.; De Kimpe, N.; Willems, A.; Kroth, P. G.; Vardi,
520 A.; Vyverman, W.; Mangelinckx, S. N-Acyl Homoserine Lactone Derived Tetramic Acids Impair
521 Photosynthesis in *Phaeodactylum Tricornutum*. *ACS Chem Biol* **2019**, *14* (2), 198–203.
522 <https://doi.org/10.1021/acschembio.8b01101>.

523 (10) den Hollander, D.; Holvoet, C.; Demeyere, K.; De Zutter, N.; Audenaert, K.; Meyer, E.; Croubels,
524 S. Cytotoxic Effects of Alternariol, Alternariol Monomethyl-Ether, and Tenuazonic Acid and Their
525 Relevant Combined Mixtures on Human Enterocytes and Hepatocytes. *Front Microbiol* **2022**, *13*,
526 849243. [https://doi.org/10.3389/FMICB.2022.849243/BIBTEX](https://doi.org/10.3389/FMICB.2022.849243).

527 (11) Zimdahl, R. L. *Fundamentals of Weed Science: Fifth Edition*, Fifth edition.; Elsevier, 2018.

528 (12) Backx, S.; Desmedt, W.; Dejaegere, A.; Simoens, A.; Van de Poel, J.; Krasowska, D.; Audenaert,
529 K.; Stevens, C. V.; Mangelinckx, S. Synthesis of Mixed Phosphonate Esters and Amino Acid-Based
530 Phosphonamides, and Their Screening as Herbicides. *International Journal of Molecular Sciences*
531 *2024*, Vol. 25, Page 4739 **2024**, 25 (9), 4739. <https://doi.org/10.3390/IJMS25094739>.

532 (13) De Zutter, N.; Ameye, M.; Debode, J.; De Tender, C.; Ommeslag, S.; Verwaeren, J.; Vermeir, P.;
533 Audenaert, K.; De Gelder, L. Shifts in the Rhizobiome during Consecutive in Planta Enrichment for
534 Phosphate-Solubilizing Bacteria Differentially Affect Maize P Status. *Microb Biotechnol* **2021**, *14*
535 (4), 1594–1612. <https://doi.org/10.1111/1751-7915.13824>.

536 (14) Desmedt, W.; Ameye, M.; Filipe, O.; De Waele, E.; Van Nieuwerburgh, F.; Deforce, D.; Van
537 Meulebroek, L.; Vanhaecke, L.; Kyndt, T.; Höfte, M.; Audenaert, K. Molecular Analysis of Broad-
538 Spectrum Induced Resistance in Rice by the Green Leaf Volatile Z-3-Hexenyl Acetate. *J Exp Bot*
539 **2023**, *74* (21), 6804–6819. <https://doi.org/10.1093/JXB/ERAD338>.

540 (15) Baker, N. R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. *Annu Rev Plant Biol*
541 **2008**, *59*, 89–113. <https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759>.

542 (16) Wu, C.; Varanasi, V.; Perez-Jones, A. A Nondestructive Leaf-Disk Assay for Rapid Diagnosis of
543 Weed Resistance to Multiple Herbicides. *Weed Sci* **2021**, *69* (3), 274–283.
544 <https://doi.org/10.1017/WSC.2021.15>.

545 (17) Kaufmann, G. F.; Sartorio, R.; Lee, S.-H.; Rogers, C. J.; Meijler, M. M.; Moss, J. A.; Clapham, B.;
546 Brogan, A. P.; Dickerson, T. J.; Janda, K. D. Revisiting Quorum Sensing: Discovery of Additional
547 Chemical and Biological Functions for 3-Oxo-N-Acylhomoserine Lactones. *Proc Natl Acad Sci U*
548 *SA* **2005**, *102* (2), 309–314. <https://doi.org/10.1073/pnas.0408639102>.

549 (18) Hodgkinson, J. T.; Galloway, W. R. J. D.; Casoli, M.; Keane, H.; Su, X.; Salmond, G. P. C.; Welch,
550 M.; Spring, D. R. Robust Routes for the Synthesis of N-Acylated-l-Homoserine Lactone (AHL)
551 Quorum Sensing Molecules with High Levels of Enantiomeric Purity. *Tetrahedron Lett* **2011**, *52*
552 (26), 3291–3294. <https://doi.org/10.1016/J.TETLET.2011.04.059>.

553 (19) McCready, A. R.; Paczkowski, J. E.; Henke, B. R.; Bassler, B. L. Structural Determinants Driving
554 Homoserine Lactone Ligand Selection in the *Pseudomonas Aeruginosa* LasR Quorum-Sensing
555 Receptor. *Proc Natl Acad Sci U S A* **2019**, *116* (1), 245–254.
556 <https://doi.org/10.1073/pnas.1817239116>.

557 (20) Ruysbergh, E.; Stevens, C. V.; De Kimpe, N.; Mangelinckx, S. Synthesis and Analysis of Stable
558 Isotope-Labelled N-Acyl Homoserine Lactones. *RSC Adv* **2016**, *6* (77), 73717–73730.
559 <https://doi.org/10.1039/C6RA17797B>.

560 (21) Matsuo, K.; Kitaguchi, I. I.; Takata, Y.; Tanaka, K. Structure-Activity Relationships in Tetramic
561 Acids and Their Copper (II) Complexes. *Chem Pharm Bull (Tokyo)* **1980**, *28* (8), 2494–2502.
562 <https://doi.org/10.1248/cpb.28.2494>.

563 (22) Upchurch, R. P. The Influence of Soil Factors on the Phytotoxicity and Plant Selectivity of Diuron.
564 *Weeds* **1958**, 6 (2), 161. <https://doi.org/10.2307/4040289>.

565 (23) Petroliagi, M.; Iglessi-markopoulou, O. An Efficient Synthesis of Novel N-Acetyl-3-Alkanoyl and
566 3-Dienoyl Tetramic Acids. *J Chem Soc Perkin 1* **1997**, 3543–3548.

567 (24) Murray, E. J.; Crowley, R. C.; Truman, A.; Clarke, S. R.; Cottam, J. A.; Jadhav, G. P.; Steele, V.
568 R.; O’Shea, P.; Lindholm, C.; Cockayne, A.; Chhabra, S. R.; Chan, W. C.; Williams, P. Targeting
569 *Staphylococcus Aureus* Quorum Sensing with Nonpeptidic Small Molecule Inhibitors. *J Med Chem*
570 **2014**, 57 (6), 2813–2819. <https://doi.org/10.1021/jm500215s>.

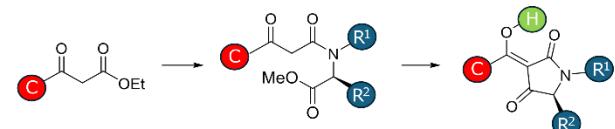
571 (25) Jeong, Y.-C.; Anwar, M.; Bikadi, Z.; Hazai, E.; Moloney, M. G. Natural Product Inspired
572 Antibacterial Tetramic Acid Libraries with Dual Enzyme Inhibition †. *RCS publishing* **2012**.
573 <https://doi.org/10.1039/c2sc21713a>.

574 (26) Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D. B. Subcellular Localization of H₂O₂ in
575 Plants. H₂O₂ Accumulation in Papillae and Hypersensitive Response during the Barley—Powdery
576 Mildew Interaction. *The Plant Journal* **1997**, 11 (6), 1187–1194. <https://doi.org/10.1046/J.1365-313X.1997.11061187.X>.

578 (27) OECD. *Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test / OECD
579 Guidelines for the Testing of Chemicals, Section 2 : Effects on Biotic Systems | OECD iLibrary*.
580 https://www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en (accessed 2024-01-05).

582 (28) OECD. *Test No. 202: Daphnia sp. Acute Immobilisation Test / OECD Guidelines for the Testing of
583 Chemicals, Section 2 : Effects on Biotic Systems | OECD iLibrary*. https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en
584 (accessed 2024-01-05).

586 (29) OECD. *Test No. 221: Lemna sp. Growth Inhibition Test / OECD Guidelines for the Testing of*
587 *Chemicals, Section 2: Effects on Biotic Systems* | OECD iLibrary. https://www.oecd-ilibrary.org/environment/test-no-221-lemna-sp-growth-inhibition-test_9789264016194-en
588 (accessed 2024-01-05).


590 (30) *Regulation (EC) No 1272/2008 - classification, labelling and packaging of substances and mixtures*
591 (CLP) / Safety and health at work EU-OSHA.
592 <https://osha.europa.eu/nl/legislation/directives/regulation-ec-no-1272-2008-classification-labelling-and-packaging-of-substances-and-mixtures> (accessed 2024-01-05).

594 (31) OECD. *Test No. 301: Ready Biodegradability / OECD Guidelines for the Testing of Chemicals,*
595 *Section 3: Environmental fate and behaviour* | OECD iLibrary. https://www.oecd-ilibrary.org/environment/test-no-301-ready-biodegradability_9789264070349-en (accessed 2024-01-05).

598

599

600 For Table of Contents Only

601

602